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Abstract. We present a K-out-of-L voting scheme, i.e., a voting scheme
that allows every voter to vote for (up to) K candidates from a set
of L candidates. The scheme is receipt-free, which means that even a
malicious voter cannot prove to anybody how he voted. Furthermore, the
scheme can be based on any semantically secure homomorphic encryption
scheme, in particular also on the modified ElGamal encryption scheme
which does not allow for efficient decryption of arbitrary large messages
(but is more efficient than Paillier’s encryption scheme).

We note that in contrast to the standard setting with receipts, in a
receipt-free setting a K-out-of-L voting scheme cannot be derived di-
rectly from a yes/no voting scheme.

Finally, we show that the voting protocol of Lee and Kim is not receipt-
free, opposed to what is claimed in the paper.

1 Introduction

1.1 Problem Summary

The goal of an electronic voting protocol is to compute the sum of the votes of all
entitled voters. In the simplest case, every voter can cast one of two possible votes
(Yes/No-votes). More generally, every voter may vote for any K candidates out
of a list of L candidates (K-out-of-L voting schemes). A secure voting protocol
must (at least) satisfy the following fundamental properties:

– Eligibility. Only entitled voters are able to submit a vote (respectively, the
votes of unauthorized voters are not counted), and they are able to submit
only one single vote.

– Correctness. The tally that pops up at the end of the vote is the correct
sum of all valid votes; invalid votes have no influence to the tally.

– Universal verifiability. Anyone can verify that the published tally is
correct.

– Secrecy. It is infeasible to find out which voter has submitted which vote.
Secrecy should also be satisfied for partial information on votes, as well as
for relation between votes of several voters.

? A preliminary version of this text can be found in [Hir01, Chapter 5].
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– Receipt-freeness. The voter cannot obtain a receipt proving the vote he
has cast.

The receipt-free property is required to prevent voters from selling their votes.
Its importance is disputed within the voting community, as the problem of vote-
selling can be seen marginal. However, in a classical voting scheme, the absence
of vote-buying can never be demonstrated; even long after a vote, rumors about a
vote-buying server cannot be resolved, This is in contrast to the correctness of the
result, which can be proven at the end of the vote (using universal verifiability).
Hence, to our mind, limited correctness (with universal verifiability) might be
acceptable; limited receipt-freeness is not.

Receipt-freeness is not achievable without taking some additional assumption
on the communication model (e.g., untappable channels, voting booth) and/or
the trust model (e.g., trusted hardware tokens): Evidently, if the vote-buyer can
read all communication channels, then the voter’s initial randomness, secret-
keys etc. are a verifiable receipt for the submitted vote (the vote-buyer can
simulate the voter’s behavior by using the correct voting program, and compare
the communication with the effective communication seen on the channels). This
receipt can even be made zero-knowledge for the vote-buyer by using standard
techniques (the voter proves knowledge of a secret key matching his public key,
some randomness, such that when applying the voting program, the effective
communication is produced).

1.2 Contributions

We propose a construction for receipt-free voting protocols based on homomor-
phic encryption with the following advantages over previous voting protocols:

– Genericalness. The construction as well as the security proofs are
generic in the underlying encryption scheme, and can equally be instan-
tiated with Paillier’s scheme [Pai99] or with the modified ElGamal scheme
[ElG84, CGS97]. Note that the latter is significantly more efficient with com-
parable security (Paillier requires a bigger field for the same level of security
than ElGamal).

– Generality. The new protocol supports K-out-of-L elections for arbitrary
K and L. In contrast to most (even non-receipt-free) voting protocols in the
literature, we do not have to adjust the security parameter of the underlying
encryption scheme when L is large. Furthermore, this is the first receipt-free
scheme supporting arbitrary large K without exponential complexity (the
complexity of the new scheme is linear in L and independent of K).

– Efficiency. The proposed voting scheme is more efficient than any receipt-
free voting scheme in the literature. For K-out-of-L voting (for any K), it
requires only three times more communication than the most efficient 1-out-
of-L scheme which is not receipt-free [CGS97].

Note that the apparent idea for constructing K-out-of-L voting protocols,
namely running L parallel instances of a 1-out-of-2 protocol and have each
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voter prove that at most K instances contain a 1-vote [BY86], cannot gener-
ically be applied in a receipt-free model: For example, in the protocols of
[SK95, HS00, BFP+01], the voter does not know the randomness used for en-
crypting his own vote, and hence he cannot prove any statement on the submitted
vote(s).

The new protocol is constructed along the lines of the protocol of [CGS97]: A
set of N authorities jointly set-up a secret-key/public-key pair, where the secret-
key is shared among the authorities. Every voter then encrypts his vote under
the public-key, the authorities compute the sum of all submitted votes with using
the homomorphic property of the encryption function, and jointly decrypt (and
prove) the tally by applying techniques from threshold cryptography. Receipt-
freeness is achieved by techniques similar to those of [LK00, BFP+01]: Every
voter must have his encrypted vote re-randomized by a randomizer. This ran-
domizer can be a designated authority, or a piece of hardware given to the voter.
The randomizer acts as an “observer” [CP92] establishing receipt-freeness, but
cannot violate the secrecy or the correctness of the vote. More precisely, the ran-
domizer does not learn the vote, hence cannot violate the privacy of the protocol.
Furthermore, the randomizer must prove to the voter that the new encryption
is really a re-randomization of the original encryption, hence he cannot cannot
violate the correctness of the protocol. However, a malicious randomizer could
help a voter to sell his vote.

