Diskrete Mathematik

Solution 9

9.1 The group \mathbb{Z}_m^*

a) The order of the group $\langle \mathbb{Z}_{36}^* \rangle$ is $\varphi(36)$. By Lemma 5.12, $\varphi(36) = (2 - 1) \cdot 2^{2-1} \cdot (3 - 1) \cdot 3^{2-1} = 2 \cdot 3 = 6$.

The group consists of all numbers in \mathbb{Z}_{36} which are relatively prime with 36. Hence, $\mathbb{Z}_{36}^* = \{1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35\}$.

b) By the Lagrange’s Theorem, it follows that for any $a \in \mathbb{Z}_{36}^*$ we have $\text{ord}(a) \in \{1, 2, 3, 6\}$.

If a is a generator of \mathbb{Z}_{11}^*, then a has the order $10 = \varphi(11)$. This happens if and only if $a^2 \neq 1$ and $a^5 \neq 1$. By trying all the possibilities, we get that $2, 6, 7, 8$ are the generators of \mathbb{Z}_{11}^*.

The following lemma allows to solve this exercise for any group \mathbb{Z}_m^*, potentially even for very large m.

We can prove the following lemma:

Lemma 1. Let g be a generator of \mathbb{Z}_m^*. Then the set of all generators of \mathbb{Z}_m^* is

$$ A = \{g^i \mid 1 \leq i < \varphi(m) \land \gcd(i, \varphi(m)) = 1 \} $$

Proof. Let h be a generator of \mathbb{Z}_m^*. Since g is a generator, there exists a $1 \leq i < \varphi(m)$ such that $h = g^i$.

Let $d = \gcd(i, \varphi(m))$. Then we have $h^{\frac{d}{\gcd(i, \varphi(m))}} = (g^i)^{\frac{d}{\gcd(i, \varphi(m))}} = g^{\varphi(m) \frac{d}{\gcd(i, \varphi(m))}} = 1$. But since h is a generator, we must have $d = 1$. Therefore, every generator of \mathbb{Z}_m^* is in A.

Let further $h \in A$. This means that there exists $1 \leq i < \varphi(m)$ such that $h = g^i$ and $\gcd(i, \varphi(m)) = 1$.

It follows that $1 = h^{\varphi(m)} = g^{i \cdot \varphi(m)}$. Since g is a generator, $i \cdot \varphi(m)$ is a multiple of $\varphi(m)$. Since $\gcd(i, \varphi(m)) = 1$, $\varphi(m)$ is also a multiple of $\varphi(m)$. Hence, h is a generator of \mathbb{Z}_m^*.

With the above lemma, it is enough to find one generator, namely 2. All the other generators can be computed as 2^i for $1 \leq i < \varphi(m)$.

c) Let $f : \mathbb{Z}_{nm}^* \to \mathbb{Z}_n^* \times \mathbb{Z}_m^*$ be defined as $f(x) = (R_n(x), R_m(x))$. We prove that f is an isomorphism. To this end, we first prove two lemmas.

Lemma 1. Let m and n be relatively prime. The function $f : \mathbb{Z}_{nm} \to \mathbb{Z}_n \times \mathbb{Z}_m$, defined as $f(x) = (R_n(x), R_m(x))$ is an injection.

Proof. Let $x \in \mathbb{Z}_{nm}$. By Lemma 4.17, $x \equiv_n R_n(x)$ and $x \equiv_m R_m(x)$. By the Chinese Remainder Theorem, we have that for any $(a, b) \in \mathbb{Z}_n \times \mathbb{Z}_m$, there exists exactly one $x \in \mathbb{Z}_{nm}$ such that $x \equiv_n a$ and $x \equiv_m b$. Hence, f is an injection.

Lemma 2. Let n and m be integers. For any $a \in \mathbb{Z}$ we have

$$ \gcd(a, nm) = 1 \implies \gcd(a, n) = 1 \land \gcd(a, m) = 1 $$

Proof. Let $a \in \mathbb{Z}$ and assume that $\gcd(a, nm) = 1$. Let $\gcd(a, n) = d$ and $\gcd(a, m) = e$. From this we have $d \mid n$ and $e \mid m$. It follows that $d \mid nm$ and $e \mid nm$. Therefore, since d and e also divide a, d and e are both common divisors of a and nm. But by assumption that $\gcd(a, nm) = 1$, we get $d = e = 1$. □
With the above lemmas, we can now prove the statement.

