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Abstract. This paper introduces a new type of public-key encryption
scheme, called Multi-Designated Receiver Signed Public Key Encryption
(MDRS-PKE), which allows a sender to select a set of designated receivers
and both encrypt and sign a message that only these receivers will be
able to read and authenticate (confidentiality and authenticity). An
MDRS-PKE scheme provides several additional security properties which
allow for a fundamentally new type of communication not considered
before. Namely, it satisfies consistency—a dishonest sender cannot make
different receivers receive different messages—off-the-record—a dishonest
receiver cannot convince a third party of what message was sent (e.g.,
by selling their secret key), because dishonest receivers have the ability
to forge signatures—and anonymity—parties that are not in the set
of designated receivers cannot identify who the sender and designated
receivers are.

We give a construction of an MDRS-PKE scheme from standard as-
sumptions. At the core of our construction lies yet another new type of
public-key encryption scheme, which is of independent interest: Public
Key Encryption for Broadcast (PKEBC) which provides all the security
guarantees of MDRS-PKE schemes, except authenticity.

We note that MDRS-PKE schemes give strictly more guarantees than
Multi-Designated Verifier Signature (MDVS) schemes with privacy of
identities. This in particular means that our MDRS-PKE construction
yields the first MDVS scheme with privacy of identities from standard
assumptions. The only prior construction of such schemes was based on
Verifiable Functional Encryption for general circuits (Damgéard et al.,
TCC ’20).

1 Introduction

1.1 Public Key Encryption security properties

The most common use case for cryptography is sending a message to a single
receiver. Here one usually desires to have confidentiality (only the desired receiver
can read the message) and authenticity (the receiver is convinced that the message
is from the declared sender). Although one might be interested in signatures
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that can be publicly verified (e.g. for a judge to verify a contract), when trying
to protect the privacy of personal communication one often wants the opposite:
not only is the intended receiver the only one that can verify the signature, but
even if this person sells their secret key, no third party will be convinced of the
authenticity of the message. This latter property is called off-the-record in the
Designated Verifier Signature (DVS) literature [13}20L[23H25[27,/33H35], and is
achieved by designing the scheme so that the receiver’s secret key can be used to
forge signatures. One may take this a step further and require anonymity, i.e.
third parties cannot even learn who the sender and receiver are (this is called
privacy of identities in the (M)DVS literature) |13|E|

Another setting of interest is where the message is sent to many recipients.
Consider, for example, the case of sending an email to multiple receivers. Apart
from all the security properties listed above, here one would additionally require
consistency: all the (intended) receivers will get the same email when decrypting
the same ciphertext, even if the sender is dishonest. We note that it is crucial
that a receiver can decrypt ciphertexts using only their secret key, i.e. without
having to use the public key of the sender and other receivers. It is common in the
literature to assume that the receiver knows who the sender and other receivers
are so that their public keys can be used for decryption [6,/26]. But in many
contexts adding this information in plain to the ciphertext would violate crucial
properties, e.g., in broadcast encryption the ciphertext size would not be small
any longer and in MDVS schemes anonymity (privacy) would be violated [26].

Many different schemes have been introduced in the literature that satisfy
some of the properties listed here, see In this work we propose two new
primitives, Public Key Encryption for Broadcast (PKEBC) and Multi-Designated
Receiver Signed Public Key Encryption (MDRS-PKE), which we explain in the
following two subsections.

1.2 Public Key Encryption for Broadcast

The first type of primitive that we introduce, PKEBC, can be seen as an extension
of Broadcast Encryption (BE) [15] which additionally gives consistency guarantees
in the case of a dishonest senderE| More specifically, we expect PKEBC schemes
to provide the following guarantees:

Correctness If a ciphertext ¢ is honestly generated as the encryption of a
message m with respect to a vector of receivers, say R:= (Bob, Charlie), then
we want that if Bob is honest and decrypts ¢ using its secret key, it obtains a
pair ((Pkgops PRChariic) s M) Where pkp.p and pRey e are, respectively, Bob’s
and Charlie’s public keys;

3 With off-the-record, a third party will know that either the alleged sender or the
receiver wrote the message, whereas anonymity completely hides who the sender and
receiver are. However, anonymity only holds when the receiver is honest whereas
off-the-record provides guarantees against a dishonest receiver.

4 Though BE usually requires the ciphertext size to be sublinear in the number of
receivers, which PKEBC does not.



Robustness Let ¢ be the ciphertext from above. We do not want Dave, who is
honest but yet not an intended receiver of ¢, to think ¢ was meant for himself.
In other words, we do not want Dave to successfully decrypt c.

Consistency Now consider a dishonest party Alice who wants to confuse Bob
and Charlie, both of whom are honest. We do not want Alice to be capable of
creating a ciphertext ¢ such that when Bob decrypts ¢, it obtains some pair
((PRpobs PRCharlic), M), but when Charlie decrypts ¢ it obtains some different
pair. Instead, we want that if Bob obtains a pair ((pkg,, PRchariic)s 1) then
so will Charlie (and vice-versa).

Confidentiality Now, suppose that Alice is honest. If Alice encrypts a message
m to Bob and Charlie (who are both honest), we do not want Eve, who is
dishonest, to find out what m is.

Anonymity Finally, suppose there are two more honest receivers, say Frank
and Grace, to whom Alice could also be sending a message to. If, again,
Alice encrypts a message m to both Bob and Charlie, and letting ¢ be the
corresponding ciphertext, we do not want Eve to find out that the receivers
of ciphertext ¢ are Bob and Charlie; in fact, we do not want Eve to learn
anything about the intended receivers of ¢, other than the number of receivers.

The formal definitions of PKEBC are given in [Sect. 3| In [Sect. 4] we show
how to construct a PKEBC from standard assumptions. Our construction is a
generalization of Naor-Yung’s scheme [29] that enhances the security guarantees
given by the original scheme. In particular, as we will see if the underlying
PKE scheme is anonymous, then this anonymity is preserved by the PKEBC
construction.

One important difference from other public key schemes for multiple parties
is that to decrypt, a receiver only needs to know their own secret key; the
decryption of a ciphertext yields not only the underlying plaintext but also the
set of receivers for the ciphertext. This then allows the corresponding public keys
to be used as needed [l

1.3 Multi-Designated Receiver Signed Public Key Encryption

Our main primitive has all of the properties listed in Namely, a
MDRS-PKE scheme is expected to provide the following guarantees:

Correctness If a ciphertext ¢ is honestly generated as the encryption of a
message m from a sender Alice to a vector of receivers R := (Bob, Charlie)
then we want that if Bob is honest and decrypts ¢ using its secret key, it
obtains a triple (SpXajice, (TPRBob» TPKCharlic)s 7)), Where spk ;.. is Alice’s
public sending key, and rpkg,;, and rpkq,..ie are, respectively, Bob’s and
Charlie’s receiver public keys;

Consistency Now consider a dishonest party Donald who is a sender and wants
to confuse Bob and Charlie, both of whom are honest. We do not want

5 We note that this is only important since we want to achieve anonymity, otherwise
once could send the public keys of the other parties together with the ciphertext.



Donald to be able to create a ciphertext ¢ such that when Bob decrypts
¢, it obtains some triple (spkponaias (PRpobs PRCharlie)s ), but when Charlie
decrypts ¢ it obtains some different triple (or does not even decrypt). Instead,
we want that if Bob obtains a triple (spkpg,a1d4: (PXBob> PRChartie) 1), then
so will Charlie (and vice-versa).

Unforgeability We do not want that Eve can forge a ciphertext as if it were
from an honest sender, say Alice, to a vector of receivers Bob and Charlie.

Confidentiality If an honest sender Alice encrypts a message m to Bob and
Charlie (who are both honest), we do not want Eve, who is dishonest, to find
out what m is.

Anonymity Suppose there is another honest sender, say Heidi. If Alice encrypts
a message m to Bob, and letting ¢ be the corresponding ciphertext, we do
not want Eve to find out that Alice is the sender or that Bob is the receiver;
Eve should at most learn that someone sent a message to a single receiver.

Off-The-Record Suppose Alice sends a message to Bob, Charlie and Donald.
Donald, being dishonest, might be enticed to try convincing Eve that Alice
sent some message. However, we do not want Donald to have this capability.

The formal definitions of MDRS-PKE are given in [Sect. 5 In[Sect. 6| we show
how to construct a MDRS-PKE from standard assumptions. As we will see, our
construction essentially consists of using the MDVS scheme to sign messages,
and then using the PKEBC scheme to encrypt the signed messages, together
with their MDVS signatures.

Since a MDRS-PKE scheme is an extension of an MDVS scheme with privacy
of identities and confidentiality, for completeness, we show in[Appendix E|that any
MDRS-PKE scheme yields an MDVS scheme with privacy of identities. Since we
give an MDRS-PKE scheme which is secure under standard assumptions, this in
particular implies that our construction is the first achieving privacy of identities
from standard assumptions. The only previous construction of an MDVS scheme
with privacy of identities relied on a Verifiable Functional Encryption scheme for
general circuits [13].

1.4 Applications to Secure (Group) Messaging

As we now discuss, one main application of MDRS-PKE schemes is secure
messaging, and in particular secure group messaging.

Suppose Alice and Bob are using a secure messaging application to chat with
each other. Of course, they expect the messenger to provide basic guarantees
such as Correctness—if Alice sends a message to Bob, Bob receives this message—
Confidentiality—no one other than Alice and Bob should learn the contents of
the messages—and Authenticity—if Alice reads a message m, then Bob must
have sent m. Another desirable guarantee they could expect from the messenger
is Anonymity: suppose that in parallel to Alice and Bob’s chat, Charlie and
Dave are also chatting; then, if a third party Eve intercepts a ciphertext ¢ from
Alice and Bob’s chat and Eve cannot a priori tell that ¢ came from and/or is
addressed to Alice or Bob, then Eve should not gain any additional information



about the identity of ¢’s sender and/or receiver from inspecting the contents of
ciphertext ¢ itself (in other words, Eve cannot tell if the ciphertext is from Alice
and Bob’s chat, from Alice and Charlie’s chat, from Bob and Charlie’s chat, or
from Charlie and Dave’s chat). Finally, imagine that Bob, who wants to keep the
history of his chat with Alice, outsources the storage of the chat’s ciphertexts
to an external storage service which reliably, but not authentically, stores these
ciphertexts. An important additional guarantee Alice expects from the messaging
application is Off-The-Record Deniability (Off-The-Record) [11,/13]: if, somehow,
Eve manages to access whatever is stored by Bob’s storage service, Eve cannot
tell by inspecting the stored ciphertexts, even if Bob chooses to cooperate with
Eveﬂ if these ciphertexts are authentic ones corresponding to real messages sent
by Alice to Bob in their chat, or if they are fake ones generated by Bob (in case
Bob is cooperating with Eve) or generated by anyone else (in case Bob is not
cooperating with Eve) to incriminate Alice.

A related, yet very different property that secure messaging applications
like Signal [12] provide is Forward Secrecy [21]. Informally, Forward Secrecy
guarantees that even if Eve stores any ciphertexts received by Bob and later
hacks into Bob’s computer to learn his secret key, Eve cannot learn the decryptions
(i.e. the plaintexts) of the ciphertexts she previously intercepted. Off-The-Record,
on the other hand, does not give any guarantees about hiding the contents of
previously exchanged messages. However, it hides from Eve whether Alice really
sent a message m to Bob or if Bob faked receiving m. Furthermore, Forward
Secrecy assumes Bob is honest: if Bob were dishonest, he could simply store
the decryptions of the ciphertexts he receives to later disclose them to Eve.
Off-The-Record does not make such assumption: even if Bob is dishonest, Eve
cannot tell if it was Alice sending a message m, or if Bob faked receiving m from
Alice (in case Bob is dishonest), or anyone else faked Alice sending m to Bob (in
case Bob is honest). Finally, as one can deduce, Forward Secrecy is incompatible
with parties keeping a history of their chats, whereas this is not the case for
Off-The-Record. A different problem is Alice’s computer getting hacked by Eve.
In such scenario it would be desirable to still give the Off-The-Record guarantee
to Alice: Eve should not be able to tell if Alice ever sent any message or not.
However, current Off-The-Record notions [13], including the one given in this
paper, do not capture this.

A natural generalization of two party secure messaging is secure group mes-
saging [2l|13]. Suppose Alice, Bob and Charlie now share a group chat. The key
difference between Alice, Bob and Charlie sharing a group chat or having multiple
two party chats with each other is Consistency: even if Charlie is dishonest, he
cannot create confusion among Alice and Bob as to whether he sent a message
to the group chat or not |13|. In other words, honest group members have a
consistent view of the chat. Surprisingly, for the case of MDVS, this guarantee
was only recently introduced by Damgard et al. in [13].

5 By Bob collaborating with Eve we mean that Bob shares all his secrets (including
secret keys) with Eve.



To achieve Off-The-Record in the group messaging case, one must consider
that any subset of the parties participating in the group chat may be dishonest [13].
This property, also known as Any-Subset Off-The-Record Deniability (or more
simply Off-The-Record) was first introduced by Damgard et al. in [13]. Returning
to Alice, Bob and Charlie’s group chat, this property essentially guarantees that
regardless of who (among Bob and Charlie) cooperate with Eve in trying to
convince her that Alice sent some message, Eve will not be convinced because
any of them (or the two together) could have created a fake message to pretend
that Alice sent it.

1.5 Related Work

A closely related type of encryption scheme are Broadcast Encryption (BE)
schemes [10}|15]. However, BE schemes do not give the consistency guarantee that
PKEBC give; the main goal of BE schemes is actually making ciphertexts short—
ideally the size of ciphertexts would be independent from the number recipients.
Conversely, the size of the ciphertexts of the PKEBC scheme construction we
give in this paper grows quadratically with the number of recipients. Diament
et al. introduce a special type of BE scheme, called Dual-Receiver Encryption
schemes, which allow a sender to send messages to two (and only two) receivers.
By limiting the number of receivers to two receivers, these schemes allow for
efficient constructions with relatively short ciphertexts and public keys from
standard assumptions.

As already mentioned, PKEBC schemes allow receivers to decrypt a ciphertext
meant for multiple receivers using their secret key only. This problem had been
noticed before by Barth et al. in [6], and by Libert et al. in [26]. Barth et al.
modify the definition of BE schemes in a way that allows receivers to decrypt
ciphertexts without knowing who the other recipients are a priori [6]. Libert et
al. strengthens this by guaranteeing that receivers do not learn who the other
receivers are, even after decrypting ciphertexts.

Other closely related works are Multi-Designated Verifier Signature (MDVS)
schemes [13]. They provide consistency, authenticity, and off-the record and
sometimes also anonymity (called privacy). However, to the best of our knowledge,
MDVS schemes require the public keys of the sender and other designated receivers
to be used to verify signatures, and the existing literature does not discuss how
the receiver gets that information, e.g. sending this information in plain would
violate privacy. Thus, existing constructions of MDVS with privacy can only
be used if the number of combinations of possible sender and receivers is small
enough that all combinations can be tried by the verifier.

2 Preliminaries

We now introduce conventions and notation we use throughout the paper. We
denote the arity of a vector Z by |Z| and its i-th element by x;. We write a € Z to



denote 3i € {1,...,|Z|} with o = z;. We write Set(Z) to denote the set induced
by vector &, i.e. Set(Z) == {z; | z; € &}.

Throughout the paper we frequently use vectors. We use upper case letters to
denote vectors of parties, and lower case letters to denote vectors of artifacts such
as public keys, messages, sequences of random coins, and so on. Moreover, we use
the convention that if V' is a vector of parties, then ¢ denotes V’s corresponding
vector of public keys. For example, for a vector of parties V= (Bob, Charlie),
U = (Pkpop» PRCharlie) 19 Vs corresponding vector of public keys. In particular,
V1 is Bob and v; is Bob’s public key pkg,,,, and V5 is Charlie and vq is Charlie’s
public key pkey ... More generally, for a vector of parties V with corresponding
vector of public keys ¥, V;’s public key is v;, for i € {1,..., |‘7\}

3 Public Key Encryption for Broadcast Schemes

We now introduce the first new type of scheme we give in this paper, namely
Public Key Encryption for Broadcast (PKEBC). A PKEBC scheme IT with
message space M is a quadruple IT = (S, G, E, D) of Probabilistic Polynomial
Time Algorithms (PPTs), where:

— S on input 1*, generates public parameters pp;

— G on input pp, generates a receiver key-pair;

— E: on input (pp, ¥, m), where ¥ is a vector of public keys of the intended
receivers and m is the message, generates a ciphertext c;

D: on input (pp, sk, ¢), where sk is the receiver’s secret key, D decrypts ¢
using sk, and outputs the decrypted receiver-vector /message pair (¢, m) (or
L if the ciphertext did not decrypt correctly).

3.1 The Security of PKEBC Schemes

We now state the definitions of Correctness, Robustness, Consistency, and IND-
CCA-2 and IK-CCA-2 security for PKEBC schemes. Before proceeding to the
actual definitions, we first introduce some oracles the game systems from Defini-
tions and [3| use. In the following, consider a PKEBC scheme IT = (S, G, E, D)
with message space M. The oracles below are defined for a game-system with
(an implicitly defined) security parameter k:

Public Parameters Oracle: Opp

1. On the first call, compute and store pp < S(1¥); output pp;

2. On subsequent calls, output the previously generated pp.
Secret Key Generation Oracle: Ogk(B;)

1. If Ogk was queried on B; before, simply look up and return the previously

generated key for Bj;

2. Otherwise, store (pk;, sk;) <— G(pp) as B;’s key-pair, and output (pk;, sk;).
Public Key Generation Oracle: Opg(B;)

L. (pk;,skj) < Osk(Bj);

2. Output pk;.



Encryption Oracle: Og(V,m)
1. 7« (OPK(‘/l)a ey OPK(‘/lv‘)),
2. Create and output a fresh encryption ¢ < Ey, 7(m).

In addition to the oracles above, the game systems from Definitions [1| and
further provide adversaries with access to the following oracles:

Decryption Oracle: Op(Bj,c)
1. Query Osgi(Bj) to obtain the corresponding secret-key sk;;
2. Decrypt c using skj, (7,m) <= Dyp ex; (¢), and then output the resulting
receivers-message pair (0, m), or L (if (¢, m) = L, i.e. the ciphertext is
not valid with respect to B;’s secret key).

Definition 1 (Correctness). Consider the following game played between be-
tween an adversary A and game system GO :

— A9%prpP,Oprk,0sKk,0E,0p

A wins the game if there are two queries qg and qp to O and Op, respectively,
where qr has input (V,m) and qp has input (Bj,c), satisfying B; € V, the
input ¢ in qp is the output of qm, the output of qp is either L or (¥,m’) with
(U,m) # (7',m’), and A did not query Osk on input B;.