The security of the protocol is specified with respect to a fixed parameter
t: The correctness of the computed tally is guaranteed as long as at least t
authorities remain honest during the whole protocol execution, and the secrecy
of each vote is guaranteed as long as no t authorities maliciously collaborate with
each other. Vote-buying is disabled under the assumption that the randomizer
does not collaborate with the vote-buyer, and that the vote-buyer cannot tap the
communication between the voter and the randomizer. Therefore, we require that
the vote-buyer cannot tap the channels between the voters and the randomizer.
We stress that these additional assumptions are required solely for the receipt-
freeness of the scheme; even when the randomizer cooperates with the adversary
and/or the adversary can tap the channels between the randomizer and the
voter, still our voting scheme provides all security properties of non-receipt-free
voting schemes. Hence, receipt-freeness is provided as a strict add-on.

Finally, we analyze the security of the protocol of [LK00] and show that it is
not receipt-free, in contrast to what is claimed in the paper.

1.3 Previous Work and Comparison

Secret-ballot voting protocols were first proposed by Chaum [Cha81], based on
the idea of a mix-net. Cohen (Benaloh) and Fischer [CF85] and Benaloh [Ben87]
suggested a voting protocol based on a homomorphic encryption function. The
first voting schemes based on blind signatures and anonymous channels were
proposed by Chaum [Cha89] and Fujioka, Okamoto, and Ohta [FOO92]. Later,
many schemes based on these approaches were published [BY86, Ive91, PIK93,
Sak94, SK94, CFSY96, CGS97].
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The concept of receipt-freeness was first introduced by Benaloh and Tuinstra
[BT94], where also a first receipt-free voting protocol based on homomorphic en-
cryption is proposed. However, their main protocol turned out to be not receipt-
free [HS00]. Another receipt-free voting protocol was proposed in [NR94], but
as this scheme bases on generic cryptographic tools (like general zero-knowledge
proofs) it is very inefficient. We mention that using incoercible multi-party com-
putation [CG96] does not suffice to achieve receipt-freeness: Voters who want
to sell their vote can use committed random bits in the set-up phase, and can
then later prove their vote based on this randomness. In the sequel, we briefly
compare our scheme with the most prominent receipt-free voting schemes in the
literature.

Sako/Kilian [SK95]. This voting scheme is based on a mix-net channel. The
scheme suffers under similar disadvantages as other mix-net voting proto-
cols: it requires a high communication complexity in the mix (especially the
cut-and-choose proofs), and the tallying process cannot be performed in-
crementally (the whole mixing load must be performed after the last vote
has been cast). Furthermore, this scheme is vulnerable to the so-called ran-
domization attack [Sch99]: The coercer can force a voter to vote randomly
by instructing him which encrypted ballot to take from the generated list.
In this scheme, receipt-freeness is assumed under the assumption of physi-
cally untappable channel. If an adversary could tap these channels, then not
only he could violate the receipt-free property, but also the secrecy property.
However, this drawback can be fixed.

Okamoto [Oka96, Oka97]. This scheme uses the blind-signature approach.
It requires each voter to be active in three rounds, which is a significant
disadvantage in practice. Receipt-freeness is achieved under the (rather de-
manding) assumption of untappable anonymous channels. An adversary who
can violate this assumption can break both receipt-freeness and secrecy of
the scheme. It seems unclear how to get rid of this drawback.

Hirt/Sako [HS00]. This protocol uses homomorphic encryption for tallying
and a small mix-net for vote generation. This approach awards higher ef-
ficiency than the previous approaches. However, also this protocol is vul-
nerable to the randomization attack [Sch99]. Also this scheme relies on the
assumption of untappable channels, and also in this scheme, tapping these
channels violates the secrecy of the votes (can be fixed). Furthermore, this
protocol implements only 1-out-of-L elections for small L (the computational
complexity of decrypting the tally is exponential in L).

Lee/Kim [LK00], Baudron et al [BFP+01]. Recently, [LK00] introduced
the idea of using a randomizer for achieving receipt-freeness. However, their
protocol is insecure (cf. Appendix A). Independently, [BFP+01] proposed
a receipt-free voting protocol based on randomizers, using Paillier encryp-
tion [Pai99] for secrecy and general diverted proofs [OO89] for receipt-
freeness. Paillier encryption makes the scheme less efficient than schemes
based on modified ElGamal (like ours): for achieving the same level of se-
curity, Paillier requires a bigger security parameter than ElGamal. Further-
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more, using general diverted proofs might also yield a high bit complexity;
this is not analyzed in the paper. Finally, the protocol is limited to 1-out-
of-L votes (in contrast to K-out-of-L votes), and for large L, the security
parameter of the underlying encryption scheme must be increased, slowing
down all computations.

