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Abstract— This is the third part of a three-part paper

on secret-key agreement secure against active adversaries.

Here, we consider the special case where the legitimate

partners already share a mutual string which might, how-

ever, be partially known to the adversary. The problem of

generating a secret key in this case has been well studied

in the passive-adversary model—for instance in the context

of quantum key agreement—under the name of privacy am-
plification. We consider the same problem with respect to

an active adversary and propose two protocols, one based

on universal hashing and one based on extractors, allowing

for privacy amplification secure against an adversary whose

knowledge about the initial partially secret string is limited

to one third of the length of this string. Our results are

based on novel techniques for authentication secure even

against adversaries knowing a substantial amount of the “se-

cret” key.

Keywords. Cryptography, unconditional security, secret-key

agreement, authentication, privacy amplification, quantum

key agreement.

I. Motivation, Definition, and Preliminaries

A. Introduction

A special case of the general key agreement scenario de-
fined in [15] is the situation where the parties Alice and Bob
already share a string X = Y = S, about which, however,
the adversary has possibly substantial information. The
problem of transforming this partially secret string into a
virtually secret key S ′ is called privacy amplification; it is
the final phase of many key-agreement protocols.

Privacy amplification was first described in the context
of quantum key agreement by Bennett et al. [2], where
universal hashing was shown to be a good technique in the
case where the adversary possesses deterministic informa-
tion about S. More precisely, it was shown that the key S ′

must be shorter than S, and that len(S)− len(S ′) must be
equal to the amount of information the adversary has about
S, plus a security parameter. This result was generalized
by Bennett et al. [1] to probabilistic information about S.
The length of S′ can in this case be roughly equal to the
Rényi entropy of S from Eve’s viewpoint.

In this paper we investigate the same problem under
the assumption that the communication between Alice and
Bob is not authenticated. Note that, in contrast to the
model where many independent repetitions of the involved
random variables are given [15], the same piece of informa-
tion S must be used here both for authentication and as the
input for privacy amplification. Two problems that arise in
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this context are authentication with an only partially secret
key, and the fact that this authentication leaks information
about S, hence potentially also about S ′, to the adversary.
We show that for our purpose, a new, interactive, authen-
tication method is better than one-way authentication by
strongly universal hashing, and that so-called extractors,
requiring fewer random bits (i.e., shorter messages to be
communicated) are a better technique for privacy amplifi-
cation than universal hashing.

The outline of this paper is as follows. In Section I-B
we define the notion of a protocol for privacy amplification
by completely insecure communication. This is a modi-
fied version of the protocol definition for the scenario of
independent realizations as given in [15]. In Section I-C
we show some impossibility results. Section I-D analyzes,
as a preparation, the effect of side information on certain
important entropy measures, and connects the entropy of
strings and parts thereof. Then, we present two different
protocols for privacy amplification secure against active ad-
versaries. Protocol UH (Section II) is based on universal
hashing, whereas Protocol EX (Section III) uses extrac-
tors for transforming S to S ′. It is shown in Section V
that each of these protocols can be better than the other
in certain situations. The used techniques for authenti-
cation and identification are introduced in Sections II-A,
II-B, and III-A.

B. Protocol Definition

The protocol definition for privacy amplification secure
against active adversaries can be strengthened in two re-
spects as compared to the definition in the general case [15].
First, we require that Alice and Bob both accept and end
up with the same string with probability 1 if Eve is pas-
sive. Moreover, the protocols can work for an entire class of
distributions PXY Z instead of only one distribution. More
precisely, Eve’s knowledge about the mutual n-bit string S
is limited by assuming that PS|Z=z is, for all z ∈ Z , con-
tained in some subset D of all possible distributions over
the set {0, 1}n. Typically, D consists of the distributions
satisfying a certain condition in terms of1 Rényi entropy or
min-entropy. We denote, for every t and α = 2 or α = ∞,
by Dn,α,t the subset {PX |Hα(X) ≥ t} of distributions over
n-bit strings.

1For a random variable X with range X and distribution PX , the
Rényi entropy H2(X) is defined as H2(X) := − log(

�
x∈X PX(x)2).

The min-entropy H∞(X) is H∞(X) := − log maxx∈X PX(x). All
logarithms here and in the rest of the paper are binary, unless stated
otherwise.
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Definition 1: Assume that Alice and Bob both know
an n-bit random variable S, and that the random vari-
able Z summarizes Eve’s entire knowledge about S. Let
D be a subset of all probability distributions on the set
of n-bit strings, let r be an integer, and let ε, δ > 0.
An (n,D, r, ε, δ)-protocol for privacy amplification by com-

munication over an insecure and unauthenticated chan-

nel (a robust (n,D, r, ε, δ)-PA-protocol for short) is a key-
agreement protocol, as defined in [15], with the following
properties.

1. Correctness and Privacy. Let Eve be a passive wire-
tapper receiving a particular value Z = z satisfying
PS|Z=z ∈ D. Then both Alice and Bob must accept at the
end of the protocol, and there must exist an r-bit string
S′ such that S′ = S′

A = S′
B and H(S′|C, Z = z) ≥ r − ε

hold. In this case, we say that privacy amplification has
been successful.

2. Robustness. Let PS|Z=z ∈ D. For every possible strat-
egy of Eve, the probability that either both Alice and Bob
reject the outcome of the protocol, or privacy amplification
has been successful, must be at least 1 − δ.

C. Impossibility Results

Clearly, the impossibility results of [15] immediately
carry over to privacy amplification secure against active op-
ponents (where the non-simulatability condition is fulfilled
in all non-trivial cases). There exists neither a protocol
with perfect synchronization of the accepting states (i.e.,
both accept or both reject in every case), nor a one-way-
transmission protocol satisfying the required properties.

Theorem 1: Let α = 2 or α = ∞. Assume that
a robust (n,Dn,α,t, r, ε, δ)-PA-protocol either with perfect
synchronization or using only one-way transmission exists.
Then either ε ≥ r − 1, or ε > n − t + log(1 − 2ε−r+1), or
δ = 1 holds.
Proof. Assume ε < r − 1 and ε ≤ n − t + log(1 − 2ε−r+1).
We show that there exists, for every fixed function f :
{0, 1}n → {0, 1}r (on which Alice and Bob could agree
without any communication) a distribution PS|Z=z ∈ D
such that

H(f(S)|Z = z) < r − ε .

Let A ⊆ {0, 1}r be the particular set of size

2r − b2r−εc + 1

which minimizes the cardinality of the set

f−1(A) := {s ∈ {0, 1}n : f(s) ∈ A} .

Then

|f−1(A)| ≤ 2n−r(2r(1 − 2−ε) + 2)

= 2n(1 − 2−ε + 2−r+1) .

For B := {0, 1}n \ f−1(A) we have hence

|B| ≥ 2n−ε(1 − 2ε−r+1) .