The advantage of A in winning the Correctness game, denoted Adv“"" (A),
is the probability that A wins game G as described above.

We say that an adversary A (ecor, t)-breaks the (n,dg, ¢g, gp)-Correctness
of a PKEBC scheme IT if A runs in time at most ¢, queries Opg, O and Op
on at most n different partiesﬂ makes at most ¢qg and gp queries to Og and Op,
respectively, with the sum of lengths of the party vectors input to O being at
most dg, and satisfies Advco"(A) > ECorr-

The following notion captures the guarantee that if a ciphertext ¢ is an
honestly generated ciphertext for a vector of receivers R (for some message), then
no honest receiver B who is not one of the intended receivers of ¢ can successfully
decrypt ¢ (i.e. if B ¢ R then the decryption of ¢ with B’s secret key outputs
1). As one might note, this notion is a variant of the Weak Robustness notion
introduced in [1], but adapted to PKEBC schemes.

Definition 2 (Robustness). Consider the following game played between an
adversary A and game system GRoP:

— A9pPp,OpPk,05k,085,0D

" Here, querying on most n parties means that the number of different parties in
all queries is at most n. In particular, the number of different parties in a query
Og((Bi1,B2,Bs),(...)) is 3, assuming B1 # By # B3 # Bi; the number of different
parties in a query Op(Bj,-) is 1.



A wins the game if there are two queries qg and qp to O and Op, respectively,
where qg has input (17, m) and gp has input (B;,c), satisfying B; ¢ V, the input
¢ in qp 1s the output of qg, the output of qp is (0',m') with (¢",m’) # L, and A
did not query Ogk on inpul B;.

The advantage of A in winning the Robustness game is the probability that A
wins game GR® as described above, and is denoted AdvROb(A),

An adversary A (ggrob, t)-breaks the Robustness of a PKEBC scheme IT if A
runs in time at most ¢ and satisfies Adv"®(A) > erop.

Remark 1. Correctness and Robustness are properties only relevant to honest
parties. It is common in the literature to either define such security notions without
any adversary or to consider a stronger adversary that is unbounded or has access
to the honest parties’ secret keys. We choose the weaker definitions above for two
main reasons: first, it has been proven that analogous Correctness and Robustness
notions [1,[5] for PKE schemes—also defined with respect to computationally
bounded adversaries who are not given access to the secret keys of honest parties—
imply (corresponding) composable security notions (see [5] and [22]); second, since
the remaining PKEBC security notions (e.g. IND-CCA-2 security) are defined
with respect to computationally bounded adversaries that cannot obtain the
secret keys of honest parties, there is no advantage in considering strengthened
Correctness and Robustness security notions. Nevertheless, as we will see, if the
PKE scheme underlying our PKEBC scheme’s construction satisfies Correctness
against unbounded adversaries, then the PKEBC scheme’s construction can be
proven to satisfy such stronger Correctness and Robustness security notions.

We now introduce the notion of Consistency. Essentially, this notion captures
the guarantee that a dishonest sender cannot create confusion between any pair
of honest receivers as to whether they received some message m with respect to
a vector of receivers R that includes both parties.

Definition 3 (Consistency). Consider the following game played between an
adversary A and game system GO :

— A9pPp,OpPk,0sk,0pD

A wins the game if there is a ciphertext ¢ such that Op is queried on inputs
(Bj,c) and (Bj,c) for some B; and B; (possibly with B; = Bj), there is no prior
query on either B; or Bj to Ogsk, query Op(B;, c) outputs some (U, m) satisfying
(U,m) # L with pk; € U (where pk; is B;’s public key), and query Op(B,,c)
does not output (U, m).

The advantage of A in winning the Consistency game is denoted Adv“°"(A)
and corresponds to the probability that A wins game G as described above.

We say that an adversary A (econs, t)-breaks the (n, ¢p)-Consistency of IT
if A runs in time at most ¢, queries Ogi, Opg and Op on at most n different
parties, makes at most ¢gp queries to Op and satisfies Advcms(A) > €Cons-



Remark 2. Similarly to Consistency is a security property only rele-
vant to honest receivers, for which reason disallows adversaries from
querying for the secret keys of honest receivers. It was proven in [2§] that an
analogous Consistency notion for MDVS schemes (introduced in [13]) implies
composable security. Yet, as we will see, if the PKE scheme underlying our
PKEBC scheme’s construction satisfies Correctness against unbounded adver-
saries, then our PKEBC scheme can be proven to satisfy a stronger Consistency
notion in which the adversary can query for any party’s secret key.

The two following security notions are the multi-receiver variants of IND-
CCA-2 security (introduced in [30]) and IK-CCA-2 security (introduced in [7]).
The games defined by these notions provide adversaries with access to the oracles
Opp and Opg defined above as well as to oracles Og and Op. For both notions,
Op is defined as follows:

Decryption Oracle: Op(Bj,c)
1. If ¢ was the output of some query to O, output test;
2. Otherwise, compute and output (7, m) <= Dyp ek, (c), where sk; is Bj’s
secret key.

The Op oracle provided by the IND-CCA-2 games differs from the one provided
by the IK-CCA-2 games; for IND-CCA-2, O is as follows:

Encryption Oracle: OE(‘?, ™Mo, M)
1. For game system G'l')\'D'CCA'2, encrypt myp, under ¥ (the vector of public

keys corresponding to ‘7), output c.
Adversaries do not have access to Qg in either notion.

Definition 4 (IND-CCA-2 Security). Consider the following game played be-
tween an adversary A and a game system GINP-CA2 with b € {0,1}:

— Y « A9rPrP,OrPk,0r,0p

A wins the game if b = b and every query OE(V,mo,ml) satisfies |mo| = |ma|.
We define the advantage of A in winning the IND-CCA-2 game as

Ad’l}IND_CCA-2(A) — Pr[AGloND—CCAQ — win] + Pr[AG|1ND—CCA—2 — win] —11.

For the IK-CCA-2 security notion, Og behaves as follows:

Encryption Oracle: Og(Vy, Vi, m)
1. For game system GK-C“A2 encrypt m under #,, the vector of public
keys corresponding to V4, creating a fresh ciphertext c; output c.

Definition 5 (IK-CCA-2 Security). Consider the following game played between
an adversary A and a game system Gi{<CCA-2 with b € {0,1}:

— } « A9PP,OpPKk,0r,0p

10



A wins the game if ¥ =b and every query Op(Vo, Vi, m) satisfies |Vo| = |V4|.
We define the advantage of A in winning the IK-CCA-2 security game as

AdvIK_CCA_Z(A) =|Pr[AGY A2 = yin] + PrAGK A2 = yin] — 1].

We say that an adversary A (einp.cca-2, t)-breaks (resp. (eik.cca-2,t)-breaks)
the (n,dg, qg, qp)-IND-CCA-2 (resp. (n,dg, qg, qp)-IK-CCA-2) security of IT if A
runs in time at most ¢, queries the oracles it has access to on at most n different
parties, makes at most qg and gp queries to oracles O and Op, respectively,
with the sum of lengths of all the party vectors input to O being at most dg,
and satisfies AdUIND_CCA_Z(A) Z EIND-CCA-2 (resp. AdUIK_CCA_2(A) Z 5IK—CCA—2)~

Finally, we say that IT is

(ECorr,ERobs ECons» EIND-CCA-2, EIK-CCA-2, £, 1, dE, ¢, gD )-secure,
if no adversary A:

— (ecorr, t)-breaks the (n,dg, qg, ¢p)-Correctness of IT;
(eRob, t)-breaks the Robustness of IT;
— (Econs, t)-breaks the (n, ¢p)-Consistency of IT;

(

(

EIND-CCA-2, t)—breaks the (n, dg,qE, qD)—|ND—CCA—2 security of IT; or
€1k-cCA-2, t)-breaks the (n,dg, ¢g, qp)-IK-CCA-2 security of II.

4 A PKEBC Scheme from Standard Assumptions

We now present our construction of a PKEBC scheme. The construction is a
generalization of Naor-Yung’s scheme [29] that enhances the security guarantees
given by the original scheme. In particular, if the underlying PKE scheme is
anonymous, then this anonymity is preserved by the PKEBC construction. First,
while the scheme should preserve the anonymity of the underlying PKE scheme,
parties should still be able to obtain the vector of receivers from ciphertexts,
using only their own secret key. For this reason, the underlying PKE scheme is
used to encrypt not only the messages to be sent, but also the vector of receivers
to which each message is being sent to. As one might note, however, to preserve
the anonymity of the underlying PKE scheme, the NIZK proof that proves the
consistency of the ciphertexts for the various receivers can no longer be a proof for
a statement in which the public keys are part of the statement. This introduces
an extra complication since for some PKE schemes such as ElGamal, for every
ciphertext ¢ and message m, there is a public key pk and a sequence of random
coins r such that ¢ is an encryption of m under pk, using r as the sequence of
random coins for encrypting m. In particular, this means that the NIZK proof
is not actually proving the consistency of the ciphertexts. To solve this issue,
we further add a (binding) commitment to the vector of receiver public keys
used to encrypt each ciphertext, and then use the NIZK proof to show that
each ciphertext is an encryption of this same message under the public keys
of the vector to which the commitment is bound. Note, however, that this is
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still not sufficient: despite now having the guarantee that if the NIZK proof
verifies then all ciphertexts are encryptions of the same plaintext with respect a
vector of public keys, since a party can still decrypt ciphertexts not meant for
itself without realizing it, it could happen that a receiver decrypts the wrong
ciphertext, thus getting the wrong vector of receivers-plaintext pair. To avoid
this, the commitment additionally commits to the message being sent, and the
sequence of random coins used to create the commitment are now encrypted
along with the vector of public keys of the parties and the message being sent.
This then allows a receiver to recompute the commitment from the vector of
parties and message it decrypted. Given the commitment is binding, this implies
that if the recomputed commitment matches the one in the ciphertext then
decryption worked correctly (as otherwise the recomputed commitment would
not match the one in the ciphertext).

We note that our security reductions are tight, and that there are tightly
secure instantiations of each of the schemes we use as building blocks for our
construction. For instance, ElGamal could be used as the underlying IND-CPA
secure encryption scheme, as it is tightly multi-user multi-challenge IND-CPA
secure [§]. For completeness, we show in the appendix that ElGamal is also
tightly multi-user multi-challenge IK-CPA secure under the DDH assumption
(see. Furthermore, we could use any perfectly correct PKE scheme as
the statistically binding commitment scheme needed by our scheme (in particular
ElGamal), and the tightly unbounded simulation sound NIZK scheme from [16].

Algorithm [I] gives a construction of a Public Key Encryption for Broadcast
scheme IT = (S, G, E, D) from a Public Key Encryption scheme ITpkg = (G, E, D),
a Commitment Scheme IIcs = (Geors, Commit, Verify) and a Non Interactive
Zero Knowledge scheme ITnizk = (Geors, Prove, Verify, S == (Scrs, Ssim)). Con-
sider relation Rcons defined as

RCons = {((CISCS7 comm, 5)7 (p7 63 m, F)) |
el = |7]
A comm = [Ts. Commiters (U, m; p) (4.1)
A (V5 ed{L,.... |}, vb e {01},
¢jp = Hpke-By, , (p, 0, m;75)) }
In Algorithm [1] we consider the language induced by Rcons, which is defined as

Lcons = {(crscs, comn, ©) |
H(pﬂ_]')ma"?‘) (42)
((CI‘SCS,COIﬂm,E), (97 177m77?)) S RCOHS}-

4.1 Security Analysis of PKEBC Construction

Due to space constraints, the full proofs of the following results are in the appendix

(see [Appendix GJ).
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Algorithm 1 Construction of a PKEBC scheme II = (S, G, E, D).

S(1%)
return (1%, IInizk. Gers(1%), es. Gors(17))

G(pp == (1*, crsnizk, crscs))
(pko, sko) — HPKE.G(lk)
(pk17 Skl) — HPKE.G(lk)
return (pk := (pkg, pk, ), sk := ((pky, sko), (pky, sk1)))

E(pp = (1%, crsnizx, crscs), T == ((Pky,05PKy 1) - - - 5 (PK|5),00 PK|5),1)) s M € M)
p < RandomCoins
comm +— ITcs. Commiters g (¢, m; p)
for (pk; ', pk; ") € ¥ do
(r5,0,75,1) < (RandomCoins, RandomCoins)
(¢5,0,¢5,1) < (Hpke-Ep; o (p, U, m;i75,0), HpkE- B 4 (p, U, m;75,1))
= ((r1,0,71,1)5 - > ("13),0, T|5),1))
= ((e1,0,¢1,1)5- -+ (€15),05 ¢7],1))
p + Inizk - Provecrsy i ((crscs, comm, &) € Loons, (7, m, p, 7))
return (p, comm, ¢)

op 3

D(pp := (1%, crsnizk, crscs), sk; == ((pkj,07 skj,0), (Pk; 1, skj,1)), ¢ := (p, comm, ©))
if ITn1zk- VerifycrsNIZK ((crscs7 comm, €) € Lcons, p) = valid then
for i € {1,...,|c|} do
(P1 = ((Pk1,0/7Pk1,1,)a B (Pk\a\,0'1pk\a\,1'))a m) — UPKE‘DsijO’(Ci,O)
if (p, ¥, m) # L A (pk; o,Pk; 1) = (Pki,()/apki,ll) then
if comm = IIcs. Commiters g (¥, m; p) then
return (7, m)
return L

Theorem 1. If Ilpkg is

(5PKE—Corr »EPKE-IND-CPA; EPKE-IK-CPA;

tPKE; "PKE, (EPKE> {DPKE, COIT)-secure,
IInizk s

(ENIZK-CompIete75NIZK-Sound7 ENIZK-ZK; ENIZK-SS,

INIZK , QP NIZK > 4V N1ZK ) -SECUTe,
and Ilcs is
(€CS—Hiding7ECS—Binding7 tcs, qcs, Binding)—secure,
then no adversary A (e, t)-breaks IT’s

(n = npkE, dg = qEpPKE, 9E = (PNIZK>

gp = min(qv NizK, 4D pkE) ) - Correctness,

(4.3)

(4.4)

(4.5)

with € > £cs-Binding + EPKE-Corr T ENIZK-Complete; 01d tcs, tPKE, IN1ZK = T + tcorr

where tcon is the time to run IT°s G game.

Remark 3. states that II’s Correctness holds against computationally
bounded adversaries who do not have access to the secret keys of honest parties.
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However, since we use an underlying PKE with correctness against unbounded
adversaries, the proof of implies something stronger, namely that IT
is Correct according to a stronger Correctness notion wherein adversaries are
allowed to query for the secret key of any honest receiver.

Theorem 2. If IIcg is
(€CS-Hiding £ CS-Binding tCS, cs, Binding)-secure, (4.6)
then no adversary A (¢)-breaks II’s Robustness, with € > €cs-Binding-

Remark 4. Note that states that II’s Robustness holds against com-
putationally unbounded adversaries; such adversaries can compute the private
key of any party from its public key.

In the following we assume, without loss of generality for any practical purpose,
that the NIZK proof verification algorithm is deterministic. For instance, the
NIZK scheme given in [16] has deterministic proof verification and is tightly
unbounded simulation sound. The reason for this assumptions is that an adversary
could potentially come up with a NIZK proof for a valid statement which would
only be considered as valid by the NIZK verification algorithm sometimes.

Theorem 3. If IIpkg is

(€PKE-Corr »EPKE-IND-CPA; EPKE-IK-CPA

LpKE; MPKE, (EPKE: 4D PKE: COIT)-secure, (47)
IINizk 18
(EN1ZK-Complete ENIZK -Sound  ENTZK-ZK > ENIZK-SS» (4.8)
tNIZK, 4PNIZK > IV N1ZK ) -S€CUTe, .
HCS 8
(€CS-Hiding £ CS-Binding» tCS, qcs, Binding)-secure, (4.9)

and Inizk -V is a deterministic algorithm, then no adversary A (g,t)-breaks IT’s
(n = npKE, ¢p = qvNizk )-Consistency,

with € > €¢s-Binding T ENIZK-Sound + EPKE-Corr @Nd with tpKE, tcs, IN1zK = T+ tcons,
where tcons 05 the time to run IT’s G game.

Remark 5. [Theorem 3J|states that II's Consistency holds against computationally
bounded adversaries who do not have access to the secret keys of honest parties.
However, similarly to its proof implies something stronger, namely
that IT is Consistent with respect to a stronger Consistency notion which allows
adversaries to query for the secret key of any honest receiver.
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Theorem 4. If Ilpkg is

(5PKE—Corr »EPKE-IND-CPA; EPKE-IK-CPA;

tPKE, "PKE, (EPKE> 4D pKE, COIT)-secure,
1INz 18

(ENIZK—CompIete75NIZK-Sound7 ENIZK-ZK; ENIZK-SS,

INIZK; ¢PNIZK > QVNIZK)'SCCUTQ

and Icg is

(€CS-Hiding £ CS-Binding» tCS, qcs, Binding)-secure,

then no adversary A (e, t)-breaks IT’s

(n == npkE, dE = ¢EpkE,

e = min(gpNizx, 4cs), 40 = qv iz ) IK-CCA-2 security,

with

€ >4 - (6PKE-IND-CPA + EPKE-Corr)

+ 2 (ENIZK-ZK + EPKE-IK-CPA + ENIZK-SS)

+ £CS-Hiding
tpkE, tcs =t + tik-cca2 + 4B  tSgim + tSons:

tN1zK = €+ tik-cca-2,

(4.10)

(4.11)

(4.12)

where tik-cca-z s the time to run II’s G't'f'CCA'z game experiment, ts, s the

runtime of Sgim, and tg, g 5 the runtime of Scrs.

Theorem 5. If Ilpkg is

(EPKE—Corr »EPKE-IND-CPA; EPKE-IK-CPA;

tPKE, "PKE, (EPKE> 4D pKE, COIT)-secure,
1INz 18

(ENIZK-CompIete75NIZK-Sound7 ENIZK-ZK; ENIZK-SS,

tNIZK, 4PNI1ZK > IV N1ZK ) -S€CUTe,

and Icg is

(€CS-Hiding £ CS-Binding» tCS, qcs, Binding)-secure,

then no adversary A (e, t)-breaks IT’s

(n == npkg, dE = qEPKE;

qr = min(gpNizk, 9cs), 40 = qvnizk ) -IND-CCA-2 security,
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with

€ > 4 - (EPKE-IND-CPA + EPKE-Corr)
+ 2 (en1zK-zK + ENIZK-SS)
+ €CS-Hiding
tpke At + tiND-ccA2 + 9E * 1S5 T tScrs:
iNizK, tcs ~ T+ tinp-cca-2,

Gg\lD—CCAQ

where tinp-cca-2 98 the time to run Il's game, tsg,  is the runtime of

Ssim, and ts.ps 1S the runtime of Scrs.

