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Abstract. The fact that most presently-used cryptosystems cannot be
rigorously proven secure and hence permanently face the risk of being
broken motivates the search for schemes with unconditional security.
The corresponding proofs however must be based on information the-
ory rather than complexity theory. One reason for this is the lack of
known lower bounds on the running time of algorithms solving certain
computational problems such as the discrete-logarithm problem or the
integer-factoring problem. At the beginning of an information-theoretic
analysis of cryptosystems stands Shannon’s definition of perfect secrecy,
unquestionably the strongest possible security definition, and his well-
known inequality giving a lower bound on the key length of every per-
fectly secret cipher, thus suggesting that such a high level of confiden-
tiality cannot be realized in any practical scheme. This pessimism has
later been qualified by several authors who showed that unconditional
security can be achieved in many special but realistic scenarios. Some of
these approaches are described in this introductory overview article.

1 Computational Versus Information-Theoretic Security

The security of many presently-used cryptosystems, e.g., of all public-key cryp-
tographic schemes, is based on the assumed hardness of computational problems
in number theory such as the integer-factoring problem (e.g., RSA [28]) or the
problem of computing discrete logarithms in certain finite cyclic groups (e.g.,
Diffie-Hellman [13]). Such a cryptosystem is called computationally secure.

Up to date, no practical cipher has been proven computationally secure.
Note first of all that it is an inherent fact that computational security can only
hold under certain assumptions on the adversary’s computer resources. In other
words, a computationally infinitely powerful opponent can break every system
of this type by exhaustive search over the key space.

One reason for the lack of proofs of cryptographic security is that in com-
plexity theory, actually proved lower bounds on the running time of algorithms
solving specific problems are either rather weak (and useless in cryptography)
or valid only in special computational models (e.g., [32]). Unfortunately, such
bounds are not directly useful neither since it can never be guaranteed that
the adversary is restricted to this particular model. So-called “provable compu-
tational security” is always conditional and means that an efficient reduction



from a well-known problem that is believed to be hard, such as the discrete-
logarithm problem or the decisional Diffie-Hellman problem, to breaking the
proposed system can be given, thus showing that the cryptosystem is secure if
some widely-accepted standard complexity assumption is true (e.g., [11]).

Finally, it has been shown that the integer-factoring as well as the discrete-
logarithm problem can be solved in polynomial-time by a quantum computer,
i.e., a computing device that is able to exploit certain effects from quantum
mechanics [31]. The security of most public-key cryptographic protocols is based
on the hardness of at least one of these problems.

Consequently, practical computational security is always conditional and ad-
ditionally faces the risk of being broken by progress in the theory of efficient
algorithms or in hardware engineering. On the other hand it appears desirable
from both a scientific and practical point of view to design cryptosystems whose
security is not based on any assumptions and can be proven rigorously. Because
of the reasons discussed above, such security proofs must be based on informa-
tion theory (i.e., probability theory) rather than complexity theory. There have
been made various attempts at realizing this type of security, some of which we
describe in this overview paper.

The outline of the article is as follows. We start with an introduction to some
basic definitions and facts from probability and information theory (Section 2).
Then, a definition of perfect secrecy, undoubtedly the strongest possible security
definition in cryptography, is given (Section 3). Shannon’s pessimistic theorem
suggests that perfect secrecy is necessarily impractical. However, we describe a
number of approaches that could qualify this pessimism. All these constructions
have in common that some kind of limitations are needed on the amount of infor-
mation that an opponent obtains. Realistic scenarios have been described where
such an upper bound on the adversary’s knowledge can for instance be based
on noise, an inherent property of every physical communication channel (Sec-
tion 4). Motivated by these examples, a model has been presented and analyzed
that shows how two parties can generate a secret key from common randomness
by communication over an insecure but authentic (or even completely insecure)
channel (Sections 5 and 6).

2 Basic Concepts of Information Theory

Information theory goes back to Claude Shannon and his celebrated 1948 pa-
per [30]. Examples of good and detailed introductions into the field are [10]
or [5].

2.1 Probability-Theoretic Preliminaries

In this section we introduce some basic probability-theoretic concepts. For a
detailed introduction see for example [14].

Let X be a countable set. The distribution Px of a discrete random variable
X with range X is a mapping

Px:X—>R20



with >~ » Px(z) = 1. If X C R, the expectation of X is defined as

E[X]:= Y z-Px(z).

TEX

Let f be a convex function. Then we have
E[f(X)] > f(E[X]) . (1)

Inequality (1) is called Jensen’s inequality. Most of the basic inequalities in
information theory follow directly from this inequality.

The joint distribution Px,x,..xy of N random variables is a probability
distribution over the set X} X X5 X - -x Xn. The random variables X1, X5,..., XN
are called statistically independent if

PX1X2"'XN($17'Z'27"'7'Z'N) = PX1('Z'1) 'PX2('7;2) "'PXN(:EN)

for all z1,xs,...,zN, i.e., when the joint distribution equals the product of the
marginal distributions.

An event A is a subset of the range of a random experiment. By Prob [A] we
denote the probability of A, i.e., the sum of the probabilities of all the outcomes
belonging to A. The conditional distribution of X, given that the event A (with
Prob [A] > 0) occurs, is defined as

Py oa(e) = Prob [éii)b:[j]} N Al -

As a special case, a random variable can be conditioned on the event
A={Y =y}

that another random variable Y takes a particular value y. The resulting distri-
bution

Py (2,y) = Px|y—y(2)

is called the conditional distribution of X given Y. Note that the function
Pxy(-,-) with two arguments is not a probability distribution on X' x ), but
for every y € Y, the function Px|y(-,y) is a distribution on X

2.2 Bar Kochba, Uncertainty, and Entropy

The following story has been reported about Bar Kochba (the “Son of the Star”),
leader of the Jews during their independence war in 135 B.C., who defended his
fortress heroically against a superior number of Romans [27].

“It is also said that Bar Kochba sent out a scout to the Roman camp who was
captured and tortured, having his tongue cut out. He escaped from captivity and
reported back to Bar Kochba, but being unable to talk, he could not tell in words
what he had seen. Bar Kochba accordingly asked him questions which he could
answer by nodding or shaking his head. Thus he acquired from his mute scout



the information he needed to defend the fortress. [...] It occurred to me that,
if the story of Bar Kochba were true, then he would have been the forefather of
information theory”.