Let PS|Z=z be the uniform distribution on B ⊆ {0, 1}n.
Then we have

Hα(S|Z = z) = log |B|
≥ n − ε + log(1 − 2ε−r+1)

≥ t

and
H(f(S)|Z = z) ≤ log(2r − |A|) < r − ε

by construction and by the assumption. This contradicts
the protocol definition, hence at least one message must be
sent in the protocol. The rest of the argument is as in the
proofs of Theorems 8 and 9 in [15]. 2

D. The Effect of Side Information and Knowledge About

Partial Strings

In this section we provide some facts necessary for the
analysis of Protocols UH and EX for privacy amplifica-
tion described below. We derive bounds on the amount of
knowledge (e.g., of an adversary) in terms of Rényi entropy
and min-entropy about a partial string, depending on the
amount of knowledge about the entire string. This is done
both for the cases where the adversary does (Corollary 2)
or does not (Lemma 1) obtain information about the re-
maining part of the string. In both cases, the result is
roughly the intuitive fact that (with high probability) one
cannot know (substantially) more about a part than about
the whole (see Figure 1). In the case where the adver-
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Fig. 1. Information About Partial Strings

sary obtains information about the remaining part of the
string, the result follows from a general upper bound on the
reduction of Rényi entropy and min-entropy of a random
variable when side information is given (Lemma 2).

Lemma 1: Let S = (S1, S2, . . . , Sn) be a random variable
consisting of n binary random variables. For any k-tuple
i = (i1, i2 . . . , ik) with 1 ≤ i1 < i2 < · · · < ik ≤ n, let Si be
the string (Si1 , Si2 , . . . , Sik

). Then

Hα(Si) ≥ Hα(S) − (n − k)

holds for α = 2 and α = ∞.
Proof. Let first α = 2. Consider a fixed string (si1 , . . . , sik

).
This particular value of the random variable Si corresponds
to exactly 2n−k values (s1, . . . , sn) of the random variable
S. Let p1, . . . , p2n−k be the probabilities of these strings,

and let p0 :=
∑2n−k

i=1 pi. Now we have

log





2n−k
∑

i=1

(

pi

p0

)2


 = log

(

E

[

pi

p0

])
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≥ E

[

log

(

pi

p0

)]

= −E

[

log

(

p0

pi

)]

≥ − log

(

E

[

p0

pi

])

= − log





2n−k
∑

i=1

pi

p0
· p0

pi





= − log(2n−k)

= k − n .

Here, the expectation is with respect to the probability dis-
tribution pi/p0 over the 2n−k strings. We have made dou-
ble use of the fact that the logarithm is a concave function,
and of Jensen’s inequality. We conclude that

2n−k
∑

i=1

p2
i ≥ p2

0

2n−k
. (1)

Because inequality (1) holds for every particular string
(si1 , . . . , sik

), we have for the collision probabilities2 PC

of the random variables S and Si:

PC(Si) =
∑

{0,1}k

PSi((si1 , . . . , sik
))2

≤ 2n−k ·
∑

{0,1}n

PS((s1, . . . , sn))2

= 2n−k · PC(S) .

Hence
H2(Si) ≥ H2(S) − (n − k) .

For the case α = ∞, the inequality follows directly from
the fact that the maximal probability of a k-bit string is at
most 2n−k times the maximal probability of a string in S.

2

Remark. Note that when the string S is split into two parts
Sl and Sr, then the bounds of Lemma 1 applied to Sl and
Sr are tight simultaneously. For example let α = ∞ and
s = (sl, sr) be a particular n-bit string (where n is even),
and let sl and sr be the first and second halves of s. Define
(for some v ≤ n/2 − 1) PS((sl, s)) = PS((s, sr)) := 2v−n

for all n/2-bit strings s (and a uniform distribution for the
remaining n-bit strings), i.e., H∞(S) = n − v. Then

H∞(Sl) = H∞(Sr) = n/2− v = H∞(S) − n/2 .

Intuitively speaking, Eve’s information about S in terms
of min-entropy appears entirely in both substrings Sl and
Sr, a fact that might contradict one’s intuition.

2For a random variable X with range X , the collision probability
PC(X) is the probability of getting the same outcome twice in two
independent realizations, i.e., PC(X) =

�
x∈X PX(x)2. The Rényi

entropy of X is then H2(X) = − log(PC(X)).

Lemma 2 gives an upper bound on the reduction of the
Rényi entropy and min-entropy H2(P ) and H∞(P ) of a
random variable P when side information [Q, R] (consisting
of a pair of random variables) is given, where I(P ; R) = 0.
It states that this reduction exceeds log |Q| (where Q is
the range of Q) substantially only with small probability
in both cases. (Note that it is not a trivial fact that no
additional reduction is induced by R if I(P ; R) = 0. For
instance, I(P ; Q) = 0 and I(P ; R) = 0 together do not

imply that H2(P |Q = q, R = r) = H2(P ), as the example
P = Q ⊕ R shows.)

Lemma 2: Let P , Q, and R be random variables with
I(P ; R) = 0. Then

PQR[H2(P |Q = q,R = r) ≥ H2(P ) − log |Q| − s]

≥ 1 − 2−(s/2−1)

for all s > 2, and

PQR [H∞(P |Q = q,R = r) ≥ H∞(P ) − log |Q| − s]

≥ 1 − 2−s

for s > 0.
Proof. We first prove the statement concerning Rényi en-
tropy. The argument is a generalization of the proof of
Theorem 4.17 in [3]. Let r ∈ R be fixed. It is straight-
forward that

2−H2(PQ|R=r) = EQ

[

2log PQ|R=r−H2(P |Q=q,R=r)
]

.

Hence the probability that log PQ|R=r − H2(P |Q = q, R =
r) exceeds −H2(PQ|R = r) by more than s/2 is at most
2−s/2, i.e., PQ[H2(P |Q = q, R = r) ≤ H2(PQ |R = r)
+ logPQ|R=r − s/2] ≤ 2−s/2. Furthermore,

PQ

[

log PQ|R=r ≤ − log |Q| − s/2
]

≤ 2−s/2 .

These inequalities together imply PQ[H2(P |Q = q, R =
r) ≤ H2(PQ |R = r) − log |Q| − s] ≤ 2−(s/2−1). Finally,
H2(PQ|R = r) ≥ H2(P |R = r) = H2(P ) holds because of

∑

p∈P, q∈Q
PPQ|R=r(p, q)2

=
∑

p∈P



PP |R=r(p)2 ·
∑

q∈Q
PQ|P,R=r(q, p)2





≤
∑

p∈P
PP |R=r(p)2

=
∑

p∈P
PP (p)2 .

We have used for the last equality that P and R are statis-
tically independent, i.e., that PP |R=r = PP . We conclude
that

PQ[H2(P |Q = q,R = r) ≤ H2(P ) − log |Q| − s]

≤ 2−(s/2−1)

holds for all r ∈ R, and the first statement of the lemma
follows.
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Let us address the second statement. Let p0 := 2−s/|Q|.
Then we have for all r ∈ R

PQ|R=r [{q : PQ|R=r < p0}] < 2−s ,

and hence

PQR

���
(q, r) ∈ Q×R : PQ|R(q, r) < p0 ��� < 2−s .

