10.1 Fields

a) The neutral element of the operation \oplus is $(0, 0)$. We further have $(1, 0) \otimes (0, 1) = (0, 0)$. Hence, $F \times F$ has zero divisors. Since no field can have zero divisors, $F \times F$ is not a field.

b) Since F is a field, $F^* = F \setminus \{0\}$ is a group. Therefore, by Corollary 5.10, for any $a \in F^*$, we have $1 = a|F^*| = a^{q-1}$. Hence, all $q - 1$ elements of F^* are roots of the polynomial $x^{q-1} - 1$. The claim follows by Lemma 5.29 and Theorem 5.31.

c) Since F has at least three elements, there exists an $a \in F \setminus \{0, 1\}$. Let $f : F \rightarrow F$ be the function defined by $f : x \mapsto a \cdot x$. We argue that f is a bijection. Since $F^* = F \setminus \{0\}$ is a group and $a \in F^*$, it follows by Lemma 5.3. that for all $x_1, x_2 \in F^*$ such that $f(x_1) = f(x_2)$, we have $x_1 = x_2$. Also, $f(0) = 0$. Hence, f is injective. Since F is finite, this means that f is also surjective.

It follows that
$$\sum_{x \in F} x = \sum_{x \in F} f(x) = a \cdot \sum_{x \in F} x.$$

Thus, $(1 - a) \cdot \sum_{x \in F} x = 0$. Since F has no zero divisors and $a \neq 1$, we have $\sum_{x \in F} x = 0$.

10.2 Computing on polynomials

a) In \mathbb{Z}_7, the multiplicative inverse of 5 is 3, because $3 \cdot 5 \equiv 1 \pmod{7}$. Therefore, the first coefficient of the result is 3. The rest of the computation proceeds analogously:

$$\begin{align*}
(x^5 + 6x^2 + 5) : (5x^2 + 2x + 1) &= 3x^3 + 3x^2 + x + 3 \\
-\left(\frac{x^5 + 6x^4 + 3x^3}{x^4 + 4x^3 + 6x^2 + 5}
ight) &= (x^4 + 6x^3 + 3x^2 + 5) \\
&\quad - (5x^3 + 2x^2 + x) \\
&\quad + x^2 + 6x + 5 \\
&\quad \text{Rest: } 2
\end{align*}$$

b) The irreducible polynomials of degree 4 over $GF(2)$ are $x^4 + x^3 + 1$, $x^4 + x + 1$ and $x^4 + x^3 + x^2 + x + 1$.
We show this by eliminating all reducible polynomials of degree four. A polynomial \(p(x) = x^4 + a_3x^3 + a_2x^2 + a_1x + a_0 \) is reducible if it is divisible by a polynomial of degree one or two (if it is divisible by a polynomial of degree three, then it must also be divisible by one of degree one).

By Lemma 5.29, the polynomials \(p(x) \) divisible by a polynomial of degree one are exactly those for which \(p(0) = 0 \) or \(p(1) = 0 \). Hence, we have to eliminate the polynomials for which \(a_0 = 0 \) or \(a_3 + a_2 + a_1 + a_0 = 0 \). Remaining are the polynomials: \(x^4 + x^3 + 1, x^4 + x + 1, x^4 + x^2 + 1 \) and \(x^4 + x^3 + x^2 + x + 1 \).

Furthermore, over \(\text{GF}(2) \) there is only one irreducible polynomial of degree two, namely \(x^2 + x + 1 \) (the other polynomials: \(x^2, x^2 + 1 \) and \(x^2 + x \) can be eliminated in the same way we did above). Hence, we have to also eliminate \((x^2 + x + 1)^2 = x^4 + x^2 + 1 \).

c) Since 2 is a double root, it follows that \(a(x) = (x - 2)^2b(x) \), where \(b(x) \) is a polynomial of degree 2.

We know that \(2 = a(3) = (3 - 2)^2 b(3), 3 = a(4) = (4 - 2)^2 b(4) \) and \(5 = a(6) = (6 - 2)^2 b(6) \). Hence, we have \(b(3) = 2, b(4) = 3 \cdot 4^{-1} = 6 \) and \(b(6) = 5 \cdot 2^{-1} = 6 \). In order to determine \(b(x) \), we apply Lagrange’s interpolation:

\[
b(x) = 2\frac{(x - 4)(x - 6)}{(3 - 4)(3 - 6)} + 6\frac{(x - 3)(x - 6)}{(4 - 3)(4 - 6)} + 6\frac{(x - 3)(x - 4)}{(6 - 3)(6 - 4)}
\]

\[
= 3(x + 3)(x + 1) + 4(x + 4)(x + 1) + (x + 4)(x + 3)
\]

\[
= x^2 + 4x + 2
\]

Therefore, \(a(x) = (x - 2)^2(x^2 + 4x + 2) = x^4 + 4x^2 + x + 1 \) and \(a(0) = 1 \).

