Cryptographic Protocols
Spring 2020
MPC Part 1

Sum Protocol
Goal: Compute sum of inputs

Protocol:
1. \(y_1 = r + x_1 \)
2. \(y_2 = y_1 + x_2 \)
3. \(y_3 = y_2 + x_3 \)
4. \(y_4 = y_3 + x_4 \)
5. \(y_5 = y_4 + x_5 \)
6. \(y_6 = y_5 + x_6 \)
7. \(y_7 = y_6 + x_7 \)

\(y = y_7 \)

Analysis: 1 passive cheater? 2 passive? 1 active? 2 active?

Specification
0. \(\forall P_i: \text{input } x_i \)
1. \(\forall P_i: \text{send } x_i \text{ to TTP} \)
2. TTP: \(y = \sum x_i \)
3. TTP: send \(y \) to \(\forall P_j \)

Model

Parties and Channels
- \(n \) parties \(P_1, \ldots, P_n \)
- Secure channels among parties
- Broadcast channels

Adversary
- Central adversary (collaborating parties)
- Corrupts \(t \) parties
- Passive vs active

Security
- Information-theoretic vs. Cryptographic

More Examples

Examples
- Statistics (first sex, tax evading, etc.)
- Elections / Votes / Auctions
- Millionaires problem
- Loans (several banks, same guarantee)
- ZK-proofs (Peggy sends witness to TTP, who checks & sends 0/1 to Vic)

Secure Function Evaluation (evaluate function \(f \) on all inputs)
1. \(\forall P_i: \text{send input } x_i \text{ to TTP} \)
2. TTP: compute \((y_1, \ldots, y_n) = f(x_1, \ldots, x_n) \)
3. TTP: send output \(y_i \) to \(\forall P_j \)

Limitations
- Poker, etc (not realizable with TTP)
Known Results

<table>
<thead>
<tr>
<th>Setting</th>
<th>Condition</th>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptographic, passive</td>
<td>(t < n)</td>
<td>[GMW87]</td>
</tr>
<tr>
<td>Cryptographic, active</td>
<td>(t < n/2)</td>
<td>[GMW87]</td>
</tr>
<tr>
<td>Information-theoretic, passive</td>
<td>(t < n/2)</td>
<td>[BGW88, CCD88]</td>
</tr>
<tr>
<td>Information-theoretic, active</td>
<td>(t < n/3)</td>
<td>[BGW88, CCD88]</td>
</tr>
<tr>
<td>Information-theoretic, active assuming broadcast</td>
<td>(t < n/2)</td>
<td>[RB89, Bea91]</td>
</tr>
</tbody>
</table>

Oblivious Transfer

Rabin-OT

- **Sender**
- **Receiver**

\[
\begin{align*}
 r = 0 : & \quad s \\
 r = 1 : & \quad \perp
\end{align*}
\]

1-2-OT

- **Sender**
 - 0
 - 1

- **Receiver**
 - 0
 - 1

1-k-OT

- **Sender**
 - \(s_1, \ldots, s_k \)

- **Receiver**
 - \(s_i \)

1-2-OST based on RSA and AES

Sender

- Messages \(s_0, s_1 \)

Receiver

- Selector \(b \in \{0, 1\} \)

Generate RSA-Keys

\[
\begin{align*}
 n_0, e_0, d_0 \text{ and } n_1, e_1, d_1 \\
 u_k \text{ at random, } \quad u = k^b \mod n_b
\end{align*}
\]

\[
\begin{align*}
 k_0 &= u^{d_0} \mod n_0 \\
 k_1 &= u^{d_1} \mod n_1 \\
 y_0 &= AES_{k_0}(s_0) \\
 y_1 &= AES_{k_1}(s_1) \\
 s_b &= AES_{k_b}^{-1}(y_b)
\end{align*}
\]

MPC from OT

Truth table:

<table>
<thead>
<tr>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>23</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>

Starting Point

- 2 parties Alice and Bob
- Inputs \(a \in A \) and \(b \in B \)
- Fixed function \(f : A \times B \to C \)

Protocol

1. Alice sends \([f(a, b_1) \mid f(a, b_2) \mid \ldots \mid f(a, b_2)]\) via OT
2. Bob selects \(b \)-th value

Analysis:

- Security
- Efficiency

Extension:

3 parties . . .

