Towards a Theory of Consistency Primitives

Extended Abstract

Ueli Maurer*

Department of Computer Science
ETH Zurich
CH-8092 Zurich, Switzerland,

maurer@inf.ethz.ch

Abstract. One of the classical results in the theory of distributed sys-
tems is the theorem by Lamport, Shostak, and Pease stating that among
n parties, any ¢ of which may be cheaters, one of the parties (the sender)
can consistently broadcast a value to the other parties if and only if
t < n/3. This is achieved by use of a protocol among the players, using
bilateral channels.

The purpose of this paper is to look at various generalizations of this
result and to propose a new concept, called consistency specification, a
very general type of consistency guarantee a protocol among n parties
Pi,..., P, can provide. A consistency specification specifies, for every
possible set H C {P1,..., P,} of honest players and for every choice of
their inputs, a certain security guarantee, i.e., a consistency condition
on their outputs. This models that security can degrade smoothly with
an increasing number of cheaters rather than abruptly when a certain
threshold is exceeded, as is the case in the previous literature.

1 Introduction

1.1 Security in Distributed Systems

Distributed systems generally involve a number of entities (for instance called
servers, parties, or players), connected by some communication channels, who
are supposed to perform a certain task, using a well-defined protocol between
the entities. The task can range from (apparently) simple problems like the
synchronization of the entities’ clocks to highly complex tasks like a distributed
on-line auction among the entities. Typically, performing this task is in their
mutual interest, but the entities cannot be assumed to perform the protocol
correctly since some of them might gain an advantage by cheating.

A key problem in the design of protocols for distributed systems, and more
generally for cryptographic applications, is to achieve security against the mali-
cious behavior of some of the involved parties. In other words, there must be a

* Supported in part by the Swiss National Science Foundation.

certain security guarantee for the honest parties, even if the remaining parties
cheat. Security can mean secrecy of certain data (e.g. the parties’ inputs) and/or
correctness of the parties’ outputs.

1.2 The General Setting

Throughout the paper, let P = {Py,..., P,} be the set of n parties, also called
players. Each player can either be honest or malicious. An honest player performs
the prescribed protocol, whereas a malicious player can deviate arbitrarily from
the protocol.! In order to model the coordinated cheating by several players,
one often considers a central adversary who can corrupt some of the players and
take full control of their actions. The non-corrupted players are called honest.
An adversary is hence characterized by the set of corrupted players.

Typical results in the literature on secure distributed protocols provide a
security guarantee as long as the number of cheating parties is bounded by
some threshold ¢, accepting complete failure when this bound is exceeded. This
threshold-type model can be generalized in many ways. In particular, we propose
a more general concept of security where for each set H of honest players (or,
equivalently, for any set of cheating players), the achieved level of security is
specified. Of course, the achieved security level degrades monotonically when
more parties cheat, but it can degrade smoothly rather than abruptly with an
increasing set of cheating parties.

1.3 The Broadcast Problem

A classical problem in distributed systems is for one player P; € P (the sender)
to broadcast a value (from a certain domain, e.g. {0,1}) consistently to the other
players, using only (authenticated) bilateral communication channels, with the
following security requirements:

1. Consistency: All honest players decide on the same value v.
2. Correctness: If P; is honest, then v is the value sent by P;.

A third requirement, often tacitly assumed, is that the protocol must terminate.

The broadcast problem is a prototypical problem in which a protocol among
the players guarantees some form of consistency of their output values. It is used
as a subprotocol in many other secure distributed protocols, in particular also
in secure multi-party computation (see Section 1.4).

A different variant of the broadcast problem is the so-called consensus prob-
lem, where each player has an input and the goal is that the players decide on
the same value which, if the majority of the players entered the same value, must
be equal to this value.

! More generally, there could be several levels of cheating. For example, in secure
multi-party computation one often considers passive cheating which mans that such
a cheater performs the protocol correctly but might pool his information with other
cheaters to violate secrecy.

One of the most classical results in the theory of distributed systems is the
theorem by Lamport, Shostak, and Pease [LSP82], stating that broadcast and
consensus among n parties is possible if and only if strictly fewer than n/3 of
the players cheat (i.e., t < n/3).

One can consider more general consistency guarantees for the output values
of the honest players, not only the special type of guarantee that they be equal.
To explore this space of possible consistency guarantees is the subject of this

paper.

