Model general consistency guarantees, Maurer [Mau04] proposed the notion of consistency specifications. A consistency specification defines for every set H of honest parties and every possible input of those parties, a consistency guarantee on their output. Protocols allow to construct (strong) consistency specifications from a given set of (weak) consistency specifications. The notion of consistency specifications does not allow to model secrecy requirements. A consistency specification thus corresponds to a trusted party which enables dishonest parties to learn the inputs of honest parties. For a more general setting where secrecy matters, one may use security frameworks such as [Can01] or [MR11] and [Mau11].

B. Contributions and Outline

In this work, we investigate the separation between broadcast and authenticated channels by considering a classification of consistency specifications. Given a set of consistency specifications, one can consider its closure, i.e., all consistency specifications which one can construct from this set. This leads to a natural classification where two consistency specifications are in the same class if they have the same closure. We proceed as follows. First, we revisit the notion of consistency specifications from [Mau04] and provide rigorous definitions of the basic concepts. Then we introduce different flavors of constructions and define a means of classification for consistency specifications. In a second part we give a complete classification of three-party specifications where a fixed party can give a binary input. This provides some surprising insight into the structure and hierarchy of these specifications.

II. Preliminaries and Notation

Let $P = \{P_1, \ldots, P_n\}$ be a set of n parties (also known as players or processors). For convenience, we will sometimes use i instead of P_i. We distinguish between the subset of honest parties $H \subseteq P$ and the dishonest parties in the complement $P \setminus H$. Honest parties will execute protocol instructions whereas dishonest parties can deviate arbitrarily from the protocol. For a tuple of sets (M_1, \ldots, M_n) and a subset $S \subseteq P$, we denote by M_S the Cartesian product $\times_{i \in S} M_i$. We denote by $vS|S' \in M_{S'}$ the projection of $v_S \in M_S$ to entries in $S' \subseteq S$. For a subset $L \subseteq M_S$ we can similarly define $L|_{S'} := \{vS|S' \mid v_S \in L\}$. Moreover we write $[n]$ for the set $\{1, \ldots, n\}$.

A. Consistency specification

In the following we consider primitives and protocols where each party P_i has an input from a finite input domain D_i and
receives an output from a finite output domain \mathcal{R}_i. We assume that both \mathcal{D}_i and \mathcal{R}_i are non-empty sets. If a party has no input and/or no output, the corresponding domains are assumed to be singletons containing the symbol \perp. To model consistency guarantees we use the notion of consistency specifications.

Definition 1 (Mau04). Consider non-empty \mathcal{P}, \mathcal{D}_i, and \mathcal{R}_i as above. A $(\mathcal{P}, \mathcal{D}_i, \mathcal{R}_i)$-consistency specification is a function assigning to every non-empty subset $H \subseteq \mathcal{P}$ and every input vector $x_H \in \mathcal{D}_H$ a non-empty set $C(H, x_H) \subseteq \mathcal{R}_H$, satisfying the monotonicity constraint: For any non-empty subsets $H' \subseteq H \subseteq \mathcal{P}$

$$C(H, x_H)|_{H'} \subseteq C(H', x_{H'\Omega}).$$

(1)

Our definition of a consistency specification differs slightly from the original version in [Mau04]. First, if all parties are dishonest, i.e., $H = \emptyset$, there are no consistency guarantees to be formulated. We therefore restrict the domain of consistency specifications to non-empty subsets $H \subseteq \mathcal{P}$. Secondly, we require that the honest parties are guaranteed at least one output, i.e., $\emptyset \neq C(H, x_H)$ for any H and x_H.