5 Multi-Designated Receiver Signed Public Key
Encryption Schemes

We now introduce the second new type of scheme we give in this paper: Multi-
Designated Receiver Signed Public Key Encryption (MDRS-PKE). An MDRS-PKE
scheme IT = (S, Gg, Gy, E, D) with message space M is a five-tuple of PPTs,
where:

— S: on input 1, generates public parameters pp;

— Gg: on input pp, generates a sender key-pair;

— Gy : on input pp, generates a receiver key-pair;

— E: on input (pp, ssk, ¥, m), where ssk is the secret sending key, ¥/ is a vector
of public keys of the intended receivers, and m is the message, generates a
ciphertext c;

— D: on input (pp, rsk, c), where rsk is the receiver’s secret key, D decrypts ¢
using rsk, obtaining a triple sender/receiver-vector/message (spk, ¥, m) (or
L if decryption fails) which it then outputs.

5.1 The Security of MDRS-PKE Schemes

Below we state the definitions of Correctness, Consistency, Unforgeability, IND-
CCA-2 security, IK-CCA-2 security, and Off-The-Record for MDRS-PKE schemes.
Before proceeding to the actual definitions, we first introduce some oracles the
game systems for MDRS-PKE use. In the following, consider an MDRS-PKE
scheme IT = (S, Gs, Gy, E, D) with message space M. The oracles below are
defined for a game-system with (an implicitly defined) security parameter k:

Public Parameter Generation Oracle: Opp
1. On the first call, compute pp <+ S(1¥); output pp;
2. On subsequent calls, simply output pp.
Sender Key-Pair Oracle: Ogg(A;)
1. On the first call on input A;, compute and store (spk;, ssk;) < Gs(pp);
output (spk;, ssk;);
2. On subsequent calls, simply output (spk;, ssk;).
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Receiver Key-Pair Oracle: Orx(B;)

1. Analogous to the Sender Key-Pair Oracle.
Sender Public-Key Oracle: Ogpk(A;)

1. (spk;, ssk;) < Ogk(A;); output spk;.
Receiver Public-Key Oracle: ORPK(Bj)

1. Analogous to the Sender Public-Key Oracle.
Encryption Oracle: Og(A;,V,m)

1. (spk;,ssk;) + Ogi(4;);

2. U4+ (Orpx(V1),-- -, OrPr (Vip)));

3. Output ¢ + Eyp(ssk;, ¥, m).
Decryption Oracle: Op(Bj,c)

1. (vpk;,vsk;) < Ork(Bj);

2. Output (spk, 7 := (rpky,...,rpkz ), m) <= Dp(vsky, c).

We now introduce the game-based notions. Let IT = (S, Gg, Gy, E, D) be an
MDRS-PKE.

Definition 6 (Correctness). Consider the following game played between an
adversary A and game system G :

— A9PpP,Ospr,0sk,OrPK,OrK,Or,0D

A wins the game if there are two queries qg and qp to Op and Op, respectively,
where qg has input (Ai,V,m) and qp has input (Bj,c), satisfying B; € v,
the input ¢ in qp is the output of qg, the output of qp is (spk,;’,v',m') with
(spk,’, 7',m’) = L or (spk,/, ', m’) # (spk;, ¥, m)—where spk, is A;’s public key
and U is the corresponding vector of public keys of the parties of V— and A did
not query Oskg on A; nor Ork on Bj.

The advantage of A in winning the Correctness game, denoted Adv=" (A),
is the probability that A wins game G as described above.

As already noted in Correctness is a property only relevant to
honest parties. As these parties are not corrupted, their keys do not leak to the
adversary. hence disallows adversaries from querying for the secret
keys of honest parties. Note that the analogous Correctness notion for MDVS
schemes introduced in [28]—which also does not allow adversaries to query for
the secret keys of honest parties—is known to imply the composable security of
MDVS schemes (see [28]). As noted in the MDRS-PKE construction
we give actually satisfies a stronger Correctness notion analogous to the one
mentioned in as long as both of the underlying (PKEBC and MDVS)
schemes satisfy analogous Correctness notions.

The following notion captures Consistency for MDRS-PKE schemes, and is
analogous to the PKEBC Consistency notion.

Definition 7 (Consistency). Consider the following game played between an
adversary A and game system G :

— A9pPpP,Ospk,0sk,0rpPKk,OrK,08,0D
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A wins the game if there is a ciphertext ¢ such that Op is queried on inputs (By, ¢)
and (Bj,c) for some B; and B; (possibly with B; = B;), there is no prior query
on either B; or Bj to Ork, query Op(B;, ¢) outputs some (spk;, ¥, m) satisfying
(spk;, ¥,m) # L, spk, is some party A;’s public sender key (i.e. Ospx(A;) =
spk;) and rpk; € ¥ (where rpk; is B;’s public key), and query Op(Bj,c) does
not output the same triple (spk;, ¥, m).

The advantage of A in winning the Consistency game is denoted Adv<°"(A)
and corresponds to the probability that A wins game G as described above.

The following security notion is analogous to the EUF-CMA security notion for
Digital Signature Schemes. For the case of a single receiver, it informally states
that if a sender A is honest, then no dishonest party can forge a ciphertext that
fools an honest receiver into believing A sent it some message that A actually
did not send.

Definition 8 (Unforgeability). Consider the following game played between
adversary A and game system GUrfre;

— A9prpP,Ospk,0sk,0OrrPK,OrK,08,0D

We say that A wins the game if there is a query q to Op on an input (B}, c) that
outputs (spk;,¥,m) # L with spk, being some party A;’s sender public key (i.e.
Ospk(A;) = spk;), there was no query Og(A4;, v,m) where V is the vector of
parties with corresponding public keys U, Ogk was not queried on input A;, and
Ork was not queried on input B;.

The advantage of A in winning the Unforgeability game is the probability that
A wins game GY'8 g5 described above, and is denoted AdvU"™"8(A).

We say that an adversary A (e, t)-breaks the (ng,ng,dg, 95, ¢p)-Correctness,
Consistency, or Unforgeability of IT if A runs in time at most ¢, queries Ogpg,
Osk, O and Op on at most ng different senders, queries Orpg, Ork, O and
Op on at most ng different receivers, makes at most qg and qp queries to Og
and Op, respectively, with the sum of lengths of the party vectors input to Og
being at most dg, and A’s advantage in winning the (corresponding) security
game is at least ¢.

The following security notions are the MDRS-PKE variants of Definitions []
and [} The games defined by these notions provide adversaries with access to
the oracles Opp, Ospk, Osk and Orpx defined above as well as to oracles Og
and Op. For both notions, Op is defined as follows:

Decryption Oracle: Op(Bj,c)
1. If ¢ was the output of some query to O, output test;
2. Otherwise, compute (spk;, v, m) < Dyp sk, (c), where sk; is Bj’s secret
key; output (spk;, 7, m).
The Op oracle provided by the IND-CCA-2 games differs from the one provided
by the IK-CCA-2 games; for IND-CCA-2, O is as follows:

Encryption Oracle: Og(A;, 17, ™Mo, m1)
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GIND—CCA—2
b

1. For game system , encrypt mp under ssk; (A;’s sender secret

key) and ¢ (V’s corresponding vector of receiver public keys); output c.
Definition 9 (IND-CCA-2 Security). Consider the following game played be-
tween an adversary A and a game system G't',\'D'CCA'2, with b € {0,1}:

— Y « A9PP,Osrk,0Osk,OrpPk,Or,0D

A wins the game if b/ = b and for every query Og(A;, V,mo,ml):
— |Img| = |m1|; and
— there is no query on A; to Ogg.

We define the advantage of A in winning the IND-CCA-2 game as
Adv™P-CA2(A) = |Pr[AGIPCA2 — yin] 4+ Pr[AGINP-CCA2 — yin] — 1.

For the IK-CCA-2 security notion, Og behaves as follows:
Encryption Oracle: OE((Az 0, ‘70)7 (Ai71, ‘71), m)
1. For game system GY<CA2 encrypt m under ssk; 1, (A;p’s secret key)

and ¥ (the vector of public keys corresponding to Vb), creating a fresh
ciphertext c; output c.

Definition 10 (IK-CCA-2 Security). Consider the following game played be-
tween an adversary A and a game system GY-CA2 with b € {0,1}:

— ) «— AOPP.Ospk,Osk,0OrPK,0r,0pD
A wins the game if b’ = b and for every query ((A; o, 170), (A1, 171), m) to Op:

— Vol = [V1]; and
— Ogk is not queried on neither A; o and A; 1.

We define the advantage of A in winning the IK-CCA-2 security game as
Adp™CA2(A) =|PrAGECA2 = win] + PrIAGH A2 = yin] — 1|.

We say that an adversary A (e, t)-breaks the (ng,dg,qg,qp)-IND-CCA-2
security or IK-CCA-2 security of IT if A runs in time at most ¢, queries Ogrpr,
Opg and Op on at most ngr different receivers, makes at most ¢ and gp queries
to Op and Op, respectively, with the sum of lengths of the party vectors input to
OF being at most dg, and has at least € advantage in winning the corresponding
security game.

Remark 6. The IND-CCA-2 and IK-CCA-2 security notions for MDRS-PKE schemes
capture, respectively, confidentiality and anonymity. Even though one could de-
fine stronger variants of these notions wherein the adversary is allowed to query
for the secret key of any sender, we chose these definitions because they are
weaker, but yet strong enough to imply composable security (see |3,/4,/17] for the
analogous case of the Outsider Security Model for Signcryption). Nonetheless,
our MDRS-PKE construction satisfies the stronger IND-CCA-2 and IK-CCA-2
security notions in which the adversary is allowed to query for the secret key of
every sender.
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The following notion captures the Off-The-Record property of MDRS-PKE
schemes, and resembles the (Any-Subset) Off-The-Record security notion in-
troduced in [13] for MDVS schemes. This notion defines two game systems,
GSTR'FOTQ ¢ and G?TR'FOTQ ¢, which are parameterized by an algorithm Forge. The
game systems also provide adversaries with access to an oracle O, whose behav-
ior varies depending on the underlying game system, i.e. depending on b € {0,1}.
OF behaves as follows:

Encryption Oracle: Og(type € {sign,forge}, A4;, V,m,D)
For game system GgTR'FOTge, the oracle behaves as follows:

1. co + Epp(ssk;, U, m);

2. c1 < Forge,,(spk;, v, m, {rsk;}p,ep);

3. If b =0, output ¢ if type = sign and ¢y if type = forge;

4. Otherwise, if b = 1, output c;.

Definition 11 (Off-The-Record). Let Forge be a PPT algorithm that on input
PP, SpK;-, U, m* and {rsk;}p,ep~, outputs a forged ciphertext ¢’. For b € {0, 1},
consider the following game played between an adversary A and game system
GOTR—Forge,

b :

— VY « A9PpP,Osrk,0sk,OrPK,OrK,Or,0D

A wins the game if b = b and for every query (type, A;, ‘7, m, D) to O, and
letting ¢ be the output of Og, all of the following hold:

1. D C Set(V);

2. for every query B; to Oyk, B; ¢ Set(V)\ D;

3. for every query A; to Osk, A # A;; and

4. for all queries Op(A;, By, V’,m’,c’) with Ay = A; and V' =V, ¢ £ c.

A’s advantage in winning the Off-The-Record security game with respect to
Forge is defined as

AdvOTRFOm9e(A) = |Pr[AGQ TN = win] + PrAG TR = win] — 1.

We say that an adversary A (soTr,t)-breaks the (ng,ng,dg,qg,qp)-Off-The-
Record security of IT with respect to algorithm Forge if A runs in time at most ¢,
queries Ospr, Osk, O and Op on at most ng different senders, queries Orpr,
Ogrk, O and Op on at most ng different receivers, makes at most gz and ¢p
queries to O and Op, respectively, with the sum of lengths of the party vectors
input to Of being at most dg, and satisfies AdeTR'F‘)rge(A) > €0TR-

Finally, we say that II is

(ECorrv €Cons; EUnforg ;£ IND-CCA-2; EIK-CCA-2, EOTR;
t,ns,nr,dr, qE, g, Forge)-secure,

if no adversary A:
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— (ecor, t)-breaks the (ng,ng,dg, qg, gp)-Correctness of IT;

— (econs, t)-breaks the (ng,ng,dg, qg, qp)-Consistency of IT;

— (&Unforg, t)-breaks the (ns,nr,dg, qr, ¢p)-Unforgeability of IT;

— (5IND-CCA-27 t)—breaks the (TLR, dg,qE, qD)—|ND—CCA—2 security of IT;

— (5IK-CCA-27 t)—breaks the (TLR, dg,qE, qD)—|K—CCA—2 security of II; or

— (eoTr, t)-breaks the (ng,ng,dg, qg, qp)-Off-The-Record security of IT with
respect to Forge.

Remark 7. As one may note, due to the Off-The-Record property of MDRS-PKE
schemes (see , any receiver B; can generate a ciphertext that
decrypts correctly under B;’s own receiver secret key using only its own secret
key and the public keys of the sender and any other receivers. It is thus crucial
that, when defining ciphertext Unforgeability (see , the adversary is
not allowed to query for the secret key of any receiver with respect to which it is
trying forge a signature.

It is equally important that the adversary is not allowed to query for the secret

keys of honest receivers in the Off-The-Record security notion (Definition 11J):
as honest receivers do not participate in the ciphertext forgery, due to the

Unforgeability of ciphertexts —Which in particular guarantees that
if a receiver is honest, then it only decrypts ciphertexts generated by the actual
sender, assuming the sender is honest—if an adversary could query for the secret
key of an honest receiver Bj, it would be able to distinguish real ciphertexts
generated by the sender—which B; would decrypt successfully using its secret
key—from fake ciphertexts generated by dishonest receivers—which, by the
Unforgeability of ciphertexts, B; would not decrypt successfully.

Finally, the adversary can also not be given access to the secret key of any
honest receiver B; in the Consistency game of [Definition 7| as otherwise, by the
Off-The-Record guarantee (Definition 11f), it would be able to use B;’s receiver
secret key to forge a ciphertext ¢ that B; would decrypt successfully (as if it
really had been sent by the actual sender), whereas any other honest (designated)
receiver’s decryption of ¢ would fail.

6 A Multi-Designated Receiver Signed Public Key
Encryption Scheme from Standard Assumptions

In this section we give a construction of an MDRS-PKE scheme from a PKEBC
scheme and an MDVS scheme (see Algorithm . The construction essentially
consists of using the MDVS scheme to sign both the messages and the vectors
of public PKEBC keys of the receivers, and then using the PKEBC scheme to
encrypt the signed message, together with its MDVS signature, the public MDVS
signer key of the sender and the vector of public MDVS verifier keys of the
receivers.

Remark 8. Even though our MDRS-PKE construction allows parties to locally
generate their keys, to achieve the Off-The-Record guarantee it is required that
dishonest receivers know their secret keys. This is only so as otherwise one could
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Algorithm 2 Construction of an MDRS-PKE scheme IT = (S, Gs, Gy, E, D)
from a PKEBC scheme IIpkgpc = (G, S, E, D), and an MDVS scheme ITypys =
(Setup, Gs, Gy, Sign, Vfy).
S’etup(lk)
PPupvs < ITvpvs.Setup(1¥)

PPrxEpc < Tpkmo.S(1%)

PP ‘= (PPmpvs: PPPKEBC)
return pp

Gs(pp = (PPmDVs: PPPKEBC))
(spkyipyvss sskmpvs) < IIvpvs-Gs (PPypys)
spk := spkypys
ssk := (spk, sskmpvs)
return (spk, ssk)

Gv (pp = (PPuDVS: PPPKEBC))
(vPEMpys vSkmpvs) <= IIvpvs- Gv (PPuvpvs)
(PkPKEBcv SKPKEBC) HPKEBC~G(PPPKEBC
rpk := (vPkyipvs, PkprEBC)
rsk = (I‘pk7 (vskmDVS, skaEBc))
return (rpk, rsk)

Eyp(ssk;, U, m)
With
PP ‘= (PPMDVs: PPPKEBC)
ssk; = (spk;, sSkMDVs;)
7= (rpky, ... 7rpklm)
for each i € {1,...,|7|}
rpk; = (VPKypvs; PRpkEBC;)

UpkEBC ¢ (PkpkEBC1: - - - ' PRPKEBC)5])
Tmpvs < (VPEyvpysys - - 7VPkMDVS\5\)
0 < IIvupvs.-Signg, o (sskmpvs;, Set(Umpvs), (TpkeBC, M)

return IIpkesc-Bppyppc (FPrEBC, (SPK,; TMDVS, ™, 0))

Dyp(rskj, c)
With
PP = (PPmDVS> PPPKEBC)
rsk; = (rpk;, (vskmpvs ;, SkPKEBC))

pk; = (vPkypys j» PRpkEBC;)

(FpkEBC, (SPK;, DMDVS, M, 0)) + HpkEBC- Dppprppc (SKPKEBC;, €)

if (UpkeBC, (SPK;, PMDVS, m,0)) = L V |Upkesc| # |Oupvs| then
return L

= (('UMDVSh UPKEBCl)w ceey (UMDVSWPKEBC\ s UPKEBCWPKEBC\))

if rpk, ¢ U then
return L

if ITnvipvs. nyPPMDVS (spk;, vskMDVS 5 Set(Umpvs), (VPKkEBC, M), o) # valid then
return

return (spk,;, v, m)
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mount attacks that break the Off-The-Record guarantee. For instance, consider
an honest sender Alice that sends a message m to Bob. Bob, who is dishonest
wants to convince a non-designated receiver, Eve, that Alice sent m. To do that,
Bob could have Eve generating the keys for Bob herself, and give him only the
public key (that Bob would claim as being his public key). When Alice sends m,
Eve can now learn that Alice sent m as it can use Bob’s secret key. Furthermore,
since no one other than Eve has Bob’s secret key, Eve knows that it cannot be
a fake message, implying that it must be Alice’s message. Current composable
notions capturing the security of MDVS schemes solve this problem by assuming
a trusted third party which generates all key-pairs and gives everyone access to
their own key-pair [28]@ This in particular implies that Bob would have access
to its own secret key, and so even if Eve would know Bob’s secret key, she would
not be able to tell if Alice was the one sending messages or if Bob was faking
Alice’s messages.

