Cryptographic Protocols

Spring 2020

Part 1

1. Interactive Proofs and Zero-Knowledge Protocols
2. Secure Multi-Party Computation
3. Broadcast
4. Blockchain

Broadcast / Byzantine Agreement

Theorem [LSP80]: Among n players, broadcast is achievable if and only if \(t < n/3 \) players are corrupted.

Secure Multi-Party Computation

Formal Proofs (Conventional)

Proof system for a class of statements
- A statement (from the class) is a string (over a finite alphabet).
- The semantics defines which statements are true.
- A proof is a string.
- Verification function \(\varphi \) : (statement, proof) \(\mapsto \) \{accept, reject\}.

Example: \(n \) is non-prime
- Statement: a number \(n \) (sequence of digits), e.g., 399800021*.
- Proof: a factor \(f \), e.g., 19997*.
- Verification: Check whether \(f \) divides \(n \).

Requirements for a Proof System
- Soundness: Only true statements have proofs.
- Completeness: Every true statement has a proof.
- Efficient verifier: \(\varphi \) is efficiently computable.
Two Types of Proofs

Proofs of Statements:
- Sudoku Z has a solution X.
- z is a square modulo m, i.e., $\exists x : x^2 \equiv z \pmod{m}$.
- The graphs G_0 and G_1 are isomorphic.
- The graphs G_0 and G_1 are non-isomorphic.
- $P = \text{NP}$

Proofs of Knowledge:
- I know a solution X of Sudoku Z.
- I know a value x such that $z = x^2 \pmod{m}$.
- I know an isomorphism π from G_0 to G_1.
- I know a non-isomorphism between G_0 and G_1? ? ? ?
- I know a proof for either $P = \text{NP}$ or $P \neq \text{NP}$.
- I know x such that $z = x^2$.

Often: Proof of knowledge \rightarrow Proof of statement (knowledge exists)

Static Proofs vs. Interactive Proofs

Static Proof

- **Prover P** knows statement s.
- **Verifier V** knows statement s.
- **proof** p \rightarrow $(s, p) \rightarrow \{\text{accept}, \text{reject}\}$

Interactive Proof

- **Prover P** knows statement s.
- **Verifier V** knows statement s.
- **proof** m_1, m_2, \ldots, m_l \rightarrow $(s, m_1, \ldots, m_l) \rightarrow \{\text{accept}, \text{reject}\}$

Motivation for IP’s:
1. zero knowledge
2. more powerful
3. applications

Interactive Proofs: Requirements (Informal)

- **Completeness:** If the statement is true [resp., the prover knows the claimed information], then the correct verifier will always accept the proof by the correct prover.

- **Soundness:** If the statement is false [resp., the prover does not know the claimed information], then the correct verifier will accept the proof only with negligible probability, independent of the prover’s strategy.

The Graph Isomorphism (GI) Problem

G_0

```
0 1 0 1 0 1
1 0 1 1 0 1
1 1 0 0 1 1
0 1 1 1 1 0
1 0 1 0 0 1
1 0 0 1 0 1
```

G_1

```
0 1 0 1 0 1
1 0 1 0 0 1
0 1 0 0 1 0
0 1 1 1 0 1
1 1 1 0 1 0
```

G_1 is isomorphic to G_0.
Graph Isomorphism – One Round of the Protocol

Setting: Given two graphs G_0 and G_1.

Goal: Prove that G_0 and G_1 are isomorphic.

Peggy

knows G_0, G_1, σ s.t. $G_1 = \sigma G_0 \sigma^{-1}$

Vic

knows G_0 and G_1

pick random permutation π

$T = \pi G_0 \pi^{-1}$

$c \in \mathbb{R} \{0,1\}$

$c = 0 : \rho = \pi$

c = 1 : $\rho = \pi \sigma^{-1}$

$c = 0 : \mathcal{T} \equiv \rho G_0 \rho^{-1}$

c = 1 : $\mathcal{T} \equiv \rho \pi \sigma^{-1}$

Graph Isomorphism – One Round of the Protocol

Setting: Given two graphs G_0 and G_1.

Goal: Prove that G_0 and G_1 are isomorphic.