In the so-called Bar-Kochba game, one player has to find out, by asking
yes/no-questions, what the second player has in mind. This game was extremely
popular among writers in Budapest at the beginning of this century. Regardless
of the (possibly adaptive) strategy of the questioner he cannot, with at most 20
questions, distinguish between more than 220, i.e., about one million, different
objects (because there are only 220 ways of answering the 20 questions differ-
ently). On the other hand, given that the object to be found comes from a set
of size at most n, then [log,n] questions are always sufficient if the following
strategy is used. Let a fixed encoding of all the objects by binary strings of length
20 be defined. Then, the strategy is to ask whether the first, second, ... bit of
the encoding is 1.

This example shows the close relationship between the Bar-Kochba game and
binary coding. For a random variable X that takes one of n = 2* values with
equal probabilities, the minimal average number of questions in the Bar-Kochba
game, as well as the minimal average codeword length of a prefix-free binary
code, is k. Note that this bound cannot be beaten even if a strategy is used with
variable codeword lengths for the different outcomes. We call this quantity the
uncertainty or entropy of X, denoted by H (X).

If the size of the range X of X is not a power of 2, then the average number
of questions required obviously lies between |[log, |X|| and [log, |X|]. When
combining r independent realizations of the random variable X, the optimal
average number of questions required to learn all the outcomes together lies
between |log, |X|"| and [log, | X|"]. Taking such combinations into account, we
obtain for the entropy of X that

[logs |X|"]

1 I X"
tog, 4] — 1 < LB < ) < 0B

1
<log, |X| + -
for all » > 1, hence
H(X) =log, |X] . (2)

Equation (2) is called Hartley’s formula and gives the entropy of a uniformly
distributed random variable.

We consider an example of a random variable Y that is not uniformly dis-
tributed. Let Y = {a, b, ¢,d}, with Py (a) =1/2, Py (b) = 1/4, Py(c) = Py(d) =
1/8. We conclude from the above that two questions are always sufficient, hence
H(Y) < 2. However, there is a better strategy of asking questions or equivalently,
a prefix-free code with a shorter average codeword length, namely,

a~0, b~10, ¢~ 110, d~111.

The average number of questions required when asking the bits of the codewords
is

1 7
—.3=- 2) .
g 3= (K2



On the other hand, this code (or strategy of asking questions) is optimal. Note
that in this example, the length of the codeword of a letter is log,(1/p), where p
is the probability of this letter. The quantity log,(1/p) is sometimes called the
unezpectedness of a elementary event with probability p.

A code is optimal if the length of every codeword is equal to the unexpect-
edness of the corresponding outcome. Hence, for a random variable X for which
each probability p; is of the form p; = 27% for an integer s;, we have

H(X) = p1logy(1/p1) + p2logy(1/p2) + -+ 3)

Equation (3) is called Shannon’s formula, and is a generalization of Hartley’s
formula (2). By combining independent realizations of the random variable for
the encoding, one obtains that this formula gives the entropy of any discrete
random variable. The following definition was given by Shannon in 1948.

Definition 1. [30] The entropy H(X) of a random variable X with distribution
Px is given by

H(X)=H(Px):= Y _ —Px(z)-log, Px(z) = E[~log, Px] .

e}

The joint entropy of random variables X7, X, ..., Xy is the entropy of the joint
distribution, i.e.,
H(X1X5---XN):= H(Px,x5... Xy ) -

Moreover, Definition 1 also covers the case where the distribution is conditioned
on an event A. We write H(X|A) := H(Px 4) or, if A={Y =y},

H(X|Y = y) = H(Pxjy—y) -

The entropy of a binary random variable with probability distribution [p,1 — p)
is given by the binary entropy function

h(p) := —plogy p — (1 — p) log,(1 — p)

(see Figure 1).
The entropy of a random variable X is always non-negative and upper
bounded by the binary logarithm of the cardinality of the range, i.e.,

0 < H(X) < log, || . (4)

The second inequality, which is intuitively clear when taking into account the
discussion above, follows from Jensen’s inequality for concave functions:

H(X) = E[log,(1/Px)] < log,(E[1/Px]) = log, |X| .

Equality on the left hand side of (4) holds if and only if there exists an element
xo € X with Px(z¢) = 1, whereas equality on the right hand side is equivalent to
the fact that X is uniformly distributed over X, i.e., that Px(z) = 1/|X| holds
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Fig. 1. The Binary Entropy Function

for all x € X. In the special case where the outcome of the random experiment is
a binary string of length n, the second inequality of (4) implies that the entropy
of the random variable can be equal to, but not exceed n.

For random variables X and Y, we have

H(XY) < H(X)+ HY) , (5)

with equality if and only if X and Y are statistically independent.

2.3 Conditional Entropy and Mutual Information

When considering inequality (5) it appears natural to interpret the (non-nega-
tive) quantity H(XY) — H(X) as the entropy of the random variable Y when
X is given.

Definition 2. The conditional entropy of Y when given X is defined as
HY|X):=H(XY)—-H(X) . (6)
o

Note that in contrast to all previously introduced entropies such as H(X) =
H(Px), H(XY) = H(Pxy), or H(Y|X = z) = H(Py x—.), the conditional
entropy H(Y|X) is not the entropy of a specific probability distribution, but
rather the expected value of the entropies H(Y|X = z), i.e.,

H(Y|X) = Ex[H(Y|X = 2)] .
Equation (6) can be rewritten as
H(XY)=H(X)+ HY|X) .

This chain rule can be generalized as follows. For random variables X1,..., Xxn
and an event 4 we have

H(X1Xs - Xn|A) = H(X1|A)+H(Xa| X1, A+ +H(Xn| X1 X2 - Xn_1, A).



It is a fundamental property of the conditional entropy that
HY|X)<H(Y), (7

which is a consequence of inequality (5). (However, note that H(Y|X = z) >
H(Y) is possible, as the following example illustrates. Let Y be 100 independent
flips of an unfair coin with Prob[“heads”] = 99.9%, and let X be the number
of “heads” in the sequence. Then, although of course H(Y|X) < H(Y) holds,
we have

1
1.141 ~ 100 - h(0.999) = H(Y) < H(Y|X = 50) = log, (( 5000>> ~ 96.35 .

Of course the event {X = 50} is extremely unlikely.)
Informally spoken, inequality (7) can be interpreted as the fact that infor-
mation can never increase uncertainty. More precisely, the quantity

I(V;X):=H(Y) - HY|X)=HX)+HY) - HXY) >0 (8)

is the amount of information that X gives about Y. The last expression of (8)
shows that I(Y; X) is symmetric in its arguments, i.e., that

I(X;Y) = I(V; X)

holds. The quantity I(X;Y) is called the mutual information between X and Y.
Analogously, one can define I(X;Y|A) := H(X|A) — H(X]Y, A) and

I(X;Y|2):= H(X|Z)— HX|YZ) = Ez[I(X;Y|Z = 2)] .