Example 1. An authenticated channel from P_i to P_j is a consistency specification, denoted as $\text{AUTH}_{i,j}$, where only P_i has input (i.e., $\mathcal{D}_i = \{\perp\}$ for $k \neq i$) and where P_j’s output is equal to the input of P_i if both of them are honest. There are no other consistency constraints on the outputs of honest parties. More formally, we have for all $H \subseteq \mathcal{P}$ and $x_H \in \mathcal{D}_H$:

$$\text{AUTH}_{i,j}(H, x_H) = \{y_H \in \mathcal{R}_H | i, j \in H \Rightarrow y_H|_{\{i\}} = x_{H|_{\{i\}}}\}$$

Example 2. A broadcast channel for party P_i is denoted as BC_i. The formal definition is as follows.

$$\text{BC}_i(H, x_H) = \{y_H \in \mathcal{R}_H | \exists v \exists \{i \in H \setminus \{j\} : y_H|_{\{i\}} = v \land (i \in H \Rightarrow v = x_{H|_{\{i\}}} \})\}$$

for all $H \subseteq \mathcal{P}$ where $\mathcal{D}_k = \{\perp\}$ for $k \neq i$.

In order to compare consistency specifications and the strength of their consistency guarantees, one can use the following natural (partial) ordering.

Definition 2. Consider two $(\mathcal{P}, \mathcal{D}_i, \mathcal{R}_i)$-consistency specifications C_1 and C_2. Then C_2 is stronger than C_1, denoted $C_1 \leq C_2$, if $C_2(H, x_H) \subseteq C_1(H, x_H)$ for all non-empty subsets $H \in \mathcal{P}$ and every $x_H \in \mathcal{D}_H$.

III. PROTOCOLS AND CONSTRUCTIONS

A. Basic Constructions

A fundamental aspect of computer science is to realize complex objects from simpler ones. In our context this leads to the question whether one can construct a certain consistency specification from weaker consistency specifications by means of a protocol. A protocol execution consists of several rounds where in each round j a consistency specification $C(1)$ is invoked. Each party P_i computes its input to $C(j)$ as a function $f_i^{(j)}$ of its protocol input and the outputs it received from previously invoked consistency specifications. At the end each party P_i computes its protocol output as a function g_i of its input and all the outputs it received from invoked specifications. More formally, a protocol is defined as a tuple of functions. For $\ell \geq 0$ let $\tilde{C} = (C^{(1)}, \ldots, C^{(\ell)})$ be an ℓ-tuple of consistency specifications where $C^{(j)}$ is a $(\mathcal{P}, \mathcal{D}_i^{(j)}, \mathcal{R}_i^{(j)})$-consistency specification for $j \in \ell$.

Definition 3 (Mau04). An ℓ-round protocol π suitable for \tilde{C} with input domains \mathcal{D}_π and output domains \mathcal{R}_π consists of a tuple of functions $(f_i^{(j)}, g_i)$ for $i \in \mathcal{P}$ and $j \in [\ell]$ where

$$f_i^{(j)} : \mathcal{D}_i \times \mathcal{R}_i^{(1)} \times \cdots \times \mathcal{R}_i^{(j-1)} \rightarrow \mathcal{D}_i^{(j)}$$

and

$$g_i : \mathcal{D}_i \times \mathcal{R}_i^{(1)} \times \cdots \times \mathcal{R}_i^{(\ell)} \rightarrow \mathcal{R}_i.$$

For convenience we will use $f_i^{(j)}$ or g_i to denote the parallel composition of the corresponding functions f_j, g_j for $i \in H$. We remark that a protocol only refers to input and output domains. It does not define the particular specifications which are invoked during an execution of the protocol. Note that we allow zero-round protocols, i.e., protocols where no specification is invoked. Given a tuple of \tilde{C} of consistency specifications and a suitable protocol π, the execution of π on \tilde{C} constructs a new consistency specification.

Definition 4. A suitable protocol π for tuple \tilde{C} constructs specification \hat{C} from \tilde{C}, denoted $\tilde{C} \xrightarrow{\pi} \hat{C}$, if $\hat{C} \leq \tilde{C}$ where

$$\pi(\tilde{C}, H, y_H) = \{y_{H,i} \in \mathcal{R}_i | \forall j \in [\ell] \exists y_H^{(j)} \in \mathcal{R}_H^{(j)} :$$

$$y_H^{(j)} \in C^{(j)}(H, f_i^{(j)}(x_H^{(1)}, \ldots, y_H^{(j-1)}), y_H^{(1)} \ldots, y_H^{(j-1)}))$$

$$\land y_H = g_H(x_H, y_H^{(1)} \ldots, y_H^{(\ell)})\}$$

for all non-empty subsets $H \in \mathcal{P}$ and every $x_H \in \mathcal{D}_H$.