Multi-Party Computation: Goal II

Specification

Protocol

Trusted party

- Receive input
- \(\oplus \) and \(\otimes \) over finite field \(F \)
- Give output

Simulating players . . .

- \(n \) players: \(P = \{ P_1, \ldots, P_n \} \)
- Players can \(\oplus \) and \(\otimes \) in \(F \)
- Players can communicate
Sum Protocol III

Protocol:

\[
\begin{array}{cccccccc}
& x_1 & x_{11} & x_{12} & x_{13} & \cdots & x_{1n} \\
& x_2 & x_{21} & x_{22} & x_{23} & \cdots & x_{2n} \\
& x_3 & x_{31} & x_{32} & x_{33} & \cdots & x_{3n} \\
& \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
& x_n & x_{n1} & x_{n2} & x_{n3} & \cdots & x_{nn} \\
\end{array}
\]

Analysis: 1 passive cheater? 2 passive? 1 active? 2 active?

Secret-Sharing Schemes – Definition

Intuition

- Dealer D can share a secret s among parties \(P \)
- Qualified subsets of \(P \) can reconstruct s (w/o D)
- Access structure \(\Gamma \subseteq 2^P \)

Definition

A secret-sharing scheme for parties \(P \) and access structure \(\Gamma \) is a pair of protocols (SHARE, RECONSTRUCT), s.t.

- Correctness:
 1. After SHARE, there is a unique value \(s' \), where \(s' = s \) (the dealer's input) if the dealer is honest
 2. After RECONSTRUCT(\(M \)), if \(M \in \Gamma \), all players in \(M \) know \(s' \)
- Privacy: After SHARE, non-qualified sets have no information about \(s \)

Shamir’s Secret-Sharing Scheme (1/3)

Goal

- \(n \) parties, \(k \) needed for reconstruction
- Threshold access structure \(\Gamma = \{ M \subseteq P : |M| \geq k \} \)

Idea

- Random polynomial \(f \) of degree d is defined by \(d + 1 \) points
- \(s = f(0) \) = secret, party \(P_i \) gets share \(s_i = f(x_i) \) for fixed \(x_i \)
- Degree \(d = k-1 \) \(\Rightarrow \) \(k \) parties can reconstruct, \(k-1 \) cannot

Shamir’s Secret-Sharing Scheme (2/3)

Starting Point: To each party \(P_i \), some unique \(\alpha_i \in \mathbb{F} \setminus \{0\} \) is assigned.

SHARE

1. D: choose random \(f \) with \(f(0) = s \) and \(\deg(f) \leq d \)
 (i.e., choose random \(r_1, \ldots, r_d \)), let \(f(x) = s + r_1x + \cdots + r_dx^d \)
2. D: send \(s_i = f(\alpha_i) \) to \(\forall P_j \)

RECONSTRUCT

1. \(\forall P_j \): send \(s_j \) to \(P \)
2. \(P \): compute \(s \) with Lagrange interpolation:
 \[
 f(x) = \sum_{i=1}^{n} \lambda_i(x) \cdot s_i, \text{ where } \lambda_i(x) = \prod_{j
eq i}^{n} \frac{x - \alpha_j}{\alpha_i - \alpha_j}
 \]
 hence \(s = \sum_{i=1}^{n} w_i s_i \), where \(w_i = \lambda_i(0) = \prod_{j
eq i}^{n} \frac{-\alpha_j}{\alpha_i - \alpha_j} \)

Shamir’s Secret-Sharing Scheme (3/3)

Analysis for passive adversary:

Correctness

1. by inspection, \(s' = f(0) \)
2. due to Lagrange interpolation (given \(|M| \geq k = d + 1 \))

Privacy

- For \(d \leq k-1 \) shares, every secret \(s \) is “compatible” (same #polys)
- \(\Rightarrow \) adversary with \(< k \) shares obtains no information about \(s \).

