
A Dynamic Tradeoff

Between Active and Passive Corruptions

in Secure Multi-Party Computation

Martin Hirt1, Christoph Lucas2,⋆, and Ueli Maurer1

1 ETH Zurich
{hirt,maurer}@inf.ethz.ch

2 ETH Zurich and Ergon Informatik AG
christoph.lucas@ergon.ch

Abstract. At STOC ’87, Goldreich et al. presented two protocols for
secure multi-party computation (MPC) among n parties: The first proto-
col provides passive security against t < n corrupted parties. The second
protocol provides even active security, but only against t < n/2 corrupted
parties. Although these protocols provide security against the provably
highest possible number of corruptions, each of them has its limitation:
The first protocol is rendered completely insecure in presence of a sin-
gle active corruption, and the second protocol is rendered completely
insecure in presence of ⌈n/2⌉ passive corruptions.

At Crypto 2006, Ishai et al. combined these two protocols into a single
protocol which provides passive security against t < n corruptions and
active security against t < n/2 corruptions. This protocol unifies the
security guarantees of the passive world and the active world (“best of
both worlds”). However, the corruption threshold t < n can be tolerated
only when all corruptions are passive. With a single active corruption,
the threshold is reduced to t < n/2.

As our main result, we introduce a dynamic tradeoff between active
and passive corruptions: We present a protocol which provides security
against t < n passive corruptions, against t < n/2 active corruptions,
and everything in between. In particular, our protocol provides full secu-
rity against k active corruptions, as long as less than n − k parties are
corrupted in total, for any unknown k.

The main technical contribution is a new secret sharing scheme that, in
the reconstruction phase, releases secrecy gradually. This allows to con-
struct non-robust MPC protocols which, in case of an abort, still pro-
vide some level of secrecy. Furthermore, using similar techniques, we also
construct protocols for reactive MPC with hybrid security, i.e., different
thresholds for secrecy, correctness, robustness, and fairness. Intuitively,
the more corrupted parties, the less security is guaranteed.

Keywords: Multi-party computation, gradual secret sharing, computa-
tional security, mixed adversary.

⋆ Work done while the author was at ETH Zurich.

R. Canetti and J.A. Garay (Eds.): CRYPTO 2013, Part II, LNCS 8043, pp. 203–219, 2013.
c© International Association for Cryptologic Research 2013

204 Martin Hirt, Christoph Lucas, and Ueli Maurer

1 Introduction

1.1 Secure Multi-Party Computation

Multi-Party Computation (MPC) allows a set of n parties to securely compute
a (probabilistic) function f in a distributed manner, where security means that
secrecy of the inputs and correctness of the output are maintained even when
some of the parties are dishonest. The dishonesty of parties is modeled with a
central adversary who corrupts parties. The adversary can be passive, i.e., can
read the internal state of the corrupted parties, or active, i.e., can make the
corrupted parties deviate arbitrarily from the protocol. Reactive MPC considers
the more general case where parties can provide inputs even after having received
(intermediate) outputs.

MPC was originally proposed by Yao [Yao82]. The first general solution
was provided in [GMW87], where two protocols are presented, one providing
passive security against any number of corruptions, and one providing active
security against a faulty minority. These protocols are computationally secure
only. Information-theoretically secure MPC was considered in [BGW88, CCD88,
RB89, Bea91].

1.2 Extensions of the Basic Setting

These seminal MPC results have been generalized and extended in numerous di-
rections, among which we focus on those most relevant for us: The strict separa-
tion between active and passive adversaries was overcome in [Cha89, DDWY93,
FHM98, HMZ08] by considering an adversary that corrupts some parties actively
and some additional parties passively. Such amixed adversary is characterized by
two fixed thresholds, indicating the maximum number of actively and passively
corrupted parties, respectively.

