1.1 Variant of the IND-CPA Bit-Guessing Problem

Goal: We explore that there is not just one way to formalize the idea behind IND-CPA security.

Let \(J^{\text{sym-ind-cpa}}_S; B \) be the bit-guessing problem from Definition 3.2 in the lecture notes (labeled \(J^{\text{sym-ind-cpa}}_S; B \) there). We define a new bit-guessing problem \(J^{\text{rrc}}_S; B \), where rrc stands for real-or-random challenge, by replacing step 3 of the description by the following.

3. \(S \) obtains one challenge message \(m \) and makes the following case distinction:
 - If \(B = 0 \), it computes the encryption of \(m \), i.e., \(c = E(m, k) \) for fresh and independent randomness, and returns \(c \).
 - If \(B = 1 \), it chooses a uniformly random message \(\tilde{m} \) of length \(|m| \) and computes the encryption of \(\tilde{m} \), i.e., \(\tilde{c} = E(\tilde{m}, k) \) for fresh and independent randomness, and returns \(\tilde{c} \).

Argue that the new problem captures the IND-CPA security notion equally good by proving the following two statements.

- a) Given a distinguisher \(D \) for \(J^{\text{rrc}}_S; B \), design a new distinguisher \(D' \) (which internally uses \(D \)) for \(J^{\text{ind}}_S; B \) so that \(\Lambda_D(J^{\text{rrc}}_S; B) = \Lambda_{D'}(J^{\text{ind}}_S; B) \).

- b) Given a distinguisher \(D \) for \(J^{\text{ind}}_S; B \), design a new distinguisher \(D' \) (which internally uses \(D \)) for \(J^{\text{rrc}}_S; B \) so that \(\Lambda_D(J^{\text{ind}}_S; B) = 2 \cdot \Lambda_{D'}(J^{\text{rrc}}_S; B) \).

1.2 On the Security of the One-Time Pad

Goal: We prove the security of the one time pad in general for finite groups.

Let \(\langle G; + \rangle \) be a finite group (written in additive notation) and \(U, X \) two independent random variables over \(G \), with \(U \) uniformly distributed. Show that \(U + X \) and \(X \) are independent.

Hint: As an intermediate step, you should show that since \(U \) is uniformly distributed, then so is \(U + X \).

1.3 Properties of the Distinguishing Advantage

Goal: We prove some basic results about the distinguishing advantage that are stated in the lecture notes without proof.

- a) Prove Lemma 2.1 in the lecture notes, i.e., show that for two random variables \(X \) and \(Y \), the advantage of the best distinguisher for \(X \) and \(Y \) is the statistical distance between \(X \) and \(Y \), that is,

\[
\Delta(X, Y) = \delta(X, Y).
\]

- b) Prove Lemma 2.4 from the lecture notes, i.e., for a bit-guessing problem \([S; B] \), show that from a distinguisher \(D \) which is given either the pair \([S, B] \) or the pair \([S, U] \) for \(U \) uniformly distributed and independent of \(S \) (that is, \(D \) can interact with the system \(S \) and receives either the bit \(B \), correlated with \(S \), or the uncorrelated bit \(U \)), we can
construct a distinguisher D' for the bit-guessing problem $[S;B]$ which has twice the same advantage, that is,

$$\Delta^D([S,B],[S,U]) = \frac{1}{2} \cdot \Lambda^{D'}([S;B]).$$

Hint: First show that $\Lambda^{D'}([S;B]) = \Delta^D([S,B],[S,\overline{B}])$, where D' should make use of D and a uniform bit U, and then show that $\Delta^D([S,B],[S,U]) = \frac{1}{2} \cdot \Delta^D([S,B],[S,\overline{B}])$ (\overline{B} is the negation of the bit B).