We first show that f is well defined, that is, that $f(x) \in \mathbb{Z}_n^* \times \mathbb{Z}_m^*$ for all $x \in \mathbb{Z}_{nm}^*$. Let $x \in \mathbb{Z}_{nm}^*$. Then we have $\gcd(x, nm) = 1$. By Lemma 2., it follows that $\gcd(x, n) = 1$ and $\gcd(x, m) = 1$. By Lemma 4.2, we have $\gcd(R_n(x), n) = 1$ and $\gcd(R_m(x), m) = 1$. Hence, $f(x) \in \mathbb{Z}_n^* \times \mathbb{Z}_m^*$.

Next we show that f is a bijection. By Lemma 1., f is injective. Thus, $|f(\mathbb{Z}_{nm}^*)| = |\mathbb{Z}_n^*| \times |\mathbb{Z}_m^*|$. Since f is well defined, we have $f(\mathbb{Z}_{nm}^*) \subseteq \mathbb{Z}_n^* \times \mathbb{Z}_m^*$. By Lemma 5.12, we have $|\mathbb{Z}_{nm}^*| = |\mathbb{Z}_n^* \times \mathbb{Z}_m^*|$ and, thus, $f(\mathbb{Z}_{nm}^*) = \mathbb{Z}_n^* \times \mathbb{Z}_m^*$. Therefore, f is surjective.

Finally, we show that f is a homomorphism. Let $a, b \in \mathbb{Z}_{nm}^*$. By Lemma 4.18, we have

$$f(a \circ b) = (R_n(a \circ b), R_m(a \circ b)) \overset{\text{Lem.} 4.18}{=} (R_n((a \circ b)|n), R_m((a \circ b)|m)) = f(a) \circ f(b).$$

Hence, f is indeed an isomorphism.

d) The goal is to construct an isomorphism $\varphi : \mathbb{Z}_{15}^* \rightarrow \mathbb{Z}_{20}^*$. We will proceed in three steps, where we construct three isomorphisms: $\alpha : \mathbb{Z}_{15}^* \rightarrow \mathbb{Z}_4^* \times \mathbb{Z}_5^*, \beta : \mathbb{Z}_4^* \times \mathbb{Z}_5^* \rightarrow \mathbb{Z}_4^* \times \mathbb{Z}_5^*$ and $\gamma : \mathbb{Z}_4^* \times \mathbb{Z}_5^* \rightarrow \mathbb{Z}_{20}^*$. We then define φ as the composition of these isomorphisms: $\varphi = \gamma \circ \beta \circ \alpha$.

To construct α, we use Subtask a) and define $\alpha : a \mapsto (R_5(a), R_5(a))$. Further, let f be the isomorphism $f : \mathbb{Z}_{20}^* \rightarrow \mathbb{Z}_4^* \times \mathbb{Z}_5^*$ defined by $f : a \mapsto (R_4(a), R_5(a))$. We set $\gamma = f^{-1}$ (γ can be computed efficiently using the Chinese Remainder Theorem).

What is left is to find the isomorphism β. Note first that the function $g : \mathbb{Z}_4^* \rightarrow \mathbb{Z}_4^*$ defined by $g(1) = 1$ and $g(2) = 3$ is an isomorphism. The function g is trivially bijective. We also have $g(1 \circ 1) = 1 = g(1) \circ g(1), g(2 \circ 1) = 3 = g(2) \circ g(1), g(1 \circ 2) = 3 = g(1) \circ g(2)$ and $g(2 \circ 2) = 1 = g(2) \circ g(2)$. Therefore, g is also a homomorphism. Therefore, β defined by $\beta((a, b)) = (g(a), b)$ is an isomorphism.

Alternatively, one can find an isomorphism ψ using trial and error. However, in such case one has to prove that ψ is indeed an isomorphism.

9.2 RSA attack

First, consider the case when n_1, n_2 and n_3 are not relatively prime. Without loss of generality, assume that $\gcd(n_1, n_2) > 1$. We can now use the Extended GCD algorithm to compute $p = \gcd(n_1, n_2)$ and this way efficiently factorize n_1. This allows us to compute the secret key of Alice and decrypt c_1.