With this basic type of construction we can now introduce derived types of constructions.

B. Constructions from Sets

In the setting of distributed computing it is common to assume that parties are not restricted in the use of given primitives. It is thus natural to consider constructions from a set \mathcal{C} of consistency specifications where each specification in \mathcal{C} may be invoked arbitrarily often during a protocol execution.

Definition 5. Let \mathcal{C} be a set of consistency specifications. A protocol π constructs specification \hat{C} from \mathcal{C}, denoted as $\mathcal{C} \xrightarrow{\pi} \hat{C}$, if there exist a tuple \tilde{C} over \mathcal{C} such that $\tilde{C} \xrightarrow{\pi} \hat{C}$.

If a construction from \mathcal{C} to \hat{C} exists, we simply write $\mathcal{C} \rightarrow \hat{C}$ and $\mathcal{C} \xrightarrow{\pi} \hat{C}$ otherwise. A set of consistency specifications \mathcal{C}' is constructible from \mathcal{C}, denoted by $\mathcal{C} \rightarrow \mathcal{C}'$ if all $\mathcal{C} \in$
Lemma 1. Let $\mathcal{C}_1, \mathcal{C}_2, \mathcal{C}_3$ be sets of consistency specifications for \mathcal{P}. Suppose $\mathcal{C}_1 \rightarrow \mathcal{C}_2$ and $\mathcal{C}_2 \rightarrow \mathcal{C}_3$. Then $\mathcal{C}_1 \rightarrow \mathcal{C}_3$.

The closure of a consistency specification set \mathcal{C} with respect to a consistency specification set \mathfrak{T} contains all specifications in \mathfrak{T} which can be constructed from \mathcal{C}.

Definition 6. The (relative) closure of \mathcal{C} with respect to \mathfrak{T} is defined as $\langle \mathcal{C} \rangle_{\mathfrak{T}} := \{ \mathfrak{T} \in \mathfrak{T} | \mathcal{C} \rightarrow \mathfrak{T} \}$.

The closure is monotone, i.e., for $\mathcal{C}' \subseteq \mathcal{C}$ it holds that $\langle \mathcal{C}' \rangle_{\mathfrak{T}} \subseteq \langle \mathcal{C} \rangle_{\mathfrak{T}}$. We will omit \mathfrak{T}, if clear from the context, and simply write $\langle \mathcal{C} \rangle$. To classify a collection $\mathfrak{S} = \{ \mathcal{C}_1, \ldots, \mathcal{C}_k \}$ of consistency specification sets with respect to \mathfrak{T} one can consider the different closures of the sets in \mathfrak{S}.

Definition 7. A classification of a collection \mathfrak{S} of consistency specification sets with respect to \mathfrak{T} is the set $\{ \langle \mathcal{C} \rangle_{\mathfrak{T}} | \mathcal{C} \in \mathfrak{S} \}$. Two sets $\mathcal{C}, \mathcal{C}' \in \mathfrak{S}$ realize the same class if $\langle \mathcal{C} \rangle_{\mathfrak{T}} = \langle \mathcal{C}' \rangle_{\mathfrak{T}}$.

C. Constructions from Multisets

The assumption that parties can invoke given consistency specifications arbitrary often is rather strong. One can therefore consider a weaker type of construction where a given specification can be used a limited number of times. Formally, this leads to constructions from multisets where the multiplicity of an element bounds the number of its invocation during a protocol execution. A tuple \overrightarrow{C} over multi-set \mathcal{C} is therefore suitable if the occurrence of an element $C \in \mathcal{C}$ in \overrightarrow{C} is bounded by its multiplicity.

Definition 8. Let \mathcal{C} be a multiset of consistency specifications. A protocol π constructs specification \mathcal{C} from \mathcal{C}', denoted as $\mathcal{C}' \xrightarrow{\pi} \mathcal{C}$, if there exist a tuple \overrightarrow{C} suitable both for π and \mathcal{C}' such that $\overrightarrow{C} \xrightarrow{\pi} \mathcal{C}$.

