Cryptographic Protocols
Notes 3

Scribe: Sandro Coretti (modified by Chen-Da Liu Zhang)

About the notes: These notes serve as written reference for the topics not covered by the papers that are handed out during the lecture. The material contained therein is thus a strict subset of what is relevant for the final exam.

This week, the notes discuss the definition of (perfect) zero-knowledge and a proof that the three-move protocols we have encountered so far (graph isomorphism, Fiat-Shamir, Guillou-Quisquater, Schnorr) are perfectly zero-knowledge [Mau15, Theorem 2].

3.1 Definition of Zero-Knowledge

Intuitively, an interactive proof \((P, V)\) between a prover \(P\) and verifier \(V\) is zero-knowledge if after interacting with \(P\), any verifier \(V'\) has no more information than before executing the protocol. This is captured by the notion of a simulator \(S\) that reproduces \(V'\)'s view in the proof without actually communicating with \(P\).

More precisely, consider the following two random experiments:

1. Prover \(P\) interacts with \(V'\); let \(Z\) be the random variable corresponding to the resulting transcript and \(P_Z\) its distribution.

2. Simulator \(S\) interacts with \(V'\) and outputs a transcript; let \(Z'\) denote the corresponding random variable and \(P_{Z'}\) its distribution.

Definition 3.1. An interactive proof \((P, V)\) is (perfectly) zero-knowledge if for every efficient \(V'\) there exists an efficient simulator \(S\) (with access to \(V'\)) producing a transcript \(Z'\) that is distributed identically to the transcript \(Z\) in the actual interaction between \(P\) and \(V'\), i.e.,

\[P_Z = P_{Z'} \]

The interactive proof is honest-verifier zero-knowledge (HVZK) if the simulator exists for (the honest) verifier \(V\).

In this course, when proving the zero-knowledge property, there will always be a single simulator \(S\) that works for all verifiers \(V'\). This is referred to as black-box simulation.

3.2 Honest-Verifier Zero-Knowledge and \(c\)-simulatability

The HVZK property is perhaps not very interesting per se, but it is a useful tool in proving (perfect) zero-knowledge. All three-move protocols in this course satisfy the even stronger
notion of c-simulatability.

Definition 3.2. A three-move protocol round of an interactive proof (P, V) for a language L with challenge space C is c-simulatable\(^1\) if for any value c one can efficiently generate a triple (t, c, r) with the same distribution as occurring in the protocol (between P and the honest V) conditioned on the challenge being c.

In other words, there has to exist an efficient algorithm that given any $x \in L$ and $c \in C$, produces values t and r with a distribution $P_{TR|C}$ such that $P_{TR|C}(t, r, c) = P_{TR}(t, r, c)$ for all $t, c,$ and r, where $P_{TR}(t, r, c)$ is the distribution occurring in the actual protocol conditioned on the challenge being c.

It is easily seen that if the challenge is efficiently samplable, c-simulatability implies HVZK: the honest-verifier simulator simply chooses $c \in C$ uniformly at random and generates t and r according to the c-simulatability.

It is also easy to see that HVZK (and ZK) compose sequentially. That is, an interactive proof (P, V) consisting of s independent perfect HVZK (resp. ZK) three-move rounds is also perfect HVZK (resp. ZK): The simulator simply appends the transcripts of the simulators in each round.

3.3 Proving the Zero-Knowledge Property

In this section we show that an interactive proof (P, V) consisting of independent perfectly HVZK three-move rounds is perfectly zero-knowledge if, additionally, the challenge space C is not too large.

3.3.1 Perfect Zero-Knowledge

Lemma 3.1. An HVZK three-move protocol round of an interactive proof (P, V) where V chooses the challenge uniformly at random from a polynomially bounded challenge space C is zero-knowledge.

Proof. Consider a potentially dishonest verifier V'. The simulator S has *black-box rewinding access* to V'. This means that S cannot see the code of V' (hence, it uses it as a black-box), but S may rewind V' at any point to an earlier state in its computation.

Simulator S creates a transcript as following:

1. Generate a triple (t, c, r) according to the HVZK simulation.
2. Pass t to V' and receive the challenge c'.
3. If $c = c'$, output the triple (t, c, r). Otherwise, rewind V' to the first point and repeat the simulation attempt.

The expected number of trials is $|C|$, which is polynomial by assumption (the HVZK simulator returns a uniformly random challenge c independent from c'). Also, the distribution of the transcript generated by the simulator S is the same as the transcript generated in the real protocol (P, V).

Corollary 3.2. An interactive proof (P, V) consisting of s independent perfectly HVZK three-move rounds so that in every round V chooses the challenge uniformly at random from the same polynomially bounded challenge space C is perfectly zero-knowledge.

\(^1\)This is also called special HVZK in the literature.
Note that Corollary 3.2 is a slightly more general than Theorem 2 in [Mau15] in that it works for any HVZK protocol and not only for \(c \)-simulatable ones.

Proof. With Lemma 3.1, we know that an HVZK three-move round with uniform challenge from a polynomially bounded \(\mathcal{C} \) is zero-knowledge. Also, the sequential composition of \(s \) independent ZK three-move rounds is ZK. \(\square \)

References