2 Preliminaries

2.1 Σ-Proofs

A Σ-proof is a three-move special honest-verifier zero-knowledge proof of knowl-
edge. This notion originates from the notion of a Σ-protocol, as introduced by
Cramer [Cra96]. We call a Σ-proof linear if the verifier’s test predicate is lin-
ear, i.e., the sum of two accepting conversation is accepting as well. Several
Σ-proofs can easily be combined to a new Σ-proof proving knowledge of all
(AND-combination) or either (OR-combination) of the witnesses. For the AND-
combination, the protocols are run in parallel, but the verifier requests the same
challenge for all parallel instances. For the OR-combination, again the verifier
requests only one challenge, but the prover is allowed to split this challenge into
one sub-challenge for each instance, where the sub-challenges must add up to
the challenge. This allows the prover to run the simulator for all but one in-
stance. Note that both the AND- and the OR-combination preserves linearity.
Any Σ-proof can be made non-interactive by applying the Fiat-Shamir heuris-
tics [FS86]. Details and formal definitions of Σ-proofs are omitted due to space
restrictions.

2.2 Identification Scheme

For voter identification, we assume an identification scheme where the identifi-
cation protocol can be written as a linear Σ-proof. One can easily verify that
Schnorr’s identification scheme [Sch91] satisfies this requirement. A voter’s se-
cret key is denoted by zv, the corresponding public key by Zv = gzv for an an
appropriate generator g. Furthermore, in a model providing receipt-freeness, it
is essential that each voter knows his own secret key, and this should be ensured
by the underlying public-key infrastructure. A protocol for ensuring knowledge
of the secret-key for Schnorr’s identification scheme is given in [HS00].

2.3 Designated-Verifier Proofs

We will also make use of so-called designated-verifier proofs. A designated-verifier
proof is a proof which is convincing for one particular (designated) verifier, but
completely useless when transferred from this designated verifier to any other
entity. The notion of designated-verifier proofs was introduced in [JSI96]. The
key idea of designated-verifier proofs is to prove knowledge of either the witness
in question, or of the secret key of the designated verifier. Formally, the proof
will be constructed as the OR-combination of the proof in question and a proof
of knowledge of the designated verifier’s secret-key.
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3 The Encryption Function

We first state the requirements on the encryption function, and then show that
the two classical homomorphic encryption functions, namely modified ElGamal
and Paillier, satisfy the requirements. For space limitations, the full descriptions
have been deleted from this extended abstract.

3.1 Requirements

We consider a semantically-secure probabilistic public-key encryption function
EZ : V × R → E, (v, α) 7→ e, where Z denotes the public key, V denotes a
set of votes, R denotes the set of random strings, and E denotes the set of
encryptions. We write E instead of EZ for shorthand. The decryption function
is Dz : E → V, e 7→ v, where z denotes the secret key. Again, we write D instead
of Dz. Note that the computational complexity of the decryption function Dz

may be polynomial in the decrypted cleartext v. For arbitrary large v, decryption
is not required to be feasible.

We assume that E is a group homomorphism, i.e., E(v1, α1) ⊕ E(v2, α2) =
E(v1 + v2, α1 � α2) for the corresponding group operations + in V, � in R,
and ⊕ in E, respectively. Note that the group operation in V must be modular
addition, but the operations in the other groups can be arbitrary.

Furthermore, we require E to be q-invertible for a given q ∈ Z meaning
that for every encryption e, the decryption v and the randomness α of qe can be
efficiently computed, i.e., the function Dq : e 7→ (vq, αq) such that qe = E(vq, αq)
is efficient (given Z). Additionally, we require that there is a number u ≤ q, large
enough that 1/u is considered negligible, with the property that all integers
smaller than u are co-prime with q, i.e., ∀u′ < u : gcd(u′, q) = 1. This property
will be used in the knowledge extractors of the Σ-proofs.1 Note that vq must be
0 due to the semantic security of E and the group structure of V. This notion
of q-invertibility is inspired by the notion of q-one-way group-homomorphism of
Cramer [Cra96, CD98].

Finally, we require the existence of verifiable distributed protocols for key
generation and for decryption. Note that every encryption scheme can be turned
into a threshold variant by applying techniques of general multi-party computa-
tions, but such an approach would be rather inefficient.

3.2 Modified ElGamal Encryption

The ElGamal encryption function [ElG84], modified according to [CGS97],
enhanced with a threshold setup protocol and a threshold group decryption
[Ped91], satisfies all above properties. When used over a finite field G with
|G| = q prime, then the encryption function is q-invertible, and we set u = q.

1 More generally, it would be sufficient to assume that for a given large u, there exists
an efficiently computable and invertible bijection from Zu onto a subset of Zq, where
each element in this subset is co-prime with q.
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What should still be mentioned here is that computational complexity for de-
cryption is linear in the size of the cleartext. However, in the context of this
work, this issue will not be a problem.

3.3 Paillier Encryption

Also the probabilistic encryption function of Paillier [Pai99], enhanced by thresh-
old setup and decryption [FPS00, DJ01], satisfies all required properties. For an
RSA modulus n, this encryption function is n-invertible, and let u be a large
prime which is guaranteed to be smaller than the smaller prime factor of n (e.g.,
we let n be the product of two secret 512-bit integers, and let u be a fixed 511-bit
prime).