This inequality implies that

PP |QR(p, q, r) =
PPQR(p, q, r)

PQR(q, r)

=
PP (p) · PR(r) · PQ|PR(q, p, r)

PR(r) · PQ|R(q, r)

≤
PP (p)

PQ|R(q, r)

≤
PP (p)

p0

= PP (p) · |Q| · 2s

holds with probability greater than 1 − 2−s (taken over
Q and R). The statement follows by maximizing over all
p ∈ P , and by taking negative logarithms. 2

The following corollary is a direct consequence of
Lemma 2. It states that a formally slightly weaker result
than that of Lemma 1, concerning the knowledge (in terms
of H2 and of H∞) of a partial string, even holds when the
rest of the string is made public.

Corollary 2: Let S be an n-bit string, and let a partition
of S into two strings S′ and S′′ of lengths l and n − l,
respectively, be given. Let s > 2 be a security parameter.
Then the probability, taken over s′′, that

H2(S
′ |S′′ = s′′) ≥ H2(S) − (n − l) − s

holds is at least 1− 2−(s/2−1). Furthermore, for s > 0, the
probability, taken over s′′, that

H∞(S′ |S′′ = s′′) ≥ H∞(S) − (n − l) − s

holds is at least 1− 2−s.

II. Protocol UH Based on Universal Hashing

A. Message Authentication with a Partially Secret Key I:

Strongly Universal Hashing

All previous results on unconditionally secure authenti-
cation require a key that is completely secret, i.e., its prob-
ability distribution is uniform from the opponent’s view-
point. In this section we prove a result on authentication
where the opponent is allowed to have some partial infor-
mation about the key. These techniques are used in the
protocols described in the following sections.

There exists a variety of possibility and impossibility
results on information-theoretically secure authentication
(see for example [20], [11], or [21]). The following two
types of attacks are possible. In an impersonation attack,
the opponent tries to generate a (correctly authenticated)

message, and in a substitution attack, the adversary ob-
serves a correctly authenticated message and tries to re-
place it by a different correctly authenticated message. The
success probabilities are denoted by pimp and psub, respec-
tively. (General lower bounds on these probabilities are
given in [11].)

One possibility for realizing information-theoretically se-
cure authentication is by using strongly universal classes of
hash functions (see for example [21]).

Definition 2: A class H of (hash) functions A → B is
called strongly universal (or SU2 for short) if for all distinct
a1, a2 ∈ A and for all b1, b2 ∈ B, the number of functions
h ∈ H for which both h(a1) = b1 and h(a2) = b2 hold is
|H|/|B|2.
Remark. Note that a strongly universal class has in par-
ticular the following property. For every a ∈ A and b ∈ B,
the number of functions h ∈ H such that h(a) = b holds is
|H|/|B|. This is true because for all a, a′ ∈ A, a′ 6= a, and
b ∈ B, we have

|{h ∈ H : h(a) = b}|

=

∣

∣

∣

∣

∣

⋃

b′∈B
{h ∈ H : h(a) = b , h(a′) = b′}

∣

∣

∣

∣

∣

=
∑

b′∈B
|{h ∈ H : h(a) = b , h(a′) = b′}|

= |B| · |H|
|B|2 =

|H|
|B| .

By roughly the same argument one can also show that a
strongly universal class is in particular universal (see Def-
inition 3); a fact that is suggested by the names of the
properties.

A strongly universal class of hash functions can immedi-
ately be used for authentication: the secret key determines
a hash function of the class, and the message is authen-
ticated by its hash value. The authentication code corre-
sponding to an SU2 class of hash function satisfies

pimp = 1/|B|

(because of the property mentioned in the above remark)
and

psub = 1/|B|
(which follows directly from the definition). An SU2 class
of functions mapping N -bit strings to N -bit strings can
be constructed similarly to the universal class described
in [15]. Namely, the class

H = {hab : (a, b) ∈ (GF (2N ))2} , (2)

where
hab(x) := a · x + b ,

is an SU2 class of hash functions {0, 1}N → {0, 1}N with
22N elements, i.e., with a key S = a||b of length 2N .

Let us now investigate the scenario in which the key is
not entirely secret, i.e., where the opponent Eve has a cer-
tain amount of information about this key. The following
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result states that information-theoretically secure authen-
tication is possible under the condition that the Rényi en-
tropy of the key from the adversary’s viewpoint is greater
than half the length of the key.

Theorem 3: Let S be a binary string of (even) length n.
Assume that S is used by two parties as the key in the
authentication scheme based on strongly universal hashing
with respect to the class (2), that an adversary knows a
random variable Z, jointly distributed with S according to
some probability distribution, and that the opponent has
no further information about S. Let

H2(S|Z = z) ≥ (1/2 + R) · N

for a particular z in the range Z of Z. Then the probabil-
ities of successful impersonation and substitution attacks,
given Z = z, are upper bounded by

pimp ≤ 2−RN/2

and
psub ≤ 3 · 2−RN/4 , (3)

respectively.
Remark. Note that in Theorem 3 it need not be assumed
that the message observed by Eve be independent of S (but
independent of S given Z = z). For example, inequality
(3) holds even when the message is selected by Eve herself.
Proof. First we prove the upper bound on the success prob-
ability pimp of the impersonation attack. For every possi-
ble message m ∈ GF (2N/2) and for every authenticator
y ∈ GF (2N/2) there exist exactly 2N/2 possible keys such
that y is the correct authenticator for m. The probabil-
ity of such a set of keys, given that Z = z, can be upper
bounded as follows. In the worst case (i.e., the best case
for the impersonating attacker) the 2N/2 keys all have the
same probability, say p. Then p must satisfy

2N/2 · p2 ≤ PC(S) ≤ 2−(1/2+R)N ,

i.e.,
p ≤ 2−(1/2+R/2)N .

Hence

pimp ≤ 2N/2 · 2−(1/2+R/2)N = 2−RN/2 .

Let us now consider the substitution attack. The cru-
cial argument is that the key s is uniquely determined by
(m, hs(m)) and (m′, hs(m

′)) if m 6= m′. Hence the prob-
ability of a successful substitution attack is not greater
than the probability of guessing S correctly when given
(M, hS(M)). From Lemma 2, and because I(S; M |Z =
z) = 0, we can conclude that

H2(S |M = m, hS(M) = hs(m), Z = z)

≥ RN/2 (4)

holds with probability at least 1−2−(RN/4−1). On the other
hand, if inequality (4) holds, then the maximal probability
of a particular key s is at most

√

2−H2(S |M=m,hS(M)=hs(m),Z=z) ≤ 2−RN/4 .

Thus we have, by the union bound,

psub ≤ 2−(RN/4−1) + 2−RN/4 = 3 · 2−RN/4 .

2

Remark. It has been proposed to use smaller but “weaker”
classes of functions, so-called ε-almost strongly universal
(ε-ASU) hash functions, instead of strongly universal hash-
ing for authentication [21]. Such classes allow for authen-
tication with a substantially smaller secret key at the price
of a somewhat greater success probability of a substitution
attack. However, for the purpose of authentication with a
partially secret key, these classes of functions do not lead
to better results. Whenever the Rényi entropy of the par-
tially secret key is smaller than half the length of the key,
then no unconditionally secure authentication is possible
with this key by using (ε-A)SU hashing because one cor-
rect message-authenticator pair can reveal the remaining
information necessary to uniquely determine the key.