A more fine-grained analysis of the achieved security guarantees was initi-
ated in [Cha89] and further advanced in [FHHW03, FHW04, Kat07, LRM10,
HLMR11, HLMR12]: These protocols provide hybrid security, i.e., depending on
the actual adversary, only a subset of the usual security guarantees (secrecy,
correctness, robustness, fairness) are guaranteed. Intuitively, the more parties
are corrupted, the less security is guaranteed.

For completeness, the considered models and achieved security levels of the
mentioned protocols are summarized in Appendix A.

1.3 Prior Work

In their seminal paper [GMW87], the authors provide two different protocols,
one for passive security against up to t < n corruptions, and one for active
security against up to t < n

2 corruptions. In [IKLP06], these two protocols are
combined into a single protocol, which is secure against an adversary that either
passively corrupts any number of parties or actively corrupts a minority of the
parties. This combined protocol is only applicable for non-reactive functions, and

A Dynamic Active/Passive Tradeoff in Secure MPC 205

it is proven that this combination is impossible for reactive MPC. For this more
general setting, the authors present a protocol in the active world that provides
full security up to a first threshold t, and correctness and secrecy up to a second
threshold s, given that t < n/2 and s+ t < n.

Note that all provided protocols are secure against an adversary that is either
fully passive or fully active. In particular, the protocol for non-reactive MPC is
rendered completely insecure when the adversary corrupts ⌈n/2⌉ parties, even if
all but one corruptions are only passive.

1.4 Contributions

We present an MPC protocol (for non-reactive functions) with a dynamic trade-
off between active and passive corruptions. As [IKLP06], the protocol provides
the best possible security level in presence of a purely passive adversary (namely
t < n) as well as in presence of a purely active adversary (namely t < n/2). In
addition, the protocol also tolerates mixed adversaries that corrupt some parties
actively and some other parties passively, as long as at most k parties are cor-
rupted actively and at most n− k − 1 parties are corrupted in total. Note that
k need not be known, as it is not a parameter of the protocol.

In order to construct such a protocol, we introduce the notion of gradual
verifiable secret sharing (VSS). In contrast to traditional VSS, a gradual VSS
reduces the number of adversaries against which secrecy is guaranteed during
reconstruction in a step-wise fashion, and at the same time increases the number
of adversaries against which robustness is guaranteed. By that, if the reconstruc-
tion of a secret aborts, secrecy against many adversaries is still guaranteed.

Furthermore, we generalize and extend our results in two directions: First,
we work in a model with hybrid security. That means, we consider each secu-
rity guarantee (correctness, secrecy, robustness, and fairness) separately, and our
protocols provide each guarantee against as many corrupted parties as possible.
Second, in the setting of reactive MPC, we extend the protocol from [IKLP06]
with fairness and security against mixed adversaries, while at the same time
removing the restriction that robustness can only be guaranteed against a cor-
rupted minority.

1.5 Outline of the Paper

The paper is organized as follows: The model used in this work is described
in Section 2. In Section 3, we briefly review the standard definition of VSS and
introduce the notion of gradual reconstruction. Furthermore, we provide gradual
VSS protocols for threshold adversaries. In Sections 4 and 5, we present protocols
for non-reactive and reactive MPC, respectively, together with optimal bounds.

206 Martin Hirt, Christoph Lucas, and Ueli Maurer

2 Model

2.1 Parties

We consider n parties p1, . . . , pn, connected by pairwise synchronous secure chan-
nels and authenticated broadcast channels,1 who want to implement an ideal
functionality F computing a (probabilistic) function f over a finite field F with
|F| > n. Without loss of generality, we assume only public outputs (possibly
several at the same time). Local outputs towards a designated party can be
blinded with a random input from that party. For reactive MPC, F is not re-
stricted to functions and can provide outputs before taking some other inputs.
There is a central adversary with polynomially bounded computing power who
corrupts some parties passively (and reads their internal state) or even actively
(and makes them misbehave arbitrarily). We denote the set of actually actively
(passively) corrupted parties by D∗ (E∗), where for ease of notation, we assume
that D∗ ⊆ E∗. Uncorrupted parties are called honest, non-actively corrupted par-
ties are called correct. For ease of notation, we assume that if a party does not
receive an expected message (or receives an invalid message), a default message
is used instead.