The possibility of a multi-set construction implies the possibility of a normal (set) construction, i.e., $\mathcal{C}' \xrightarrow{\pi} \mathcal{C}$ implies $\mathcal{C} \xrightarrow{\pi} \mathcal{C}$ for the underlying set \mathcal{C} of the elements in \mathcal{C}'.

IV. CLASSIFICATION OF 3-PARTY SPECIFICATIONS

The goal of this section is to provide a motivating example of a consistency specifications classification. For this purpose we consider specifications for three parties $\mathcal{P} = \{ P_1, P_2, P_3 \}$ where P_1 has a binary input and the other parties have binary outputs.

Definition 9. The set of binary P_1-input 3-party consistency specifications, denoted Ω_3, consists of all $(\mathcal{P}, \{0, 1\} \times \{\bot\}^2, \{\bot\} \times \{0, 1\}^3)$-consistency specifications.

We remark that the output of P_1 is empty which is equivalent to giving no consistency guarantees for P_1. However, this is not a real limitation as one can trivially construct any $(\mathcal{P}, \{0, 1\} \times \{\bot\}^2, \{0, 1\}^3)$-consistency specification using one from Ω_1. In the following we will omit empty inputs and outputs, e.g. we will write $b \in \mathcal{C}(\{P_1, P_2\}, b)$ instead of $(\bot, b) \in \mathcal{C}(\{P_1, P_2\}, (\bot, b))$. For our classification we assume that parties are pairwise connected by authenticated channels and have access to a subset of specifications from Ω_1. Formally we thus consider a classification of the collection $\mathfrak{S} := \{ \mathcal{C} \cup \text{AUTH} | \mathcal{C} \subseteq \Omega_1 \}$ with respect to $\mathfrak{T} := \Omega_1$ where AUTH is the set of all authenticated channels for \mathcal{P}.

A. Complete Classification of Ω_1

In this section we show that Ω_1 is divided into two classes. First, we have the class $\langle \text{AUTH} \rangle$ which consists of all specifications which can be constructed from authenticated channels. Second, we have the complement $\Omega_1 \setminus \langle \text{AUTH} \rangle$ which consists of all specifications which allow to construct broadcast given authenticated channels. In a first step, we derive a sufficient and necessary condition for $\mathcal{C} \in \langle \text{AUTH} \rangle$ by considering the following sets of binary tuples. Let $M_{\mathcal{C}} = \mathcal{C}(\{P_2, P_3\})$ and for any $x \in \{0, 1\}$ let $M_{\mathcal{C}}(x) = \{ (y_2, y_3) | y_2 \in \mathcal{C}(\{P_1, P_2\}, x) \}$, and $M_{\mathcal{C}}^{(2)} = \{ (y_2, y_3) | y_3 \in \mathcal{C}(\{P_1, P_3\}, x) \}$.

Lemma 2. A specification $\mathcal{C} \in \Omega_1$ can be constructed from authenticated channels, i.e., $\mathcal{C} \in \langle \text{AUTH} \rangle$, if $M_{\mathcal{C}}(0) \cap M_{\mathcal{C}} \neq \emptyset$ and $M_{\mathcal{C}}(1) \cap M_{\mathcal{C}} \neq \emptyset$.

Proof. To construct \mathcal{C} from authenticated channels consider the following protocol π. First, party P_1 sends its input bit b to the other parties which exchange the received bits (cf. Figure 1). The output of P_2 is $g_2(b_2, b_{2,3})$ for a function $g_2 : \{0, 1\} \rightarrow \{0, 1\}$ where b_2 and $b_{2,3}$ are the bits received from P_1 and P_3. Analogously, P_1 outputs $g_3(b_{3,2}, b_3)$. The assumption of the Lemma allows us to define g_2 and g_3 as follows. For any bit $b \in \{0, 1\}$ let