10.3 The ring \(F[x]_{m(x)} \)

a) We have

\[
\text{GF}(3)[x]_{x^2+2} = \{0, 1, 2, x, x + 1, x + 2, 2x, 2x + 1, 2x + 2\}.
\]

By Lemma 5.36,

\[
\text{GF}(3)[x]_{x^2+2}^* = \{a(x) \in \text{GF}(3)[x]_{x^2+2} \mid \gcd(a(x), x^2 + 2) = 1\}.
\]

The task is to find all polynomials \(a(x) \in \text{GF}(3)[x] \) of degree at most one, such that \(\gcd(a(x), x^2 + 2) = 1 \). Note first that over \(\text{GF}(3) \), we have \(x^2 + 2 = x^2 - 1 = (x + 1)(x - 1) = (x + 1)(x + 2) \). Hence, all polynomials \(b(x) \) of degree at most one, for which \(\gcd(b(x), (x + 1)(x + 2)) \neq 1 \) are \(p(x + 1) \) and \(q(x + 2) \) for some \(p, q \in \text{GF}(3) \). These polynomials are: \(x + 1, x + 2, 2x + 2 \) and \(2x + 1 \).

The polynomials of degree at most one that are left are in \(\text{GF}(3)[x]_{x^2+2}^* \). Therefore, \(\text{GF}(3)[x]_{x^2+2}^* = \{1, 2, x, 2x\} \).

b) The inverse of \(x \in \text{GF}(3)[x]_{x^2+2}^* \) is a polynomial \(p(x) \in \text{GF}(3)[x]_{x^2+2}^* \), such that \(x \cdot p(x) \equiv 1_{x^2+2} \) (where 1 is the constant polynomial). Since all the polynomials in \(\text{GF}(3)[x]_{x^2+2}^* \) have degree at most 1 (Definition 5.34), we have \(p(x) = ax + b \) for some
10.4 Finite fields

(a) We can construct the field \(F = \text{GF}(9) = \text{GF}(3^2) \) as the extension field of \(\text{GF}(3) \) (cf. Example 5.64).

\(\text{GF}(9) \) consists of the 9 polynomials of degree at most 2 over \(\text{GF}(3) \). Hence, the elements of \(\text{GF}(9) \) are \(\{0, 1, 2, x, 2x, x + 1, x + 2, 2x + 1, 2x + 2\} \).

In order to fully specify \(\text{GF}(9) \), we also need to determine the operations: addition and multiplication. To this end, note that \(\text{GF}(9) = \text{GF}(3)[x]_{m(x)} \) for some irreducible polynomial \(m(x) \) of degree 2.

(2 Points)

Since the operations in \(\text{GF}(3)[x]_{m(x)} \) are already defined, the task is simply to find such polynomial. For example, \(m(x) = x^2 + 1 \) is irreducible, because \(m(x) \) has no roots in \(\text{GF}(3) \): \(m(0) = 1, m(1) = 2 \) and \(m(2) = 2 \). Irreducibility follows by Corollary 5.30.

(2 Points)

(b) We have \(F^* = \text{GF}(3)[x]_{x^2 + 1}^{*} = \text{GF}(3)[x]_{x^2 + 1} \setminus \{0\} \). The order of \(F^* \) is \(|F| - 1 = 8 \). Let \(a \) (a candidate for a generator) be any element in \(F^* \). By the Lagrange’s theorem, it follows that \(\text{ord}(a) \mid 8 \). Hence, \(\text{ord}(a) \) can only be equal to 1, 2, 4 or 8.

(2 Points)

Further, \(a \) is a generator if and only if \(\text{ord}(a) = 8 \). Therefore, to prove that \(a \) is a generator it is enough to show that \(a^4 \neq 1 \) (this is because if the order of \(a \) is 1, 2 or 4, we have \(a^4 = 1 \)).

(2 Points)

For example, for \((x + 1) \in F^* \), we have \((x + 1)^4 = 2 \). Hence, \(x + 1 \) is a generator.

(1 Point)

10.5 A safe in a monkey house

(a) The polynomial \(a(x) \) is uniquely determined by the \(t \) values \(s_i = a(\alpha_i) \), known to the remaining monkeys. Hence, the monkeys can use the Lagrange’s interpolation formula to reconstruct \(a(x) \) and compute the secret code \(s = a(0) \).

(b) Without loss of generality, assume that the clan consists of the monkeys \(M_1, \ldots, M_t \). We show that, given their shares \(s_1, \ldots, s_{t-1} \), any \(s' \in \text{GF}(q) \) could be the secret code (and, hence, there are \(q \) possibilities for the secret code \(s \)). That is, we argue that for each \(s' \), there exists a polynomial \(a'(x) \) of degree at most \(t - 1 \) such that \(a'(\alpha_1) = s_1, \ldots, a'(\alpha_{t-1}) = s_{t-1} \) and \(a'(0) = s' \). Indeed, the \(t - 1 \) values \(a'(\alpha_1), \ldots, a'(\alpha_{t-1}) \), together with \(a'(0) \), give \(t \) values that uniquely determine \(a'(x) \).

For the clan of greedy monkeys this means that their shares on their own are practically worthless. They give no information about \(s \). The monkeys could simply try all possibilities for \(s \) without knowing any shares at all.