2.4 Graphical Representation of Information-Theoretic Quantities

Let X and Y be random variables. Then the quantities H(XY"), H(X), H(Y),
H(X|Y), HY|X), and I(X;Y) can be graphically represented as shown in Fig-
ure 2. The union of all inner regions corresponds to H(XY'). The representation

H(XY)
H(X) J H(Y)

Fig. 2. Two Random Variables

has the property that the quantity corresponding to the disjoint union of some
regions equals the sum of the quantities corresponding to these partial regions.



1(X;Y[2)
H(Y)

R(X;Y;Z) 1(Y;Z|X)

1(X:ZIY)

Fig. 3. Three Random Variables

For a detailed discussion of this measure-theoretic representation of information-
theoretic quantities see [37].

The case of three random variables is shown in Figure 3. Note that the quan-
tity corresponding to the region in the middle,

R(X;Y;2):=1(X;Y)-I(X;Y|Z),

is symmetric in X, Y, and Z and can be negative. All the other regions represent
information-theoretic quantities that are always non-negative.

Figure 4 illustrates independent symmetric bits X and Y and Z := X @Y.
Figure 5 shows a Markov chain.

H(X) H(Y)

Fig.4. Z=X®Y

H(2)

3 Perfect Secrecy and Shannon’s Pessimistic Theorem

In the following we consider the problem of information-theoretically secure key
generation and message transmission over an insecure channel. This section con-
tains Shannon’s definition of perfect secrecy of a cipher and his well-known
theorem which appears to imply that unconditional security is necessarily com-
pletely impractical. In the following sections however it is demonstrated that



H(X) H(Y)

H(2)

H(U)

H(V)

H(W)

Fig.5. A Markov Chain X - Y - Z U >V =W

information theory cannot be used only to prove such pessimistic results. It is
somewhat surprising that when the models and security requirements are only
slightly modified, then practical information-theoretic security can be achieved
in many realistic scenarios.

Let us start with the classical scenario of a symmetric cryptosystem with
message M, key K, and ciphertext C' (see Figure 6). The following security

. M C M
Alice —~= Encryption Decryption [—= Bob
K Eve K

Fig. 6. A Symmetric Cryptosystem

definition appears to be the strongest possible for such a cryptosystem.

Definition 3. [29] A cipher is called perfectly secret if the ciphertext reveals no
information about the message, i.e., if I(M;C) = 0 holds. o

Equivalent characterizations of this condition are that M and C are statistically
independent, or that the best strategy of an eavesdropper who wants to obtain
(information about) the message from the ciphertext is to use only the a priori
knowledge about M and to discard C.

Perfect secrecy can even be achieved without any computation, as the exam-
ple in Figure 7 shows. As everyone can easily see, the ciphertext alone reveals
no information about the message at all in this example! (For more on “visual
cryptography,” see [26].)

This visual cipher is a graphical implementation of the one-time pad that
was already proposed by Vernam in 1926 [34]. Here, the message is a string



Fig. 7. Visual Decryption

M = [mq,ma,...,mpy] of length N, and the key is a uniformly distributed N-
bit string K = [k1, k2, - . ., kny] which is independent of M. The ciphertext C is
computed from M and K by

C=[01,02,...,61\(]=[m1®k1,m2@k2,...,m1v@k]v] == MoK .

The one-time pad is perfectly secret. To see this, observe first than when
given the cleartext and the ciphertext, then the key is uniquely determined, i.e.,
H(K|MC) = 0. Furthermore, I(K; C|M) = N (remember than N is the block
length) follows then from H(K) = N and I(M;K) = 0. Finally, I(M;C) =0
holds because H(C) < log, |C| = N. A graphical representation of the quantities

is given in Figure 8.
H(M) & H(K)

H(C)

Fig. 8. Perfect Secrecy of the One-Time Pad

Unfortunately, the price one has to pay here for perfect secrecy is that the



communicating parties must share a secret key which is at least as long as the
message (and can only be used once). In view of this property, the one-time pad
appears to be quite impractical and can only offer an advantage in time: the
key can be safely transmitted whenever this is possible, and the message can be
secretly sent whenever this is needed.

However, Shannon showed that perfect secrecy cannot be obtained in a
cheaper way, i.e., that the one-time pad is optimal with respect to key length.

Theorem 4. [29] For every perfectly secret cryptosystem (with unique decod-
ability), we have
H(K)>H(M) .

For a proof of Shannon’s theorem, note first that unique decodability means
H(M|CK) = 0. The graphic representation of the involved quantities is given

H(M) H(K)

H(C)
I(M;C)=0

Fig. 9. The Proof of Shannon’s Theorem

in Figure 9. We have b > a because I(C; K) > 0, and
HK)>b—a+c>a—a+c=H(M).

This concludes the proof.

4 Optimistic Results by Limiting the Adversary’s
Information

Unfortunately, Shannon’s theorem implies that perfect secrecy is possible only
between parties who share a secret key of length at least equal to the entropy of
the message to be transmitted. Hence every perfectly secret cipher is necessarily
as impractical as the one-time pad. On the other hand, the assumption that
the adversary has a perfect access to the ciphertext is overly pessimistic and
unrealistic in general, since every transmission of a signal over a physical channel
is subject to noise.



Motivated by this, many models have been presented and analyzed in which
the information the adversary obtains is limited in some way, and which offer
the possibility of information-theoretically secure key agreement and, under the
assumption that insecure channels are always available, secret message trans-
mission (using the one-time pad with the generated secret key).

The condition that the opponent’s knowledge is bounded can for instance be
based on noise in communication channels [36],[12],[1],[21], on the fact that the
adversary’s memory is limited [22],[9], or on the uncertainty principle of quantum
mechanics [2]. In this article, we describe a number of models that belong to the
first category.

4.1 Wyner’s Wire-Tap Channel

Consider the following (simple but generally unrealistic) situation first. Assume
that two parties Alice and Bob are connected by an authentic and noiseless
binary channel, and that a wiretapper Eve receives the bits sent over the channel
with some error probability e > 0. In other words, her wire-tap channel is a
binary symmetric channel (BSC) with error probability & (see Figure 10).

Alice l Bob BSC(¢)
N BSC(e) =
Eve a

Fig.10. A Binary-Symmetric Wire-Tap Scenario

In this situation, Alice can send a message bit M to Bob by sending an N-bit
block [X1, Xa,...,XnN], where X1, X5,..., Xy_; are independent and symmetric
bits and X is such that

X10Xo®---®XN=M .