$$g_2(b, b) = g_3(b, b) \in \mathcal{C}(\{P_1, P_2, P_3\}, b)$$

and

$$g_2(b, 1-b) = g_3(b, 1-b) \in M_{\mathcal{C}}^{(2)}(0) \cap M_{\mathcal{C}} = M_{\mathcal{C}}^{(2)}(1) \cap M_{\mathcal{C}}.$$
For $H = \{P_1, P_2\}$ we have $b_2 = b$ and the output of P_2 is therefore $g_2(b, b_{2,3}) \in (M_{2,2}^{(b)} \cap M_{3,3} \cap M_{1,1}^{(b_{2,3})})_{P_2}$. Thus by the definition of $M_{2,2}^{(b)}$ it holds that $g_2(b, b_{2,3}) \in C(\{P_1, P_2\}, b)$. For $H = \{P_1, P_3\}$ it similarly holds that $b_3 = b$ and $g_3(b_{3,2}, b) \in C(\{P_1, P_3\}, b)$. If $H = \{P_2, P_3\}$, it holds that $b_2 = b_{3,2}$ and $b_3 = b_{3,3}$. The output of the parties is therefore $(g_2(b_{2,3}), g_3(b_{3,3})) \in M_{2,2}^{(b)} \cap M_{3,3} \cap M_{1,1}^{(b_{3,2})}$ and thus $(g_2(b_{2,3}), g_3(b_{3,3})) \in M_{2,2} \cap M_{3,3} \cap M_{1,1}^{(b_{3,2})}$. All the other cases follow directly from the monotonicity of C. The protocol π therefore constructs C from authenticated channels.

The next Lemma shows that the above condition is also necessary for $C \in \langle \text{AUTH} \rangle$.

Lemma 3. A specification $C \in \Omega_1$ with $M_{2,2}^{(0)} \cap M_{3,3} \cap M_{1,1}^{(1)} = 0$ or $M_{2,2}^{(0)} \cap M_{3,3} \cap M_{1,1}^{(1)} = 0$ cannot be constructed from authenticated channels, i.e., $C \not\in \langle \text{AUTH} \rangle$.

Proof. The following proof is generalization of a proof technique in [FLMS85]. Consider a $C \in \Omega_1$ with $M_{2,2}^{(0)} \cap M_{3,3} \cap M_{1,1}^{(1)} = 0$ for a $b \in \{0, 1\}$. Towards a contradiction, let us assume that there exists a protocol π such that $\text{AUTH} \xrightarrow{\pi} C$. Then there exist (deterministic) systems Π_1, Π_2, Π_3 for parties P_1, P_2, P_3. Each system executes the protocol part of the corresponding parties and can be connected to two other systems. Consider a dishonest P_2 emulating Π_1 and Π_2 in a normal protocol execution as in Figure 2a where a bit in a box next to a system denotes the system’s input. As the protocol constructs C system Π_3 must output a bit b_3 in $C(\{P_1, P_3\}, 1 \rightarrow b)$. Next assume that a dishonest P_3 emulates Π_1 twice but with different inputs as in Figure 2b. In this case the output tuple (b_2, b_3) of systems Π_2 and Π_3 must be in $C(\{P_2, P_3\})$. Lastly, suppose that a dishonest P_3 emulates Π_1 and Π_3 as in Figure 2c. Here the output bit b_3 of Π_2 must be in $C(\{P_1, P_3\}, b)$. Note that those three cases describe the same combined system which outputs bit b_2 at Π_2 and bit b_3 at Π_3. It follows that $(b_2, b_3) \in M_{2,2}^{(b)} \cap M_{3,3} \cap M_{1,1}^{(1-b)} = 0$, a contradiction. Therefore there exists no protocol constructing C from authenticated channels.

We already know that broadcast BC_1 cannot be constructed from authenticated channels. Moreover, observe that any specification in Ω_1 can be constructed from broadcast.

Lemma 4. For any $C \in \Omega_1$, $\{BC_1\} \rightarrow C$.