Note

- Degree is at most \(d \), not exactly \(d \)
- Otherwise privacy violation
Linear Secret-Sharing Schemes

Definition: Secret-Sharing is linear, if each share $s_i = L_i(s, r_1, \ldots, r_{\ell})$:

$$
\begin{bmatrix}
 s_1 \\
 s_2 \\
 \vdots \\
 s_n
\end{bmatrix} =
\begin{bmatrix}
 A_{10} & A_{11} & \cdots & A_{1\ell} \\
 A_{20} & A_{21} & \cdots & A_{2\ell} \\
 \vdots & \vdots & \ddots & \vdots \\
 A_{n0} & A_{n1} & \cdots & A_{n\ell}
\end{bmatrix}
\begin{bmatrix}
 s \\
 r_1 \\
 \vdots \\
 r_{\ell}
\end{bmatrix}
$$

Shamir Sharing is linear

$$A =
\begin{bmatrix}
 1 & \alpha_1 & \cdots & \alpha_n \\
 1 & \alpha_1^2 & \cdots & \alpha_n^2 \\
 \vdots & \vdots & \ddots & \vdots \\
 1 & \alpha_1^n & \cdots & \alpha_n^n
\end{bmatrix}
$$
(Van der Monde Matrix)

MPC Passive: Secret-Sharing and Addition

Setting
- n parties, t corrupted (passive), $t < n/2$

Secret Sharing
- Shamir-Sharing with degree t
 - a, b, … shared by a_1, …, a_n, b_1, …, b_n, etc.
 - Every P_i computes $c_i = L(a_i, b_i, \ldots)$
 - c_1, …, c_n is a sharing of $c = L(a, b, \ldots)$

Addition and Linear Functions
- Shamir-Sharing is linear \Rightarrow apply linear function on shares
- a, b, … shared by a_1, …, a_n, b_1, …, b_n, etc.
- Every P_i computes $c_i = L(a_i, b_i, \ldots)$
- c_1, …, c_n is a sharing of $c = L(a, b, \ldots)$

MPC Passive: Multiplication

Starting Point: a, b shared by a_1, \ldots, a_n, b_1, \ldots, b_n

Idea
- Every P_i computes $d_i = a_i \cdot b_i$
- Observe: d_1, \ldots, d_n is some-kind-of sharing of $c = a \cdot b$
- Could compute c from d_1, \ldots, d_n: $c = \sum_i w_id_i$ (Lagrange)
- Can compute c as MPC: Every P_i has input d_i, compute (sharing of) c

Multiplication Protocol
1. P_i: compute $d_i = a_i \cdot b_i$.
2. P_i: share $d_i \rightarrow d_{i1}, \ldots, d_{in}$.
3. P_j: compute $c_j = w_1d_{ij} + \cdots + w_nd_{nj}$.

Passive Protocol

Share input
0. P_i has input s.
1. P_i: select r_1, \ldots, r_t at random.
2. P_i: comp. $\left(\begin{array}{c}
 s_1 \\
 r_1
\end{array}\right) = A \left(\begin{array}{c}
 r_{\ell} \\
 r_{\ell}
\end{array}\right)$.
3. P_i: send s_j to every P_j.

Reconstruct Output
0. a is shared by a_1, \ldots, a_n.
1. P_i: send a_i to P_i.
2. P_i: comp. $a = L(a_1, \ldots, a_n)$.
3. P_i: compute $c_i = L(a_i, b_i, \ldots)$.

Addition and Linear Functions
0. a, b, \ldots are shared by a_1, \ldots, a_n, b_1, \ldots, b_n, etc.
1. P_i: compute $c_i = L(a_i, b_i, \ldots)$.

Multiplication
0. a, b are shared by a_1, \ldots, a_n, b_1, \ldots, b_n.
1. P_i: compute $d_i = a_i b_i$.
2. P_i: share $d_i \rightarrow d_{i1}, \ldots, d_{in}$.
3. P_j: compute $c_j = L(d_{i1}, \ldots, d_{in})$.