6.1 Security Analysis of the MDRS-PKE Construction

Due to space restrictions, the full proofs of the following results are in the

appendix (see [Appendix HJ).
Theorem 6. If IIpkxgpc is

(SPKEBC—CornaPKEBC—Roba EPKEBC-Cons; EPKEBC-IND-CCA-2; EPKEBC-IK-CCA-2;

(6.1)
tPKEBC, "PKEBC; dEPKEBC: {EPKEBC: 4D PKEBC) -S€CUTE,
and HMDVS 18
(EMDVS—CornEMDVS—ConSa EMDVS-Unforgs EMDVS-OTR; EMDVS-PIs
tMDVS, RSMDVS: MV MDVS s ASMDVS» (6.2)

gsmpvs» 4V mpvss Forgeypys)-secure,

then no adversary A (e, t)-breaks IT’s

(ns == nsmpvs,
ng = min(npkEBC, MV MDVS)

b
dp = min(dgpkepc; dsmpvs)
qr = min(¢eprEpc: ¢SMDVS)

(

qp = min(¢pprEpc: ¢vMpvs))- Correctness,

with € > EPKEBC-Corr + EMDVS-Corr, @1d tPKEBC, tMDVS = t + tcorr, where teor 18
the time to run IT’s G game.

8 The composable notions capturing the security of MDVS given in [28] actually assume
something even stronger: every dishonest party has access to the secret keys of every
other dishonest party.
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Remark 9. Similarly to |[Remark 3] if Ilpkgpc’s correctness holds even when the
adversary is allowed to query for the secret key of any receiver, and Ilypys’s
correctness holds even when the adversary is allowed to query for the secret keys
of any signer or verifier, then I1’s Correctness holds even when the adversary is
allowed to query for the secret keys of any sender and receiver.

Theorem 7. If [Ipkgpc is

(5PKEBC—Corr75PKEBC—Roba EPKEBC-Cons; EPKEBC-IND-CCA-2; EPKEBC-IK-CCA-2;

(6.3)
lPKEBC, "PKEBC; d EPKEBC> {EPKEBC» QDPKEBC)-SGCW’%
and HMDVS 18
(EMDVS—CornEMDVS—ConSa EMDVS-Unforgs EMDVS-OTR; EMDVS-PI,
tMDVS; RSMDVSs MV MDVSs ASMDVS (6.4)

gsmpvs» 4V mpvss Forgeypys)-secure,
then no adversary A (e, t)-breaks IT’s
(ns = ngmpvs, MR = Min(NpkEBC, "V MDVS)s dE = dsMDVS;
4E = 4smpvs, 40 = min(¢ppEpc: v mpvs)) -Consistency,

with € > €pKEBC-Cons + EMDVS-Cons, @1d tPKEBC, IMDVS & t + tcons, Where tcons
is the time to run IT’s G game.

Theorem 8. If II\ipys is
(EMDVS-ComEMDVS-ccns, EMDVS-Unforg; EMDVS-OTR; EMDVS-PI,

IMDVS, TSMDVS> PV MDVSs dSMDVS (6.5)

asmpvss 4V vpvs, Forgeypys)-secure,
then no adversary A (e, t)-breaks IT’s
(ns = nsmpvs: "R = nvmpys, dE = dsmpvs,
4B = qsmpvs, 4D = qvmpvs) - Unforgeability,

with € > eMDVS-Unforg, 0Nd tMDVS R t + tunforg, Where tunforg 5 the time to run
II'’s GYrre game.

Theorem 9. If ITpkgpc is

(EPKEBC-Corr, EPKEBC-Rob) EPKEBC-Cons; EPKEBC-IND-CCA-2, EPKEBC-IK-CCA-2, (6.6)
tPKEBC, "PKEBC; dEPKEBC: {EPKEBC» IDPKEBC) -SECUTE,

then no adversary A (e, t)-breaks IT’s

(nr = npkEBC; dE = dEPKEBC)
4B = qepKEBC, 40 = ¢ppKEBC)-IND-CCA-2 security,

with € > ePKEBC-IND-CCA-2, and tpkEBC = t + tinD-cca-2, where tinp-cca-2 18 the
time to run IT’s GIND-CCA2 games.
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Remark 10. Note that Definitions [9] and [I0] do not allow an adversary to query
for the secret keys of any sender A; that is given as input to a query to Og. Yet,
the proofs of Theorems [J] and [I0] actually show something stronger. Namely, that
IT is secure according to even the stronger IND-CCA-2 and IK-CCA-2 security
notions in which an adversary is allowed to query for the secret key of any sender.

Theorem 10. If IIpkgpc s

(5PKEBC—Corr75PKEBC—Rob7 EPKEBC-Cons; EPKEBC-IND-CCA-2; EPKEBC-IK-CCA-2, (6 7)

tPKEBC, "PKEBC, A EPKEBC > {EPKEBCS CIDPKEBC)‘%CW@;

then no adversary A (e, t)-breaks IT’s

(ng == npkEBC, dE = dEPKEBC:

4E ‘= qEpPKERC, 4D = 9ppkEic)-IK-CCA-2 security,

with € > EPKEBC-IND-CCA-2 + EPKEBC-IK-CCA-2, and tpkEBC ~ t + tik-cca-2, where
tik-cca-2 18 the time to run Il’s GIK-CCA2 games.

Theorem 11. In the following let Forge denote Algorithm[] If IIypys is

(EMDVS—CornEMDVS—ConSa EMDVS-Unforgs EMDVS-OTR; EMDVS-PI,
tMDVS; RSMDVSs MV MDVSs ASMDVS (6.8)

gsmpvs» 4V mpvss Forgeypys)-secure,

then no adversary A (e, t)-breaks II’s

(ns = NSMDVS; MR ‘= NV MDVS» dp = dSMDVSa
4E = 4smpvss 4D = Qv mpvs: Forge)-Off-The-Record security,

with € > enpvs-oTR, and tyvpys =t + toTr, where toTr s the time to run I1’s
GOTR games.

Remark 11. Tt is easy to see from the proof of [Theorem 11]that if [Typys satisfies
a stronger Off-The-Record notion in which the adversary is allowed to query for

the secret key of any sender, then IT would also satisfy the analogous stronger
Off-The-Record notion for MDRS-PKE schemes in which the adversary is allowed
to query for the secret key of any sender.
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Appendix

A Game-Based Security Definitions for Public Key
Encryption Schemes

A Public Key Encryption (PKE) scheme IT with message space M is a triple of
PPTs II = (G, E, D). Below we state the multi-user multi-challenge variants of
Correctness and IND-CPA and IK-CPA security for PKE schemes (first introduced
in [18] and [7], respectively). Throughout the rest of this section, let IT = (G, E, D)
be a PKE scheme. As before, we assume the game systems of the following
definitions have (an implicitly defined) security parameter k.

Definition 12} which captures the correctness of PKE schemes, provides
adversaries with access to oracles Opg, O and Op:

Public Key Generation Oracle: Opg(B;)

1. On the first call on B;, compute and store (pk;, sk;) < G(1%); output
pk;;

2. On subsequent calls, simply output Pk;.

Encryption Oracle: Og(B;,m;r)

1. If r is given as input, encrypt m under pk; (Bj’s public key, as generated
by Opk) using r as random tape; if r is not given as input create a fresh
encryption of m under pk;

2. Output the resulting ciphertext back to the adversary.

Decryption Oracle: Op(Bj,c)

1. Decrypt c using sk; (B;’s secret key, as generated by Opk);

2. Output the resulting plaintext back to the adversary (or L if decryption
failed).

Definition 12. Consider a PKE scheme II = (G, E, D) with message space M,
and consider the following game played between between an adversary A and
game system GO

— A9pPk,0r,0p

A wins the game if there are two queries qg and qp to O and Op, respectively,
where qg has input (B;,m) and qp has input (B;',c), the input c in qp is the
output of qg, Bj = B;', and the output of qp is m' with m’ # m.

The advantage of A in winning the Correctness game, denoted Adv®™(A),
is the probability that A wins game G as described above.

An adversary A (ecornr, t)-breaks the (n, ¢g, gp)-Correctness of a PKE scheme
IT if A runs in time at most t, queries Opg, O and Op on at most n different
parties, makes at most ¢ queries to oracle O and at most gp queries Op(B;, c)
such that ¢ was previously output by a query Og(B;, m) for the same party Bj,
and satisfies Advc°"(A) > ecorr- If A is computationally unbounded, we write
instead that (ecor)-breaks the (n)-Correctness of IT if A queries Opg, O and
Op on at most n different parties and satisfies Advco"(A) > ECorr-

The IND-CPA game systems provide adversaries with access to oracle Opg
described above, and to an additional oracle O which behaves as follows:
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Encryption Oracle: Og(B;, mg, m1)
1. For game system G{L\'D‘CPA, the oracle encrypts my, under B;’s public key,
Pk, creating a fresh ciphertext c;
2. The oracle outputs the resulting ciphertext ¢ back to the adversary.

Definition 13. For b € {0,1}, consider the following game played between an

adversary A and game system GIND-CPA;
— VY «— A9Pk,0OE
A wins the game if b’ = b and for every query Og(B;, mg, m1), |mo| = |ma|.

We define the advantage of A in winning the IND-CPA security game as
Adv™PPA(A) = |Pr[AGYP A = win] + PrAGYP- P = win] — 1]

Similarly to the IND-CPA game systems, the IK-CPA game systems provide
adversaries with access to oracle Opg and to an oracle O which behaves as
follows:

Encryption Oracle: Og(Bjo,Bj1,m)
1. For game system G{')(‘CPA7 encrypt m under Bjy’s public key, pk;y,
creating a fresh ciphertext c;
2. Output the resulting ciphertext ¢ back to the adversary.

Definition 14. Consider the following game played between an adversary A and
game system GYS-CPA with b € {0,1}:

— ) «— AOPk,Or

A wins the game if b’ = b.
We define the advantage of A in winning the IK-CPA security game as

Ad’UIK_CPA(A) — Pr[AGloK—CPA _ win} + PT[AGI]_K_CPA — Win] —1].

We say A (einp.-cpa, t)-breaks (resp. (eik-cpa, t)-breaks) the (n, ¢g)-IND-CPA
(resp. (n,qg)-IK-CPA) security of a PKE scheme IT if A runs in time at most
t, queries the oracles it has access to on at most n different parties, makes
at most g queries to oracle O, and satisfies Adv'ND'CPA(A) > einp-cpa (Tesp.
Adv"™PA(A) > eicpa).

Finally, we say that IT is (€cor, EIND-CPA; EIK-CPA, E5 1, ¢E, D )-Secure if no adver-
sary A (gcorr, t)-breaks the (n,qg, gp)-Correctness of II, (einp-cpa, t)-breaks the
(n, qg)-IND-CPA security of II, or (eik_cpa,t)-breaks the (n,gg)-IK-CPA security
of IT. Similarly, we say that IT is (Ecorr, EIND-CPA, EIK-CPA, L, 2, 4B, 4D, Corr)-secure
if no adversary A (enp.cpa,t)-breaks the (n,qg)-IND-CPA security of II nor
(e1k-cpa, t)-breaks the (n, gg)-IK-CPA security of IT, and no (possibly computa-
tionally unbounded) adversary (ecor )-breaks the (n)-Correctness of I1.
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B Game-Based Security Definitions for Binding
Commitment Schemes

A Commitment Scheme (CS) for a message space M is a protocol consisting
of a pair of PPT algorithms IT = (G¢rs, Commit). We now move to introduce
game-based notions capturing the security of CS protocols. We assume the game
systems ahead have (an implicitly defined) security parameter k.

The game systems of Definitions 15| and [16| provide adversaries with access to
an oracle Og, defined as:

CRS Generation Oracle: Og
1. On the first call, compute and store crs + Gcrs(1¥); output crs;
2. On subsequent calls, output the previously generated crs.

captures the hiding property of Commitment Schemes. We give
a game-based notion capturing this property which resembles the IND-CPA notion
for PKE schemes. Gg'dmg provides adversaries with access to oracle Og defined
above, and to an oracle O¢ommst Whose behavior is defined below:

Encryption Oracle: Ocommit(mo, m1)

1. Pick randomness p uniformly at random;
2. For game system Gg'd'"g, compute comm < Commit..s(my; p); output

comm.

Definition 15. Consider the following game played between an adversary A and
a game system Gg'dmg, with b € {0,1}:

— bl — AOS;OC’onmnit

A wins the game if b’ = b.
We define the advantage of A in winning the Hiding game as

AdvHidng(A) ::’Pr[AGgiding = win] + Pr[AGliliding = win] — 1].

An adversary A (eniding, t)-breaks the (¢)-Hiding property of a CS IT if it runs
in time ¢, makes at most ¢ queries to Ocommit, and satisfies Adeidi”g(A) > EHiding -

Definition 16] which captures the binding property of Commitment Schemes,
provides adversaries with access to an oracle Ocommt defined as follows:

Commit Oracle: Ocommit(m, p)
1. Compute comm = Commitcrs(m;p)ﬂ output comm.

Definition 16. Consider the following game played between an adversary A and
game system GBinding .

— A9s5,0commit
9 Here, p denotes the random coins used by Commit, meaning that Commit(y(-; p) is

a deterministic algorithm.
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A wins the game if there are two queries q and ¢ to Ocommst where q has input
(m, p) and outputs comm and q' has input (m’,p") and outputs comm’, satisfying
m # m’' and comm = comm’.

The advantage of A in winning the Binding game is denoted Adv® "8 (A)
and corresponds to the probability that A wins game GB""e g5 described above.

An adversary A (€ginding, t)-breaks the Binding property of a CS II if A runs
in time at most ¢t and satisfies Ad’UBi"di"g(A) > €Binding- If A is computationally
unbounded, we instead write that A (EBinding)—breaks the Binding property of IT
if Adv®" " (A) > eginding-

We say a CS II is (EHiding, EBinding, b, ¢)-secure if no adversary A (€Hiding, t)-
breaks the (g)-Hiding property of IT, or (£ginding, t)-breaks the Binding property of
I1. For a Statistically Binding Commitment Scheme (i.e. one for which the Binding
property holds against computationally unbounded adversaries), we say instead
that IT is (€Hiding, €Binding, T, ¢, Binding)-secure if no adversary A (€Hiding, t)-breaks
the (¢)-Hiding property of II, and no (possibly computationally unbounded)
adversary (€ginding)-breaks the Binding property of II.

As is well known, any perfectly correct and IND-CPA secure PKE scheme
yields a non-interactive Commitment Scheme scheme, where the crs is the public
key of the PKE scheme (which is honestly generated by a trusted party), and
commitments are encryptions of messages under the crs (i.e. under the public
key). It is easy to see that the ElGamal PKE scheme [14], which is perfectly
Correct and tightly Multi-Party Multi-Challenge IND-CPA secure under DDH
(see [8]) yields a tightly Multi-Challenge hiding commitment scheme.

C Game-Based Security Definitions for Non Interactive
Zero Knowledge Schemes

For a binary relation R, let Lg be the language Ly = {z | 3w, (z,w) € R}
induced by R. A Non Interactive Proof System (NIPS) for Lp is a triple of PPT
algorithms IT = (G¢rs, Prove, Verify) where:

— Gers(1F): given security parameter 1%, outputs a common reference string
crs;

— Provecys(x, w): given a common reference string crs and a statement-witness
pair (z,w) € R, outputs a proof p;

— Verify.,.s(x,p): given a common reference string crs, a statement z and a
proof p, either accepts, outputting valid (= 1) or rejects, outputting invalid

(=0).

In the following definitions, let IT = (G¢rs, Prove, Verify) be a NIPS for
a relation R, and let k& be the security parameter. The security notions below
(Definitions and provide adversaries with access to oracles Og and Oy,
defined as:

CRS Generation Oracle: Og
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1. On the first call, compute and store crs + Gcrs(1¥); output crs;
2. On subsequent calls, output the previously generated crs.

Verify Oracle: Oy (z,p)
1. Compute b = Verify.s(z,p); output b.

additionally provides adversaries with access to an oracle Op:

Prove Oracle: Op(z,w)
1. Compute p = Provegs(x,w); output p.

Definition 17. Consider the following game played between an adversary A and
game system G Complete .

— A09s,0p,0v

A wins the game if there are two queries gp and qy to Op and Oy, respectively,
where qp has input (x,w) and qy has input (z',p), satisfying x = 2/, the input p
in qv is the output of qp, the output of qv is invalid, and (z,w) € R.

The advantage of A in winning the Completeness game, denoted Adv“™P*(A),
corresponds to the probability that A wins game GCO™Plete 45 described above.

We say that an adversary A (€complete, t)-breaks the (¢p, v )-Completeness of
a NIPS scheme IT if A runs in time at most ¢, makes at most gp and ¢y queries
to oracles Op and Oy, respectively, and satisfies Advcmplete(A) > EComplete-

Definition 18. Consider the following game played between an adversary A and
game system G3oUund:

— AO0s,0v

A wins the game if there is a query to Oy on input (z,p), satisfying x & Lg,
such that the oracle outputs valid.

The advantage of A in winning the Soundness game corresponds to the prob-
ability that A wins game G5 qs described above and is denoted Adv>°""(A).

An adversary A (€sound; t)-breaks the (gy)-Soundness of a NIPS scheme IT
if A runs in time at most ¢, makes at most gy queries to Oy and satisfies
Adl}sound(A) > €Sound-

A NIZK scheme IT = (Gggs, Prove, Verify, S = (Scrs, Ssim)) for a relation
R consists of a NIPS scheme IT' = (G¢rs, Prove, Verify) for R and a simulator
S= (SCRS, Sgim), where:

— Scprs(1F): given security parameter 1%, outputs a pair (crs,7);
— SSim(crs,7)(¥): given a pair (crs,7) and a statement x, outputs a proof p.

Consider a NIZK scheme IT = (G¢rs, Prove, Verify, S = (Scrs, Ssim))- The
following security notion, which defines game systems G§X and G4X, provides
adversaries with access to two oracles, Og and Op, whose behavior depends on
the underlying game system. For G£K (with b € {0,1}):
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CRS Generation Oracle: Og
1. On the first call, compute and store crs + Gcrs(1¥) if b = 0 , and
(crs,T) + Scrs(1%) if b = 1; output crs;
2. On subsequent calls, output the previously generated crs.
Prove Oracle: Op(z,w)
— If b = 0, output @ = Provec,s(z, w);
— If b =1, output 7 <= Ssim (crs,r)(T)-

Definition 19. For b € {0,1}, consider the following game played between an
adversary A and game system G{K:

— b «— A9s.0p

A wins the game if b’ = b and for every query to Op, the input (z,w) given to
Op satisfies (x,w) € R.
The advantage of A in winning the Zero-Knowledge security game for II is

Adv™(A) =|Pr[AG5" = win] + Pr[AG%X = win] — 1|.