Peggy

knows G_0, G_1, σ s.t. $G_1 = \sigma G_0 \sigma^{-1}$

Vic

knows G_0 and G_1

pick random permutation π

$T = \pi G_0 \pi^{-1}$

$c \in \mathbb{R} \{0,1\}$

$c = 0 : \rho = \pi$

c = 1 : $\rho = \pi \sigma^{-1}$

$c = 0 : \mathcal{T} \equiv \rho G_0 \rho^{-1}$

c = 1 : $\mathcal{T} \equiv \rho \pi \sigma^{-1}$

Graph-NON-Isomorphism – One Round of the Protocol

Setting: Given two graphs G_0 and G_1.

Goal: Prove that G_0 and G_1 are not isomorphic.

Peggy

knows G_0 and G_1

knows G_0 and G_1

pick random permutation π

$T = \pi G_b \pi^{-1}$

$c \in \mathbb{R} \{0,1\}$

$c = 0 : \rho = \pi$

c = 1 : $\rho = \pi \sigma^{-1}$

$c = 0 : \mathcal{T} \equiv \rho G_0 \rho^{-1}$

c = 1 : $\mathcal{T} \equiv \rho \pi \sigma^{-1}$

Fiat-Shamir – One Round of the Protocol

Setting: m is an RSA-Modulus.

Goal: Prove knowledge of a square root x of a given $z \in \mathbb{Z}_m^*$.

Peggy

knows x s.t. $x^2 = z$ (mod m)

Vic

knows z

$k \in \mathbb{R} \mathbb{Z}_m^*$,

t = k^2

$c \in \mathbb{R} \{0,1\}$

$r = k \cdot x^c$

$c \neq 0 : \rho = \pi$

c = 1 : $\rho = \pi \sigma^{-1}$

$r \frac{1}{2} \rho \equiv t \cdot z^c$

Fiat-Shamir – One Round of the Protocol

Setting: m is an RSA-Modulus.

Goal: Prove knowledge of a square root x of a given $z \in \mathbb{Z}_m^*$.

Peggy

knows x s.t. $x^2 = z$ (mod m)

Vic

knows z

$k \in \mathbb{R} \mathbb{Z}_m^*$,

t = k^2

$c \in \mathbb{R} \{0,1\}$

$r = k \cdot x^c$

$c \neq 0 : \rho = \pi$

c = 1 : $\rho = \pi \sigma^{-1}$

$r \frac{1}{2} \rho \equiv t \cdot z^c$

Guillou-Quisquater – One Round of the Protocol

Setting: m is an RSA-Modulus.

Goal: Prove knowledge of an e-th root x of a given $z \in \mathbb{Z}_m^*$.

Peggy

knows x s.t. $x^e = z$ (mod m)

Vic

knows z

$k \in \mathbb{R} \mathbb{Z}_m^*$,

t = k^e

$c \in \mathbb{R} \{0,1\}$

$r = k \cdot x^c$

$c \neq 0 : \rho = \pi$

c = 1 : $\rho = \pi \sigma^{-1}$

$r \neq 0 : t^2 \equiv t \cdot z^c$

Guillou-Quisquater – One Round of the Protocol

Setting: m is an RSA-Modulus.

Goal: Prove knowledge of an e-th root x of a given $z \in \mathbb{Z}_m^*$.

Peggy

knows x s.t. $x^e = z$ (mod m)

Vic

knows z

$k \in \mathbb{R} \mathbb{Z}_m^*$,

t = k^e

$c \in \mathbb{R} \{0,1\}$

$r = k \cdot x^c$

$c \neq 0 : \rho = \pi$

c = 1 : $\rho = \pi \sigma^{-1}$

$r \neq 0 : t^2 \equiv t \cdot z^c$

Schnorr – One Round of the Protocol

Setting: Cyclic group $H = \langle h \rangle$, $|H|$ = prime.

Goal: Prove knowledge of the discrete logarithm x of a given $z \in H$.

Peggy

knows $x \in \mathbb{Z}_q$ s.t. $h^x = z$

Vic

knows z

$k \in \mathbb{R} \mathbb{Z}_q$,

t = h^k

$c \in \mathbb{R} C \subseteq \mathbb{Z}_q$

$r = k + xc$

$c \neq 0 : \rho = \pi$

c = 1 : $\rho = \pi \sigma^{-1}$

$r \neq 0 : h^r \equiv t \cdot z^c$

Schnorr – One Round of the Protocol

Setting: Cyclic group $H = \langle h \rangle$, $|H|$ = prime.

Goal: Prove knowledge of the discrete logarithm x of a given $z \in H$.