Secondly, assume that n_1, n_2 and n_3 are relatively prime. Consider the following system of congruence equations:

$$x \equiv c_1 \pmod{n_1}$$
$$x \equiv c_2 \pmod{n_2}$$
$$x \equiv c_3 \pmod{n_3}$$

Let $N = n_1n_2n_3$. Using the Chinese Remainder Theorem, we can efficiently find the solution x_0 to the above system of equations, such that $0 \leq x_0 < N$.

Notice now that m^3 is also a solution to the system of equations, because $c_i \equiv m^3 \pmod{n_i}$ for $i \in \{1, 2, 3\}$. Moreover, since $0 \leq m < n_i$ for $i \in \{1, 2, 3\}$, we have $0 \leq m^3 < n_1 \cdot n_2 \cdot n_3 = \ldots$
Since by the Chinese Remainder Theorem \(x_0 \) is unique in \(\{0, \ldots, N - 1\} \), it follows that \(x_0 = m^3 \).

What is left is to compute the cube root of \(x_0 \) over \(\mathbb{Z} \), which can be done efficiently.

Note: This attack is also possible for \(e > 3 \). However, for given \(e \) one needs \(e \) ciphertexts, each encrypted for a different recipient.

9.3 Elementary properties of rings

a) We have

\[
(-a)b + ab \overset{\text{distrib.}}{=} (-a + a)b \overset{\text{def. inverse}}{=} 0b \overset{\text{Lemma 5.17 (i)}}{=} 0.
\]

Therefore, \((-a)b\) is the additive inverse of \(ab \), which means that \((-a)b = -ab\). (1 Point)

b) We have

\[
(-a)(-b) + (-a)(ab) \overset{\text{distrib.}}{=} (-a)(-b) + (-a)b \overset{\text{def. inverse}}{=} (a)(-b + b) \overset{\text{Lemma 5.17 (i)}}{=} 0.
\]

Therefore, \((-a)(-b)\) is the additive inverse of \(ab \), which means that \((-a)(-b) = ab\). (1 Point)

9.4 Properties of commutative rings

a) From \(a|b \) it follows that \(\exists d \ b = ad \) and, thus, \(bc = (ad)c = a(dc) \). Hence, \(a|bc \).

b) From \(a|b \) it follows that \(\exists d \ b = ad \) and from \(a|c \) it follows that \(\exists e \ c = ae \). By the distributive law, we have \(b + c = ad + ae = a(d + e) \). Hence, \(a|(b + c) \).

9.5 System of linear equations

In order to solve the system of equations, we can use Gaussian elimination over \(F \). The system can be expressed as the following matrix:

\[
\begin{bmatrix}
A & B & B & A \\
1 & A & 1 & 0 \\
B & B & 1 & 1
\end{bmatrix}
\]

First of all, we multiply the first row by the multiplicative inverse of \(A \), namely by \(B \). We obtain:

\[
\begin{bmatrix}
1 & A & 1 & 1 \\
1 & A & 1 & 0 \\
B & B & 1 & 1
\end{bmatrix}
\]

Note first that in \(F \) every element is its own additive inverse. Therefore, subtraction (formally, it means adding the inverse of an element) is the same operation as addition.
We can now eliminate the variable x from the second row, by subtracting the first row. That is, we add the first row to the second row and obtain $[0, 0, B, 1]$. We can also eliminate x from the third row by adding the first row multiplied by B:

$$[B + (B \cdot 1), B + (B \cdot A), 1 + (B \cdot A), 1 + (B \cdot 1)] = [0, A, 0, A]$$

After swapping the third and the second row, we now get the following matrix:

$$\begin{bmatrix}
1 & A & A & 1 \\
0 & A & 0 & A \\
0 & 0 & B & 1
\end{bmatrix}$$

We multiply the second row by the multiplicative inverse of A and get the third row by the multiplicative inverse of B and get:

$$\begin{bmatrix}
1 & A & A & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & A
\end{bmatrix}$$

From the second and third rows we have $z = A$ and $y = 1$. Further, from the first row we get $x = 1 - (A \cdot y) - (A \cdot z) = 1 + A \cdot (y + z) = 1 + A \cdot B = 0$. Hence, the solution is $x = 0$, $y = 1$ and $z = A$.