4 Re-encrypting and Proving Re-encryptions

A random re-encryption e′ of a given encryption e = E(v, α) is an encryption
with the same vote v, but a new (independently chosen) randomness α′. Such
a re-encryption can be computed by adding a random encryption of 0 to e.
Formally, a witness ξ ∈R R is chosen at random, and e′ = e⊕ E(0, ξ), i.e.,

e′ = R(e, ξ) = e⊕ E(0, ξ).

Due to the homomorphic property of E, the randomness in e′ is uniformly dis-
tributed over R for a uniformly chosen ξ ∈R R.

Proving that a given e′ is indeed a re-encryption of e can easily be done by
proving that e′	 e is an encryption of 0. We present a simple linear Σ-proof for
proving knowledge of a witness α such that e = E(0, α) for any given encryption
e. The challenge for the protocol is uniformly selected from Zu, and the soundness
of the protocol is proven under the assumption that E is q-invertible and that
∀u′ < u : gcd(u′, q) = 1.

Prover Verifier

knows e, α,
s.t. e = E(0, α)

knows e

α′ ∈R R, e′ = E(0, α′) -e′

� c
c ∈R Zu

β = cα � α′ -β
E(0, β) ?= ce⊕ e′

Completeness of the protocol is obvious by inspection. We next show that the
protocol satisfies special soundness, by showing that if for any e′ the prover can
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reply to two different challenges c1 6= c2, then he can compute a witness α with
e = E(0, α). So assume that for two different challenges c1 and c2, the prover
can answer with β1 and β2, respectively, such that both conversations (e′, c1, β1)
and (e′, c2, β2) are accepting, i.e., E(0, β1) = c1e⊕e′ and E(0, β2) = c2e⊕e′, and
hence E

(
0, β1 �β2

)
= (c1−c2)e. Without loss of generality assume that c1 > c2,

hence 0 < c1− c2 < u, and gcd(c1− c2, q) = 1. Hence we can apply the extended
Euclidean algorithm to find two integers a and b such that a(c1 − c2) + bq = 1.
Then, using the q-invertibility of the encryption function we compute αq such
that qe = E(0, αq). This results in

e =
(
a(c1 − c2) + bq

)
e = a(c1 − c2)e⊕ bqe

= aE
(
0, β1 � β2

)
⊕ bE(0, αq) = E

(
0, a(β1 � β2) � bαq

)
.

This concludes that indeed e encrypts 0 with witness α = a(β1 � β2) � bαq.
We now show that the protocol is special honest-verifier zero-knowledge by

constructing a simulator. The simulator is constructed as follows: For any given
c ∈ Zu, we select β from R at random, and set e′ = E(0, β)	 ce. Obviously, the
probability distribution of β is the same as the distribution of a real conversation
in which α is chosen uniformly distributed (for the same challenge c).

It is important to note that the simulator can also be applied for an encryp-
tion e which does not encrypt 0, and the simulated conversation is computa-
tionally indistinguishable from a conversation where e encrypts 0 (an efficient
distinguisher of these conversations would contradict the semantic security of
the encryption function). This indistinguishability is important when several
re-encryption proofs are OR-combined.

5 Non-Receipt-Free Voting Protocol

In this section we present a very simple K-out-of-L voting protocol which is
not receipt free. The protocol is similar to the voting protocol of [CGS97], but
due to a different ballot encoding it allows for votes with K ≥ 2 and provides
a substantially better computation complexity for L > 2. The protocol will be
used as basis for the receipt-free protocol in the next section.

5.1 Model

We consider a model with N authorities A1, . . . , AN and M voters. Commu-
nication takes place by means of a bulletin board which is publicly readable,
and which every participant can write to (into his own section), but nobody can
delete from. The bulletin board can be considered as an authenticated public
channel with memory. A threshold t denotes the number of authorities that is
required for decrypting the tally, and which also is able to annihilate the secrecy
of any vote.
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5.2 Ballots

A ballot consists of a vector of votes, ~v = (v1, . . . , vL), where vi is the vote for
the i-th candidate. In a K-out-of-L election, a ballot is valid if and only if each
vote vi is either 0 or 1, and the votes on the ballot sum up to K. If voters should
be allowed to vote for less than K candidates, then this is modeled as K-out-
of-(L + K) election, where the latter K candidates represent “abstain” and will
not be tallied.

As simple notation, we write E(~v, ~α) for L-vectors ~v = (v1, . . . , vL) and
~α = (α1, . . . , αL), meaning the component-wise application of the encryption
function, i.e., E(~v, ~α) =

(
E(v1, α1), . . . , E(vL, αL)

)
. Analogously, we defined

R(~e, ~ξ), ~v1 + ~v2, ~α1 � ~α2, and ~e1 ⊕ ~e2.

5.3 Set-up

In the set-up phase, the authorities jointly generate a uniformly distributed
secret key and the corresponding public key for the encryption scheme, where
the secret key is shared among the authorities, and the public key is publicly
known. A protocol for (verifiable) generating a sharing of a randomly chosen
secret key and a public key is a requirement on the encryption function.

5.4 Casting a Ballot

A ballot is cast as follows: The voter constructs a random encryption ~e = E(~v, ~α)
for his vote vector ~v and randomness ~α ∈R RL, and posts it onto the bulletin
board. Furthermore, the voter posts a proof of validity. A ballot ~v = (v1, . . . , vL)
is valid if and only if vi ∈ {0, 1} for i = 1, . . . , L and

∑
vi = K. In the following

we construct a (finally non-interactive) validity proof for the encrypted ballot
~e = (e1, . . . , eL).