B. Challenge-Response Identification with a Highly Inse-

cure Key

In the previous section we have shown that message au-
thentication is possible with a partially secret key, or more
precisely, with a key the Rényi entropy of which (from the
adversary’s viewpoint) is more than half its length. In this
section on the other hand we prove that a certain type of
security against active attacks can even be achieved when
the key shared by the legitimate partners is highly inse-
cure (e.g., in terms of Rényi entropy). A challenge-response
scheme is described that can successfully be attacked only
by an adversary having almost complete knowledge about
the secret key. This method is used as the final step in both
the Protocols UH (Section II-D) and EX (Section III-C).
The purpose of this step is to prevent the party sending the
final message that is needed for successful secret-key agree-
ment from accepting although key agreement has failed. In
Section III-A, a related result is proved that shows how the
same scheme can be used for authenticating short messages.

Lemma 3: Let N and ` be integers such that ` divides
N and 2` ≥ N/` holds, and let K be a random variable
with range K ⊆ GF (2N). Let further for any d ∈ GF (2`)
the function fd : {0, 1}N → {0, 1}` be defined as

fd(x) :=

N/`−1
∑

i=0

dixi ,

where (x0, . . . , xN/`−1) ∈ (GF (2`))N/` is a representation

of x ∈ GF (2N ) with respect to a fixed basis of GF (2N )
over GF (2`), where the computations are carried out in
the field GF (2`), and where the elements of GF (2`) are
represented as `-bit strings with respect to a fixed basis of
GF (2`) over GF (2). Assume that for d ∈R GF (2`), the
value fd(K) can be guessed correctly (with some strategy)
with probability α ≥ (N/`)/2`, taken over the distribution
of K, the choice of d, and the coin tosses of the guessing
strategy. Then

H2(K) ≤ −2N

`
· log

(

α − N/`

2`

)

(5)
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or, equivalently,

α ≤ 2−(`/2N)·H2(K) +
N/`

2`
.

Proof. First, we can assume without loss of generality that
the strategy of guessing fd(k) is deterministic, since for
every possible strategy there exists a deterministic strategy
that is at least as good (since every randomized strategy
can be seen as a combination of deterministic strategies, of
which the optimal one can be chosen).

We give a lower bound on the probability β that for
randomly and independently chosen distinct arguments
d1, . . . , dN/` of GF (2`), all the values fdi(k) are guessed
correctly. Let g(x) be the function

g(x) := x · � x −
1

2` � · � x −
2

2` � · · · � x −
N/` − 1

2` �
if x ≥ (N/` − 1)/2` and g(x) := 0 otherwise. Let, for
every k ∈ K, nk denote the number of distinct d ∈ GF (2`)
for which fd(k) is guessed correctly by the (deterministic)
guessing strategy. Then we have

β = EK

[

g
(nk

2`

)]

≥ g
(

EK

[nk

2`

])

≥
(

α − N/`

2`

)N/`

.

(Here, we have made use of Jensen’s inequality. Note
that g is a convex function.) Hence there exist N/`
distinct d1, . . . , dN/` such that the values fdi(k) are si-
multaneously guessed correctly with probability at least
(α − (N/`)/2`)N/`, taken over k.

On the other hand, k is uniquely determined by the cor-
rect values fdi(k), k = 1, . . . , N/`. In order to see this,
note first that ����� fd1

(k)
fd2

(k)
..
.

fdN/`
(k)

������ =������� d0
1 d1

1 · · · d
N/`−1
1

d0
2 d1

2 · · · d
N/`−1
2

..

.
..
.

..

.

d0
N/`

d1
N/`

· · · d
N/`−1
N/`

�������� ·

����� k0

k1

...
kN/`−1

������ ,

and second, that the determinant of the matrix, called Van-

dermonde determinant, is equal to
∏

1≤i<j≤N/`

(dj − di) 6= 0 ,

hence the matrix is invertible, and k = (k0, k1, . . . , kN/`−1)
is uniquely determined by the fdi(k)’s. An alternative way
to see this fact is by interpreting fd(x) as a polynomial
Px(d) of degree at most N/` − 1 over GF (2`), which is
uniquely determined, thus also x is, by its evaluation at
N/` distinct points d1, . . . , dN/`. Hence there must be an
element k0 ∈ K with

PK(k0) ≥
(

α − N/`

2`

)N/`

.

Because of PC(K) ≥ PK(k0)
2, we can conclude that (5)

holds. 2

C. Privacy Amplification by Universal Hashing

Assume that Alice and Bob share an N -bit string w
about which an eavesdropper Eve has incomplete informa-
tion characterized by a probability distribution PW over
the N -bit strings, and that Alice and Bob have some knowl-
edge of this distribution PW , but that they do not know
exactly in which way the secrecy of their string is com-
promised. Using the public-discussion channel they wish
to agree on a function g : {0, 1}N → {0, 1}M (for some
suitable M) such that Eve, despite her partial knowledge
about w and complete knowledge of g, almost certainly
knows nearly nothing about g(w). This process transforms
a partially secret N -bit string w into a highly secret but
shorter M -bit string g(w).

The two natural questions in this context are what a
good technique is for computing the compressed from the
initial string, and how long the virtually secret string can
be, depending on this technique and on PW . Bennett, Bras-
sard, and Robert [2] considered the case where Eve receives
deterministic information, i.e., where the key is, from Eve’s
viewpoint, uniformly distributed over a subset of the set of
all possible keys. They used universal hashing as the tech-
nique for compressing the string.

Definition 3: [5] A class G of functions g : A −→ B is
universal2 (“universal” for short) if, for any distinct x1 and
x2 in A, the probability that g(x1) = g(x2) holds is at most
1/|B| when g is chosen at random from G according to the
uniform distribution.
The following is an example of a universal class of functions
from {0, 1}N to {0, 1}M , for M ≤ N , with 2N elements [1].

Example 1: Let a be an element of GF (2N ), and inter-
pret x ∈ {0, 1}N as an element of GF (2N ) with respect to a
fixed basis of the extension field over the prime field GF (2).
Consider the function ha : {0, 1}N → {0, 1}M assigning to
an argument x the first M bits (with respect to this basis
representation) of the element ax of GF (2N ), i.e.,

ha(x) := LSBM (a · x) .

The class
{ha | a ∈ GF (2N )}

is a universal class of functions for 1 ≤ M ≤ N .
The results of [2] were generalized by Bennett, Brassard,

Crépeau, and Maurer [1] to scenarios in which Eve’s infor-
mation about w is not deterministic, but where the prob-
ability distribution PW satisfies a constraint in terms of
Rényi entropy. The main result of [1] is the following the-
orem (see also Figure 2).