1.4 Secure Multi-Party Computation

The purpose of this paper is to discuss consistency at a very general level, but to
discard secrecy requirements relevant in a more general type of secure coopera-
tion of parties. The reasons for restricting ourselves to consistency in this paper
are that the definitions are simpler and cleaner, that understanding consistency
appears to be an important goal on the way to understanding more general set-
tings, and that consistency primitives are important building blocks in protocols
achieving more general security goals.

But it is worthwhile to briefly discuss the more general setting because it
sheds light on how one can view results on consistency and because many results
in the literature have been derived for this more general setting (and hence also
apply in our consistency setting).

One can view a broadcast protocol as the simulation of a trusted party whose
task it is to accept an input value from the sender and to send this value to each
other player. The simulation works correctly under the condition ¢t < n/3. More
generally, one can simulate a trusted party who performs more complicated tasks,
including the secret storage of information and the computation of functions on
the players’ inputs. Broadcast is a special case, involving no secrecy requirement.

The general paradigm of simulating a trusted party is called secure multi-
party computation. A typical example is a voting protocol which allows a set of
voters to add their votes correctly while nevertheless keeping their votes secret
from the other players, even if some of them cheat. In this case the simulated
trusted party takes as inputs all votes of the players, adds them up, and sends
the result to each player.

Some classical results on secure multi-party computation are as follows. Gold-
reich, Micali, and Wigderson [GMW87] proved that, based on cryptographic
intractability assumptions, secure multi-party computation is possible if and
only if the number ¢ of corrupted players satisfies ¢ < n/2. In the information-
theoretic model, where bilateral secure channels between every pair of players are
assumed and the adversary is assumed to be computationally unrestricted, Ben-
Or, Goldwasser, and Wigderson [BGW&88] (and independently Chaum, Crépeau,
and Damgard [CCD88]) proved that perfect security is possible if and only if
t < n/3.In a model in which a broadcast channel among the players is assumed,
unconditional security (with exponentially small failure probability) is achievable
if and only if ¢ < n/2 [RB89]. We refer to [Mau02] for a discussion of known

results on secure multi-party computation and for a conceptually very simple
protocol.

Let us briefly discuss the relation between the two results for threshold ¢ <
n/3 mentioned above. The result on broadcast [LSP82] is a special case of the
result on secure multi-party computation [BGWS8S], but a broadcast protocol
tolerating up to n/3 cheaters (and hence the Lamport-Shostak-Pease theorem)
is used as a crucial primitive within the secure multi-party computation protocol
of [BGW88]. What is surprising is that the same threshold as for broadcast
applies for a much more general problem.

1.5 Scope and Limitations of this Paper

In this paper we consider only consistency but not secrecy requirements. In
terms of the simulation of a trusted party discussed above, this means that
the simulated trusted party is allowed to be transparent in the sense that an
adversary can learn the entire internal information. (But it is not transparent
for the honest parties.)

The purpose of this extended abstract is to briefly review several types of
recently proposed generalizations of the classical theorem by Lamport, Shostak,
and Pease, and then to propose a new generalization. The goal of this general-
ization is to allow for the security (i.e., consistency) guarantee to degrade slowly
with an increasing number of cheaters rather than abruptly and completely when
a certain threshold is exceeded, as is the case in the previous literature. In other
words, for every possible set of players the adversary might corrupt, there is a
certain security (consistency) guarantee.

This extended abstract introduces the general concept of a consistency spec-
ification, gives a few examples, and discusses the reduction of one consistency
specification to some other consistency specifications by use of a protocol. This
calls for a general theory explaining which reductions are possible and which are
not. However, such a theory is not developed in this paper.

We consider a synchronous setting in which the players are assumed to have
synchronized clocks. Moreover, we consider a setting with zero failure probabil-
ity. Both these points could be generalized to an asynchronous setting and to
tolerating a small failure probability.

2 Generalizations of the Classical Results

As mentioned above, results for broadcast and for secure multi-party computa-
tion among n players are usually derived for a setting with at most ¢ corrupted
players, with no security guarantee if this threshold is exceeded.

This model and result can be generalized in various ways, discussed in this
section, both for the case of general secure multi-party computation as well as
for the case of broadcast and more general consistency protocols.