The validity proof is constructed as the AND-combination of a Σ-proof for
each i = 1, . . . , L, each stating that ei is an encryption of either 0 or 1, and a
Σ-proof stating that e1 ⊕ . . . ⊕ eL is an encryption of K. The proofs that ei is
an encryption of either 0 or 1 is constructed as an OR-combination of a proof
stating that ei encrypts 0 and a proof stating that ei encrypts 1.

For easier notation, we write ei,0 = ei and ei,1 = ei	E(1, 0), that is, ei,vi is an
encryption of 0 with randomness αi. Furthermore, we write eΣ = (e1⊕ . . .⊕eL),
αΣ = α1 � . . . � αL, and eΣ,K = eΣ 	 E(K, 0). A ballot is valid exactly if
for each i, either ei,0 or ei,1 encrypts 0, and eΣ,K encrypts 0. This proof can be
constructed straight-forward as AND-combination of OR-combinations of proofs
that a given encryption contain 0 (Section 4).

The following protocol is a OR-combined Σ-proof of knowledge of a witness
αi such that ei,0 = E(0, αi) OR ei,1 = E(0, αi). In the protocol for proving
ei,1−vi , the prover applies the simulator.
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Prover Verifier

knows vi ∈ {0, 1}, αi knows ei = E(vi, αi)

α′
i,vi

∈R R,
e′i,vi

= E(0, α′
i,vi

)
ci,1−vi ∈R Zu,
βi,1−vi ∈R R,
e′i,1−vi

= E(0, βi,1−vi)
	ci,1−viei,1−vi

-e′i,0, e
′
i,1

� c
c ∈R Zu

ci,vi = c− ci,1−vi (mod u),
βi,vi = ci,viαi � α′

i,vi
-ci,0, ci,1, βi,0, βi,1 c

?= ci,0 + ci,1 (mod u)

E(0, βi,0)
?= ci,0ei,0 ⊕ e′i,0

E(0, βi,1)
?= ci,1ei,1 ⊕ e′i,1

The finally validity proof is the AND-combination (i.e., parallel execution,
but same challenge for all instances) of the above protocol for i = 1, . . . , L plus a
Σ-proof that eΣ,K encrypts 0. A (short) non-interactive proof is then the vector
[c, c1,0, . . . , cL,0, β1,0, . . . , βL,0, β1,1, . . . , βL,1, βΣ ] satisfying

c
?= H

(
E(0, β1,0)	 c1,0e1,0

∥∥∥ . . .
∥∥∥E(0, βL,0)	 cL,0eL,0

∥∥∥
E(0, β1,1)	 (c− c1,0)e1,1

∥∥∥ . . .
∥∥∥E(0, βL,1)	 (c− cL,0)eL,1

∥∥∥
E(0, βΣ)	 ceΣ,K

)
.

The proof takes 3L + 2 field elements.

5.5 Tallying

Tallying is performed for each candidate separately: For candidate i, the i-th
components of each valid ballot are summed up (using the homomorphic prop-
erty of the encryption function) and decrypted (using the verifiable decryption
protocol of the encryption function). Note that it is known in advance that the
decrypted tally will be in the range (0,M); hence, decryption is efficient also for
the modified ElGamal scheme.

5.6 Security Analysis

The privacy of the proposed protocol is guaranteed under the assumption that
no t authorities maliciously pool their information, plus the assumption that
the encryption function is semantically secure. The tally is correct if at least t
authorities honestly participate in the tally decryption, plus the assumption that
no verifier can cast an invalid ballot. The probability that an invalid ballot passes
the validity proof is negligible if 1/u is negligible. The scheme is not receipt-free.
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5.7 Efficiency Analysis and Comparison

We analyze the communication efficiency of this voting protocol for a K-out-of-L
vote. The number of bits used to store one group element is denoted by B.

We ignore the costs for initialization and decryption of the final tally —
they are independent of the number M of voters. It remains to count the costs
for casting and proving votes. In order to cast his vote, every voter sends his
encrypted ballot (LB bits) together with the validity proof ((3L+2)B bits) onto
the bulletin board. In total, (4L + 2)MB bits are posted to the bulletin board.

As comparison, in [CGS97] a ballot takes only B bits, but the proof takes 2LB
bits. This gives a total of (2L+1)MB bits. However, this scheme only allows for
K = 1 (for larger K the communication complexity would grow exponentially),
and its decryption function is computationally inefficient for large L.

6 Receipt-Free Voting Protocol based on Randomizers

In this section, the voting protocol of Section 5 is enhanced to be receipt-free.
Therefore, the procedure for casting a vote must be modified.

The protocol relies on special authority called randomizer, who re-randomizes
encrypted ballots of the voters. More precisely, each voter constructs an en-
crypted ballot containing his vote and secretly sends it to the randomizer. The
randomizer re-encrypts this ballot and posts it to the bulletin board. Further-
more, the randomizer proves to the voter (in designated-verifier manner) that
indeed the new encrypted ballot contains the same vote, and the voter and the
randomizer jointly generate a proof of validity for this new ballot.