Proof. The construction is trivially achieved with the following protocol. First, P_1 broadcasts its input b. Then parties P_2, P_3 output some fixed tuple in $C(\{P_1, P_2, P_3\}, b)$. In the following we will show that any specification in $C \in \Omega_1 \setminus \langle \text{AUTH} \rangle$ in addition to authenticated channels is enough to construct broadcast BC_1. The condition of Lemma 3 implies that any $C' \in \Omega_1 \setminus \langle \text{AUTH} \rangle$ is equivalent to a $C \in \Omega_1 \setminus \langle \text{AUTH} \rangle$ with $C(\{P_1, P_2, P_3\}, b) = \{(b, b)\}$ for $b \in \{0, 1\}$. This means that it is enough to henceforth C instead of C'. Moreover, it follows from the Lemma that $2 \leq |C(\{P_1, P_2\})| \leq 3$, $C(\{P_1, P_2\}, 0) \neq C(\{P_1, P_2\}, 1)$, and $C(\{P_1, P_2\}, 0) \neq C(\{P_1, P_2\}, 1)$. The above conditions imply that such a C is similar to broadcast BC_1 except that it offers (potentially) weaker consistency and validity guarantees (for P_2 or P_3). One can therefore describe the weakening by a triple in $\{(0,0,1)\}$ where 0 means that the specific component is not weakened at all.

Definition 10. Let $\alpha, \beta, \gamma \in \{0, 1\}$. The weak broadcast (α, β, γ)-wBC1 is defined as follows:

- (α, β, γ)-wBC1(\{P_1, P_2, P_3\}, b) = \{(b, b)\}$
- (α, β, γ)-wBC1(\{P_1, P_2\}, b) = \{(b)\} if $b \neq \alpha$
- (α, β, γ)-wBC1(\{P_1, P_3\}, b) = \{(b)\} if $b \neq \beta$
- (α, β, γ)-wBC1(\{P_2, P_3\}) = \{(0,0), (1,1)\}
- (α, β, γ)-wBC1(\{P_2, P_3\}) = \{(0,0), (0,1), (1,1)\}

For example, weak broadcast $(\alpha, 0, 0)$-wBC1 satisfies the validity condition of normal broadcast, but offers the weaker consistency guarantee $(\alpha, 0, 0)$-wBC1(\{P_2, P_3\}) = \{(0,0), (0,1), (1,1)\}. Note also that BC1 = (α, α, α)-wBC1. The condition in Lemma 3 implies that some variants of weak broadcast can be constructed using authenticated channels.

Lemma 5. For any $x \in \{0, 1\}$ and $y \in \{0, 1\}$ the specifications (x, y, y)-wBC1, $(y, x, 1-y)$-wBC1, and (y, y, x)-wBC1 are in $\langle \text{AUTH} \rangle$.

Proof. Can be shown directly using Lemma 3.

It turns out that given authenticated channels one can construct BC1 from rather weak variants of wBC1. The first variant we consider is (α, α, γ)-wBC1 for $\gamma \in \{0, 1\}$ which is in $\Omega_1 \setminus \langle \text{AUTH} \rangle$ (cf. Lemma 3).

2Two specifications C' and C are equivalent if $C' \rightarrow C$ and $C \rightarrow C'$.
Lemma 6. For any $\gamma \in \{\emptyset, 0, 1\}$,
\[
\text{AUTH} \cup \{(\emptyset, 0, \gamma)\text{-wBC}_1\} \rightarrow \text{BC}_1.
\]

Proof. For $\gamma = \emptyset$ we have $\text{BC}_1 = \{(\emptyset, 0, \gamma)\text{-wBC}_1\}$. For $\gamma \neq \emptyset$ and input bit b of P_1 consider the following protocol.
First, P_1 sends $(b, 1 - b)$ to the other parties using two $(\emptyset, 0, \gamma)$-wBC$_1$ invocations. Denote by (b_2, c_2) (resp. (b_3, c_3)) the bits received by P_2 (resp. P_3). Then P_2 and P_3 exchange their bits using authenticated channels where $b_{2,3}, c_{2,3}$ (resp. $b_{3,2}, c_{3,2}$) denote the bits received by P_2 (resp. P_3). If $b_2 \neq c_2$, party P_2 outputs b_2. Otherwise, if $b_2, b_3 \neq c_{2,3}$, P_2 outputs $b_{2,3}$. Otherwise P_2 outputs 0. The output of P_3 is computed analogously. Consider now the following cases. If everyone is honest, we have $b_2 = b_3 = b$ and $c_2 = c_3 = 1 - b$. The output of P_2 is thus $(b_2, b_3) = (b, b)$. For $H = \{P_1, P_2\}$ we have $b_2 = b$ and $c_2 = 1 - b$. The output of P_2 is therefore $b_2 = b$. For $H = \{P_1, P_3\}$ we have $b_3 = b$ and $c_3 = 1 - b$. The output of P_3 is therefore $b_3 = b$. If $H = \{P_2, P_3\}$, we have $(b_{2,3}, c_{2,3}) = (b_2, c_2)$ and $(b_{3,2}, c_{3,2}) = (b_2, c_2)$. If $b_2 \neq b_3$, we have $c_2 = c_3$ as $(1 - \gamma, \gamma) \not\in \{(\emptyset, 0, \gamma)\text{-wBC}_1\}$. It is now easy to check that P_2 and P_3 will output the same bit. \square