2.1 From Thresholds to General Adversary Structures

A first generalization was proposed in [HM97] where the adversary’s corruption
capability is modeled by a general so-called adversary structure rather than a
threshold ¢.

Definition 1. Consider a finite set P. We call a subset IT of the power set 27
of P a (monotone) structure for P if IT is closed under taking subsets, i.e.,

SeIll NS CS — S'ell

Ezample 1. The most common example of a structure is the threshold structure
II={S:SCP,|S| <t} for some t.

Informally, a protocol is secure against an adversary structure I7 if it remains
secure as long as the set of players corrupted by the adversary is within IT.

Definition 2. LetU be a (commutative and associative) operation on structures,
defined as follows: IT;U 11 is the structure consisting of all unions of one element
of II1 and one element of Il, i.e.,

I ulls .= {S1 USy: S1 € H1,52 € HQ}.

It was proved in [HM97] that secure multi-party computation in the information-
theoretic setting for a general adversary structure I7 is possible if and only if no
three sets in IT cover the full player set, i.e., if and only if

P¢IOUIUIL
This is a strict generalization of the threshold condition (¢t < n/3).

Ezample 2. For instance, in the case of n = 6 players, with P = {P,, P», P3, Py,
Ps, Ps}, one can obtain a protocol secure against the structure

I = {{Pl}a{PZaP4}a{P25P5ap6}7{P3’P5}’{P37P6}7{P43P57P6}}a

whereas in the threshold model one can tolerate only a single cheater, i.e., the
adversary structure IT' = {{P1}, { P2}, {Ps}, {Ps}, {Bs}, {Fs}}-

The above mentioned result also implies the same generalization for broad-
cast, but the resulting protocol would not be efficient if there is no short descrip-
tion of the structure IT. An efficient secure broadcast protocol for all adversary
structures satisfying P ¢ II U IT U IT was given in [FM98].

2.2 Available Primitives

In most secure distributed protocols in the literature (e.g. for the broadcast re-
sult of [LSP82]) it is assumed that authenticated bilateral channels between any
pair of players are available. More generally, one can assume other primitives as

being available. Such primitives can be stronger than authenticated channels, or
they can be weaker when authenticated channels are not assumed to be avail-
able. A general problem is to understand reductions between such primitives,
i.e., to construct a stronger primitive by application of a protocol involving the
given weaker primitives. A natural interesting question is which reductions are
possible, and if so, by how many invocations of the given primitives.

For example, the Lamport-Shostak-Pease result states that a broadcast chan-
nel among n players can be reduced to authenticated bilateral channels under
the condition that the number of cheaters is less than n/3. As a more general
example, a setting is considered in [FMO00] where a broadcast channel is available
for any three players, allowing a sender to consistently send a value to (any) two
receivers. Under this stronger assumption about the available communication
primitive one can prove that broadcast among n players is possible if and only
if ¢ < n/2, improving on the ¢t < n/3 threshold. One can also consider broad-
cast channels among more than three players as being given, in which case the
threshold can be increased even beyond n/2 (see [CFFT04]).

2.3 Smooth Security Degradation

Typical results in the literature on secure distributed protocols provide a security
guarantee only as long as the set of cheating parties is restricted (by a threshold
or a general adversary structure), accepting complete failure when more players
are corrupted.

However, this approach ignores the possibility that even if the set of cheaters
is outside the adversary structure, there can still be some remaining security
guarantee for the honest players, for instance that most (rather than all) honest
players receive the same value [KS01]. One may even be willing to sacrifice some
security guarantee below a given threshold for the sake of being able to achieve
some level of security above the threshold.

In full generality, one need not even consider a threshold or an adversary
structure. To fully characterize a primitive, one must specify the achieved secu-
rity guarantee for every set of honest players. In other words, one must specify
for every potential set of corrupted players what they can achieve in the worst
case.

In the next section we consider the formalization of such primitives, referring
to them as consistency specifications.

3 Consistency Specifications

3.1 Definition of Consistency Specifications

Let again P = {P,..., P,} be the set of players. For convenience, we sometimes
also use i instead of P;. We investigate protocols in which every player P; has
an input from a finite input domain D; and receives an output from a finite
output domain R;. The special case where some players have no input and/or

no output can be modeled by letting the corresponding input and/or output
domain be a singleton set with a default symbol (e.g. L). For example, for a
broadcast channel only one player (the sender) has an input.