Eve’s error probability when guessing the bit M with the optimal strategy is

1—(1-2)N
= f y
and converges to 1/2 exponentially fast in N. Moreover, the information that
Eve obtains about M from the noisy versions of X1, Xs, ..., Xy does not exceed

1 — h(p). By repeating this process, Alice and Bob can agree on a highly secret
key of arbitrary length.

The following, more general scenario of the wire-tap channel (see Figure 11)
was introduced and analyzed by Wyner [36] and simplified by Massey [16]. In
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Alice Y[X Bob Z|Y Eve
X DMC Y pmMc —= Z

Fig.11. Wyner’s Wire-Tap Channel

this setting, Alice and Bob are connected by a discrete memoryless channel
(characterized by its conditional probability distribution Py x), whereas Eve
receives a noisy version Z of Bob’s channel output Y. Alice chooses the input to
the first channel according to some distribution Py.

It was shown in [36] that in this scenario, Alice and Bob can agree on a highly
secret key at a some rate in many situations (for instance in the case where all
the random variables are binary and the channels are binary-symmetric with
error probabilities not 1/2 and not 0 nor 1, respectively). Exact definitions of
the security requirements to such a key, as well as of the secret-key generation
rate, are given below.

However, the assumption that the adversary only receives a degraded ver-
sion of the legitimate receiver’s information is unrealistic in general. This fact
motivated the study of generalizations of Wyner’s model.

4.2 Broadcast Channels

Csiszar and Korner [12] considered the situation where the sender Alice is con-
nected to the receiver Bob by a discrete memoryless channel (with conditional
distribution Py x), and where also the adversary Eve receives a noisy version Z
of X over a different channel (characterized by Pz xv, i-e., the channels are not
necessarily independent). As before, Alice chooses the channels’ input X accord-
ing to some distribution Px. The broadcast scenario is illustrated in Figure 12.

Alice  Rx Bob
X DMC Y
D
M PZ|XY
C
Z

Eve

Fig. 12. The Broadcast-Channel Scenario



For this setting, the secrecy capacity CS(PYZ| x) has been defined as the
maximal rate at which Alice and Bob can generate a virtually secret key. Without
going into the details of the definitions and the key-generation protocols, we
remark that both the size of the generated secret key as well as the amount of
information leaked to the adversary are defined in terms of a rate, i.e., measured
as average information per channel use.

In [12], the following lower bound on the secrecy capacity, depending on the
conditional distribution Py z|x, has been proved:

Cs(Pyz)x) 2 max[I(X;Y) — I(X; Z)] . (9)

In equality (9), the maximum is taken over all possible distributions Px of X.
Intuitively, this condition implies that if the legitimate partners initially have
some advantage over Eve in terms of the information about each other’s random
variables, then this advantage can be fully exploited to generate a secret key.
However, if Alice and Bob have no such advantage to start with, then gener-
ally no secret-key agreement is possible in this model. Let us for instance consider
the situation where the channels are independent and binary-symmetric with
error probabilities £ and § (see Figure 13). In this special scenario, the secrecy

Alice Bob
X —= > +——=Y
i e

IE:

i

4

Eve

Fig. 13. Independent Binary-Symmetric Broadcast Channels

capacity is given by

_Jhd)—h(e) d>¢
Cs(e,8) = {0 otherwise .

In other words, secret-key agreement is impossible unless Bob’s channel is better
than Eve’s. Unfortunately, it may often be impossible to guarantee that the
adversary’s channel is noisier than the one of the legitimate partner.



4.3 The Power of Interaction

The following example, given in [21], illustrates how much more powerful inter-
action can be in contrast to one-way transmission for unconditionally secure key
agreement. This is a motivation for the study of a more general model of secret-
key agreement from common information by insecure two-way communication.
We discuss this model in Section 5.

We start with the situation shown in Figure 13, where 0 < § < e < 1/2. As
mentioned above, no secret-key agreement is possible. However, let us assume
an interactive variant of this model with an additional noiseless and insecure
but authentic channel. (Note that channels with virtually these properties often
exist in reality, e.g., telephone lines.) Surprisingly, the situation is now entirely
different although the additional channel can be perfectly overheard by Eve.

Observe first that the additional public-discussion channel allows to invert
the direction of the noisy channel between Alice and Bob by the following trick.
First, Alice chooses a random bit X and sends it over the noisy channel(s). This
bit is received by Bob as Y and by Eve as Z. Bob, who wants to send the message
bit C to Alice, computes C @Y and sends this over the noiseless public channel.
Alice computes (C ®Y) @ X, whereas Eve can compute (C @ Y) @ Z. This
perfectly corresponds to the situation where the direction of the main channel
is inverted (see Figure 14).

coey ¢
cevy coy
(ceyyex
Alice Bob Alice Bob
X > Y Cov)ox —-a— < |-a— C
l : A l ‘

i

cey (CoY)oZ

Dﬁé Wk

Eve (CeY)oz Eve

Fig. 14. Inverting the Main Channel

The second crucial observation is that this is exactly the binary-symmetric
setting of Wyner’s wire-tap channel of Section 4.1, allowing secret-key agreement
at some rate. We conclude from this example that the possibility of feedback
from Bob to Alice can substantially improve the legitimate partners’ situation
towards a wire-tapping adversary.



5 Interactive Secret-Key Agreement from Common
Randomness

5.1 The Scenario and the Secret-Key Rate

Maurer has proposed the following interactive model of secret-key agreement
by public discussion from common information [21]. The parties Alice and Bob
who want to establish a mutual secret key have access to realizations of random
variables X and Y, respectively, whereas the adversary knows a random variable
Z. Let Pxyz be the joint distribution of the random variables. Furthermore, the
legitimate partners are connected by an insecure but authentic channel, i.e., a
channel that can be passively overheard by Eve but over which no undetected
active attacks by the opponent, such as modifying or inserting messages, are
possible (see Figure 15).

Fig. 15. Secret-Key Agreement by Public Discussion from Common Information

Note that it is natural to consider this model by the following reasons. First,
it is an interactive (i.e., two-way) generalization of Wyner’s and Csiszar and
Korner’s models. It is not necessary to assume the existence of noisy commu-
nication channels in this interactive setting because equivalents of such chan-
nels can be obtained by the same trick as shown in Section 4.3 for inverting the
binary-symmetric channel. Secondly, the assumption that the parties have access
to correlated randomness appears to be realistic in many contexts. An example
of a possible physical implementation is described in Section 5.2.

