Cryptography Foundations

Exercise 13

13.1 Key-Agreement Using a Trapdoor One-Way Permutation in the ROM

Goal: We prove the security of the key-agreement protocol based on a trapdoor one-way permutation that is described in the lecture notes in the random oracle model.

Let the resource $R := [\cdot\rightarrow, \leftarrow\cdot, PO_k]$ and let further $S := \{0,1\}^k$ be a shared secret key as described in the lecture notes. Let $\pi = (\pi_1, \pi_2)$ be the protocol described in Section 7.3.2 of the lecture notes. Further let G be the inversion game for the underlying trapdoor one-way permutation. Provide a simulator σ and an explicit reduction ρ such that $\langle \pi_1, \pi_2^E | R \left| \sigma^E S \rangle \leq G \rho$.

13.2 Entropies and Information-Theoretical Key Agreement

Goal: This task exemplifies the use of entropy diagrams for information-theoretical statements. We then use this to show (basic) statements about the security of key agreement protocols.

a) Let $A_1, A_2,$ and A_3 be independent and uniformly distributed random variables on $\{0,1\}$. Draw the entropy diagram for the random variables $X := [A_1, A_2]$, $Y := [A_2, A_3]$, and $Z := [A_1, A_3]$.

b) To finish the proof of Theorem 7.3, show that deletion of information by A does not increase the conditional mutual information of A and B under the knowledge of E. Hint: Use entropy diagrams.

c) Let B_1, \ldots, B_6 be independent and uniformly distributed random bits. We define the random variables $X, Y,$ and Z as follows:

$X := [B_1 \oplus B_6, B_2, B_3, B_4, B_5, B_6]$, $Y := [B_3, B_4, B_5 \oplus B_6]$, and $Z := [B_2 \oplus B_4, B_3, B_6]$.

We assume that Alice, Bob, and Eve obtain the values X, Y, and Z, respectively. Furthermore, Alice and Bob are connected via authenticated channels $\cdot\rightarrow$ and $\leftarrow\cdot$.

What is the maximal length of a shared key that can be generated by Alice and Bob in this setting if Eve is required to have no information about the key? How can Alice and Bob generate a key of this length?
13.3 Privacy Amplification

Goal: Explore an application of privacy amplification in constructive cryptography.

For a random variable X over an m-ary alphabet \mathcal{X} let the distance from uniform $d(X)$, the maximal probability $p_{\text{max}}(X)$, and the collision probability $p_{\text{coll}}(X)$ be defined as in Section 7.2.3 of the lecture notes.

Hint: Recall Jensen’s inequality, especially the following variant of it: for non-negative $\lambda_1, \ldots, \lambda_n$ with $\sum_{i=1}^n \lambda_i = 1$ and for all $x_1, \ldots, x_n \in \mathbb{R}_{\geq 0}$ we have

\[
 f \left(\sum_{i=1}^n \lambda_i x_i \right) \leq \sum_{i=1}^n \lambda_i f(x_i) \quad \text{for convex functions } f : \mathbb{R}_{\geq 0} \to \mathbb{R} \quad \text{and}
\]

\[
 f \left(\sum_{i=1}^n \lambda_i x_i \right) \geq \sum_{i=1}^n \lambda_i f(x_i) \quad \text{for concave functions } f : \mathbb{R}_{\geq 0} \to \mathbb{R}.
\]

a) Prove Lemma 7.6, i.e., show that

\[
 \frac{1}{|\mathcal{X}|} \leq p_{\text{coll}}(X) \leq p_{\text{max}}(X).
\]

b) Prove Lemma 7.7, i.e., show that

\[
 d(X) \leq \frac{1}{2} \sqrt{|\mathcal{X}| \cdot p_{\text{coll}}(X) - 1}.
\]

In the following, we investigate the construction that corresponds to Example 7.1 from the lecture notes. That is, we exemplify how privacy amplification can be used to construct a shared secret r-bit key from an authenticated channel and a shared uniformly random n-bit key of which the adversary knows at most m bits. Now consider the authenticated channel $\bullet \rightarrow$ from the lecture and the following two resources for a nonempty set \mathcal{K} and a function f with domain \mathcal{K}:

<table>
<thead>
<tr>
<th>The key $\bullet \rightarrow \mathcal{K}$</th>
<th>The key $\mathcal{K}, f \rightarrow \bullet$ with leakage</th>
</tr>
</thead>
<tbody>
<tr>
<td>- chooses $k \in \mathcal{K}$ uniformly at random</td>
<td>- chooses $k \in \mathcal{K}$ uniformly at random</td>
</tr>
<tr>
<td>- On input getKey at interface A or B, output k at the same interface</td>
<td>- On input getKey at interface A or B, output k at the same interface</td>
</tr>
<tr>
<td></td>
<td>- On input getLeakage at interface E, output $f(k)$ at E.</td>
</tr>
</tbody>
</table>

(c) Let $R := \left\{ 0,1 \right\}^n \rightarrow \mathcal{K}$ and $S := \left\{ 0,1 \right\}^r$. Let G denote a known universal class of functions $\left\{ 0,1 \right\}^n \rightarrow \left\{ 0,1 \right\}^r$. Specify a protocol $\pi = (\pi_1, \pi_2)$ and for all $f : \left\{ 0,1 \right\}^n \rightarrow \left\{ 0,1 \right\}^m$ a simulator σ_f in order to prove that $\Delta(\pi_1, \pi_2^E R, \sigma_f^E S) \leq \frac{1}{2} \sqrt{2^r + m - n}$.