Almost all weak-broadcast specifications where all three components are weakened are in \langleAUTH\rangle (cf. Lemma 5). The two exceptions are $(0, 1, 0)$-wBC$_1$ and $(1, 0, 1)$-wBC$_1$. Surprisingly one is able to construct broadcast from each of them given authenticated channels.

Lemma 7. $\text{AUTH} \cup \{(0, 1, 0)\text{-wBC}_1\} \rightarrow \text{BC}_1$ and $\text{AUTH} \cup \{(1, 0, 1)\text{-wBC}_1\} \rightarrow \text{BC}_1$.

Proof. With Lemma 6 it is enough to show that one can construct $(\emptyset, 0, 0)$-wBC$_1$ from $(0, 1, 0)$-wBC$_1$ (resp. $(\emptyset, 0, 1)$-wBC$_1$ from $(1, 0, 1)$-wBC$_1$). For $(\emptyset, 0, 0)$-wBC$_1$ one can show this analogously to the proof of Lemma 6 using the following protocol.
First, P_1 sends its bit b to the other parties using an authenticated channel, where b_2 (resp. b_3) denote the bit received by P_2 (resp. P_3). In the next step P_1 sends b over $(0, 1, 0)$-wBC$_1$, where c_2 (resp. c_3) denote the bit received by P_2 (resp. P_3). Finally, party P_2 outputs bit o_2 and party P_3 outputs bit o_3 where:
\[
o_2 = \begin{cases} 1 & \text{if } (b_2, c_2) = (1, 1) \\ 0 & \text{otherwise} \end{cases}
\]
\[
o_3 = \begin{cases} 0 & \text{if } (b_3, c_3) = (0, 0) \\ 1 & \text{otherwise} \end{cases}
\]

Using the monotonicity of $C \in \Omega_1 \setminus \langle$AUTH$\rangle$ it is easy to show that one can either construct $(0, 1, 0)$-wBC$_1$ or $(1, 0, 1)$-wBC$_1$ from C. With Lemma 7 this implies that given authenticated channels one can construct broadcast from C.

Lemma 8. Let $C \in \Omega_1 \setminus \langle$AUTH$\rangle$, then $\text{AUTH} \cup \{C\} \rightarrow \text{BC}_1$.

We note that the availability of authenticated channels is crucial. For instance, one can show that $(\emptyset, 0, 0)$-wBC$_1$ is strictly weaker than BC$_1$, i.e., $(\emptyset, 0, 0)$-wBC$_1 \not\rightarrow$ BC$_1$. The following theorem summarizes our results.

Theorem 1. Given authenticated channels and a set of specifications $\mathcal{C} \subseteq \Omega_1$ one can either construct every or just specifications which can be constructed from authenticated channels. In other words either $\langle \mathcal{C} \cup \text{AUTH}\rangle = \{\text{BC}_1\}$ or $\langle \mathcal{C} \cup \text{AUTH} \rangle = \langle$AUTH$\rangle$.

V. Discussion and Open Problems
In this work we have proposed a classification of consistency specifications according to the consistency guarantees they allow to achieve. As a motivating example we have given a complete classification of specifications where a single party can give a binary input. Although we only considered a simple case, the classification provides some unexpected insights into the structure of consistency specifications.

Acknowledgments
Our research was supported by the Swiss National Science Foundation (SNF), project no. 200020-132794.