Theorem 4: [1] Let PW be a probability distribution
over W with Rényi entropy H2(W ), and let G be the ran-
dom variable corresponding to the random choice, with re-
spect to the uniform distribution, of an element of a uni-
versal class of functions mapping W to {0, 1}M . Then

H(G(W )|G) ≥ H2(G(W )|G)
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Universal Hashing

S’ = G(S)

Fig. 2. Universal Hashing Allows to Extract Rényi Entropy

≥ M − 2M−H2(W )

ln 2
.

Theorem 4 states that if Alice and Bob share a particular
string S and Eve’s information about S corresponds to the
distribution PS|Z=z (where z denotes the particular value
of her information Z) about which Alice and Bob know
nothing except a lower bound R on the Rényi entropy, i.e.,
H2(S|Z = z) ≥ R, then Alice and Bob can generate a se-
cret key S′ of roughly R bits. More precisely, if Alice and
Bob compress S slightly more to an (R − s)-bit key for
some security parameter s > 0, then Eve’s total informa-
tion about this key is exponentially small in s.

A natural problem that arises when combining informa-
tion reconciliation and privacy amplification with universal
hashing is to determine the effect of the error-correction in-
formation (leaked also to the adversary) on the Rényi en-
tropy of the partially secret string, given Eve’s information.
The following result, which was shown by Cachin [3] as an
improvement of an earlier result by Cachin and Maurer [4],
states that leaking t physical bits of arbitrary side infor-
mation about a random variable cannot reduce its Rényi
entropy by substantially more than t except with expo-
nentially small probability. Note that the statement of
Lemma 4 is a special case (namely, if |R| = 1) of the first
statement of Lemma 2.

Lemma 4: [3] Let X and Q be random variables, and let
s > 0. Then with probability at least 1 − 2−(s/2−1) (taken
over q ∈ Q), we have

H2(X) − H2(X |Q = q) ≤ log |Q| + s .

D. Protocol UH

We are now ready to give a first protocol for privacy
amplification secure against active adversaries. The ingre-
dients of this protocol are universal hashing (for privacy
amplification), strongly universal hashing (for the authen-
tication of the message, i.e., the random bits determining
the hash function), and the challenge-response scheme of
Section II-B.

For parameters n and `, where 3 divides n and ` divides
2n/3, Protocol UH is defined as follows. (Here, as well as
in Protocol EX, the reject states are the default states,
and are valid initially and until “accept” appears in the
protocol specification.)

Protocol UH (Universal Hashing)

Alice Bob

S = SI ||SII ||SIII S = SI ||SII ||SIII

SI ||SII = SI ||SII =
S0||S1|| · · · ||S2n/3`−1 S0||S1|| · · · ||S2n/3`−1

h ∈R GF (2n/3)
S′

A := LSBr(h · SIII)
a := h · SI + SII

u ∈R GF (2`)

-

(h, a, u)

accept if
a = h · SI + SII

stop otherwise
S′

B := LSBr(h · SIII)
v := fu(SI ||SII)

�
v

accept if
v = fu(SI ||SII)

Here, SI , SII , and SIII are (n/3)-bit strings, whereas
S0, . . . , SN/`−1 are `-bit strings. Recall that h ∈R

GF (2n/3) means that h is chosen randomly from GF (2n/3)
according to the uniform distribution. All the computa-
tions are carried out in the fields GF (2n/3) and GF (2`),
respectively.

Theorem 5 states that Protocol UH allows for privacy
amplification secure against active adversaries whenever
the Rényi entropy, from Eve’s point of view, of S is greater
than two thirds of the length of S. Moreover, the length
of the resulting secret key S ′ can be roughly equal to the
excess, i.e., to

H2(S) − (2/3) · len(S)

(see Figure 3).
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(2/3) len (S)

s

H  (S | Z=z)
2

Protocol UH

Eve’s 
Information

2
−Ω(  )s

���������������
���������������

������������������������

S

S’

Fig. 3. Analysis of Protocol UH

Theorem 5: Let n, t, `, and s be positive integers such
that 3 divides n, ` divides 2n/3, and n > tn > 2n/3 + s
holds. Then Protocol UH is a robust

(n , Dn,2,tn , (t − 2/3)n− s , ε , δ) -PA-protocol

for

ε = r · 2−(s/3−1) + 2−s/3/ ln 2 ,

δ = 2−(t−2/3)n/2 + 3 · 2−(t−2/3)n/4

+3 · 2−(3`/4n)(1−3`/2n)(t−2/3)n +
2n

3`2`
.

Proof. Let z ∈ Z be the particular value known to Eve.
We first assume that Eve is a passive wire-tapper. Let
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(h, a) = (h, h · SI + SII) be the message sent from Alice to
Bob, and let E be the event that

H2(SIII |SI = sI , SII = sII , Z = z)

≥ (t − 2/3)n− 2s/3 (6)

holds. According to Lemma 2, the event E has probability
at least 1 − 2−(s/3−1). Let r := (t − 2/3)n − s, and let
S′ := LSBr(h · SIII). Because of (6), Theorem 4 implies
that

H(S′ |HA, E , Z = z)

≥ H(S′ |HASISII , E , Z = z)

= H(S′ |HSISII , E , Z = z)

≥ r − 2−s/3

ln 2
.

We have used that I(SIII ; HA|SISII , Z = z) = 0 holds.
We conclude that

H(S′|HA, Z = z)

≥ P[E ] ·
(

r − 2−s/3

ln 2

)

≥ r − r · 2−(s/3−1) − 2−s/3

ln 2
=: r − ε .

Let us now consider the case where Eve is an active at-
tacker. First, Lemma 1 implies that

H2(SISII |Z = z) ≥ (t − 1/3)n = n/3 + (t − 2/3)n .

Therefore, by Lemma 3, the probability of a successful ac-
tive attack of the message authentication with strongly uni-
versal hashing is upper bounded by

2−(t−2/3)n/2 + 3 · 2−(t−2/3)n/4 .

On the other hand, we have to give an upper bound on
the probability that Eve correctly guesses v = fu(sI ||sII).
As above, we conclude first that

H2((SISII) |H = h, A = a, Z = z)

≥ (1 − 3`/2n)(t− 2/3)n (7)

holds with probability at least 2−(3`/4n)(t−2/3)n+1. If (7)
holds, then by Lemma 3, the probability of correctly guess-
ing v is at most

2−(3`/4n)(t−2/3)n(1−3`/2n) + 2n/(3`2`) .

Hence, by the union bound, the success probability of an
active attack is upper bounded by

2−(t−2/3)n/2 + 3 · 2−(t−2/3)n/4

+3 · 2−(3`/4n)(1−3`/2n)(t−2/3)n +
2n

3`2`
.

2

Corollary 6 is an asymptotic version of Theorem 5 and
follows directly from the latter.

Corollary 6: Let 2/3 < t < 1 and ∆ > 0 be con-
stants. Then Protocol UH is, for sufficiently large n
and for an appropriate choice of the parameters, a robust
(n , Dn,2,tn , (t−2/3−∆)n , 2−Ω(n) , 2−Ω(n))-PA-protocol.