We say that an adversary A (ezk,t)-breaks the (¢p)-ZK security of a NIZK
scheme [T if it makes at most gp queries to Op and satisfies AdeK(A) > 7K.
We now introduce Simulation Soundness for NIZK [31]. The game system

defined by this notion provides adversaries with access to oracles Og, Op and
Oy defined as:

CRS Generation Oracle: Og
1. On the first call, compute and store (crs,T) + Scrs(1¥); output crs;
2. On subsequent calls, output the previously generated crs.
Prove Oracle: Op(z)
1. Compute p = Sgim (crs,r)(T); output p.
Verify Oracle: Oy (z,p)
1. Compute b = Verify,,(x, p); output b.

Definition 20. Consider the following game played between an adversary A and
game system GSS:

— A09s,0p,0v

A wins the game if it makes a query to Oy on input (x,p) such that p was not
output by any query to Op, © & L and Oy outputs valid.

The advantage of A in winning the Simulation Soundness game, denoted
AdeS(A), is the probability that A wins game G35 as described above.

An adversary A (ess,t)-breaks the (gp, gv)-Simulation Soundness of a NIZK
scheme [T if it makes at most gp and gy queries to Op and Oy, respectively,
and satisfies Adv>>(A) > ess.

Finally, we say that a NIZK scheme IT is (€complete, ESound; EZK, €55, £, P, qv )-
secure if no adversary A (€complete, t)-breaks the (¢p, gy )-Completeness of I,
(Esound, t)-breaks the (qy )-Soundness of IT, (ezk, t)-breaks the (¢p)-Zero-Knowledge
of IT, or (ess, t)-breaks the (¢p, gy )-Simulation Soundness of IT.
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D Game-Based Security Definitions for Multi-Designated
Verifier Signature Schemes

A Multi-Designated Verifier Signature scheme (MDVS) IT is a 5-tuple IT =
(Setup, Gs, Gy, Sign, Vfy), following the definition of [24]. The security games
for MDVS schemes have an implicitly defined security parameter k, and provide
adversaries with access to some of the following oracles:

Public Parameter Generation Oracle: Opp

1. On the first call to Opp, compute pp + Setup(1¥); output pp;

2. On subsequent calls, simply output pp.
Signer Key-Pair Generation Oracle: Ogg(4;)

1. On the first call to Osk on input A;, compute (spk;, ssk;) < Gs(pp),

and output (spk;, ssk;);

2. On subsequent calls, simply output (spk;, ssk;).
Verifier Key-Pair Generation Oracle: Oy (B;)

1. Analogous to the Signer Key-Pair Generation Oracle.
Signer Public-Key Oracle: Ogspk(A4;)

1. (spk;,ssk;) - Ogi(4;); output spk;.
Verifier Public-Key Oracle: Oy pg(B;)

1. Analogous to the Signer Public-Key Oracle.
Signing Oracle: Og(4;,V,m)

1. (Spki, SSki) — OSK(Ai)§

2. For all B; € V: vpk; « Ovpi(Bj);

3. Output o < Sign,,(ssk, {vpkj}BjeV,m).
Verification Oracle: Oy (4;,B; € V,V,m,0)

1. spk; < OSPK(Ai)§

2. For all B, € V: vpk; < Oy pk(B));

3. (vpk;, vskj) <= Ovk(Bj);

4. Output d < Vfy,,(spk;, vsk;, {vpk; } p,ev, m, 0).

We now introduce the relevant game-based notions for MDVS schemes. Let
IT = (Setup, Gs, Gy, Sign, Vfy) be an MDVS scheme.

Definition 21. Consider the following game played between an adversary A and
the game system GO :

— A9pPpP,0Osk,0vk,Ospk,0Ovpi,0s,0v

A wins the game if there are two queries qs and qy to Og and Oy, respectively,
where qs has input (A;,V,m) and qv has input (A;', B;,V',m/,0), satisfying
A;=A/, V=V, B; €V, the input o in qy is the output of qs, the output of
qv is 0, and A did not query Oggi on (input) A; nor Oy on B;.

The advantage of A in winning the Correctness game, denoted Adv®™(A),
is the probability that A wins game G as described above.
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We say an adversary A (£cor, t)-breaks the (ng,ny,ds, ¢s, gy )-Correctness
of IT if A runs in time at most ¢, queries Ogspgk, Osk, Og and Oy on at most
ng different signers, queries Oy pi, Oy, Os and Oy on at most ny different
verifiers, makes at most gg and gy queries to Og and Oy, respectively, with sum
of the sizes of the sets of verifiers input to Og being at most dg and satisfies
Adv®"(A) > econ

The following security notions, Definitions [22| and correspond to multi-
challenge variants of existing security notions from the literature [13,35]. The
multi-challenge versions of both of these security notions are asymptotically
equivalent to the single challenge counterparts (meaning that if a scheme asymp-
totically satisfies the single-challenge version of either of these notions then it
also asymptotically satisfies the corresponding multi-challenge version). To allow
for the multiple challenges, we will introduce an additional oracle Ocpaitenge that
adversaries use to submit the (possibly multiple) challenges to the games. Inputs
to oracle Ochalienge are quadruples of the form (m*, A;*, V*, 0*); the oracle does
not output any value. The exact behavior of the oracle, and in particular the
definition of when the adversary wins the underlying game, depends on the
security notion. On any query to this oracle, and regardless of whether it is a
game-winning one, the oracle does not give any output.

The following security notion is the multi-challenge version of the Consistency
security notion for MDVS, introduced by Damgard et al. in [13].

Definition 22. Consider the following game played between an adversary A and
the game system GCo"s:

— A9pPp,0sk,0vik,0spk,0vpi,0s,0v,0challenge

where oracles Opp, Osk, Ovk, Ospi, Ovpi, Og, and Oy are as defined above,
and oracle Ochaiienge Teceives as input a pair (m*,0*) and does not give any
output. We say that A wins the game if it queries Ochatienge 0N @ pair (m*,o*)
such that there are two later queries to Oy with inputs (A;, B;,V,m*,c*) and
(A;, B;',V,m*,c*), and outputs b,b’ satisfying Bj, B;' € V and b # V', and Oy k
was not queried on B;j nor on B;'.

The advantage of A in winning the Consistency game, denoted Adv=°"(A),
is the probability that A wins game G as described above.

Definition 23. Consider the following game played between adversary A and
game system GUore:

— A9pPpP,0sk,0vk,0spk,0vpPk,0s,0v,0chatienge
where oracles Opp, Osk, Ovik, Ospi, Ovpk, Og, and Oy are as defined
above, and oracle Ochalienge TeCEIVES as input a pair (m*,c*) and does not give
any oulput. We say that A wins the game if there is a query q to Ochalienge ON

an input (m*,0*) and there is a later query to Oy with input (A;, B;,V, m*,c*)
that outputs 1 with B; € V such that all of the following conditions hold:

1. Ogk was not queried on A;;
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2. Oy i was not queried on B;;
3. for every query (A;',V',m’) to Og before q, (A;, V,m*) # (A, V',m');

The advantage of A in winning the Unforgeability game, denoted Adv"""8(A),
is the probability that A wins game GU™8 a5 described above.

The following security notion was first introduced in [28], and is the multi-
challenge variant of the Off-The-Record (game-based) security notion introduced
in [13]. This notion defines two game systems, G§' < °"¢ and GTR7°™¢ which
are parameterized by an algorithm Forge. The game system also defines an oracle
OcChailengesign Whose behavior varies depending on the underlying game system,
i.e. depending on b € {0,1} the oracle Ochaitengesign provided by GgTR'FOTge
behaves differently, as described below.

ChallengeSign Oracle: Ocpiiengesign(type € {sign, forge}, A;,V,m, D)

OTR-Forge
Gb

For game system , the oracle behaves as follows:

1. Pp <~ Opp;

(spk;, ssk;) < Osk(A;);

For each B; € V: vpk; < Ovpi(B;);

For each B; € D: (vpk,,vsk;) < Ov(B;);

oo « Signy,(ssk;, {vpk;}p,ev, m);

o1 < Forge,,(spk;, {vPk,} B;ev, m, {vsk;}p,ep);

If b = 0, output oy if type = sign and o7 if type = forge;
Otherwise, if b = 1, output o7.

PO O W

Definition 24. Consider an MDVS scheme IT = (Setup, Gs, Gy, Sign, Vfy). In
the following, let Forge be a PPT algorithm that on input pp, spk,., {vpk;}B,ecv-,
m* and {vsk;}p,ep-, outputs a forged signature o’. For b € {0, 1}, consider the

, OTR-F.
following game played between an adversary A and game system Gy " " 7"9¢:

— V) « AOPP,Osk,Ovk,Ospi,0vrr,0v,OChaliengeSign

A wins the game if b’ = b and for every query (type, A;, V,m, D) to OchaliengeSign
all of the following hold:

1. DCV;

2. for every query B; to Ovi, B € V\D;

3. for every query A; to Ogk, A; # A;; and

4. letting o denote the output of Ochaiiengesign to the query above, for all queries
(Ai, B;,V',m/,a’) to oracle Oy, o’ # 0.

The advantage of A in winning the Off-The-Record security game with respect
to Forge is

AdvOTRFP(A) = |Pr[AGE 7 = win] + Pr{AGY X" = yin] — 1.
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We say that an adversary A (eoTr, t)-breaks the (ng,ny,ds, gs, gv)-Off-The-
Record security of II with respect to algorithm Forge if A runs in time at most ¢,
queries Ogpk, Osk, Og and Oy on at most ng different signers, queries Oy pr,
Ovk, Os and Oy on at most ny different verifiers, makes at most gs and qy
queries to Og and Oy, respectively, with sum of the sizes of the sets of verifiers
input to Og being at most dg and satisfies AdeTR(A) > €0TR-

The following security notion is the multi-challenge variant of the Privacy
of Identities (game-based) security notion introduced in [13]. Similarly to the
Off-The-Record security notion, this new notion defines two game systems, G§?
and Glfl. The game system also defines an oracle Ochaiiengesign Whose behavior
varies depending on the underlying game system, i.e. depending on b € {0, 1} the
oracle Ochaliengesign Provided by GEI behaves differently, as described below.

ChallengeSign Oracle: Ochaiiengesign((Ao, Vo), (A1, V1), m)
For game system GEI7 the oracle behaves as follows:
L. pp <= Opp;
2. (Spkb, SSkb) — OSK(Ab)E
3. For each B; € Vp: vpk; + Ovpi(Bj);
4. 0 < Sign,,(sskp, {vpk,} B, ev,,m); output o.
Definition 25 (Privacy of Identities). Consider an MDVS scheme II =
(Setup, Gs, Gy, Sign, Vfy). For b € {0,1}, consider the following game played
between an adversary A and game system GE' :

— P « A9PP,Osk,0Ovk,Ospk,Ovrk,;0s,0v,OcChaliengeSign

A wins the game if b’ = b and for every query Ochatiengesign (Ao, Vo), (A1, V1), m)
all of the following hold:

1. |V0| = ‘V]_‘,'

2. for all queries A; to Ogk, A; & {Ao, A1};

3. for all queries Bj to Oy, Bj Vo U Vq;

4. for all queries (A;, B;,V,m,0) to oracle Oy, A; & {Ag, A1} or V £ Vo U V4.

We define the advantage of A as
AdvP'(A) = |Pr|[AG)' = win] + Pr[AGY' = win] — 1|.

An adversary A (e, t)-breaks the (ng,nv,ds, s, qv )-Consistency, Unforge-
ability, or Identity-Privacy of IT if A runs in time at most ¢, queries Ospx, Osk,
Og and Oy on at most ng different signers, queries Oy pk, Oy, Os and Oy
on at most ny different verifiers, makes at most ¢s and gy queries to Og and
Oy, respectively, with sum of the sizes of the sets of verifiers input to Og being
at most dg and the advantage of A in winning the (corresponding) security game
being at least €.

Finally, we say that IT is

(ECorn €Cons; €Unforg,EOTR; EPI
t,ns,ny, dS7 qs,qv, Forge)—secure,

if no adversary A:
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— (ecor, t)-breaks the (ng,nv,ds, gs, qv )-Correctness of IT;
— (2cons, t)-breaks the (ng,ny,ds, qs, gy )-Consistency of IT;
— (EUnforg, t)-breaks the (ng,nv,ds, gs, qv)-Unforgeability of IT;
— (eoTr, t)-breaks the (ng,ny,ds, qs, qv )-Off-The-Record security of IT with
respect to Forge; or
— (eiND-cca-2, t)-breaks the (ng,nv,ds, qs, qv )-Privacy of II.

E Multi-Designated Verifier Signature Scheme with
Privacy from Standard Assumptions

The construction of an MDVS scheme achieving Privacy of Identities (see
from standard assumptions is straightforward from the MDRS-PKE
scheme construction given in Algorithm [2| For completeness, we give an explicit
construction in Algorithm [3] Note that the signature forgery algorithm that is
required to exist so that the MDVS scheme is Off-The-Record is the same as for
the MDRS-PKE scheme (see Algorithm [4).

Algorithm 3 Construction of an MDVS scheme IT = (Setup, Gs, Gy, Sign, Vfy)
with privacy from an MDRS-PKE scheme II\viprs.pre = (5, Gs, Gr, E, D).

Setup(1*)
return ITyvprs-pxe-S(1F)

Gs(pp)
return ITvprs-pke-Gs (pp)

Gv (pp)
return ITvprs-pke- Gy (pp)

Sign(pp, sski, {vpk;}jev,m)
Let ¥ be an arbitrary (but fixed) vector satisfying || = [V| and V = {v; }ieqa1,...,|5]}
return HMDRS—PKE-EPP(67 m)

Vfy(pp, spk;, vsk;, {vpk; }iev, m, c)
(’17, m ) +— HMDRs_pKE.DPP(VSkj, c)
if (T,m')=1 VvV m#m’ Vv Set(?) # {vpk, }icv then
return invalid
else
return valid

F Tight Multi-User Multi-Challenge IK-CPA Security of
ElGamal

Throughout this section, let G = {g) be a group with |G| = ¢ prime.

Definition 26. Forb € {0,1}, consider the following game between an adversary
A and GPPH:
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1. (z,y,2) &7 x T x T
2. (X7KZO7ZI) = (nggy7gwy7gz);
3. bl <_A(g7q7X1KZb)

A wins the game if b’ = b.
A’s advantage in winning DDH for G is:

AdvPPH(A) :=|Pr[AGEPH = win] + Pr[AGPP" = win] — 1|.

We say that an adversary A (eppn, t)-breaks the DDH assumption for a group G
if A runs in time at most ¢ and satisfies AdvDDH(A) > eppH; conversely we say
that the DDH assumption (eppn, t)-holds for G if no adversary A (eppn, t)-breaks
the DDH assumption for G.

For a cyclic group G = (g) with |G| = ¢ prime, the ElGamal [14] PKE scheme
works as follows:

Key-Pair Generation
1. Pick b < Zj uniformly at random, and compute B = g%
2. pk :=(g,q, B), and sk = (g, ¢, b).
Encryption
1. On input (pk := (g,q, B),m), pick 7 < Z; uniformly at random;
2. Output as ciphertext ¢ := (R = ¢",C = (¢°)" - m).
Decryption
1. On input (sk == (g,q,b),c = (R, C)), compute R?;
2. Output R~?- C.

It is well known that ElGamal is tightly Multi-User Multi-Challenge IND-
CPA secure under DDH [§]: if an adversary A (e, t)-breaks the (n,qg)-IND-CPA
security of ElGamal for a (cyclic) group G (with |G| = ¢ prime), then there is
an adversary A’ that (¢/,¢')-breaks the DDH assumption for the same group
G with &’ > ¢/2—1gand t' =t + O(T**P - (n + qg)), where T°*P is an upper
bound on the time to compute an exponentiation. However, to the best of our
knowledge only the Single-User Single-Challenge IK-CPA security of ElGamal
has been proven [7]. For completeness, we now show that ElGamal is also tightly
Multi-User Multi-Challenge IK-CPA secure under DDH.

Theorem 12. If there is an adversary A that (e,t)-breaks the (n,qg)-IK-CPA
security of the ElGamal PKE scheme for a cyclic group G = (g) with |G| = ¢
prime, then there is an adversary A’ that (¢',t")-breaks the DDH assumption for
the same group G, with
- > 8721/‘1 ; and
-t =t4+ 0T - (n+qg)), where TP is an upper bound on the time to
compute an exponentiation.

Proof. Consider the IK-CPA game systems G'OKfcpA and G'lecpA for the ElGamal
PKE scheme using G as the underlying group. We give reductions Cy and C;
satisfying:
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(1) CoGEPH = C,;GPPH with probability at least a—1/g;
(2) CoGEPH = gli-tea,
(3) C,G{PH = G%—CF’A.

Reductions Cy and C; work as follows:

Initialization:
1. (9,4, X,Y, Z) < GPPH,
A queries Opg on input B;:
1. On the first call on By, pick r; uniformly at random from Z7, and store
(Bj,7j, (9,9, X"7)); output pk; = (g,q, X"7);
2. On subsequent calls for Bj, simply output pk; = (g,¢, X"7).
— A queries O of C; on input (Bj o, Bj 1, m):
1. Pick r uniformly at random from Z7, and compute R :=Y" and C :=
Z7iv " m, where ;5 is the value created by Opg for Bj; output (R, C).
When A outputs a guess b':
1. C, outputs i/ @b as the guess.

It is easy to see that Cy and C; satisfy Conditions and specified
above. Finally, by considering a reduction system C that initially picks b < {0, 1}
uniformly at random and then behaves as Cy, it follows that adversary AC
(%1/‘1, t')-breaks the DDH assumption, where ¢’ ~ ¢t + O(T®*P - (n+2-qg)). O

G PKEBC Construction Security Proofs

In this section we give the (missing) full security proofs for the PKEBC construc-

tion given in

G.1 Proof of Theorem [1]

Proof. We prove a stronger result. Namely, we consider an alternative Correctness
security notion for PKEBC schemes that only differs from in that it
allows the adversary to query for the secret key of any receiver and still win the
game.

This proof proceeds in a sequence of games [9,[32].

Game This is the original G Correctness game as described above.

Game This game is just like the original Game [} except that now the crscg

output by Og is perfectly binding (see [Appendix B)).
Let

Adv(Game —Corr(A) — PI‘[AG(Game —Corr _ win],

where the conditions for A winning G(Game B)-Cons 410 the same as for the original

game. It follows from [Eq. (4.5)| that no adversary (£cs-ginding)-breaks the Binding
property of Ilcg, implying

AdUCorr(A) < £CS-Binding + AdU(Game —Corr(A).
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Game This game is just like the original Game [2| except that now for each
ciphertext ¢ := (p, comm, ¢) output by O for a query with input (‘7, m), if Op
is queried on input (Bj,c) with B; € ‘7, Op no longer verifies p’s validity using
IIn1zk .V, and instead simply proceeds as if p would verify as being valid.