Let Dp := X ?ZIDZ- be the Cartesian product of the input domains, and for
a player set S C P, let

Ds := X csD;

be the Cartesian product of the D; with ¢ € S. For §' C S and x € Dg, let
x5 € Ds be the list restricted to indices in S’. Similarly, for a set L C Ds
of lists, let Ljsr C Ds be the set of lists resulting by restricting each of them
to S’. Analogous notation is used for the output domains R;. We also write x;
instead of x|{p;} to denote the entry in z for player P;.

The following definition captures the most general type of consistency guar-
antee that a protocol or primitive can give, if the failure probability is required
to be zero. It was first proposed by the author and then investigated in [Asc01]
and [KSO1]. Special cases were then investigated in [FGH*02] and [FHHWO03].

Definition 3. A consistency specification C for player set P = {Py,..., P,}, in-
put domains Dy, ..., D,, and output domains R, ..., R, is a function assigning
to every set H C P (the honest players) and every list xg € Dy (their input
values) a set C(H,zy) C Ry (of lists of possible output values), satisfying the
following monotonicity constraint: For any H' and H with H' C H,

C(Ha mH)\H’ - C(HIJmH|H’)'

Let us explain this definition in more detail. For every set H of honest players
(where the remaining players P \ H are assumed to be potentially cheating),
and for every choice of inputs of these honest players, a consistency condition
satisfied by the outputs of these players is specified. Such a condition excludes
certain combinations of output values or, equivalently, specifies the set C(H, xy)
of admissible lists of output values. For any honest set H it is only guaranteed
that the outputs of the players in H form some list in C(H, x), with no further
guarantee as to which of these lists is chosen. The smaller the set C(H,zg), the
stronger is the consistency guarantee of the specification.

The monotonicity condition states that if one considers two settings with
honest set H' and a larger honest set H, respectively, then the consistency
guarantee for the players in H' cannot become worse by having more honest
players. This is justified by the fact that in a (typical) protocol context, one of
the options of a cheating player is to behave as if he were honest.

There are two ways of looking at consistency specifications. On one hand,
one can assume one or several primitives satisfying certain consistency specifica-
tions as being given, defining a specific communication setting. A very common
communication setting is the assumed availability of bilateral communication
channels. On the other hand, one can consider a consistency specification as the
goal of a protocol construction.

3.2 Some Examples
We give a few examples of consistency specifications.

Ezxample 3. The weakest possible consistency specification is when no consis-
tency guarantee is given, i.e., when C(H,xy) = Ry for all H and xy € Dpy.
Obviously, a primitive satisfying only this trivial specification is useless.

Ezample 4. A bilateral authenticated channel from P; to P;, denoted AuTH; j,
is a consistency specification (for the n players under consideration), where only
P; has an input (i.e., Ry = {L} for k& # i) and where the only consistency
constraint on the outputs is that P;’s output is equal to P;’s input, for any set
H containing P; and P;. No guarantee is given for the honest players’ outputs
except for P; (if he is honest). More formally, we have

Avtl; ;(H,zH) = {y € RH| i€H =y, = .'z:H|,-}
for all H C P.

Let AuTH denote the set of consistency specifications consisting of all n(n —
1) bilateral authenticated channels from any player to any other player. Note
that AUTH could also be interpreted as a single consistency specification with a
separate selection input for choosing the particular channel AUTH; ; to be used.

Ezample 5. A weaker primitive than AUTH; ; is a channel for which the ouput
is not guaranteed to be equal to the input. For example, some error could be
added to the input. Another example is a binary channel for which when the
input is 0, then the output is also guaranteed to be 0, but if the input is 1, then
the output can be 0 or 1.

Example 6. A broadcast channel from a sender P; € P to the remaining players
P\ P;, secure for up to t cheaters among them, is denoted as BC'; and can be
formalized as follows:

BC!(H,zpy) = {yeRH‘ T ((Vj €H:y;=0) A (P, eH:>v=mH|,-))}

if |[H| <tand
BC?(H,%H) = RH

if |H| > t.