Note that the divisibility conditions required in Theo-
rem 5 can be satisfied by appending a certain number of 0s
at the end of the string. Then Theorem 5 can be applied
for an appropriate choice of the parameters s and `, both
of order Θ(n), where s ≤ ∆ · n holds.

III. Protocol EX Based on Extractors

One limitation of Protocol UH is due to the fact that
the message to be transmitted and authenticated, i.e., the
description of the function from the universal class, is as
long as the string that finally forms the input to the hash-
ing. As described in Section III-B, there exist, however,
methods for privacy amplification or, more generally, for
“distribution uniformizing,” that are more efficient than
universal hashing with respect to the required amount of
random (message) bits, namely so-called extractors.

A. Message Authentication with a Partially Secret Key II:

Short Messages and the Power of Feedback

The use of extractors for privacy amplification will al-
low for reducing the size of the message to be transmit-
ted (and hence authenticated) to a small constant fraction
of the length of the authentication key. In this case, a
challenge-response authentication method, similar to the
method described in Section II-B, can be used: The mes-
sage is not authenticated by the sender, but reconfirmed
by the receiver. Intuitively, the use of such an authentica-
tion method puts the adversary, who must answer a given
challenge instead of authenticate an incorrect message m′

of his own choice, into a much less comfortable position.
Lemma 5 states that the interactive authentication

method is secure against an active attacker whose Rényi
entropy exceeds half the length of the authentication key.
Note that the new authentication method has an important
advantage as compared to strongly universal hashing in the
context of authentication with a partially secret key. When
using the latter method, a correct message-authenticator
pair reveals, roughly speaking, half the information about
the key (namely a linear equation, two of which are suffi-
cient to determine the key). Hence the key is “used up” af-
ter one application. With the interactive method, however,
only an arbitrarily small constant fraction of information
about the key is gained by an opponent observing a mes-
sage (i.e., a challenge) together with its authenticator (i.e.,
the response). This implies that the same key can be used
for secure authentication with a partially secret key many
times.

Lemma 5: Let N and ` be integers such that 2` divides
N and 2` ≥ N/` holds, and let K be a random variable with
range K ⊆ GF (2N ). Let further for any d ∈ GF (2`) the
function fd : {0, 1}N → {0, 1}` be defined as in Lemma 3.
Assume that there exists a (possibly probabilistic) function
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s, mapping GF (2`) to GF (2`),

s : d 7→ s(d) =: d′ ,

such that d′ 6= d holds for all d, and such that given fd′(K),
the value fd(K) can, for d ∈R GF (2`), be guessed correctly
(with some strategy) with probability α, taken over the
distribution of K, the choice of d, and the coin tosses of
the guessing strategy. Then

H2(K) ≤ N

2
− 2N

`
· log

(

α − N/`

2`

)

or, equivalently,

α ≤ 2−(`/2N)·(H2(K)−N/2) +
N/`

2`

holds.
Proof. Note first that, by the same arguments as used in the
proof of Lemma 3, we can assume without loss of generality
that the function d′(d) and the strategy of guessing fd(k)
from fd′(k) are deterministic, and conclude that there exist
distinct elements d1, . . . , dN/` of GF (2`) such that fdi(k)
is guessed correctly from fd′

i
(k), where d′

i := d′(di), for all
i = 1, . . . , N/` simultaneously with probability at least

(

α − N/`

2`

)N/`

.

Let E (⊆ K) be this event. We prove that |E| ≤
√

|K|.
By canceling N/2` of the pairs (di, d

′
i) and renumber-

ing the remaining pairs, we can obtain N/2` pairs (di, d
′
i)

with the property that di 6∈ {d′1, . . . , d′i−1} holds for all
i = 1, . . . , N/2`. (In the worst case, all the pairs (di, d

′
i)

occur twice in different orderings. Then, every second pair
(di, d

′
i) must be canceled.)

The event E has the property that

fd′
1
(k) = fd′

1
(k∗) =⇒ fd1(k) = fd1(k

∗)

for all k, k∗ ∈ E . Otherwise fd1(k) could not be guessed
correctly from fd′

1
(k) for all k ∈ E . Hence E must be con-

tained in a set E1 of the form

E1 = �
a∈GF (2`)

�
k : fd1

(k) = b(a) and fd′
1
(k) = a �

for some function b(a). Analogously, E must also be con-
tained in sets Ei, i = 2, . . . , N/2`, of the same form (with
d1 and d′1 replaced by di and d′i, respectively), hence

E ⊆
N/2`
⋂

i=1

Ei . (8)

We show that the cardinality of the set on the right-hand
side of (8) is

√

|K|. First, observe that every set of at
most N/` (≤ 2`) functions fdi is, for pairwise distinct
di ∈ GF (2`), linearly independent over GF (2`) (the Van-
dermonde determinant is non-zero in this case, as shown in
the proof of Lemma 3). We define

rl :=

∣

∣

∣

∣

∣

l
⋂

i=1

Ei

∣

∣

∣

∣

∣

.

From the linear independence of {fd1 , fd′
1
}, we first con-

clude that r1 = 2N−`. Furthermore, the linear indepen-
dence of fdl+1

from the set

{fd1 , . . . , fdl
, fd′

1
, . . . , fd′

l+1
}

(because dl+1 6∈ {d1, . . . , dl, d
′
1, . . . , d

′
l+1} according to the

choice of the pairs (di, d
′
i)) implies

rl+1 = rl/2`

for l = 1, . . . , N/2`−1. Note that this also holds if d′
l+1 = di

or d′l+1 = d′i for some i < l + 1. We conclude that

|E| ≤ rN/2` = 2N−(N/2`)·` = 2N/2 =
√

|K| .

On the other hand, P[E ] =
∑

k∈E PK(k) ≥ (α −
(N/`)/2`)N/` holds. In the case where PK restricted to E
is the uniform distribution (this case maximizes the Rényi
entropy) with probability (α−(N/`)/2`)N/`/|E| or greater,
we have

∑

k∈K
PK(k)2 ≥

∑

k∈E
PK(k)2

≥ |E| · (α − (N/`)/2`)2N/`

|E|2

≥ (α − (N/`)/2`)2N/`

2N/2
,

and the claim follows when the negative logarithm is com-
puted on both sides. 2

B. Privacy Amplification with Extractors

For constructing a protocol allowing privacy amplifica-
tion with shorter messages, we use a different technique for
privacy amplification, based on extractors.

Roughly speaking, an extractor allows for efficiently iso-
lating the randomness of some source into virtually ran-
dom bits, using a small additional number of random bits
as a catalyst, i.e., in such a way that these bits reappear
as a part of the almost uniformly distributed output. Ex-
tractors are of great importance in theoretical computer
science, where randomness is often regarded as a resource.
They have been studied intensively in the past years by
many authors. For an introduction to the subject and
some constructions, see for example [17] or [18], and the
references therein.