Let

Adv(Game —Corr(A) — Pr[AG(Game -Corr _ WiIl],

where the conditions for A winning G(Game B)-Corr are the same as for the original
game. Since A can only make up to qg < ¢pnizk queries to Og and ¢p < qvNizK

queries to Op, it follows from [Eq. (4.4)| that no adversary (en1zk-Complete; INTZK )-
breaks the (¢pnizi> @V nizK)-Completeness of IInizk, implying

AdU(Game -Corr(A) < ENIZK-Complete + Adv(Game -Corr(A).

Game This game is just like Game [3] except that when Op is queried on
an input (Bj, ¢), where ¢ := (p, comm, ¢) was output by a query (’)E(V,m) such
that B; € ‘7, Op no longer tries decrypting each ¢ of ¢ satisfying v; = pk;
using ITpkg.D, and instead simply assumes the output is (p, ¥, m), the tuple
encrypted by IIpkg.F—with p being the random coins used by Ilcs to compute
the commitment comm.

The probability of winning Game [4]is 0: consider any query (’)];(‘77 m) and
any later query Op(Bj,c) where ¢ = (p, comm, €) is the output of the first query
and where B; € V:

— Since IIpkg is now assumed to be a correct PKE scheme, then for the least
l € {1,...,]¢]} satisfying V; = Bj, Bj’s decryption of ¢; o of ¢ is going to
be (¥, m), where ¥ is the vector of public keys corresponding to V. By the
definition of IT.D this then implies that if no (¢, m”) # (¥, m) is output—
corresponding to the decryption of some ¢ o where I’ < [—then I1.D outputs
(¥, m);

— Since crscg is binding, for any (¢, m') # (¥, m) (with (¢',m’) # L) and any
I

comm # Ics. Commiters.s (0, m'; p'),

implying Op does not output (¢, m’) # (¥, m).

To conclude, since n < npkg, dg < qepkg and ¢p < QDPKEE it follows

from [Eq. (4.3)} that no adversary (epkg-corr, tPkE )-breaks the (n, ¢ppkr, 4dDPKE)-
Correctness of IIpkg, implying

Adv(Game —Corr(A) < EPKE-Corr-

O

10 Note that, as since Game [3| ITnizk is assumed to be complete, each query Op(By, c),

where ¢ = (p, comm, €) is the output of some prior query O (‘7, m) satisfying B; € v,

will entail a query to ITpkg.D for B;’s decryption of a ciphertext ¢;,o of ¢ that was
encrypted in the O query using pk; (B;’s public key).
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G.2 Proof of Theorem 2|

Proof. First, note that an adversary A wins this stronger Robustness game if
there are two queries gg and ¢qp to O and Op, respectively, where gg has input
(V,m) and ¢p has input (B,,c), satisfying B; ¢ V, the input ¢ in gp is the
output of ¢g, and the output of gp is (7', m’) with (¢, m’) # L. By the definition
of I1.D, the output of gp being some pair (v,m’) # L implies pk; € ¥'; since
B; ¢ ‘7, pk; ¢ U (where Pk; is B;’s public key and ¥ is the vector of public keys
corresponding to the vector of parties ‘7), implying (0", m’) # (¥, m). Also by the
definition of IT.D, the output of ¢p being some pair (¢',m’) # L implies there is
a sequence of random coins p’ such that

comm = [1cs. Commiters.q (U, m'; p').

Noting that this is only possible if crscg is non-binding, it follows from [Eq. (4.6)|
that no adversary (€cs-ginding)-breaks the Binding property of IIcg, implying

Adv®P(A) < £CS-Binding:

G.3 Proof of Theorem [3

Proof. We prove a stronger result. Namely, we consider an alternative Consistency
security notion for PKEBC schemes that only differs from in that it
allows the adversary to query for the secret key of any receiver (and still win the
game).

This proof proceeds in a sequence of games [9,32].

Game [1} This is the original G Consistency game as described above.

Game 2] This game is just like the original Game [T} except that now the crscg
output by Og is perfectly binding (see [Appendix B).
Let

AdU(Game —ConS(A) — PI‘[AG(GamC Cons — win],
where the conditions for A winning G(Game B)-Cons 41 the same as for the original
game. It follows from [Eq. (4.9)} that no adversary (£cs-ginding)-breaks the Binding
property of Ilcg, implying

Advc°"s(A) < £0S-Binding + Adv(Game —ConS(A)'
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Game [3| This game is just like Game [2] except that whenever Op is queried
on an input (Bj,c), with ¢ = (p, comm, ¢), such that (crscs,comm, ¢) & Lcons
(crscg being the one generated by Opp), Op outputs L.

Game [J|is perfectly indistinguishable from Game [2] unless A makes a decryp-
tion query on a ciphertext ¢ := (p, comm, €¢) such that the NIZK proof p verifies
as being a valid one for statement (crscg, comm, ¢) € Lcons, and with respect to
the crscg output by Og, but (crscg, comm, €) € Lcons. Let

Adv(Game —ConS(A) — PI[AG(Game —Cons _ Win],
where the conditions for A winning G(Game B)-Cons are the same as for winning
Game [2] Noting that A makes at most ¢p = qy iz decryption queries, it

follows from [Eq. (4.8)| that no adversary (ex1zK-Sound, EN1zK )-breaks the (qv N1z )-
Soundness of IINizk, implying

Adv(Game —ConS(A) < ENIZK-Sound + Ad,U(Game —ConS(A)'

To conclude this proof, we will prove the following claim:

Claim. For any adversary A such that n < npkg,
Adv(Game —ConS(A) < EPKE.Corr-

Proof. Recall that an adversary A wins Game 3] if it queries Op on inputs (B;, c)
and (Bj, c) for some B; and B; (possibly with B; = B;) and some ciphertext c,
and the first query outputs (¢, m) # L with pk; € ¥ (where pk; is B;’s public
key), whereas the second outputs either L or some (¢, m’) with (¢v/,m’) # (7, m).

Consider any two queries ¢p; and ¢p ; that A makes to Op on inputs (B;, ¢)
and (Bj, '), respectively, satisfying ¢ = ¢/, and such that ¢p ; outputs (¥;,m;)
with (¥;,m;) # L and pk; € ;. First, note that if A does not make any two
queries satisfying these conditions, then it does not win Game 3] In the following,
let ¢ == (p, comm, €) be the ciphertext input to ¢p; and ¢p ;.

By the soundness of IInizk, there is a vector of public keys ¢ and a message
m such that comm is a commitment to (¥, m), and for every ciphertext ¢, p of ¢
there is a sequence of random coins 7, ; such that c; p is the IIpkg encryption
of (p,¥,m) under key v, ; using r, 5 as the encryption’s (sequence of) random
coins; by the binding of crscg, both ¥ and m are unique; the definition of I1.D
implies (¥;, m;) = (¢, m) and implies the existence of [,I’ € {1,...,|v]} satisfying,
respectively, pk; = v; and pk; = vy. Furthermore, by the definition of I1.D, ¢p,;
(resp. gp,;j) will not output (U; 4, mi o) from (pi o, Ui,a, Mia) < Hpre.Dsk, (Ca,0)
(resp. (¥j,8,mjp) from (p;s,7j3,m;p)  Ilpke.De,(cs0)) for any o with
Vo # Pk; (resp. any (8 with vg # pk;), because either ¥j o # U (vesp. ¥j,5 # ¥),
or pk; # v, (resp. pk; # vg). Again from the definition of I1.D, gp; outputs,

for some I € {1,..., ||}, (¥, msy) from (p; 1, Uiz, miy) < Hpke.Dsk, (¢1,0), with
vy = pk,; and where ¢; o € ¢. Similarly, ¢p ; either outputs L, or outputs, for
some ll = {17,|1_}"}, (ﬁj,l’7mj,l’) frOm (pj,l’7/l7j,l’7mj,l’) < HPKE'DSkj(Cl',O)a

with vy = Pk; and where ¢/ o € €. Note that, since given a fixed sequence of
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random coins p, cg.Commit is a deterministic algorithm, if (p; 1, U1, M) =
(pjirsVjr,mjyr) then the outputs of ¢p ; and ¢p ; are the same. Recall from before
that the soundness of IInizx implies all ciphertexts ¢, ; of ¢ are encryptions of
the same triple (p, ¥, m) under some sequence of random coins 7, . Thus, the
only way for A to win Game [3|is by breaking the Correctness of the underlying
ITpkg scheme. However, since A queries for at most n := npkg different parties,
it follows from that A does not (npkg)-break the (ecor)-correctness
of HpKEE This implies the advantage of A in winning Game or in other
words, the advantage of A in making any two queries ¢gp ; and gp ; satisfying
the conditions described above so that the outputs of ¢p; and ¢p,; differ—is
bounded by ecorr-

This concludes the proof of the claim, and thus also of O

G.4 Proof of Theorem [4]

Proof. We also proceed in a sequence of games [9}32].

Game |1} This is the original G&““A-2 security game from [Definition 5, meaning

that each challenge ciphertext is an encryption of the corresponding challenge
plaintext m* under V.

Game [2| This game is just like the original Game [T} except that the IITpkg
instance that generates every ciphertext ¢; o, with [ € {1,...,|c}, of the chal-
lenge ciphertext’s vector ¢ := ((0170, c1,1)s -+ (€05 C‘EIJ)) is now assumed to be
correct, meaning that if one would decrypt any such ciphertext one would obtain
the plaintext that was initially encrypted.

Let

Adv(Game -|K-CCA-2(A) —

’Pr[AG(Game B)-IK-cca-2 _ win] + PrIAGI-CCA2 — yin] 1],

where A wins G(Game[2)-IK-CCA-2 ¢ ¢ outputs b = 0. Since n < npkg, it fol-

lows from [Eq. (4.10)| that no adversary (epkg-corr, tPKkE)-breaks the (npkg)-
Correctness of ITpkg, implying

AdUIK—CCAQ(A) < apKE_Corr+Adv(Game-IK—CCA—2(A).

Game This game is just like Game [2] except that the IIpkg instance that
generates every ciphertext ¢; 1, with I € {1,...,|c}, of the challenge ciphertext’s
vector of ciphertexts ¢ = ((01,0,6171), ceey (C‘a@,qg"l)) is now assumed to be
correct, meaning that if one would decrypt any such ciphertext one would obtain
whatever plaintext had been initially encrypted.

1 Note that since there is a sequence of random coins 755 such that ¢y, of €is an
encryption of (p,v,m) under pk;, then a query Og(Bj, (p,¥,m);r2) at Ilpxe’s
correctness game will output ¢z p.
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Let
Adv(Game —IK-CCA-2(A) —
’Pr[AG(Game B)-IK-ccA-2 _ win] + PrIAGI-CCA2 — yin] 1],

where A wins G (Game[)-IK-CCA-2 ¢ 54 outputs ¥ = 0. Since n < npkg, it fol-

lows from [Eq. (4.10)| that no adversary (epkg-corr, tPkE)-breaks the (npkg)-
Correctness of ITpkg, implying

Adv(Game-lK-CCA-z(A) < €PKE_C0rr+AdU(Game-|K.CCA_2(A)_

Game This game is just like Game E[, except that now Og generates crsyrz

using Scrs, and for each challenge ciphertext ¢* := (p, comm, ¢), the NIZK proof
p is now simulated, meaning it is generated by Ssim,-
Let

Adv(Game -IK-CCA-2(A) o

Pr[AG(Game [-1k-cca-2 _ win| + Pr[AGllK-CCA-Z = win] — 1

)

where A wins G(Game[)-IK-CCA-2 4 ¢ outputs b = 0. Since A can only make

up to gr < gpNizk queries to O, it follows from that no adversary
(en1zK-ZK, tNTZK )-breaks the (gpnizk )-Zero-Knowledge of IInzk, implying

Adv(Game—lK—CCAQ(A) < ENIZK.ZK +Adv(Game-lK—CCA—2(A).

Game |5, This game is just like Game 4] except that for each [ € {1,...,|c},

ciphertext ¢;1 of vector ¢ = ((0170,0171), ce (cwo,qg‘,l)) of the challenge ci-

phertext ¢* := (p, comm, ¢) is now an encryption of (p, ¥}, m*)—where p is some

sequence of random coins, independent of the one used by Ilcs. Commit—instead

of (p, U5, m*)—where p is the sequence of random coins used by IIcs. Commit.
Let

Adv(Game -IK-CCA-2(A) o

’Pr[AG(Game B)-IK-ccA-2 _ win] + PrIAGI-CCA2 — yin] 1))

where A wins Game [5|if it outputs b’ = 0. Since dg < qrppkg and n < npkg,
it follows from [Eq. (4.10), that no adversary (epkr.IND-cPA,tpKE)-breaks the
(npkE; ¢EpkE)-IND-CPA security of IIpkg, implying

AdU(Gamc-lK-CCAQ(A) < EPKEIND-CPA + AdU(Gamc-lK-CCAQ(A).
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Game [6] This game is just like Game [5] except that for each I € {1,...,|dl},
ciphertext ¢1 (of vector @ == ((c1,0,¢1,1),---,(¢j@,0,¢z,1)) of the challenge
ciphertext ¢* := (p, comm, ¢)) is now encrypted under public key (v]); 1, instead
of being encrypted under public key (v§);,1.

Let

Adv(Game @—IK-CCAQ(A) —

’Pr[AG(Game [)-IK-cca-2 _ win] + PrIAGI-CCA2 — gin] 1],

where A wins Game @ if it outputs b’ = 0. Again, since dg < ¢Epkg and

n < npkg, it follows from [Eq. (4.10)] that no adversary (epkg.ik.cpa,tPKE)-
breaks the (npkg, ¢rpry)-1K-CPA security of IIpkg, implying

AdU(Game —IK—CCA-Z(A) < EPKE.IK.CPA + Adv(Game -IK—CCA—2 (A)

Game [7] This game is just like Game [f] except now a decryption query for
a party Bj—with secret key ((pk; ,skj0), (Pk;1,8kj,1))—on a ciphertext ¢ :=
(p, comm, €)—with &= ((01,0, c11)s -5 (Ca,0 c|g‘,1))—behaves slightly differently:
rather than decrypting, for [ € {1,...,|¢]}, ciphertext ¢; o using sk;o, it now
decrypts ¢;,1 using sk;; instead.

It is easy to see that Game [f]is perfectly indistinguishable from Game [7] unless
A makes a decryption query for a receiver B; on ciphertext ¢ := (p, comm, ¢) such
that the NIZK proof p verifies with respect to (crscs, comm, ¢) (crscs being the
one generated by Opp), but (crscs, comm, ¢) € Loons. Let

Ady(Game -IK-CCA-2(A) —

’Pr[AG(Game @—IK—CCAQ — win} + Pr[AGllK—CCA—Z _ win] 1

)

where A wins Game [7]if it outputs b’ = 0. Since A sees at most ¢ < gpnizK
simulated proofs (namely the ones in the challenge ciphertext) and makes at most
dp < qvnizk decryption queries, it follows from that no adversary
(ENIZK-SS,tNIZK)—breakS the (qPNIZK,quIZK)—Simulation Soundness of IINizxk,
implying

Ady(Game @-lK-CCA-z(A) < eNtzK.SS - Ady(Game -IK-CCA-2(A).

Game This game is just like Game [7} except that for every I € {1,...,]|d},
ciphertext ¢;,0 of vector & := ((c1,0,¢1,1),---,(¢a,0,¢jz,1)) of the challenge ci-
phertext ¢* := (p, comm, €) is now an encryption of (¢, ¥, m*)—where p’ is some
sequence of random coins independent of the one used by Ilgs. Commit—instead
of (p, 05, m*)—where p is the sequence of random coins used by cs. Commit—
similarly to Game
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Let

Adv(Game —IK-CCA-2(A) —

’Pr[AG(Game B)-Ik-cca-2 _ win] + PrIAGI-CCA2 — yin] 1],

where A wins Game [8|if it outputs b’ = 0. Since dg < ggpkg and n < npke,

it follows from that no adversary (€pKE_|ND_cpA,tpKE)—breakS the
(npKkE, ¢Epkg)-IND-CPA security of ITpkg, implying

AdU(Game—lK—CCAQ(A) < EPKE_IND_CPA+AdU(Game-IK—CCA-2(A)'

Game [9} This game is just like Game 8] except that for each challenge ciphertext
¢* = (p,comm, ¢) comm is now a commitment to (v7,m) instead of being a
commitment to (7, m). Note that the sequence of random coins encrypted in
each ciphertext in ¢ is now independent from the sequence used by Ilcg. Commit.

Let
Adv(Game E[)-IK-CCA-Z(A) —

’Pr[AG(Game p)-IK-cca-2 _ win] + PrAGI-CCA2 — yin] 1],

where A wins Game |§| if it outputs ¥ = 0. Since gr < qgs, it follows from

Eq. (4.12)| that no adversary (ecs-Hiding, tcs)-breaks the (gcg)-Hiding security
property of Ilcs, implying

Ady(Game -IK-CCA-Q(A) < £CS-Hiding + Ady(Game @)-IK-CCA-Q(A).

Game This game is just like Game [9] except that for every [ € {1,...,|él},

ciphertext ¢, (of vector ¢ = ((01,0, c1,1)s -5 (€la,0 0\51,1)) of the challenge

ciphertext ¢* := (p, comm, €)) is now an encryption of (p, ¥y, m*)—where p is the

sequence of random coins used by Icg. Commit—instead of (p', U, m*)—where p’

is some sequence of random coins, independent of the one used by Ilcg. Commit.
Let

AdU(Game 110)-1K-CCA-2 (A) o

‘PI‘[AG(Game —IK—CCA—2 _ win] + PI‘[AGIIK_CCA_Q — Win] -1 ,

where A wins Game [10|if it outputs b’ = 0. Since dg < ¢ppkg and n < npgg,
it follows from that no adversary (epkg.ND-cPA,tpkE)-breaks the
(npkE, ¢Epky)-IND-CPA security of ITpkg, implying

Adv(Game @—IK—CCAQ (A) < EPKE.IND.CPA + Adv(Game —IK—CCA—2(A).
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Game This game is just like Game except that, similarly to Game[G] for
every | € {1,...,|d}, ciphertext c; o (of vector &:= ((c1,0,¢1,1),- -, (¢ja,0,lz,1))
of the challenge ciphertext ¢* := (p, comm, €)) is now encrypted under public key
(v])1,1, instead of being encrypted under public key (vg)i1.