In analogy to the previous models, where the channels could be used many
times independently, we assume here that the parties have access to a number of
independent realizations of the corresponding random variables. Consequently,
the so-called secret-key rate is defined in this model as the maximal rate at
which Alice and Bob can generate a highly secret key by communication over the



insecure channel, where the required number of channel uses from the definition
of the secrecy capacity is replaced by the amount of randomness (i.e., the number
of realizations of X and Y) necessary for the generation of a key of some length.

Definition 5. The secret-key rate S(X;Y||Z) of the distribution Pxyz is the
maximal number R with the following property. For every £ > 0, there is a
number Ny such that for all N > Ny, a protocol exists that uses authenticated
public discussion and satisfies the following conditions. (We denote the block of
the first N realizations of the random variable X, [X;, Xa, ..., Xn], by X, and
analogous for Y and Z. Furthermore, let U be the entire communication held
over the public channel during the execution of the protocol.) There exist k-bit
strings S and S’ with

k>(R-¢)N, (10)
H(S|XNU)=0, (11)
H(S'|YNU)=0, (12)
Prob[S # 5] < e, (13)
I(S; ZNU) < e, (14)

H(S)>k—¢. (15)

In other words, these conditions guarantee that Alice (11) and Bob (12) can
generate almost uniformly distributed (15) keys of a certain length (10) that are
equal with high probability (13) and about which the adversary has virtually no
information (14). o

The notion of the secret-key rate is stronger than the one of secrecy capacity
in the sense that in the definition of Cs(Pyz|x), it was required that the rate
at which Eve obtains information about the key is small, whereas here, the total
amount of information about the entire key must be negligible. (However, one
can show that the secret-key rates with respect to the weaker and the stronger
definitions are equal [19].)

The secret-key rate is a quite fundamental and mathematically interesting
property of a distribution Pxyz. One challenging problem in this context is to
enlighten the exact relationship between Pxyz and S(X;Y||Z), i.e., to deter-
mine the secret-key rate of a given distribution, or at least to decide whether the
rate is non-zero and secret-key agreement is possible in principle in a particular
situation. We discuss these questions in Section 6.

5.2 The Satellite Scenario and Phases of Secret-Key Agreement
Protocols

The following realistic special scenario was proposed in [21] and completely an-
alyzed in [25]. Assume that a satellite sends out random bits at very low sig-
nal power and that Alice, Bob, and Eve receive these bits over independent
binary-symmetric channels with error probabilities a, 3, and ¢, respectively (see
Figure 16).
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Fig.16. The Satellite Scenario

In general, we may have to assume that Eve has a better antenna than the
legitimate partners, and hence a possibly substantially lower error rate. It is a
somewhat surprising fact that secret-key agreement is always possible in this
scenario (unless Eve has a noiseless access to the satellite bits or either Alice or
Bob obtains no information at all about these bits).

In the following, we describe a protocol for secret-key agreement in the satel-
lite scenario. Such a protocol is often interpreted as consisting of three phases.
As mentioned, Alice and Bob possibly start in a situation in which the adversary
has an advantage over the legitimate partners with respect to the information
about each other’s random variables. The objective of the first phase, advantage
distillation, is to generate an advantage over the opponent by exploiting the au-
thenticity of the public channel. However, Alice and Bob do generally not share
a mutual string after this phase. Hence, an interactive error-correction phase,
information reconciliation, is required. Finally, the resulting mutual but only
partially secret string must be transformed into a (shorter) highly secret string.
This final phase is called privacy amplification. In the illustration of the three
phases in Figure 17, the relations between the amounts of information that Bob’s
and Eve’s knowledge provide about Alice’s string are shown. The protocol steps
are described in detail in the next three sections. An interactive demonstration
of the phases is provided on the Internet [7].

5.3 Advantage Distillation

We assume the satellite scenario described in the previous section with error
probabilities 0 < @, 8 < 1/2 and 0 < &€ < min {a, 8}, i.e., the adversary has an
initial advantage over the legitimate partners in terms of the error probabilities.
Let us consider N independent realizations of the random variables. Then, we
have

N

IXN;YN) =" I(Xi;Y5) = N- (1= h(a(1-8) + (1 - a)B)) ,
=1
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Fig. 17. Phases of a Secret-Key-Agreement Protocol

I(XN;zN) = ZIX,,Z, N-(1-h(a(l—¢)+ (1 —a))),
I(yN; zN) = ny,,z, N-(1-h(B(1—e)+(1-pBe)) ,

ie.,
I(XN; YNy <min {1(XN; ZN), 1(YN;Z2M)} .

The basic idea of the advantage-distillation phase is that Alice and Bob use the
noiseless discussion channel for exchanging information about their bits in an
insecure but authentic way with the objective of identifying bits that are correct
with a higher probability than others. We describe two different protocols that
achieve this. The protocols are based on a repeat code and on the exchange
of parity-check bits. The repeat-code protocol is simpler to describe, but very
inefficient with respect to the required number of realizations of the random
variables, whereas the parity-check protocol appears to be quite efficient. For a
detailed analysis of the protocols, see for example [21],[20],[24].

Repeat-Code Protocol. The repeat-code protocol works as follows (see also
Figure 18). Let N be a fixed parameter. Alice chooses a random bit C' and com-
putes

CNoxVN.=[CeX,,CaX,,...,C®XxN],

where CN stands for the repeat-code block [C, C, ..., C] of length N. She sends
this “blinded” repeat-code block over the public channel. Bob computes from
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Fig. 18. The Repeat-Code Protocol

this the block (CV @ XV) @ YV, and sends an “accept” message over the
discussion channel if and only if the resulting block is a repeat-code block
(CHN = [C',C",...,C"]. Note that this is exactly the situation where Alice
and Bob have either the same bit in all positions, i.e., X = YV, or opposite
values in each position, i.e., X = Y @ 1V, It is intuitively clear that Alice
and Bob not only obtain an arbitrarily low probability of the event that C' # C
for large IV this way, but also that they improve their position compared to the
opponent, by accepting only in situations of apparently highly reliable transmis-
sion. However, also the adversary Eve, who can compute (CVN & XV) @ ZV,
takes advantage of a greater value of N. It is a somewhat surprising result that
for arbitrary values of a,8 < 1/2, and ¢ > 0, Alice and Bob end up in an
advantageous situation (both with respect to the error probabilities and to the
information about each other’s strings) for sufficiently large N.

We show this with respect to the error probabilities of Bob and Eve when
guessing the bit C for the special case @ = § (which we can assume without
loss of generality because noise can always be added). We denote by aye the
probability that the single bit 0 sent by Alice over the conceptual channel (i.e.,
C @ X is sent over the public channel) is received (i.e., decoded) by Bob as b
and by Eve as e. Then we have

Qoo = (1 — a)2(1 — E) + a’e ,
an = (1 —a)’e+a?(1-¢),
a0 =011 = (].—OL)O( .