Recent results, described below, show that such func-
tions allow, using only a small amount of true random-
ness, to distill (almost) the entire randomness, measured
in terms of H∞, of some string into an almost uniformly
distributed string. A disadvantage of using extractors in-
stead of universal hashing is that a string of length only
roughly equal to the min-entropy instead of the generally
greater Rényi entropy of the original random variable can
be extracted. However, this drawback has no effect in con-
nection with typical sequences, i.e., almost uniform dis-
tributions. (Note that for uniform distributions, all the
introduced entropy measures are equal.)
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Definition 4: A function E : {0, 1}N × {0, 1}d → {0, 1}r

is called a (δ′, ε′)-extractor if for any distribution P on
{0, 1}N with min-entropy H∞(P ) ≥ δ′N , the variational
distance3 of the distribution of

[V, E(X, V )]

to the uniform distribution over {0, 1}d+r is at most ε′

when choosing X according to P and V independently ac-
cording to the uniform distribution over {0, 1}d.

The following theorem was proved in [18]. It states that
there exist extractors which distill virtually all the min-
entropy out of a weakly random source, thereby requiring
only a small (i.e., “poly-logarithmic”) number of truly ran-
dom bits. Note that Theorem 7 is formally slightly stronger
than the corresponding theorem in [18] because it not only
states that the length of the extractor output is roughly
equal to the min-entropy of the source plus the number of
random bits, but even that these bits reappear as a part of
the output. Although it has not been explicitly stated, it
is not difficult to see that the extractors described in [18]
do have this property.

Theorem 7: [18] For every choice of the parameters N ,
0 < δ′ < 1, and ε′ > 0, there exists a (δ′, ε′)-extractor

E : {0, 1}N × {0, 1}d −→ {0, 1}δ′N−2 log(1/ε′)−O(1) ,

where d = O((log(N/ε′))2 log(δ′N)).
Corollary 8, which is a consequence of Theorem 7, is

what we need for the analysis of Protocol EX. The state-
ment of Corollary 8 is related to Theorem 4, where uni-
versal hashing is replaced by extractors, and min-entropy
must be used instead of Rényi entropy (see Figure 4).

1/2-o(1)
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Fig. 4. Privacy Amplification with Extractors

Corollary 8: Let δ′, ∆1, ∆2 > 0 be constants. Then
there exists, for all sufficiently large N , a function

E : {0, 1}N × {0, 1}d −→ {0, 1}r ,

where d ≤ ∆1N and r ≥ (δ′ − ∆2)N , such that for all
random variables T with T ⊆ {0, 1}N and

H∞(T ) > δ′N ,

3The variational distance of two distributions PX and PY over the
same range X is defined as (

�
x∈X |PX(x) − PY (x)|)/2.

we have

H(E(T, V )|V ) ≥ r − 2−N1/2−o(1)

. (9)
Lemma 6: Let Z be a random variable with range Z ⊆

{0, 1}k. Then

H(Z) ≥ k · (1 − d(Uk, PZ) − 2−k) (10)

holds, where Uk stands for the uniform distribution over
{0, 1}k.
Proof. Let d := d(Uk, Z). We can assume that d < 1− 2−k

holds because otherwise the inequality is trivially satisfied.
The distribution PZ of Z can be thought of as obtained
from the uniform distribution Uk by increasing some of
the probabilities (by total amount d) and decreasing some
others (by the same total amount). The function

d

dp
(−p log p) = − ln p + 1

ln 2

is monotonically decreasing, hence increasing (or decreas-
ing) a smaller probability increases (or decreases, respec-
tively) the entropy more than modifying a greater prob-
ability by the same amount. Hence a distribution with
distance d from Uk with minimal entropy can be obtained
by adding d to one of the probabilities, and by reducing as
many probabilities as possible to 0, leaving the other prob-
abilities unchanged. One of the probabilities of the new
distribution equals 2−k + d, b2kdc probabilities are equal
to 0, one probability equals 2−k(2kd−b2kdc) (if this is not
0), and b2k(1 − d)c − 1 probabilities are unchanged and
hence equal to 2−k. Thus the entropy of the new random
variable Z can be bounded from below by

H(Z) ≥ 2−k(2kd − b2kdc) · k
+(b2k(1 − d)c − 1) · 2−k · k

= k · (1 − d − 2−k) .

2

Proof of Corollary 8. Let ε′(N) := 2−
√

N/ log N . Then
there exists N0 such that for all N ≥ N0 we have a (δ′, ε′)-
extractor E, mapping {0, 1}N+d to {0, 1}r, where d ≤ ∆1N
(note that d = O(N/ log N) holds for this choice of ε′)
and r ≥ (δ′ − ∆2)N . By definition, this means that for
a uniformly distributed d-bit string V and if H∞(T ) ≥
δ′N , the distance of the distribution of [V, E(T, V )] to the
uniform distribution Ud+r over {0, 1}d+r is at most ε′ =

2−
√

N/ log N . Because

d([V, E(T, V )], Ud+r) = EV [d(E(T, V ), Ur)] ≤ ε′

holds for uniformly distributed V , the distance of the dis-
tribution of E(T, v) to the uniform distribution Ur (over
{0, 1}r) is at most

√
ε′ with probability at least 1 −

√
ε′

over v, i.e.,

PV

[

d (E(T, V ), Ur) ≤ 2−
√

N/2 log N
]

≥ 1 − 2−
√

N/2 log N .



11

Inequality (9) now follows from Lemma 6. 2

In analogy to Lemma 4, which gives an upper bound
on the effect of side information on the Rényi entropy of
a random variable (hereby linking information reconcilia-
tion and privacy amplification with universal hashing) we
now need such a result with respect to min-entropy H∞.
Lemma 7 is an immediate consequence of Lemma 2.

Lemma 7: Let X and Q be random variables, and let
s > 0. Then with probability at least 1 − 2−s (taken over
q ∈ Q), we have

H∞(X) − H∞(X |Q = q) ≤ log |Q| + s .

C. Protocol EX

In this section we present Protocol EX for privacy am-
plification secure against active adversaries. This protocol
uses an extractor function for privacy amplification and
the interactive challenge-response authentication methods.
One important difference to Protocol UH is that a shorter
string is used as the authentication key. This allows for
extracting a significantly longer string in the case where
Eve’s information about the original string is small.

Let the binary string S (of length n) be composed by
strings SI and SII of lengths n1 and n2, respectively. As-
sume that 2` divides n1 and let d := n1/`. The substrings
Si, i = 0, . . . , d − 1, of SI are all of length `. The function
E is an extractor to be specified below.