Let

AdU(Game 111))-IK-CCA-2 (A) -
‘PI‘[AG(Game —IK—CCA—2 _ win] + PI‘[AGIIK_CCA_Q — Win] -1 ,

where A wins Game if it outputs b’ = 0. Since dg < ggpky and n < npkE,

it follows from [Eq. (4.10)| that no adversary (epkg.ik-cpa,tpkE)-breaks the
(npkE, ¢Epxg)-1K-CPA security of ITpkg, implying

Adv(Gamc —IK—CCA—Z(A) < EPKE.IK.CPA + Ad’l}(GamC [11)-IK-CCA-2 (A)

Game This game is just like Game except now a decryption query for
a party B;—with secret key ((pk; o, skj0), (Pk; 1, skj,1))—on a ciphertext c :=
(p, comm, &)—with ¢ := ((01,0, c11)s -5 (€0 c|5‘,1))—behaves slightly differently:
rather than decrypting, for [ € {1,...,|c]}, ciphertext ¢; 1 using sk; 1, it returns
to decrypting ¢; o using sk; o.

It is easy to see that Game [11]is perfectly indistinguishable from Game
unless A makes a decryption query for a receiver B; on ciphertext ¢ := (p, comm, ¢)
such that the NIZK proof p verifies with respect to (crscg, comm, ¢) (crscs being
the one generated by Opp), but (crscs, comm, &) € Loons- Let

AdU(Game 112))-IK-CCA-2 (A) —

)

‘Pr[AG(Game [2)-IK-ccA-2 _ win] + PrIAGI-CCA2 — yin) 1

where A wins Game [12]if it outputs b’ = 0. Since A sees at most gg < gpNizK
simulated proofs (namely the ones in the challenge ciphertext) and makes at most

dp < qv iz decryption queries, it follows from that no adversary
(ENIZK_ss,tNIZK)—bI"eakS the (quIZK,qVNIZK)—Simulation Soundness of IINizxk,
implying

AdU(Game —IK-CCA—2(A) < ENIZK.SS + Adv(Game —IK—CCA—2(A).

Game This game is just like Game [12] except that for every I € {1,...,]|cl},
ciphertext ¢; 1 (of vector ¢ = ((0170,01,1),...,(c|5|,0,c‘g|,1)) of the challenge
ciphertext ¢* := (p, comm, ¢)) is now an encryption of (p, U, m*)—where p is the
sequence of random coins used by Ilcs. Commit—instead of (p, 0, m*)—where 5

is some sequence of random coins, independent of the one used by Ilcg. Commiit.
Let

Ady(Game -IK—CCA—Z(A) —

Pr[AG(Game [[3)-1K-cca-2 _ win] + Pr[AGllK_CCA_Q = win] — 1|,
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where A wins Game if it outputs b’ = 0. Since dg < qgpky and n < npkE,

it follows from that no adversary (epkg.IND-cPA,tPKE)-breaks the
(npKkE, ¢Epkg)-IND-CPA security of ITpkg, implying

Adv(Game—lK—CCAQ(A) < EPKE_IND_CPA+AdU(Game—IK—CCA—Q(A).

Game This game is just like Game except that the crsyrzx output by
oracle Og returns to the one generated by IInizk-Gers, and the NIZK proof p
in each challenge ciphertext returns to a real one generated by IInizk.P.

Let

AdU(GamC 114)-IK-CCA-2 (A) —

‘Pr[AG‘.(Game [-1K-CCA2 — yin) 1+ PrAGK-CA2 — yin] — 1

)

where A wins Game if it outputs ¥’ = 0. Since A can only make up to

qe < gpnizx queries to Op, it follows from [Eq. (4.11) that no adversary
(eN1ZK-zZK, tN1zK )-breaks the (¢pnizi)-Zero-Knowledge of IINizk, implying

AdU(Game —IK—CCA—2(A) < eNIZK.ZK + Adv(Game 114)-1K-CCA-2 (A)

Game This game is just like Game except that the ITpky instance that

generates every ciphertext ¢; o, with I € {1,...,|c]}, of the challenge ciphertext’s
vector ¢ = ((0170,01,1), ce (c|g|70,c‘5‘,1)) is no longer assumed to be perfectly
correct.

Let

AdU(Game 115)-1K-CCA-2 (A) —

‘Pr[AG(Game [5)-IK-CCA-2 _ win] + PrIAGI-CCA2 — yin) 1],

where A wins G(Game[L3)-IK-CCA-2 3¢ it outputs ¥ = 0. Since n < npkg, it fol-
lows from [Eq. (4.10)| that no adversary (epkg-corr, tPkE)-breaks the (npkg)-
Correctness of IIpkg, implying

Adv(Game—IK—CCAQ(A) < 6PKE_C0rr+AdU(Game—IK—CC/—\—2(A)'

Game This game is now G-““A2: the only difference from Game [15|is that
the IIpkg instance that generates every ciphertext ¢; 1, with [ € {1,...,|cl}, of
the challenge ciphertext’s vector ¢ := ((6170, c11)s -5 (a0 c|g|’1)) is no longer
assumed to be perfectly correct.

Since n < npkg, it follows from[Eq. (4.10), that no adversary (epkg-corr, tPKE)-
breaks the (npkg)-Correctness of IIpkg, implying

Ad’U(GamC 115)-IK-CCA-2 (A) < EPKE-Corr-
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G.5 Proof of Theorem [5

Proof. This proof follows the same overall structure as the one given in [19] (in
particular, we also proceed in a sequence of games [9}[32]).

Gamel|1l This is the original GJ'P-C“A-2 security game from [Definition 41 meaning
that each challenge ciphertext is an encryption of the corresponding challenge

plaintext mg.

Game [2| This game is just like the original Game [T} except that the IIpkg
instance that generates every ciphertext ¢; o, with [ € {1,...,|c}, of the chal-
lenge ciphertext’s vector ¢ := ((0170, c1,1)s -+ (€05 C‘EIJ)) is now assumed to be
correct, meaning that if one would decrypt any such ciphertext one would obtain
the plaintext that was initially encrypted.

Let

Adv(Game -|ND-CCA-2(A) —
‘Pr[AG(Game —|ND—CCA—2 — win} + PI’[AGI]_ND_CCA_2 — win] -1 ,

where A wins G(Game[)-IND-CCA-2 ¢ j¢ outputs ¥ = 0. Since n < npkg, it

follows from that no adversary (epkg-corr, tPKE)-breaks the (npkg)-
Correctness of IIpkg, implying

AdUIND-CCA-2(A> < EPKE_Corr+AdU(Game-IND-CCA-2(A).

Game This game is just like Game [2] except that the IIpkg instance that
generates every ciphertext ¢; 1, with I € {1,...,|c}, of the challenge ciphertext’s
vector of ciphertexts ¢ = ((01,0,0171), cel (C‘EL(),CIE"J)) is now assumed to be
correct, meaning that if one would decrypt any such ciphertext one would obtain
whatever plaintext had been initially encrypted.

Let

Adv(Game -IND-CCA-2(A) —
‘Pr[AG(Game —|ND—CCA—2 — win} + PI'[AGI]_ND_CCA_2 — win] -1 ,

where A wins G(Game[)-IND-CCA-2 ¢ j¢ outputs ¥ = 0. Since n < npkg, it

follows from that no adversary (epkg-corr, tPKE)-breaks the (npkg)-
Correctness of ITpkg, implying

AdU(Game -IND-CCA-2 (A) < EPKE.-Corr + Adv(Game -IND-CCA-2 (A)
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Game This game is just like Game [3] except that now Og generates crsyrz
using Scrs, and for each challenge ciphertext ¢* = (p, comm, ¢), the NIZK proof
p is now simulated by Sgim,-

Let

AdU(Game -|ND-CCA-2(A) —

PI,[AG(Ga.me —|ND—CCA—2 — win} + PI’[AGI]_ND_CCA_2 — win] o 1’7

where A wins G (Game[{)-IND-CCA-2 ¢ j¢ outputs ¥ = 0. Since A can only make

up to ¢g < gpnizi queries to O, it follows from that no adversary
(5NIZK—ZKa tNIZK)—breaks the (quIZK)—Zero—Knowledge of HNIZK7 implying

Adv(Gamc-lND-CCAQ(A) < ENIZK.ZK _i_Adv(Gamc-lND-CCAQ(A).

Game |5 This game is just like Game except that now, for each ! € {1,...,|d},
ciphertext ¢;,1 of vector @ := ((c1,0,¢1,1),---,(¢a,0,¢/z,1)) of the challenge ci-
phertext ¢* = (p,comm, ) is an encryption of (p,v*, mj)—where p is some
sequence of random coins, independent of the one used by Ilcs. Commit—instead

of (p, 7", m§)—where p is the sequence of random keys used by Ics.
Let

Adyp(Game -IND-CCA-Q(A) —

‘PT[AG(Game [B)-IND-cCA-2 _ win] + Pr{AGIND-CA2 — yip) 1,

where A wins Game [5| if it outputs b’ = 0. Since dg < ¢ppkg and n < npkg,

it follows from that no adversary (epkg.IND-cPA,tPKE)-breaks the
(npkE, ¢Epkg)-IND-CPA security of ITpkg, implying

Ady(Game -IND-CCA-2(A) < epKEIND.cPA 4+ Ady(Game -IND-CCA-2(A).

Game [6] This game is just like Game [f] except now a decryption query for
a party Bj—with secret key ((pk; ,skjo0), (Pk;1,skj1))—on a ciphertext c :=
(p, comm, €)—with &= ((01,0, ci1)s -5 (Ca,0 c|5‘71))—behaves slightly differently:
rather than decrypting, for I € {1,...,|¢]}, ciphertext ¢; o using sk; o, it now
decrypts ¢;,1 using sk;; instead.

It is easy to see that Game B]is perfectly indistinguishable from Game [6] unless
A makes a decryption query for a receiver B; on ciphertext ¢ := (p, comm, €) such
that the NIZK proof p is valid with respect to statement (crscs, comm, €¢) € Lcons,
but (crscs, comm, €) € Loons (crscs being the one generated by Opp). Let

Ady(Game @-lND-CCA-z(A) —

Pr[AG(Game @)—IND—CCA—Z _ win} + Pr[AGllND—CCA—Z _ win] -1 ,
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where A wins Game |§| if it outputs ¥’ = 0. Since A sees at most gg < ¢pNizZK
simulated proofs and makes at most ¢p < qynzx decryption queries, it follows

from [Eq. (4.14)| that no adversary (enizk-ss, tN1zk )-breaks the (¢pNizK, OV NIZK)-
Simulation Soundness of IINizk, implying

AdU(Game -|ND-CCA-2(A) < ENIZK.SS + Adv(Game @-IND-CCAQ (A)

Game[7] This game is just like Game[6] except that, similarly to Game 5] for every
le{1,...,|c}, ciphertext ¢, of vector &:= ((c1,0,¢1,1),---,(¢a,0,¢jz,1)) of the
challenge ciphertext ¢* := (p, comm, €) is now also an encryption of (§, v*, mj)—
where p' is some sequence of random coins, independent of the one used by
Ics. Commit—instead of (p, U™, m{)—where p is the sequence of random keys
used by Ilcs.

Let

Ady(Game -IND-CCA—2(A) —

‘Pr[Ag(Game [D-IND-CCA-2 _ win] + Pr[AGIND-CCA2 _ yspn1 ],
where A wins Game [7]if it outputs b’ = 0. Since dg < qppkg and n < npkr,
it follows from [Eq. (4.13) that no adversary (epkg.IND-cPA,tpkE)-breaks the
(npKE, ¢Epkg)-IND-CPA security of ITpkg, implying

Ady(Game @-lND-CCA-z(A) < epKEIND.cPA 4+ Ady(Game -IND-CCA-Q(A)'

Game|[8] This game is just like Game 8] except that for each challenge ciphertext
¢* = (p,comm, ¢) comm is now a commitment to (7*,m;) instead of being a
commitment to (7%, mp). Note that the sequence of random coins encrypted in
each ciphertext in ¢ is now independent from the sequence used by Ilcg. Commiit.

Let
Ady(Game —IND-CCA—2(A) —
‘Pr[AG(Game —IND—CCA—2 _ win} + Pr[AGllND—CCA—Z — win] -1 ,

Eq. (4.15)] that no adversary (ecs-Hiding, tcs)-breaks the (gcog)-Hiding security
property of Ilcg, implying

where A wins Game [§] if it outputs ' = 0. Since qg < qcs, it follows from

Adv(Gamc-lND-CCAQ(A) < £8-Hiding +Adv(Gamc-lND-CCA-2(A).

Game [9} This game is just like Game [8] except that for every I € {1,...,]d},
ciphertext ¢; o of vector ¢ = ((01,0,61,1), ce (C‘EL(),CIE‘J)) of the challenge ci-
phertext ¢* = (p, comm, €) is now an encryption of (p,7*, m})—where p is the
sequence of random keys used by ITcs—instead of (p', 0%, m§)—where p’ is some
sequence of random coins, independent of the one used by Ilcg. Commit.
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Let
Ady(Game |§[)-|ND-CCA-2(A) —

‘Pr[AG(Game [B)-IND-CCA-2 _ win] + Pr[AGIND-CCA2 _ i) 1],

where A wins Game |§| if it outputs ¥’ = 0. By an argument equivalent to the one
used for Game [7]} one can conclude:

Adv(Game -IND-CCA-Z(A) < EPKE.IND.CPA + AdU(Game E[)-IND-CCAQ (A)

Game This game is just like Game [0 except now a decryption query
for a party B;—with secret key ((pk; o,skj0), (Pk; 1, 5k;1))—on a ciphertext

¢ = (p, comm, ¢)—with ¢:= ((c170, ci1)s -5 (a0 c|g|’1))—returns to decrypting,
for I € {1,...,|¢]}, ciphertext ¢; ¢ using sk; o, rather than decrypting ¢; 1 using
Skj,l-

It is easy to see that, by an argument similar to the one used for Game [f]
and letting

Ad’l}(GamC 110)-IND-CCA-2 (A) —

’PI‘[AG(Game 110))-IND-CCA-2 _ WiIl] + PI'[AGllND_CCA_2 _ win] -1

i

where A wins Game [10]if it outputs & = 0, we have

Ady(Game |§|)_|ND-CCA-2(A) < enizi.ss + Ady(Game -IND-CCA-Z(A).

Game This game is just like Game except that now, for each [ €
{1,...,|€l}, ciphertext ¢;1 of vector ¢ = ((01,0, c11)s -5 (a0 c|5‘,1)) of the
challenge ciphertext ¢* := (p, comm, €) is an encryption of (p, 0™, m})—where p is
the sequence of random keys used by ITcs—instead of (p, v*, m})—where p is
some sequence of random coins, independent of the one used by Ilcs. Commit.

By following an argument similar to the one used for Game [5] it is easy to
see that, letting

Ad’U(GamC 111))-IND-CCA-2 (A) —

)

’Pr[AG(Game [[I)-IND-CCA2 _ usp] | PrAGIND-CCA2 _ ysp g

where A wins Game [11]if it outputs b’ = 0, we have

Adv(Game—lND—CCA—2(A) < EPKE.IND.CPA + AdU(Game —|ND—CCA-2(A).
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Game This game is just like Game [[1] except that Og returns to generating
crsyrzg honestly using IInizk-Gors, and the NIZK proof p of each challenge
ciphertext returns to a real one generated by IInizk.P.

Let

Ady(Game —IND—CCA—Z(A) —

‘PT[AG(Game [[2)-IND-CCA2 _ sp) 1 PrAGIND-CA2 — yin) 1,

where A wins Game if it outputs ¥’ = 0. Since A can only make up to

ar < qpnizx queries to Op, it follows from [Eq. (4.14)] that no adversary
(eN1zK-zK, tN1zK )-breaks the (¢pnizi)-Zero-Knowledge of IINizk, implying

Ad,U(Game —|ND-CCA—2(A) < ENIZK.ZK + Adv(Game —IND—CCA—Z (A)

Game This game is just like Game [I2] except that the ITpkg instance that

generates every ciphertext ¢ o, with I € {1,...,|c|}, of the challenge ciphertext’s
vector ¢ := ((01,0,01’1), o, (c|51707c‘5‘71)) is no longer assumed to be perfectly
correct.

Let

Adv(Game 113))-IND-CCA-2 (A) ,_

’PI‘[AG‘(Game 113)-IND-CCA-2 _ win] + PI’[AGllND_CCA_z — Win] -1 ,

where A wins G(Game[l3)-IND-CCA-2 4 it outputs b = 0. Since n < npkg, it
follows from that no adversary (epkg-corr, tPKE)-breaks the (npkg)-
Correctness of Ilpkg, implying

AdU(Game—IND—CCAQ(A) < EpKE-Comr + AdU(Game—IND-CCA—Z(A).

Game This game is now G!NP-CCA-2: the only difference from Game [13|is
that the ITpkp instance that generates every ciphertext ¢; 1, with I € {1,...,|d},
of the challenge ciphertext’s vector ¢ := ((61,0, c1,1), -+ (¢a,0 c|5171)) is no longer
assumed to be perfectly correct.

Since n < npkg, it follows from [Eq. (4.13), that no adversary (epkg-corr, tPKE)-
breaks the (npkg)-Correctness of IIpkg, implying

AdU(Game 113))-IND-CCA-2 (A) < EPKE.Corr-

H MDRS-PKE Construction Security Proofs

In this section we give the full security proofs for the MDRS-PKE construction
given in
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H.1 Proof of Theorem

Proof. This proof proceeds in a sequence of games [9}[32].

Game [1} This is the original G Correctness game from [Definition 6

Game 2 This game is just like Game [I] except that now decryption queries
work differently. More concretely, if the ciphertext ¢ input to Op was the
output of a query to O, say on input (A4, ‘_/',m)7 Op works as follows: Let
(spk;, UmMpvs, m, o) be the plaintext that was encrypted by IIpkrsc.E under
UpKEBC, Where spk, is A;’s public key,

tnpvs = (VPRypysys - - - VPRMDYS |71)

UpkEBC = (PKpKEBC1: - - - » PKPKEBC|3)

are, respectively, the vectors of public MDVS verifier keys and public PKEBC
receiver keys corresponding to V', and where

o Ilypys.Sign,, (sskmpvsi, {VPEMDYS; fieqL,.... 51} (UPKEBC, ™M),

PMDVS

is an MDVS signature on (Upkrpc, m), with sskypys; being A;’s secret MDVS
sender key and {vpkypyg, tieq1,..., |5} being the set of public MDVS verifier keys
of the parties in V. Then, oracle Op no longer decrypts ¢ using I[lpkgpc.D, and
instead simply assumes the decryption is the pair (Vpkenc, (spk;, UMpDvs, M, 7)),
where (spk;, UmMpvs,m, o) is the plaintext that was encrypted by Op using

Ilpkrpc.E.
Let

Adv(Game —Corr(A) — PI‘[AG(Game —Corr _ win],

ame P)-Corr a1 the same as for the original

where the conditions for A winning G(©
game.