We assume that N is an even integer. The probability v that Bob accepts
the N-bit block sent by Alice and that C’ # C holds is

v = (a1 +a)V,

whereas the probability ¢ that Bob accepts and Eve guesses the bit incorrectly
is lower bounded by 1/2 times the probability of the event that the block (CV &
XN) @ ZN which Eve obtains consists of N/2 0’s and the same number of 1’s,
ie.,

1/ N\ nNp nNp 1
(5 2 5 (N/2> aOl/ '0401/ ~ 5 (2\/01000501)]\] .

Clearly, the actual message bit C is statistically independent of the block Eve
receives if this event occurs. It is not difficult to see that

2\/agoaor > a0 + a1y

holds for @ < 1/2 and £ > 0, meaning that Bob’s error probability decreases
asymptotically faster than Eve’s and is hence smaller for sufficiently large V.
One can even show that Eve has less information than Bob about the bit C' for
sufficiently large N.

Parity-Check Protocol. The second protocol we discuss uses parity-check
bits and works as follows. Alice computes the parity bit X; & X> and sends it
over the public channel. Bob accepts if and only if X; & Xo = Y7 & Y5, i.e., if the
parities of Alice’s and Bob’s first two bits are equal. In this case, the values X,
and Y7 are chosen by Alice and Bob, respectively, for the next protocol round
(whereas otherwise, the bits are discarded). This step is repeated a number of
times. After this first round it may be necessary, depending on the initial error
probabilities, to carry out some additional rounds (see Figure 19).

It is not difficult to see that r rounds of the parity-check protocol are equiva-
lent to the repeat-code protocol with 27-bit blocks with respect to the resulting
error probabilities. However, it is obvious that the parity-check protocol is much
more efficient.

5.4 Information Reconciliation

During advantage distillation, the partners Alice and Bob compute (possibly
distinct) strings S4 and Sp, respectively, about which the adversary also has
some information. At the end of the key-agreement protocol however, Alice’s
and Bob’s strings must be equal and highly secure, both with overwhelming
probability. The information-reconciliation phase consists of interactive error
correction and establishes the first of these two conditions.

After advantage distillation, Bob has more information about Alice’s string
than Eve has, and after information reconciliation, Bob should exactly know
Alice’s string. (A more general condition would be that after information recon-
ciliation, Alice and Bob share a string that is equally long as S4 and Sg.) This
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Fig.19. Three Rounds of the Parity-Check Protocol

leads to a lower bound on the amount of error-correction information E that
must be exchanged. Namely, Bob must know S, completely with overwhelming
probability when given Sg and E, i.e.,

0~ H(Sa|SB,E) > H(Sa|SB)— H(E),

and hence
H(E) 2 H(Sa|SB) -

On the other hand, the uncertainty of S4 from Eve’s viewpoint can as well be
reduced by H(E) in the worst case when Eve learns E (see Figure 20).
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Fig. 20. The Effect of Information Leaked During Information Reconciliation

A good protocol for information reconciliation should both minimize the
amount of information leaked to the adversary and be efficient. Examples of
protocols satisfying both conditions are given in [6]. We sketch two examples of
these protocols. The first is optimal with respect to the information leaked but
completely inefficient, whereas the second protocol leaks more information but
is more efficient as well. Let us assume that Alice and Bob have finished the
advantage-distillation phase in the satellite model. In other words, Bob’s string
is a (good) estimate about Alice’s string, i.e., the same string with a (small)
number of errors.

Random-Label Protocol. The first, non-interactive, protocol works as fol-
lows. Alice randomly chooses a function f mapping {0,1}" — {0,1}™ (where n
is the length of S4 and Sp and m can be roughly equal to H(S4|Sg)) among all
such functions and sends (a description of) f together with f(Sa) to Bob, who
determines the string S’ with minimal Hamming distance from Sp that satisfies
f(S%) = f(Sa). According to the discussion above, and because m =~ H(S4|Sg),
this protocol is optimal with respect to the leaked information. However, it is
completely inefficient, hence useless, by the following two reasons. First, the de-
scription of the random function f would require m2™ bits. Furthermore, S’
cannot be efficiently determined from f, f(S4), and Sp.

Binary-Search Protocol. The idea of the second protocol is to interactively
detect the positions where Alice’s and Bob’s strings differ and to correct these
errors. Alice and Bob start by comparing the parity bit, i.e., the XOR-sum, of
the bits in randomly but identically chosen substrings S’ and S of Sx and
SB, respectively. If there are bit errors between the strings S4 and Sg, then the
resulting parity bits differ with probability 1/2 over the choice of the substrings.

If the parities are different, Alice and Bob have detected substrings containing
an odd number of errors with respect to each other, and they can locate one of



them by partitioning the substring into two subsets of equal size, one of which
clearly contains an odd number of errors as well (and has different parity sums).
This splitting procedure is continued until the error is localized and can be
corrected by Bob (see Figure 21).

Alice Bob
‘1 1 0 1 1 0 0 0 1 0 1 1 ‘ ‘1 1 0 1 0 0 0 0 1 0 1 1 ‘
®=1 ®=0
‘1 1 0 1 1 OHO 0 1 0 1 1‘ ‘1 1 0 1 0 OHO 0 1 0 1 1‘
®=0 ®=1 ®=1 ®=1
‘1 1 OHl 1 0‘ ‘1 1 OHl 0 O‘
®=0 ®=0 ®=0 ®=1
] ]
®=0 ®=0 ®=1 ®=0
e
®=10=1 ®=1®=0
X =

Fig. 21. Finding and Correcting an Error by Comparing Parities

Alice and Bob repeat this procedure until all the errors are found and cor-
rected. If n is the length of the strings S4 and Sp, this protocol requires the
exchange of [log,n| bits per error to be corrected. Hence it is efficient if the
strings of Alice and Bob differ in only a few bit positions.

After information reconciliation, Alice and Bob have agreed on a mutual
string S about which Eve has a possibly considerable amount of information
consisting of both a priori knowledge but also information (e.g., physical bits or
parities thereof) leaked during information reconciliation.

5.5 Privacy Amplification

Privacy amplification is the art of shrinking a partially secure string S to a
highly secret string S’ by public discussion. Hereby, the information of the ad-



versary about S can consist of physical bits, of parities thereof, or other types
of information (see Figure 22).