Ezample 7. Detectable broadcast [FGHT02] among n players is a consistency
specification where, again, only one player P; has an input. If all players are
honest (H = P), then all players receive the sender’s input, but if one or more
players cheat, then all player either output the sender’s input or a special failure
symbol L. It is obvious how this specification can be formalized

Ezample 8. Two-threshold broadcast [FHHWO03] is a consistency specification
with two thresholds, ¢ and T, satisfying 1 < ¢t < T < n. If the number of
cheaters is at most ¢, then broadcast is achieved. In one of the flavors of two-
threshold broadcast, consistency (but not correctness) is guaranteed even if the
number of cheaters is between ¢ + 1 and 7. This means that all honest players
receive the same value v, but even if the sender is honest, v need not be equal
to the sender’s input. It was proved in [FHHWO03] that this is achievable if and
only if t + 2T < n. Note that this is a strict generalization of the ¢t < n/3 bound
(when t =T).

Ezample 9. Consider a setting where a value in the domain [1,...,d] should
be broadcast by a sender P;. A less demanding goal is that all honest players’
outputs lie in a certain (small) interval of length at most m, say, where m can
depend on the number of cheaters. In other words, the fewer cheaters there are,
the more accurate are the received values, capturing the idea of smooth security
degradation. If the sender is honest, then the interval must contain his input
value. It is an open problem to determine for which choices of parameters this
consistency specification can be achieved.

3.3 A Partial Order on Consistency Specifications
It is natural to define the following relation between consistency specifications.

Definition 4. Consider two consistency specifications C and C' for the same
player set P, input domains D, ...,D,, and output domains R1,...,R,. Then
C is stronger than C', denoted C > (', if

C(HawH) - Cl(HawH)
for all H CP.

Note that this is only a partial order relation, i.e., two consistency specifica-
tions are generally incomparable.

4 Protocols and Reductions Among Consistency
Specifications

A fundamental principle in computer science is to construct a complex system
from simpler subsystems with well-defined interfaces and specifications. In our
context, the basic question is if and how one can achieve a certain consistency
primitive by invoking some weaker primitives.

Ezxample 10. A trivial example is that one can use a broadcast primitive for a
certain input (and output) domain D directly as the corresponding primitive for
an input domain D' C D. For this purpose, the players must reject the output
(and take as output a fixed default value in D', e.g. 0) if the actual received
value is outside of D’.

Ezample 11. Conversely, one can use a broadcast primitive multiple times to
enlarge the domain. For example, one can directly use a binary (D; = {0,1})
broadcast primitive k times to obtain the corresponding broadcast primitive for
k-bit strings (D; = {0,1}%).

If a consistency primitive, described by consistency specification C, can be
achieved by some protocol invoking some weaker primitives described by consis-
tency specifications Cy, . ..,Cp, (for some m), one can say that C is reduceable to
Ci,...,Cm, denoted

{Cl,.. ,Cm} —C.

As mentioned before, the main result of [LSP82] can be stated as
Auth - BC"®

for any . Similarly, the main result of [FM00] can be rephrased as
BC(3) » BCL/2

for any ¢, where BC(3) denotes the set of all broadcast channels from one sender
to two other receivers. Note that, trivially, BC(3) — AUTH and hence authen-
ticated channels need not explicitly be mentioned on the left side of the above
formula. Note also that C; > C, trivially implies C; — Cs.

A general protocol for achieving a consistency specification C with input
domains Dy,...,D, and output domains Rq,...,R,, based on some available
consistency specifications Ci,...,Cn, can be described as follows. The proto-
col consists of some £ rounds, where in each round one of the given primitives
Ci,...,Cpm is invoked. Let C) be the primitive invoked in the jth round. In this
round, each player computes the input to C\9) as a function of his current state,
which consists of the input to C as well as all the outputs of the previous calls
to primitives CV), ..., €U~ At the end of the protocol, each player computes
the output (of C) as a function of the final state.

Let us give a more formal description of a protocol 7. Let the sequence of ¢
primitives C(V,...,C® to be called in the protocol be fixed, and let the input
and output domains of C9) be ng), e ,Dslj) and jo), e ,Rslj), respectively.

Definition 5. An /-round protocol 7 for input domains Dy), . ,ng) and out-

put domains jo), - ,jo) consists of a list of functions fi(j) for 1 <j</fand
1 <i < n as well as a list of functions g; for 1 < i < n, where

9 Dy x R x - x RY™D 5)

and
gi: Dj ><R§” X XREZ) — R;.

Note that this definition refers only to the domains, but not to the primitives
called in the protocol. The following definition captures when a certain proto-
col achieves a certain consistency specification when a given list of (domain-
compatible) primitives is invoked.