In the following, we briefly discuss the new model, then formally describe the
new protocol for casting a ballot.

6.1 Model

In addition to the model of Section 5, we assume a special authority called
randomizer. Collaboration of the randomizer with a vote-buyer or coercer cannot
be tolerated. The randomizer does not learn the vote of any voter, nor can he
interfere with the correctness of the tally, but he can reject to re-encrypt the
ballot of any voter and thereby prevent this voter from participating the vote.
Therefore, several randomizers can be used.

We assume that the communication channels between the voter and the
randomizer are untappable for the vote-buyer. The privacy of these channel
must be physical, in such a way that even the recipient cannot prove to the
vote-buyer what was received from the channel (of course, the recipient can
record all received data, but he must not be able to prove that he received a
particular string). The untappable channels need not to be authenticated.

Furthermore, to each voter a secret key and a public key is associated, where
the public key must be publicly known and the secret key must be kept private.
We stress that in order to achieve receipt-freeness it must be guaranteed that
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each voter knows the secret key corresponding to his known public key (but the
voter is allowed to reveal the secret-key to the coercer). A protocol ensuring so
is given in [HS00].

Note that all above requirements are uniquely relevant for receipt-freeness.
If they are not met, then the proposed voting scheme still achieves all security
requirements but receipt-freeness.

6.2 Casting a Ballot

A ballot is cast as follows: The voter constructs a random encryption ~e = E(~v, ~α)
of his vote vector ~v with randomness ~α ∈R RL, and sends it through the un-
tappable channel to the randomizer. The randomizer then computes random
re-encryption ~e∗ = R(~e, ~ξ) of ~e, and proves to the voter in designated-verifier
manner that indeed ~e∗ is a re-encryption of ~e. Then, the voter and the ran-
domizer jointly generate a validity proof for ~e∗, without the randomizer learning
anything about the vote vector ~v, and without the voter learning anything about
the re-encryption witness ~ξ. Finally, the randomizer posts the validity proof to
the bulletin board, and the voter posts the re-encrypted ballot ~e∗.

Voter Randomizer
Bulletin-
Board

~e = E(~v, ~α) -
~e

�
~e∗

~e∗ = R(~e, ~ξ) -
~e∗

�
re-encr. proof

prove ~e∗ ∼= ~e

. . . -�
validity proof

. . .

-
val. proof

Designated-verifier re-encryption proof. The purpose of this proof is to
have the randomizer prove to the voter that the new encryption ~e∗ is indeed
a re-encryption of ~e. However, this proof must be non-transferable, such that
the verifier cannot convince someone else that ~e∗ is a re-encryption of ~e. This is
achieved by a designated-verifier proof (cf. Section 2.3): The randomizer proves
knowledge of either a re-randomization witness ~ξ with ~e∗ = R(~e, ~ξ), or of the
voter’s secret key. Obviously, this proof is convincing for the voter, but com-
pletely useless when transferred from the voter to a third party.

The proof is constructed as an OR-combination of the Σ-proof that the
encryption ~e∗ 	~e contains the vote ~0 (which again is an AND-combination that
E(0, ξi) = e∗i 	 ei for i = 1, . . . , L), and the Σ-proof of the identification scheme.
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The resulting proof will require L + 1 encryptions in the first message, then
one challenge, and in the final message, 2 sub-challenges plus 2L + 1 randoms.
Non-interactively, the proof can be made in 2L + 3 field elements.

We show the proof for Schnorr’s identification scheme. We denote the voter’s
secret key with zv and the public key with Zv = gzv . For shorthand, we set
~e− = ~e∗ 	 ~e. The following protocol is a Σ-proof of knowledge of either the
voter’s secret key zv satisfying gzv = Zv, OR a witness ~ξ satisfying ~e− = E(~0, ~ξ).

Randomizer Voter

knows ~e−, ~ξ knows ~e− = E(~0, ~ξ)

~α′ ∈R RL, ~e′ = E(~0, ~α′)
c2 ∈R Zu, s2 ∈R Zq,
t2 = gs2Z−c2

v
-~e′, t2

� c
c ∈R Zu

c1 = c− c2 (mod u)
~β = c1

~ξ � ~α′ -c1, c2, ~β, s2 c
?= c1 + c2 (mod u)

E(~0, ~β) ?= c1~e
− ⊕ ~e′

gs2
?= Zc2

v · t2

A non-interactive version of the proof is the vector [c1, c2, ~β, s2] satisfying
the equation

c1 + c2
?= H

(
E(0, β1)	 c1e

−
1

∥∥∥ . . .
∥∥∥E(0, βL)	 c1e

−
L

∥∥∥gs2Z−c2
v

)
.

This proof takes L + 3 field elements.

Validity proof. The validity proof is a non-interactive proof that the random-
ized encryption ~e∗ contains a valid vote, i.e., each ei is an encryption of either 0
or 1, and in total, there are exactly K encryptions of 1. Neither the voter (who
does not know the re-encryption witness ~ξ) nor the randomizer (who does not
know the ballot ~v) can generate the proof on their own, hence they need to gen-
erate the proof interactively. The generation of the proof proceeds in two steps:
First, the voter and the randomizer engage in an interactive protocol which gives
to the randomizer a uniformly selected random non-interactive validity proof for
~e (a so-called diverted proof [OO89]). Then, the randomizer adjusts this proof
into a validity proof for ~e∗.