Eve'sInformation

S’

Fig. 22. Eliminating Eve’s Knowledge by Privacy Amplification

The following questions related to privacy amplification were studied and
answered in [4],[3]. What is a good technique of computing S’ from S? What
is the possible length of S’, depending on this shrinking technique and on the
adversary’s (type and amount of) information about S?

It is quite clear that the best technique would be to compute S’ (of length
r) from the n-bit string S by applying a random function f : {0,1}" — {0,1}".
However, Alice and Bob would have to exchange r2" bits of information to
agree on such a function. On the other hand, there exist relatively small classes of
functions with “random-like” properties. Examples are so-called universal classes
of hash functions, which turned out to be useful for privacy amplification.

Definition 6. A class H of functions h mapping a set 4 to a set B is called
universal if for all z,y € A, x # y, we have

Prob he,?—[[h(m) = h(y)] = % )

where h €, H stands for the fact that h is chosen randomly in H according
to the uniform distribution. In other words, a function that is chosen randomly
from a universal class behaves like a completely random function with respect
to collisions. o

An example of a universal class of functions, mapping {0,1}" to {0,1}", of car-
dinality 2™" are the linear functions. There exist even smaller classes. For more
examples and lower bounds on the size of universal classes, see for example [33].

We analyze the following type of privacy amplification protocols. First, Alice
chooses a random function h from a fixed universal class H of hash functions
mapping n-bit strings to r-bit strings for some r to be determined, and sends
(the description of) h publicly to Bob, i.e., also Eve learns h. Then Alice and
Bob both compute S’ := h(S).



Let us consider the question how long the virtually secure string S’ can be,
depending on the type and amount of Eve’s knowledge about S. Note first that
the fact that Eve has some information about a string S is another way of saying
that given Eve’s entire knowledge U = u about S, the random variable S is not
uniformly distributed, i.e.,

H(S|U=u)<n.

In this case we say that Eve has n — H(S|U = u) bits of (Shannon-) information
about S. Because the resulting string S’ must satisfy

H(S'|C,U=u)=r

(where r is the length of S’ and C is the communication held over the public
channel), privacy amplification can be interpreted as “distribution smoothing.”

Intuitively, one might think that if Eve has ¢ bits of information about S,
then the length r of the resulting string S’ can be roughly n —t (see Figure 23).
This fact was shown to be correct if Eve has deterministic information about

|
|
|
Universal Hashing !
! Eve's Information

S’

Fig. 23. Can Eve’s Knowledge Be Simply Cut Away by Universal Hashing?

S, i.e., if Eve knows the value ¢g(S) for some fixed function g [4]. However, if
Eve’s information is not deterministic, it is not true in general that n — ¢ secure
bits can be extracted when Eve has t bits of Shannon information about S,
as the following example shows. Let Pgjy—y(s0) = 1/2 for some so € {0,1}",
and Pgjy—,(s) = 1/(2- (2" — 1)) for all n-bit strings s # so. Then, we have
H(S|U = u) =~ n/2, but no secure string S’ (of any length, let alone n/2) can be
extracted because Eve precisely knows S, hence also S’ = h(S), with probability
1/2 (where h is the randomly chosen hash function). This means that S’ cannot
be highly secure.

The answer to the question what a suitable information (or entropy) measure
is with the property that the above intuition (illustrated in Figure 23) is true,
was given in [3] as follows.

Definition 7. For a random variable X with distribution Py, the collision prob-
ability Po(X) is defined as

Po(X):=)_ Px(z)*.

rEX



The collision entropy or Rényi entropy (of order 2) of X is

Hy(X) := —logy(Po(X)) = —logy () Px(2)?) -
TEX

The collision probability is the probability that two independent realizations of
the random variable X show the same value. Equivalently, it is the probability
of guessing a realization of X correctly with the optimal strategy on the basis
of an independent realization of X, where the distribution of X is unknown.
Jensen’s inequality implies

Hy(X) = — logy(B[Px]) < B[ log, Px] = H(X) .

It was shown that Rényi entropy is a good information measure in the context
of privacy amplification by universal hashing. Theorem 8 (see also Figure 24)
implies that the intuitive fact illustrated in Figure 23 is true with respect to
Rényi instead of Shannon information.

Theorem 8. [3] Let S be an n-bit string with conditional distribution Pgy—,
(given Eve’s knowledge U = u about S) and Rényi entropy H2(S|U = u), let
G be the random wvariable corresponding to the random choice (with uniform
distribution) of a member g of a universal class H of hash functions mapping
n-bit strings to r-bit strings, and let S' = G(S). Then

21-—H2(S | U=u)

r>H(S'|G,U =u) > Hy(S"|G,U =u) >r — 3

H2(S|U=u)
S
| |
| |
Universal Hashing ; s !
S =G(9 =
: : Eve's Information
|
Sl
<2%/In2
H(S | G, U=u)

Fig. 24. Rényi Entropy Can Be Extracted by Universal Hashing



Intuitively, Theorem 8 states that if the length r of S’ is chosen as
r:=Hy(S|U=u)—s,

where s is a security parameter, then the resulting string S’ is highly secret,
where the security increases exponentially in s.

Note that this result in not tight and can be improved in many cases. One
reason for this is the counterintuitive fact that Rényi entropy can be increased
by giving side information, so called spoiling knowledge. By using this property
it was shown in [8] that Rényi entropy of order «, for 1 < a < 2, is a good
measure with respect to privacy amplification as well.

One important question finally concerns the influence of the information
exchanged during the information-reconciliation phase on the Rényi entropy of
S from Eve’s point of view, hence on the length of the key that can finally be
generated. It was shown in [8] that learning r physical bits cannot reduce Rényi
entropy by significantly more than r but with negligible probability.

6 Generalizing the Model

The scenario where the parties receive independent noisy versions of the same
random source’s signal was completely analyzed in [25],[23]. Possible real-world
realizations of the required information source are a satellite sending random bits
at low signal power, a pulsar, a deep-space radio source, or randomly polarized
photons. However, many more general scenarios can be thought of where the
parties receive a different type of correlated information. The assumptions that
the parties obtain noisy versions of a common signal or that they have access
to a great number of independent realizations of the same random experiment
can be modified or dropped. An example is the scenario where Alice, Bob, and
Eve obtain a number of playing cards from the same stack [15]. As another
generalization, the adversary can be assumed to be more powerful. For instance,
it may often be unrealistic to guarantee that the opponent is only a passive
wire-tapper.

