Cryptography Foundations

Exercise 6

6.1 The Lamport One-Time Signature Scheme

Goal: We explore how to devise a one-time signature scheme based on one-way functions.

A one-time signature scheme is a digital signature scheme for which no feasible adversary can win the signature forgery game for 1 message (according to Definition 3.18) with non-negligible probability. A one-way function is a function \(f: \mathcal{X} \rightarrow \mathcal{Y} \) such that one can efficiently compute \(f \) but no feasible algorithm has non-negligible success probability in the following inversion game:

1. \(x \in \mathcal{X} \) is chosen uniformly at random and \(y := f(x) \in \mathcal{Y} \) is given to the algorithm.
2. The algorithm outputs a value \(x' \in \mathcal{X} \) and wins the game if \(f(x') = y \).

Let \(f: \mathcal{X} \rightarrow \mathcal{Y} \) be a function, let the message space be \(\mathcal{M} := \{0,1\}^n \) (with \(n > 0 \)), let the signature set be \(\mathcal{S} := \mathcal{X}^n \), let the verification-key set be \(\mathcal{V} := \mathcal{Y}^{2n} \), and let the signing-key set be \(\mathcal{Z} := \mathcal{X}^{2n} \). Devise a one-time signature scheme that is secure if \(f \) is one-way. More precisely, show how any adversary for the signature forgery game for 1 message with success probability \(\alpha \) can be turned into an algorithm with success probability at least \(\alpha^2 \) in the inversion game for \(f \).

6.2 Signature Schemes from Trapdoor One-Way Permutations

Goal: We learn that the security of TOWP-based signature schemes crucially depends on the strength of the underlying hash-function and that it is possible to prove their security in the random oracle model.

Recall Definition 3.14 of a TOWP, which consists of functions \(f: \mathcal{X} \times \mathcal{P} \rightarrow \mathcal{Y} \) and \(g: \mathcal{Y} \times \mathcal{T} \rightarrow \mathcal{X} \) as well as a parameter-trapdoor distribution over \(\mathcal{P} \times \mathcal{T} \). Also, consider a hash-function \(h: \mathcal{M} \rightarrow \mathcal{Y} \) mapping a message to the codomain of the TOWP. A signature scheme for messages over \(\mathcal{M} \) and signatures over \(\mathcal{X} \) can then be defined as

\[
\sigma: \mathcal{M} \times \mathcal{T} \rightarrow \mathcal{X}, \quad (m, t) \mapsto g(h(m), t),
\]

where the trapdoor \(t \) corresponds to the signing-key, i.e., \(\mathcal{Z} := \mathcal{T} \), and

\[
\tau: \mathcal{M} \times \mathcal{X} \times \mathcal{P} \rightarrow \{0,1\}, \quad (m, s, p) \mapsto f(s, p) = h(m),
\]

where the parameter \(p \) corresponds to the public verification-key, i.e., \(\mathcal{V} := \mathcal{P} \), (and the distribution over \(\mathcal{P} \times \mathcal{T} \) remains the same as the one of the underlying TOWP).

Recall that for the specific instantiation of the RSA TOWP we have \(\mathcal{X} = \mathcal{Y} = Z_n^* \) and \(\mathcal{P} = \mathcal{T} = \mathbb{N} \times Z_{\phi(n)} , \quad f(x, (n,e)) := [m^e \mod n], \quad g(y, (n,d)) := [y^d \mod n] \). One then obtains the so-called **FDH-RSA signature scheme** by basing the above described scheme on the RSA TOWP and by using an appropriate hash function \(h: \mathcal{M} \rightarrow Z_n^* \).

a) Show that for the FDH-RSA signature scheme, if \(\mathcal{M} = Z_n^* \) and \(h \) is the identity function, it is easy to find a valid pair \((m, s)\) (i.e., an existential forgery), only knowing the public key but no other message-signature pair.

\[\text{Assume that } \mathcal{X} \text{ and } \mathcal{Y} \text{ are finite sets of equal cardinality.}\]
b) Again for the FDH-RSA signature scheme, show that under the same conditions on \(h \) as in a), given any message \(m \), it is easy to find a valid signature \(s \) for this \(m \) if the adversary has access to a signing oracle.