Generating a diverted validity proof for ~e. We first observe that validity proofs
are linear Σ-protocols; hence, the sum of two accepting validity proofs (for the
same vote ~e) is again an accepting validity proof for ~e. A diverted version of the
validity proof can hence be generated as the sum of the normal validity proof
(from Section 5.4) and a uniformly random validity proof for ~e, generated by the
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simulator. More precisely, a diverted proof for ~e is generated as follows: First,
the randomizer used the simulator to generate a random validity proof for ~e
with challenge 0 (here we use that the Σ-proof is special zero-knowledge). Then,
the voter and the randomizer engage in an interactive validity proof for ~e. The
diverted proof is then the sum of these two proofs.

More precisely, the randomizer selects random “displacements” c′i,0 ∈R Zu,
c′i,1 = −c′i,0, and β′

i,0, β
′
i,1 ∈R R for i = 1, . . . , L. The displacements are chosen

such that c′i,1 + c′i,0 = 0 for all i, i.e., the sum of the new sub-challenges will
not change. Upon reception of the first message (e′i,0, e

′
i,1) of the interactive

Σ-proof, the randomizer computes the first “message” of the non-interactive
diverted proof as

e′′i,0 = e′i,0 ⊕ E(0, β′
i,0)	 c′i,0ei,0, e′′i,1 = e′i,1 ⊕ E(0, β′

i,1)	 c′i,1ei,1

and asks as challenge c = H(e′′i,0, e
′′
i,1). When receiving the third message (ci,0,

ci,1, βi,0, βi,1), the randomizer computes the third “message” (c′′i,0, c
′′
i,1, β

′′
i,0, β

′′
i,1)

of the non-interactive diverted proof as

c′′i,0 = ci,0 � c′i,0, c′′i,1 = ci,1 � c′i,1, β′′
i,0 = βi,0 � β′

i,0, β′′
i,1 = βi,1 � β′

i,1.

One can easily verify that the diverted conversation
(
(e′′i,0, e

′′
i,1), c, (c′′i,0, c

′′
i,1,

β′′
i,0, β

′′
i,1)

)
is accepting for ei (due to the linearity of the validity proof). Note

that in the interactive validity proof, L such proofs are run in parallel with the
same challenge (AND-combination). The above diversion is then applied on each
parallel instance independently. Furthermore, as the original interactive proof is
honest-verifier zero-knowledge only, one must ensure that the challenge of the
randomizer is chosen at random. This is achieved by having the randomizer not
only send c to the voter, but instead all e′′i,j , such that the voter can apply the
hash function himself. Obviously, then the voter knows that the challenge is
selected at random under the random oracle assumption.

Adjusting the diverted validity proof to ~e∗. With the above protocol, the random-
izer can construct a diverted non-interactive validity proof for ~e. It remains to
convert this proof into a validity proof for ~e∗. So consider the following diverted
validity proof for ~e: [c, c′′1,0, . . . , c

′′
L,0, β

′′
1,0, . . . , β

′′
L,0, β

′′
1,1, . . . , β

′′
L,1, β

′′
Σ ]. Then one

can easily verify that the following vector is a validity proof for the re-encrypted
ballot ~e∗ = ~e⊕ E(0, ~ξ):

[c, c′′1,0, . . . , c
′′
L,0, β′′

Σ � (ξ1 � . . . � ξL),
β′′

1,0 � c′′1,0ξ1, . . . , β
′′
L,0 � c′′L,0ξL, β′′

1,1 � c′′1,1ξ1, . . . , β
′′
L,1 � c′′L,1ξL].

6.3 Security Analysis (of the vote-casting protocol)

The vote-casting protocol must satisfy two requirements: First, the randomizer
must not learn the vote. Second, the voter must not be able to proof any corre-
spondence between the original ballot ~e and the re-encrypted ballot ~e∗.
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In order to show that the randomizer does not learn the voters vote, we only
need to analyze the protocol for generating the diverted proof. This protocol
is an interactive honest-verifier zero-knowledge proof of knowledge, which gives
no information to the verifier (the randomizer) when the challenge is chosen
honestly at random. Due to the modification that the voter applies the hash
function by himself, it is clear that under the random oracle assumption the
challenge is random, hence the protocol is zero-knowledge, and the randomizer
learns nothing about the vote.

Secondly, in order to show that the protocol is receipt-free, we make use of
two observations: First, the generated diverted validity proof is uniformly chosen
among all validity proofs for ~e∗, and second, the randomizer does not give any
information beyond the diverted proof to the voter. The second observation can
be verified by inspecting the protocol, but the first observation needs some more
explanations: The diverted validity proof is the sum of the interactive proof as
executed with the voter (and hence known to the voter), and a simulated proof
which is selected completely uniformly among all accepting proofs (except for
the challenge, which is random in the random oracle model). Hence the diverted
proof is random and statistically unlinked to the interactive protocol that the
voter is involved in. From the voter’s viewpoint, the validity proof for ~e∗ is
uniformly random and independent from all his own information.