10

Definition 6. Protocol 7w with a given schedule for calling primitives in the set
{C1,...,Cn} reduces C to {C1,...,Cp}, denoted

{Cla"'7cm} l)ca

if for all H C P, for all xg € Dy, and for all choices of functions fi'(j) and 9,

for replacing fi(j) and gi in 7, for indices ¢ with P; € H, the list of output values
of the players in H, when executing the modified protocol, is in C(H,zg).

The quantification over all functions fz-' @ and g; for ¢ with P; ¢ H is needed
because the cheating players can use arbitrary cheating strategies.

Acknowledgments

I would like to thank Reto Aschwanden, Matthias Fitzi, Martin Hirt, Fabian
Kuhn, Renato Renner, Reto Strobl, and Jiirg Wullschleger for interesting dis-
cussions.

References

[Asc01] R. Aschwanden. Consistency specifications. Diploma Thesis, Dept. of Com-
puter Science, ETH Zurich, May 2001.

[BGWS88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation. In Proc. 20th
ACM Symposium on the Theory of Computing (STOC), pp. 1-10, 1988.

[CCD88] D. Chaum, C. Crépeau, and I. Damgard. Multi-party unconditionally se-
cure protocols (extended abstract). In Proc. 20th ACM Symposium on the
Theory of Computing (STOC), pp. 11-19, 1988.

[CFF*04] J. Considine, M. Fitzi, M. Franklin, L. A. Levin, U. Maurer, and D. Metcalf.
Byzantine agreement in the partial broadcast model. Manuscript, July
2004.

[FGH'02] M. Fitzi, D. Gottesman, M. Hirt, T. Holenstein, and A. Smith. Detectable
Byzantine agreement secure against faulty majorities. In Proc. 21st ACM
Symposium on Principles of Distributed Computing (PODC), July 2002.

[FHHWO03] M. Fitzi, M. Hirt, T. Holenstein, and J. Wullschleger. Two-threshold broad-
cast and detectable multi-party computation. In Advances in Cryptology —
EUROCRYPT ’03, Lecture Notes in Computer Science, Springer-Verlag,
vol. 2656, pp. 51-67, 2003.

[FHM99] M. Fitzi, M. Hirt, and U. Maurer. General adversaries in unconditional
multi-party computation, In Advances in Cryptology — ASIACRYPT °99,
K.Y. Lam et al. (Eds.), Lecture Notes in Computer Science, Springer-
Verlag, vol. 1716, pp. 232-246, 1999.

[FM98] M. Fitzi and U. Maurer. Efficient Byzantine agreement secure against
general adversaries. In Distributed Computing — DISC ’98, Lecture Notes
in Computer Science, Springer-Verlag, vol. 1499, pp. 134-148, 1998.

[FMO00] M. Fitzi and U. Maurer. From partial consistency to global broadcast. In
Proc. 32nd Annual ACM Symposium on Theory of Computing (STOC ’00),
pp. 494-503. ACM Press, 2000.

11

[GMWS87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game

[HM97]

[LSP82]

[KS01]

[Mau02]

[RBSY]

— a completeness theorem for protocols with honest majority. In Proc. 19th
ACM Symposium on the Theory of Computing (STOC), pp. 218-229, 1987.
M. Hirt and U. Maurer. Complete characterization of adversaries toler-
able in secure multi-party computation. Proc. 16th ACM Symposium on
Principles of Distributed Computing (PODC), pp. 256-34, Aug. 1997.

L. Lamport, R. Shostak, and M. Pease. The Byzantine generals prob-
lem. ACM Transactions on Programming Languages and Systems, vol. 4,
pp- 382—401, July 1982.

F. Kuhn and R. Strobl. Towards a general theory for consistency primitives.
Term project report, Dept. of Computer Science, ETH Zurich, Nov. 2000.
U. Maurer. Secure multi-party computation made simple. In Security in
Communication Networks (SCN’02), G. Persiano (Ed.), Lecture Notes in
Computer Science, Springer-Verlag, vol. 2576, pp. 14-28, 2003.

T. Rabin and M. Ben-Or. Verifiable secret-sharing and multiparty protocols
with honest majority. In Proc. 21st ACM Symposium on the Theory of
Computing (STOC), pp. 73-85, 1989.

12

