11.1 Conditional Probability Distributions

Goal: We repeat the basics on conditional probability distributions and how they are composed to define a random experiment.

In this task, we define a random experiment using a uniform random permutation P_n as defined in the lecture notes. We consider an environment E that issues two queries to P_n and then stops. More specifically, E chooses the first input uniformly and sets the second input to be equal to the first output of P_n and then stops after receiving the reply from P_n. The random experiment defined by E and P_n then evolves as follows:

1. E chooses the first input X_1 uniformly at random from $\{0, 1\}^n$.
2. P_n obtains the input X_1 and responds with the output Y_1.
3. E obtains the output Y_1 and then sets $X_2 = Y_1$.
4. P_n obtains the input X_2 and, based on X_1, Y_1, and X_2, responds with the output Y_2.
5. E outputs \perp.

a) Describe the behavior of E in terms of conditional probability distributions and compute the resulting distribution $Pr_{X_1 X_2 Y_1 Y_2}$ of the transcript.

b) What is the distribution of the outputs Y_1 and Y_2 of P_n, i.e., what is $Pr_{Y_1 Y_2}$? What is the conditional distribution $Pr_{Y_1 Y_2 | X_1 X_2}$?

11.2 Distinguishing URFs and URPs

Goal: In this exercise, we complete the proof of Lemma 4.19.

a) Prove the statement from Example 4.15, i.e., for the uniform random function $R_{n,n}$ and the uniform random permutation P_n, formalize an MBO A_1, A_2, \ldots such that $R_{n,n} \equiv P_n$ and prove the conditional equivalence.

b) Prove Lemma 4.18. In more detail, let X_1, \ldots, X_q be uniformly-distributed independent random variables on some set \mathcal{X} with $|\mathcal{X}| = t$. Denote by $p_{\text{coll}}(q, t)$ the probability that
there exists a collision, i.e., there exist indices i, j with $1 \leq i < j \leq q$ and $X_i = X_j$. Show that

$$p_{\text{coll}}(q, t) \leq \frac{1}{2} q^2 / t.$$

Hint: What is the probability (for some $i \neq j$) that $X_i = X_j$? How many such pairs $i \neq j$ are there?

11.3 Distinguishing Systems Adaptively

Goal: To sharpen the view on (non-)adaptive distinguishers, we examine an easy example to see how adaptivity can help.

Consider the following two discrete random systems S_0 and S_1. System S_0 accepts n-bit strings as inputs and, upon receiving such an input, ignores its value and returns a uniformly distributed random n-bit string. System S_1 behaves similarly to S_0, but whenever an input is equal to one of the previous outputs, it outputs a special fixed symbol \perp.

Assume that you are given either S_0 or S_1. Your task is to devise a distinguisher D that tries to distinguish S_0 and S_1 by providing inputs to the system and seeing the corresponding output values.

a) Is it possible to distinguish the two systems S_0 and S_1 if you are only allowed to provide a single input to the system?

b) What is the best strategy if you are allowed any number of queries?

c) What happens if you have to fix all your inputs in advance (before seeing any output)?

11.4 Expansion of PRGs

Goal: We analyze a construction to expand pseudo-randomness and use the Constructive Cryptography framework.

Let $g : \{0, 1\}^k \rightarrow \{0, 1\}^{2k}$ be a function (think of a PRG). We want to use this function to generate $4k$ (pseudo-random) bits from a k-bit seed and formulate it as a construction (cf. Example 5.1 of the lecture notes).

Let G be the resource that on the first input $s \in \{0, 1\}^k$ returns $g(s)$ (and ignores subsequent inputs). Let further denote U_n the resource that upon the first invocation outputs a uniformly distributed random n-bitstring. Finally, let $\alpha[U_k, G]$ be the resource that on the first activation outputs $g(s)$ for a uniformly random k-bitstring s (implemented by a converter α that routes the output of U_k as input to G).

a) Describe the specification that we aim to construct (using Section 5.3.5 from the lecture notes) as a generic relaxation of $\{U_{4k}\}$ that contains all systems S such that the distinction problem $\langle \alpha[U_k, G] \mid U_{2k} \rangle$ reduces to the distinction problem $\langle U_{4k} \mid S \rangle$ (for some reduction ρ with performance-translation λ).

b) Describe the assumed specification R based on the above resources. Then give a converter β and show which specification S (of the type defined in a)) is constructed (cf. Definition 5.4 of the lecture notes) by providing the concrete reduction and performance-translation functions.

Hint: Think of the following construction: compute $s_1|s_2 := g(s)$ ($s_1, s_2 \in \{0, 1\}^k$) and output $g(s_1)|g(s_2)$. Note that R can also be a singleton set.

Discussion of solutions:

Tuesday, 22.5.2018 (Tasks 11.1, 11.2, and 11.3)

28/29.5.2018 (Task 11.4)

The Monday and Tuesday sessions of each week cover the same material.