Once more we stress that even a malicious randomizer cannot interfere with
the secrecy or the correctness of the voting protocol. He only receives an en-
crypted ballot, and he must prove to the voter that the new ballot is a re-
encryption of the original ballot.

6.4 Efficiency Analysis and Comparison

We consider K-out-of-L voting, and denote the number of bits per group element
with B. As usual, we ignore the costs for initialization and decryption of the final
tally.

In order to cast his vote, every voter sends the ballot to the randomizer LB
bits, who sends a re-encryption and a re-encryption proof to the voter (LB +
(L + 3)B bits). Then, the voter and the randomizer run the interactive validity
protocol ((6L + 3)B bits), and the voter posts the randomized ballot (LB bits)
and the randomizer posts the non-interactive proof to the bulletin board ((3L+
2)B bits). This gives a total of (9L + 6)MB bits sent through the untappable
channels, and (4L + 2)MB bits sent to the bulletin board.

In comparison, the 1-out-of-L voting protocol of [HS00] with N authorities
and M voters requires 4LMNB bits sent through the untappable channels and
2L2MNB bits posted to the bulletin board. For K ≥ 2, this protocol has expo-
nential communication complexity. Furthermore, the protocol has exponential
computation complexity in L, and is hence applicable only for very small L.

Finally, we compare the proposed protocol with the 1-out-of-L voting proto-
col of [BFP+01]. The exact communication complexity of their protocol cannot
be determined, as they do not provide a concrete diverted proof. As a rough es-
timate, the protocol communicates 18LMB bits over the untappable channels.
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The size of their validity proof stored on the bulletin board is (according to their
analysis) (9L + 11)MB. Furthermore, as they are restricted to Paillier encryp-
tion, they require a larger B than our scheme with ElGamal encryption for the
same security level. Furthermore, they must require B ≥ L log2 M (a message
must have enough bits for the tally of each of the L candidates), which for large
L might require increasing B. Also their scheme cannot be used for K ≥ 2; the
size of the validity proof would grow exponentially.

6.5 Hardware Randomizer

In the proposed scheme, the randomizer essentially does not need to communi-
cate with the bulletin board or the authorities (he can send the diverted validity
proof signed to the voter, who then casts it on the bulletin board — a vote on
the bulletin board is accept only if it is signed by the randomizer). This allows
for a hardware-based receipt-free voting scheme: Every voter receives a person-
alized randomization-token, which performs the randomization of the vote, and
generates a signed diverted validity proof for the randomized vote. Note that
this randomization device acts as an “observer” [CP92]: It does not learn the
vote, nor can it falsify it. Even when the vote authorities would distribute bad
randomization tokens to the voter, still the privacy and the correctness of the
vote would be guaranteed (but not the receipt-freeness). However, the device
could reject to provide a proper validity proof; but in this case, the voter could
demonstrate other people that his token is broken, and could get a new one.

7 Conclusions

We have presented a generic receipt-free voting scheme, which is secure with any
homomorphic encryption scheme satisfying the required properties. There is no
need to adapt the protocol and proofs to the encryption function, as is necessary
for most voting schemes in the literature.

The resulting voting scheme is more efficient than any other receipt-free vot-
ing scheme. For K-out-of-L votes and N authorities, the communication com-
plexity per voter is linear in L and independent of K and N . No other scheme
in the literature has these properties.

For 1-out-of-L votes, the storage complexity on the bulletin board is the
same that of the most efficient voting protocol which is not receipt-free [CGS97].
However, due to the communication with the randomizer, our communication
complexity is about 3 times higher.

To the best of our knowledge, the presented scheme is the first scheme which
can be based on ElGamal encryption without having a computation complexity
growing exponentially in K. There are schemes with efficient computation also
for large K, but they base on Paillier encryption [FPS00, DJ01]. Such schemes
rely one stronger cryptographic assumptions and require larger security param-
eters, resulting in bigger constants in the computation and communication com-
plexities.
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A Analysis of the Lee-Kim Protocol

In this section, we show that the protocol of Kim and Lee [LK00] is not receipt-
free, opposed to what is claimed in the paper.

A.1 Key Ideas of [LK00]

The protocol of [LK00] is based on the assumption of an honest verifier who
ensures the validity of all cast votes. Each voter sends an encryption e of his
vote to this honest verifier and proves its validity. Then, the honest verifier
sends a random encryption e′ of 0 to the voter and proves (with a three-move
honest-verifier zero-knowledge protocol) that indeed e′ is an encryption of 0. The
final ballot of the voter is e∗ = e + e′, which obviously contains the same vote
as e, but different randomness. All communication between the voter and the
randomizer must take place over an untappable channel.

Note that in this protocol a malicious “honest verifier” can help a voter
to cast an invalid vote and thereby falsify the outcome of the whole vote. In
our opinion, such a protocol in which the correctness of the tally relies on the
trustworthiness of a single entity is questionable.

A.2 How to Construct a Receipt

The voter can easily construct a receipt: In the protocol where the honest verifier
proves to the voter that indeed e′ is an encryption of 0, the voter can choose
the challenge as the output of a hash function applied to the message in the
first move. This makes the transcript of the protocol a non-interactive proof
(according to Fiat-Shamir heuristics) that e′ is an encryption of 0. Hence, the
values e′, e, the witness of e, and this proof are a receipt of the cast vote e∗.


