Cryptography Foundations

Exercise 12

12.1 Construction of an Authenticated Channel Using MACs

Goal: We prove that a secure MAC constructs an authenticated channel from an insecure one and a shared secret key.

a) Recall the G^{mac}_t game from Definition 3.7 used to define a secure MAC (we instantiate here such system as a PDG and do not make the MOC A explicit). Now let $G^{\text{mac-v}}_t$ be the same game, but where the winner W has additionally access to the verification oracle for t message-tag pairs (m,a), for which it obtains a binary value indicating whether $a = f(m,k)$. W wins ($A = 1$) as soon as such a pair represents a forgery which is new (m was not queried before to the tagging oracle) and valid ($a = f(m,k)$). In particular, W does not output a forgery upon termination. Show that any secure MAC is also secure with verification queries by providing a black-box reduction system C and showing that

$$G^{\text{mac-v}}_t \leq t \cdot G^{\text{mac}}_t \gamma^C.$$

b) Informally argue the claim outlined in Section 3.4.5 of the lecture notes that a protocol (tag, vrf) using a secure MAC f suffices to construct an authenticated channel AUT for t messages from an insecure channel INS for t messages and a shared secret key KEY, that is, define an adequate MOC such that

$$\langle \text{tag}^A \text{vrf}^B | \text{KEY}, \text{INS} \rangle | \text{sim}^E \text{AUT} \rangle \leq G^{\text{mac-v}}_t \gamma^C,$$

for an adequate simulator sim and black-box reduction system C'.

12.2 Distinguishing URFs and URPs

Goal: In this exercise, we complete the proof of Lemma 6.7.

a) Prove the statement from Example 6.10, i.e., for the uniform random function $R_{n,n}$ and the uniform random permutation P_n, formalize a MOC A such that $R_{n,n}^A \equiv P_n$ and prove the conditional equivalence.

b) Prove Lemma 6.6. In more detail, let X_1, \ldots, X_q be uniformly-distributed independent random variables on some set \mathcal{X} with $|\mathcal{X}| = t$. Denote by $p_{\text{coll}}(q,t)$ the probability that there exists a collision, i.e., there exist indices i, j with $1 \leq i < j \leq q$ and $X_i = X_j$. Show that

$$p_{\text{coll}}(q,t) \leq \frac{1}{2} q^2 / t.$$

Hint: What is the probability (for some $i \neq j$) that $X_i = X_j$? How many such pairs $i \neq j$ are there?

1Technically, the insecure channel INS is defined analogously to the authenticated channel AUT from Exercise 2.2 b), but with an internal buffer of size $2t$ and the added capability of inputting messages at interface E, but only such that they were not previously input at interface A.

12.3 Composability of Constructions

Goal: We prove Lemma 7.1 from the lecture notes.

Show that the construction notion from Definition 7.2 is composable, that is, for two constructions $\gamma : \Phi \rightarrow \Phi$, and specifications $\mathcal{R}, \mathcal{S},$ and \mathcal{T}, prove that

$$\mathcal{R} \xrightarrow{\gamma} \mathcal{S} \land \mathcal{S} \xrightarrow{\gamma'} \mathcal{T} \implies \mathcal{R} \xrightarrow{\gamma' \circ \gamma} \mathcal{T}.$$

12.4 Expansion of PRGs

Goal: We analyze a construction to expand pseudo-randomness using Constructive Cryptography.

Let $g : \{0, 1\}^k \rightarrow \{0, 1\}^{2k}$ be a function (think of a PRG). We want to use this function to generate 4^k (pseudo-random) bits from a k-bit seed and formulate it as a construction. Let G be the resource that on the first input $s \in \{0, 1\}^k$ returns $g(s)$ (and ignores subsequent inputs). Let further denote U_n the resource that upon the first invocation outputs a uniformly distributed random n-bitstring. Finally, let $\alpha[U_k, G]$ be the resource that on the first activation outputs $g(s)$ for a uniformly random k-bitstring s (implemented by a converter α that routes the output of U_k as input to G).

a) Describe the specification that we aim to construct (using Section 7.3.4 from the lecture notes) as a generic relaxation of $\{U_{4^k}\}$ that contains all systems \mathcal{S} such that the distinction problem $\langle \alpha[U_k, G] | U_{2^k} \rangle$ reduces to the distinction problem $\langle U_{4^k} | \mathcal{S} \rangle$ (for some reduction ρ with performance-translation λ).

b) Describe the assumed specification \mathcal{R} based on the above resources. Then give a converter β and show which specification \mathcal{S} (of the type defined in a)) is constructed (cf. Definition 7.2 of the lecture notes) by providing the concrete reduction and performance-translation functions.

Hint: Think of the following construction: compute $s_1|s_2 := g(s)$ ($s_1, s_2 \in \{0, 1\}^k$) and output $g(s_1)|g(s_2)$. Note that \mathcal{R} can also be a singleton set.