Cryptographic Protocols

Spring 2020

Part 2

Zero-Knowledge

Idea: Protocol (P, V) has transcript T, simulator S outputs similar T'. Def: (P, V) is zero-knowledge (ZK) if S exists for any $V' = V$.

Types of ZK:

- **Perfect**:
 - $P \parallel X : f(n) = 1 - f$ is negligible
 - $poly \times poly = poly$; $poly(poly) = poly$
 - $poly \times negligible \subseteq negligible$
 - $(poly \times negligible) \cap$ overwhelming $\neq \emptyset$

- **Statistical**:
 - $\forall \exists (\Delta(n)
eq 0)$
 - \exists families of random variables $\iff \exists f$ is noticeable
 - $\forall x, \exists f$ is polynomial
 - $\exists f$ is noticeable
 - $\forall x, \exists f$ is negligible

- **Computational**:
 - $\exists f$ is negligible
 - $\forall x, \exists f$ is negligible
 - $\forall x, f$ is negligible

Complexity Classes

- **P** = set of L which are decidable in poly time.
- **NP** = set of L which are polynomial in $|\cdot|$.
- **NP-hard** = set of L which are at least as hard as any NP problem.
- **NP-Complete** = set of L which are both NP-hard and in NP.
- **$PSPACE$** = set of L which are polynomial in space.

Interactive Proofs of Statements

Def: An interactive proof for language L is a pair (P, V) of int. programs s.t.

- i) Running time of V is polynomial in $|\cdot|$.
- ii) Running time of S is polynomially bounded.
- iii) Transcript T of (P, V) accepts X if and only if $X \in L$.

Examples: Sudoku, GI, GNI, Fiat-Shamir.

Notes:

- Constants p, q are arbitrary, could be $p = 1 - 2^{-|\cdot|}$ and $q = 2^{-|\cdot|}$.
- However, only NP-languages have proofs with $q = 0$.
- If iii) holds only for poly-time P', interactive argument (not a proof).
- Probabilistic P are not more powerful than deterministic P.

Def: IP = set of L which have an interactive proof.

Theorem: $IP = PSPACE$.

Distinguishing Advantage

Setting: Random variables X and Y, distributions P_X and P_Y.

Distinguisher

- Algorithm A to distinguish X from Y.
- Goal: on input $x \leftarrow X$, output X'; on input $y \leftarrow Y$, output Y'.

Advantage: $\Delta^A(X, Y) := \left| Pr_{X} [A(x) = X] - Pr_{Y} [A(y) = X] \right|$

Asymptotics

- Families of random variables $(X_n)_{n \in \mathbb{N}}$ and $(Y_n)_{n \in \mathbb{N}}$.
- $\Delta^A(X_n, Y_n) := \left| Pr_{X_n} [A(x) = X] - Pr_{Y_n} [A(y) = X] \right|$

Indistinguishability Levels

- Perfect: $P_X = P_Y$, i.e., $\forall A : \Delta^A(X_n, Y_n) = 0$.
- Statistical: $\forall A : \Delta^A(X_n, Y_n) = negligible$ in n.
- Computational: $\forall polytime A : \Delta^A(X_n, Y_n) = negligible$ in n.
c-Simulatability and Zero-Knowledge

Definition: A three-move protocol (round) with challenge space C is c-**simulatable** if for any value $c \in C$ one can efficiently generate a triple (t, c, r) with the same distribution as occurring in the protocol (conditioned on the challenge being c), i.e., the conditional distribution $P_{TR|C}$ is efficiently samplable.

Lemma: A 3-move c-simulatable protocol is HVZK.
(assumption: challenge is efficiently samplable)

Lemma: A HVZK round with c uniform from C for poly-bounded $|C|$ is ZK.

Lemma: A sequence of ZK protocols is a ZK protocol.

Theorem: A protocol consisting of c-simulatable rounds, with uniform challenge from a (per-round) polynomially bounded space C, is perfect ZK.