6.1 Arbitrary Random Variables

Let us have a closer look at the scenario of arbitrary correlated information, i.e.,
of an arbitrary random experiment Pxyz with many independent realizations
(see Figure 15). Note that this is exactly the setting for which the secret-key
rate S(X;Y||Z) is defined. In this general case it is a fundamental and natural
problem to determine S(X;Y||Z) for a given distribution Pxyz, or at least
to decide whether the quantity is non-zero. The following bounds depend on
information-theoretic quantities directly derived from Pxyz. The lower bound

max {{(X;Y) - I(X;2),I(Y; X) - I(Y; 2)} < S(X;Y||Z)

is a consequence of the above-mentioned result by Csiszar and Koérner [12] and
states that an existing advantage over the adversary can be fully (and even



non-interactively) exploited to generate a secret key. As shown in the previous
sections, this bound is not tight: Secret-key agreement can also be possible in
scenarios where Alice and Bob start in a “bad” situation. On the other hand,
the following upper bound was shown in [21]:

S(X;Y|12) < min{I(X;Y), I(X;Y|Z)} . (16)

The bound (16) is quite intuitive and states that Alice and Bob cannot extract a
larger amount of secret key than the mutual information between their random
variables X and Y (with and without giving Eve’s random variable Z). However,
this bound is not tight neither and can be improved as follows. Trying to reduce
the quantity I(X;Y|Z), the adversary Eve can send the random variable Z over
a channel, characterized by P7| 2 in order to generate the random variable Z.
Clearly,

S(X;Y]12) < S(X;Y]|2) < I1(X;Y|Z) (17)

holds for every such Z. This motivates the following definition of a new con-
ditional information measure, the intrinsic conditional mutual information be-
tween X and Y when given Z, which is the infimum of I(X;Y|Z), taken over
all discrete random variables Z that can be obtained by sending Z over a chan-
nel, characterized by P7| - The situation is illustrated in Figure 25. (Note that

R(X;Y;Z) > 0 always holds for the particular Z which minimizes I(X;Y|Z).)

(XY | Z)

Fig. 25. The Intrinsic Conditional Information

Definition 9. For a distribution Pxy z, the intrinsic conditional mutual infor-
mation between X and Y when given Z, denoted by I(X;Y]Z), is

I(X;Y|Z) := inf {I(X;Y|7) : Pyyy = ZPXYZ-PZZ} :
zEZ

where the infimum is taken over all possible conditional distributions Pz ;. o



Intuitively, the intrinsic conditional information I(X;Y | Z) measures only the
information between X and Y, which is possibly reduced by Z, but not the
additional information brought in by giving Z. If for example X and Y are
independent symmetric bits and Z = X @Y, then we have I(X;Y|Z) = 1, but
I(X;Y1Z) = 0.

It follows from the above that

S(X;Y]12) < I(X;Y12) .

The fundamental problem of generally determining S(X;Y||Z) for given Pxyz
has remained open, but there is some evidence that the intrinsic information is
exactly the right quantity linking the secret-key rate with the joint distribution
of X, Y, and Z.

Conjecture. S(X;Y|2)=1(X;Y]lZ) .

However, even the generally easier problem of completely characterizing the
distributions Pxyz for which S(X;Y||Z) > 0 holds, i.e., for which secret-key
agreement is possible in principle, has not been fully answered yet (see Fig-
ure 26).

I(X;Y1Z)=0 S(X;Y ||2)=0

SX;Y |1 2)
>0
Secret-Key
Agreement
Protocol
Exists

|:)XYZ - Space No Secret-Key Agreement Protocol Exists

Fig. 26. Characterizing when Secret-Key Agreement Is Possible

6.2 Secret-Key Agreement Secure Against ACTIVE Adversaries

In all the previous models, we have assumed that the adversary is only a passive
wire-tapper or equivalently, that the public channel connecting Alice and Bob is
authentic. In many cases, secret-key agreement is even possible when dropping
this condition, i.e., when the adversary is able to modify or introduce messages
without being detected. See [17],[23],[35] for a discussion and analysis of this
model.

Note first that a protocol secure against active opponents cannot be guaran-
teed to work in every situation because Eve, who is assumed to have full control



over the public channel, can block the channel permanently, preventing any com-
munication between the legitimate partners. Hence the best that can be achieved
by such a protocol is that Alice and Bob detect an adversary’s active attacks and
reject the outcome of the protocol unless secret-key agreement is successful (see
Figure 27). More precisely, it is required that if Eve chooses to remain passive,

Z
Eve
X Y
Alice Bob
U,
U,
U r
accept, § accept, S5
or or
reject reject

Fig. 27. Unconditional Security Against Active Opponents

then secret-key agreement is successful (as in the passive-adversary model). On
the other hand, if Eve is active, then with overwhelming probability either Alice
and Bob both reject the outcome of the protocol, or secret-key agreement is suc-
cessful despite Eve’s attacks. (Note that it is not requested that both Alice and
Bob accept the outcome in the latter case. Such a perfect synchronization of the
acceptance decisions cannot be achieved in the presence of an active adversary,
who can always block the final message that makes the second party accept.)
Clearly, secret-key agreement can only be possible in the active-adversary
scenario if Alice and Bob have some initial advantage over Eve in terms of the
random variables X, Y, and Z. More precisely, this advantage must be such that
Eve is not able to perfectly simulate Alice towards Bob and vice versa. In terms
of the random variables, this is the condition that she cannot generate, using
her random variable Z, a random variable X with the property that given only
Y, X cannot be distinguished from X, and vice versa. Formally, this means that
there do not exist conditional distributions Py‘ 5 Or PVI 7 such that either

Pxy = Pxy

or Pyy = Pxvy holds, respectively. If one of these distributions existed, secret-
key agreement would be impossible because Bob could not tell Alice and Eve
apart (or vice versa).



A surprising result however is that if secret-key agreement is possible also in
the presence of an active adversary, then asymptotically the same key-generation
rate as in the passive-adversary case can be achieved.

Finally, also privacy amplification can be executed in the case where the
adversary is active. However, the restrictions on the opponent’s knowledge about
the partially secret key must be stronger [23],[35]. The idea is to use the string S
twice, first as a key for unconditionally authenticating a message containing the
description of a randomly chosen hash function, and as the argument for this
function.

7 Concluding Remarks

We have described several techniques and results in the context of unconditional
security in cryptography. The mentioned possibility and impossibility results
can give a rough picture in what settings such provable confidentiality can be
achieved. It is an important point in this context that despite Shannon’s well-
known pessimistic result, unconditional security is not necessarily impractical.
A number of fundamental questions in this field are open today. In particular,
the ultimate goal is the realization of a system that is practical and provably
unconditionally secure simultaneously.
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