c) In the following, let \(h: \mathcal{M} \rightarrow \mathcal{Y} \) be modeled as a truly random function—a so-called random oracle. This actually means that instead of thinking of \(h \) as a function with a certain concrete description, we assume that an additional system \(H \) is available in the random experiments that behaves as follows: on input \(x \) to the system \(H \), if \(x \) has not been queried before, a value \(y \) from the output domain is chosen uniformly at random and the system internally sets \(h(x) := y \). Finally, \(y \) is output as the response to this query. If \(x \) has been queried before to \(H \), the already defined value \(y = h(x) \) is returned.

Consider the fixed-message forgery game \(G_{t,\tilde{m}}^{\text{sig-fix}} \), where the goal of an adversary is to provide a forgery for the known message \(\tilde{m} \). In the random oracle model, this game is defined as follows:

1. A random secret key/public key pair \((z,v)\) is sampled according to the key-pair distribution, and output (upon request).
2. The adversary can ask at most \(t \) queries of the following two kinds:
 - He can query a message \(m \neq \tilde{m} \) and obtain \(s := \sigma(m,z) \) (note that \(\sigma \) can query \(H \)).
 - He can query the random oracle \(H \) on arbitrary inputs \(x \) and receive the result.
3. The game takes an input \(\tilde{s} \). The game is won, if and only if \(\tau(\tilde{m},\tilde{s},v) = 1 \) (where \(\tau \) can depend on \(H \)).

Now consider an arbitrary TOWP-based signature scheme. Prove that in the random oracle model, for any winner \(W \) in the above forgery game \(G_{t,\tilde{m}}^{\text{sig-fix}} \), there exists a winner \(W' \) (which internally uses \(W \)) with the same advantage in the TOWP inversion game.

Hint: Try to “program” the uniformly random function table describing \(h \) in a clever way for the replies to \(W \) (you can assume that sampling uniformly from sets \(\mathcal{X} \) and \(\mathcal{Y} \) is easy).

d) Again, consider an arbitrary TOWP-based signature scheme. Informally argue, why (in the random oracle model) any winner \(W \) with success probability \(\alpha \) in the normal forgery game \(G_{t}^{\text{sig}} \) can be transformed in a winner \(W' \) with success probability roughly \(\alpha t \) in the TOWP inversion game.

6.3 The Boneh–Lynn–Shacham Signature Scheme

Goal: While in the lecture we have seen that pairings can be used to break cryptographic assumptions, we here learn that they can also be used to build cryptographic schemes.

Let \(\mathbb{G} = \langle g \rangle \) and \(\mathbb{G}_T = \langle g_T \rangle \) be two cyclic groups of the same cardinality \(n \). Assume that an efficiently computable pairing \(E: \mathbb{G} \times \mathbb{G} \rightarrow \mathbb{G}_T \), such that \(E(g^a,g^b) = E(g,g)^{ab} \) for all \(a,b \in \mathbb{Z}_n \), and \(E(g,g) = g_T \). In the following, let \(h:\mathcal{M} \rightarrow \mathbb{G} \) be an appropriate hash function, let \(\mathcal{V} := \mathbb{G} \), and \(\mathcal{Z} := \mathbb{Z}_n \). Now, consider the signature scheme that uses the uniform distribution over \(\{(g^x,x)\mid x \in \mathbb{Z}_n\} \) as the key-pair distribution and the following signing function:

\[
\sigma: \mathcal{M} \times \mathbb{Z}_n \rightarrow \mathbb{G}, \ (m,x) \mapsto (h(m))^x.
\]

a) Describe the corresponding signature verification function \(\tau: \mathcal{M} \times \mathbb{G} \times \mathbb{G} \rightarrow \{0,1\} \), that given a message \(m \), a signature \(s \), and the verification key \(g^x \) decides whether the signature is valid.

Hint: Use the pairing \(E \) to “solve” the CDH problem.

b) Argue (informally) why in the random oracle model (cf. 6.2 c)) this signature scheme is secure under the CDH assumption in \(\mathbb{G} \).