Protocol EX (Extractor)

Alice Bob

S = SI ||SII S = SI ||SII

SI = S0|| · · · ||Sd−1 SI = S0|| · · · ||Sd−1

h ∈R GF (2`)

-

h

a := fh(SI )
b ∈R GF (2`)

�
(a, b)

if a 6= fh(SI ) : S′
B := E(SII , h)

stop

if a = fh(SI ) :
c := fb(SI )

-

c

accept if c = fb(SI) : accept

S′
A := E(SII , h) if c 6= fb(SI) : reject

Theorem 9 below implies that Protocol EX can be much
more effective that Protocol UH, in particular for strings
with a high level of initial security. Note first that Proto-
col EX works under the same condition as Protocol UH:
The Rényi entropy of the string, given Eve’s knowledge,
must be larger than two thirds of the length of the string.
The length of the extractable key however can be equal to
roughly

H∞(S) − 2(len(S) − H2(S))

instead of only the excess H2(S) − (2/3)len(S) as for Pro-
tocol UH. This expression can be substantially greater, in
particular if H2(S) is close to len(S). On the other hand,
since H∞(S) can be smaller (by a factor up to 2) than
H2(S), Protocol EX can also be less effective than Proto-
col UH. An illustration of the statement of Theorem 9 is
given in Figure 5.
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H   (S | Z=z)

H   (S | Z=z)
2

Protocol EX

2
−n

1/2−o(1)

Eve’s 
Information

a a
a

8

S

S’

Fig. 5. Analysis of Protocol EX

Theorem 9: Let 0 < t′ ≤ t < 2/3 and ∆ > 0
be constants. Then Protocol EX is, for sufficiently
large n and for an appropriate choice of the parame-
ters, a robust (n , Dn,2,tn ∩ Dn,∞,t′n , (t′ − 2(1 − t) −
∆)n , 2−n1/2−o(1)

, 2−Ω(n))-PA-protocol.
Proof. Let n1 := (2(1−t)+∆/3)n, ` := (∆/6)n, and let z ∈
Z be the particular value known to Eve. We can assume
without loss of generality that n1 and ` are integers and
that 2` divides n1. (Otherwise, n1 and ` can both be chosen
smaller, subject to n1 = (2(1 − t) + Θ(1))n and l = Θ(n),
respectively, such that the conditions are satisfied.) Let
now SI be the first n1 and SII be the remaining n2 := n−n1

bits of S.
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Assume first that Eve is passive. We give a lower bound
on the min-entropy of the string SII from Eve’s point of
view and given the entire communication C held over the
public channel. Since this communication is, given SI and
Z = z, independent of SII , we have

H∞(SII |C = c, SI = sI , Z = z)

= H∞(SII |SI = sI , Z = z)

≥ (t′ − 2(1 − t) − 2∆/3)n (11)

with probability 1 − 2−Ω(n). (Note that Alice and Bob
could publish SI at the end of the protocol, only helping a
possible adversary.)

Let now E be the extractor function according to Corol-
lary 8 with d ≤ ` = Θ(n),

δ′ = (t′ − 2(1 − t) − 2∆/3)n/n2 ,

and

r ≥ (δ′ − ∆ · n/(3n2))n2 = (t′ − 2(1− t) − ∆)n .

For the choice PT = PSII |C=c,Z=z and S′ = E(SII , V )
(where V is composed by the first d bits of H in a fixed
representation) we obtain, using (11) and I(H ; SZ) = 0,

H(S′ |C, Z = z) ≥ r − 2−N1/2−o(1)

.

We consider the case where Eve is an active adversary
and give an upper bound on the probability of the event
that Alice and Bob do not both reject and secret-key agree-
ment has nevertheless not been successful. It is obvious
that this can only occur if Eve can either guess fh(S) from
some fh′(S) (where h′ 6= h) or guess fb(S) correctly, where
h and b are randomly chosen. The success probability δ of
such an active attack is of order

δ = 2−Ω(n) . (12)

To see this, note first that

H2(SI |Z = z) ≥ n2/2 + ` + ∆/6

holds because of Lemma 1 and by the definitions of n2

and `. Then, the probabilities of the events that fh(SI ) is
guessed correctly from fh′(SI ) (note that ` = Θ(n2)), that

H2(SI | fh(SI ) = fh(sI), Z = z) < n2/2

holds (we call this event E), and that fb(SI) is guessed cor-
rectly, given that E does not occur, are all of order 2−Ω(n),
because of Lemmas 5, 2, and 3, respectively. The bound
(12) then follows from the union bound. 2

Remark. Note that for the proof of Theorem 9, the fol-
lowing combination of the Protocols UH and EX is also
sufficient: The key is partitioned as in Protocol EX, but
the authentication techniques of Protocol UH are used
for the shorter key, i.e., strongly universal hashing and
challenge-response confirmation (Section II-B). However,

Protocol EX has an important advantage as compared to
this protocol, and to Protocol UH, which is not stated ex-
plicitly in Theorem 9: In case of failure because of a de-
tected active substitution attack, Protocol EX can (with
roughly the same parameters) be restarted again and again
(O(1) times) with the same key until secret-key agreement
eventually succeeds. The reason for the possibility of such
multiple trials is that the observation of a correctly authen-
ticated message reveals—unlike in the case of authentica-
tion with strongly universal hashing—only a small fraction
of the total information about the authentication key (see
Section III-A).

IV. Discussion

We have described two protocols, Protocol UH and Pro-
tocol EX, for privacy amplification secure in the active-
adversary model. Protocol UH is based on universal hash-
ing and is successful as soon as the Rényi entropy of the
partially secret key, from the adversary’s viewpoint, ex-
ceeds two thirds of the length of the string. Then the pro-
tocol distills a string whose length is roughly equal to this
excess. Protocol UH is computationally extremely simple
and works for strings of any length. For sufficiently long
strings, Protocol EX, based on extractor functions, can be
used. The condition on the initial key is the same as for
Protocol UH, but the extracted highly secret key is often
longer. An additional advantage of Protocol EX is that
failed privacy-amplification attempts do (almost) not use
up the key: The procedure can be repeated many times
with the same key.

In Figure 6, the required conditions on the partially se-
cret key as well as the possible length of the resulting se-
cret key when using Protocol UH or EX are illustrated
and compared to the corresponding quantities in the case
of privacy amplification (according to [1]) in the passive-
adversary case. This representation therefore shows the
price that must be paid for authentication in the context
of privacy amplification.

V. Concluding Remarks

In the general setting of secret-key agreement from cor-
related randomness by insecure and not authentic com-
munication, we have analyzed the important special case
of privacy amplification. Different problems arise here as
compared to the independent-realizations model considered
in [15]. Examples are the need for authentication with a
partially secret key or hashing with an only small amount
of joint randomness.

Our results are based on the combination of new
message-authentication methods—that require interaction
but only a possibly highly insecure key, and that can be
used repeatedly with the same key—and a new technique
for privacy amplification.

In analogy to the scenario where a random experiment
is repeated many times [15], we found that privacy am-
plification secure against active adversaries is achievable,
but only under certain conditions stronger than the ones
for the passive-adversary case. For privacy amplification,
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(2/3) len(S)

2H  (S|Z=z)

H   (S|Z=z)8

Protocol UH

Protocol BBCM (Passive Adversary)

S

Eve’s Information

Fig. 6. Privacy Amplification Secure Against Active Adversaries

however, we have not shown these conditions to be neces-
sary, and we state as an open problem to prove or disprove
their necessity.

In contrast to the independent-repetitions scenario, a
certain price has to be paid for the channel’s missing au-
thenticity even if robust privacy amplification is possible in
principle: the generated key is shorter. It is a challenging
open problem to find protocols extracting the same amount
of secrecy in the presence of active adversaries as is possi-
ble against only passive wire-tappers (or to prove that such
protocols cannot exist).
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