Since A only queries for at most ng < npxgpc different receiver keys, makes
up to ¢g < ¢epkrpc queries to O and up to ¢p < ¢pprrpc queries to Op, and

the sum of lengths of the party vectors input to OF is at most dg < dgpkgenc,
it follows from that A does not (epkEBC-Corr, LPKEBC )-break the

(npkEBC; dEPKEBC, (EPKEBC: D PKEBC)-Correctness
of IIpkgpc, implying

Adeorr(A) < EPKEBC.Corr + Adv(Game —Corr(A).
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Game This game is just like Game [2] except that decryption queries once
again work differently. Essentially, in the same way that Game [2] differed from
Game [T} —assuming that each ciphertext ¢ output by a query to O decrypts
correctly when Op is queried on (Bj, ¢), B; being one of the parties in the vector
input to Og—now Game [3| differs from Game [2]in that it assumes that also each
MDVS signature o generated by O using ITyipys.Sign also verifies as being
valid when Op is queried on (Bj,c), B; being one of the parties in the vector
input to Og, and o being (part of) the plaintext corresponding to c.

Note that the winning probability of any adversary in winning Game [3| is
0. So, since A only queries for at most ng < ngypys (resp. ng < nympvs)
different sender keys (resp. different receiver keys), makes up to ¢g < gsmpvs
queries to O and up to ¢p < qvupys queries to Op, and the sum of lengths of

the party vectors input to O is at most dg < dsypys, it follows from [Eq. (6.2)
that A does not (enmpvs-corrs tMDvs )-break the

(nsMDvs: MV MDVSs dSMDVS ¢SMDVSs v Mpys )-Correctness
of ITyipvs, implying

Ady(Game _CO"(A) < EMDVS-Corr-

H.2 Proof of Theorem [T

Proof. Assume there is a ciphertext ¢ and two queries Op(B;,c) and Op(Bj,c)
(possibly with B; = B;) such that Orx was not queried on either B; or Bj,
and Op(B;,c) outputs some (spk;, ¥, m) satisfying (spk;,¥,m) # L, spk; is
some party A;’s public sender key (i.e. Ospx (A;) = spk;) and rpk; € ¥/ (where
rpk; is B;’s public key), and query Op(Bj,c) does not output the same triple
(spk;, U, m). Note that any adversary A which does not make any two queries
satisfying these conditions has advantage 0 in winning the Consistency game.

Consider the query Op(B;, ¢) mentioned above. On input (B;,¢), Op first
fetched B;’s secret key rsk;, and then used this key to decrypt ¢ using II’s
PKEBC scheme ITpkgpc. Since Op(B;, ¢) output some (spk;, ¥, m) # L, then
IIpkepc’s decryption of ¢ using B;’s secret PKEBC key must have output some
pair

(UpkEBC, (SPXY, DMDVS, M, 0)) # L,

with spk; = spk; and |Upkepc| = |Umpvs|. Furthermore, we have that

U= ((UMDVSh UPKEBCl)v cees (UMDVS\EPKEBC| ) UPKEBCWPKEBCI))'

Since rpk; € ¥ (where rpk; is B;’s public key), it follows rpk; = vy for
some k € {1,...,[v]}. Letting rpk; = (vpkMDvsj,kaKEBCj), we then have
vMDVSk = VPKypys; and vpkeBCk = PRpkgpc;, IMplying vpkypyg; € UMDVS
and kaKEBCj € UpKEBC-
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By since A sees at most ng < npkgpc different public keys and
makes at most ¢gp < ¢ppigpc decryption queries to oracle Op, A does not
(5PKEBC—Cons; tpKEBc)—break the (npKEBc, qDPKEBC)—Consistency Of the underly—
ing Ilpkepc scheme; since pkpyppc ; € Upkgsc this implies the probability that
query Op(Bj,c)’s IIpkgpc decryption of ¢ does not match

(UpkeBC, (SPK)/, TMDVS, ™, )

is bounded by epkEBC-Cons. Let us now assume that Op(Bj, ¢)’s IIpkesc decryp-
tion of ¢ is the same as Op(B;, ¢)’s decryption of ¢. This in particular implies
that if A wins the Consistency game then the output of query Op(Bj,c) is L,
as the only way for A to win the game is ITypygs’s signature verification of o for
message (UpkgBc, M) with respect to A;’s sender public key spk,, set of MDVS
verifier public keys Set(v\pvs), and B;’s secret MDVS verifier key vsknvpvs;
outputting invalid.

Since Op(B;,¢) did output some (spk,, ¥/, m) # L, it follows that ITypys's
signature verification of o for message (Upkrpc,m) with respect to A;’s sender
public key spk;, set of MDVS verifier public keys Set(tupvs), and B;’s secret
MDVS verifier key vskypys; output valid. But then this means that if IIyipys’s
signature verification of o outputs invalid, the ITyjpys scheme underlying
II’s construction is not consistent. However, since A only queries for at most
ns < ngypvs (resp. ng < nyypys) different sender keys (resp. different receiver
keys), the sum of lengths of the party vectors input to O is at most dg < dsypvs,
A makes up to ¢ < gsypys queries to Og and up to ¢p < qvypyg queries to
Op, it follows from that A does not (empvs.conss tmpvs )-break the

(nsMDVSs MV MDVS» ASMDVS» 4SMDVS» 4V Mpvs )-Consistency

of II’s underlying MDVS scheme ITypygs, implying

Cons
Adv=""(A) < epKEBC-Cons + EMDVS-Cons-

H.3 Proof of Theorem

Proof. To prove this, we give a (trivial) reduction from winning the Unforgeability
game of the MDRS-PKE scheme II to winning the Unforgeability game for
underlying the MDVS scheme IT\ipys.

Opp() :

1. PPpPKEBC HpkebC'S(lk);

2. Output (IIvipvs-Opp(); PPprEBC)-
Ospr(A;) :

1. Output ITvpvs.-Ospi (4;).
Osk (A;) =

1. Output IIvpvs-Osk (4;).
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ORPK(Bj) :

1

2

. On the first query on input B; (to either Orpx or Orx), compute and
store (pkaEBcj, skpkrpc;) < [Ipkesc. G(PPprERC);
. Output (HMDVS~OVPK(Bj)akaKEBCj)'

Ork(B)) :

1

2
3
4
5)

. On the first query (to either Orpx or Ork) on input B;, compute and
store (Pkpkgpc ;> skpkesc;) < IIpkesc. G(PPpkEBC);

. Let (VpkMDVSj,VSkMDVSj) < IIypvs-Ovk(B;);

. Let rpk; « (HMDVS-OVPK(Bj)vPkPKEBCj);

. Let rsk; (rpkj7 (vskmpvs > SKPKEBC;));

. Output (rpkj,rskj).

OE(AH ‘77 m):

1.

Op

&

S N

Let Upkgpc and Uypvs be, respectively, the vectors of public PKEBC
keys and public MDVS verifier keys corresponding to party vector
Let spk; < HMDVS-OSPK(Ai)§

o « IIypvs.Os(A;, Set(V), (Tpkesc, m));

Output HPKEBC'E(PPPKEBC’ EPKEBCa (Spki, UMDVS; m, 0'))

IR C)Z

Let skpkeBc; be as generated before for By;

Let (UpkEBC, (SPK;, UMDVS, M, 0)) < IIpkEBC.D(SkPKEBC;) C);

If (vpkEBC, (SPK;, YMDVS, M, 0)) = L, output L;

IIpvs-Ochatienge ((TpkEBC, M), 0);

Let V be the set of parties whose set of public PKEBC keys is the same
as the set induced by UpkgBc;

If IInipvs.Ov (A, B, V, (UpkeBC, M), o) outputs invalid, output L;
Otherwise, output (spk,, ¥, m), where spk, is the public key of A; and ¥/
is the vector of public keys induced by ¥\ipyvs and Upkggc.

Noting that A only queries for at most ng < ngypvs (resp. ng < nyypys)
different sender keys (resp. different receiver keys), makes up to ¢g < gsmpvs
queries to O and up to ¢p < qvympys queries to Op, and the sum of lengths of
the party vectors input to O is at most dg < dsypys, it follows from [Eq. (6.5)
that A does not (empvs-Unforg, tMDVs )-break the

of HM

(nsMDVS, "V MDVS: dSMDVS 4SMDVS» 4V Mpvs )- Unforgeability

Dvs, implying
Adv""™"E(A) < eMDVS-Unforg:

O

12 Note that these vectors can be obtained by querying ITvpvs.Ovpx on each V; € 1%
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H.4 Proof of Theorem

Proof. We prove a stronger result. In the following, we consider an alternative
IND-CCA-2 security notion for MDRS-PKE schemes, whose only difference from
Definition 9|is that now the adversary is allowed to query for the secret keys of
the senders (i.e. it can query Ogk (4;) and still win the game even if it makes a
query OE(AM V} mo, ml))

The only difference between GiNP-““A2 and GINP-CA-2 jg that GINP-C“A-2s O
oracle, on an input ((A4;, V), mg, m1), outputs a ciphertext ¢ that is an encryption
of (spkyipvs;» UMDVS, Mo, 00)—Where spkypyg; is A;’s public signing MDVS key,
UMmDvs is the vector of public verifier MDVS keys corresponding to V, and oy is
an MDVS signature of (Upkgpc, mo) from A; to ‘7, with Upkgpc being the vector
of public PKEBC keys corresponding to the parties in V—while GIND-CCA-2:g
Op oracle outputs an encryption of (spkypys,, UMDVS, 71, 01)—Where oy is an
MDVS signature of (Upkrpc,m1) from A; to V.

Note that, since the MDRS-PKE’s IND-CCA-2 games do not provide the
adversary with access to the Ogk oracle, the adversary cannot query for the
secret keys of receivers. Thus, one can trivially reduce breaking the IND-CCA-2
security of the MDRS-PKE scheme to breaking the IND-CCA-2 security of the
underlying PKEBC scheme. For instance, just consider a reduction that generates
an MDVS signer key-pair for each sender, an MDVS verifier key-pair for each
receiver, and then uses these key-pairs to answer Ogg, Ogpr and Orpg queries
(for the case of Ogrpk queries, the reduction also relies on the Opk oracle of
the underlying IND-CCA-2 game for the PKEBC scheme). In the case of an
Ofg query, the reduction would simply generate an MDVS signature with the
MDVS keys it generated on each of the input messages (0o and o7 above),
and then use the underlying Op provided by the game system to generate
the final ciphertext c¢ as the encryption of one of (spkypys;s ¥MDVS,: M0, 00) OF
(spkMDVSi,ﬁMDvs,ml,al). For Op queries, the reduction would rely on the
underlying Op oracle provided by the IND-CCA-2 game of the PKEBC scheme to
obtain the pair (UpkeBC, (SPKMDYS;» UMDVS; M0, 00)), Which the reduction then
would use to mimic the MDRS-PKE construction’s D algorithm.

Finally, since A only queries for at most ng < npxgrpc different receiver
public keys, the sum of lengths of the party vectors input to Og is at most
dr < dgpkesc,; A makes up to ¢ < gppkgpc queries to O and up to

4p < qppgmpc queries to Op, it follows from [Eq. (6.6), that A does not

(ePKEBC-IND-CCA-2; tPKEBC)-break the (npkeBC, dEPKEBC, ¢EPKEBC: ¢DPKEBC)-
IND-CCA-2 security of IIpkgpc, implying

IND-CCA-2
Adv (A) < ePKEBC-IND-CCA-2-

H.5 Proof of Theorem [10]

Proof. Similarly to the proof of we prove a stronger result. In the
following, we consider an alternative IK-CCA-2 security notion for MDRS-PKE
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schemes that only differs from [Definition 10|in that the adversary is now allowed
to query for the secret keys of the senders (i.e. it can query Ogx(A;) and
still win the game even if it makes a query OE((Ai,O,V()), (Al-,l,‘_/'l),m) with
Ai S {Ai,OvAi,l})'

This proof proceeds in a sequence of games [9,32].

Game (1| This is the original GI¢"““A"2 game from |Definition 10

Game_} This _game Is just like Game except that now, on an input
((As0, Vo), (As1, V1), m), letting

UPKEBC,0 ‘= (PkPKEBc,Op e kaPKEBC,Owo\)

and
UPKEBC,1 ‘= (PkPKEBC,117 T kaPKEBC,lwl\)

be the vectors of PKEBC public keys corresponding to the vectors of parties Vo
and V71, respectively, letting

00 < Ivpvs.Signg, - (sskmpvs,0;, {VPRMDYS 0, He(1,....|70l}» (TPKEBC,0, ™)),
where sskypvs,o; is Ai0’s secret MDVS signing key, and {VPkMDVS,Ol}le{l,...,Iﬁo\}
is the set of public MDVS verifier keys of the parties in vector 1707 Op computes

¢ < IIpkeBC-Eppyy o (TPKEBC, 15 (sPknpvs,0;0 UMDVS,0, M2, 00)),

using the vector Upkgpc,1 of PKEBC public keys corresponding to the vec-
tor of parties Vi, instead of using the vector ¥pkgpc,0 of PKEBC public keys
corresponding to the vector of parties V{, where

Umpvs,0 = (VPRyDys 00 - - - ’VpkMDVS,OWO‘)~
Let
Adv(Game -IK-CCA-2 (A) Z:‘PI‘[AG(Game —IK-CCA—2 _ win]

+ PrAGY-CA2 — yin] — 1,

where the conditions for A to win Game[2|are the same as for winning the original

G'OK‘CCA‘2 game from [Definition 10} Since A only queries for at most ng < npkesC
different receiver public keys, the sum of lengths of the party vectors input to

O is at most dg < dppkepc, A makes up to gr < ¢rppgrpc queries to O and

up to ¢p < gppxrrc queries to Op, it follows from that A does not

(ePKEBC-IK-CCA-2; tPKEBC )-break the (npkEBC, dEPKEBC) ¢EPKEBC) DPKEBC)-IK-
CCA-2 security of IIpkgpc, implying

AdUIK—CCA—2(A) < SPKEBC_IK_CCAQ_'_AdU(Game—IK—CCA—Z(A).
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Game This game is now the GI*““A-2 game from [Definition 10, The only
difference from Game [2|is that now, on an input ((4; 0, Vo), (4i1, V1), m), and
letting

UPKEBC,1 ‘= (kaKEBC,ll’ s kaPKEBC,lm\)

be the vector of PKEBC public keys corresponding to ‘71, letting
o1 Ivpvs.Signy, - (sskmpvs,1;, {VPRyvpvs 1, tie(t, .. |a}» (FPKEBC,1, M),

where sskypvs, 1, is Aq1’s secret MDVS signing key, and {VPkMDVS,ll}le{l,...,lﬁl\}
is the set of MDVS verifier public keys of the parties in vector ‘71, Op outputs

¢ < IIpkeBC-Epppyppe (UpkEBC,1: (SpkMDVS,lia UMpVS,1, ™M, 01)),

where
Umpvs,1 = (VPRypys1s-- - vVPkMDVSJW)

is the vector of public MDVS verifier keys corresponding to vector of parties Vi.

Since A only queries for at most ngp < npkgpc different receiver public keys,
the sum of lengths of the party vectors input to O is at most dg < dgpkrpc, A
makes up to ¢g < ¢epkgpc queries to O and up to ¢p < ¢ppkgrpc queries to
Op, it follows from that A does not (EPKEBC_WD_CCA_Q, tpKEBc)—break
the (npkeBC, dEPKEBC: ¢EPKEBC: IDPKEBC)-IND-CCA-2 security of IIpkpsc, im-
plying

Ady(GameB)-1k-CCA2 (A) < EPKEBC-IND-CCA-2-

H.6 Proof of Theorem [11]

OTR-Forge OTR-Forge
c""O Gl

Proof. The only difference between and is that, on an input
(type, A;, V,m, D), GgTR‘FOTge’s Opg oracle creates fresh ciphertexts if type =
sign and creates forged ciphertexts if type = forge, whereas G{T 179 O
oracle always creates forged ciphertexts using Forge. Note that, by the definition
of IT’s F algorithm, and by the definition of Forge (see Algorithm , the only
difference between a fresh ciphertext created by II’s E algorithm and a forged
one created by Forge is that the signature o of the quadruple (spk;, ¥mpvs, m, o)
that is encrypted by the PKEBC scheme is a real signature in the first case, and
a forged signature for the latter. This means that being able to distinguish a
real ciphertext as output by GgTR‘FOTge’S Og(sign,-,-,-,-) from a forged one as
output by GOTR-For9e’s Op(sign, -, -, -) implies being able to distinguish if the
(encrypted) MDVS signature o is a forged one or a real one.

To conclude the proof, since A only queries for at most ng < ngypys (resp.
nr < nyupvs) different sender public keys (resp. different receiver keys), the
sum of lengths of the party vectors input to Og is at most dg < dsypys, A
makes up to ¢g < geympvs queries to O and up to gp < gvumpys queries
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Algorithm 4 Forge algorithm for the construction given in Algorithm [2| In
the following, let ITyipyvs and IIpkgpc respectively be the MDVS and PKEBC
schemes underlying the construction given in Algorithm Forgeyipyg be a
signature forging algorithm for IIypvs, and {rsk; } B, ep be the set of secret
receiver keys of D, the set of dishonest parties.
Forgey, (spk;, ¥, m, {rsk;/} 5 ,eD)
With
PP := (PPMDVss PPPKEBC)

spk; = spkyipys;
for each rsk; € {rSkj/}Bj,eD

rsk; = ((VPkMDVSj’kaKEBCj)’ (vskmpvs;, skpKEBC;))
v = (rpkl, e ,rpklm)
for each i € {1,...,|7|}
rpk; = (VPRypvs,: PRpkEBC:)
UpkEBC < (PkprEBC:: - - - » PKPKEBC)7|)
MDpVs = (VPRyMpysys - - VPEMDVS | 5))

OMDVS FDTgEMDVSPPNIDVS (sPkypyvs ;> Set(Tmpvs), (TpkEBC, M), {vskmDVs }Bj, eD)

return ITpkeBC- Eppyppc (FPKEBC, (SPRypys;» TMDVS, M, OMDVS))

to Op, it follows from [Eq. (6.8)] that A does not (empvs.oTr, tmDvs)-break

the (nsmpvs, v MDVS, dSMpvs, dsnvpvs, @ mpvs)-Off-The-Record security of
IIipvs with respect to Forgeypyg, implying

AdvOTRFO9¢(A) < enpys.oTR.
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