2.2 Security

The security of our protocols is computational, i.e., based on some computational
assumption. We say a security guarantee holds computationally if it holds against
a computationally bounded adversary. We consider the five standard security
guarantees: Secrecy means that the adversary learns nothing about the honest
parties’ inputs and outputs (except, of course, for what can be derived from the
corrupted parties’ inputs and outputs). Correctness means that all parties either
output the right value or no value at all. Robustness means that the adversary
cannot prevent the honest parties from learning their respective outputs. This
last requirement turns out to be very demanding. Therefore, relaxations of full
security have been proposed, where robustness is replaced by weaker output
guarantees: Fairness means that the adversary can possibly prevent the honest
parties from learning their outputs, but then also the corrupted parties do not
learn their outputs. In the case of reactive MPC, fairness can only be achieved
for outputs provided at the same time, i.e., for each output round, either all
(honest) parties learn the outputs or also the adversary does not learn them.
However, the adversary can abort the protocol after having received outputs
from prior rounds. Agreement on abort means that the adversary can possibly
prevent honest parties from learning their output, even while corrupted parties
learn their outputs, but then the honest parties at least reach agreement on this

1 Secure bilateral channels are usually established via standard techniques such as
encryption and digital signatures. Broadcast channels are usually simulated with an
appropriate protocol [DS82].

A Dynamic Active/Passive Tradeoff in Secure MPC 207

fact (and typically make no output).2 The level of security (secrecy, correctness,
fairness, robustness, agreement on abort) depends on (D∗, E∗).

2.3 Characterization of Tolerated Adversaries

Traditionally, protocols for threshold adversaries are characterized by a sin-
gle threshold t that specifies the maximal adversary that can be tolerated.
This basic representation has been extended as follows: On the one hand, a
mixed adversary is characterized by two thresholds (ta, tp), where he may cor-
rupt up to tp parties passively, and up to ta of these parties even actively.
To model security guarantees against incomparable maximal adversaries, we
need to consider multiple pairs of thresholds. Therefore, we use multi-thresholds
T = {(ta,1, tp,1), . . . , (ta,k, tp,k)}, i.e., sets of pairs of thresholds (ta, tp). In this
model, security is guaranteed if (|D∗|, |E∗|) ≤ (ta, tp) for some (ta, tp) ∈ T ,
denoted by (|D∗|, |E∗|) ≤ T , where (|D∗|, |E∗|) ≤ (ta, tp) is a shorthand for
|D∗| ≤ ta and |E∗| ≤ tp. On the other hand, the level of security (correctness,
secrecy, robustness, and fairness) depends on the number (|D∗|, |E∗|) of actually
corrupted parties (hybrid security). Hence, we consider the four multi-thresholds
T c, T s, T r, and T f : Correctness with agreement on abort is guaranteed for
(|D∗|, |E∗|) ≤ T c, secrecy is guaranteed for (|D∗|, |E∗|) ≤ T s, robustness is guar-
anteed for (|D∗|, |E∗|) ≤ T r, and fairness is guaranteed for (|D∗|, |E∗|) ≤ T f .
We have the assumption that T r ≤ T c and T f ≤ T s ≤ T c,3 as secrecy and
robustness are not well defined without correctness, and as fairness cannot be
achieved without secrecy.

2.4 Ideal Functionality

For ease of presentation, we provide our proof sketches in a property-based se-
curity model. This allows to describe our ideas in a straightforward and un-
derstandable way. All statements could be made formal in a simulation-based
model. To avoid ambiguity, we sketch the ideal functionality of our non-reactive
MPC protocol in Figure 1.

We stress that in a setting without secrecy (i.e., (D∗, E∗) 6≤ T s) the adversary
may learn the inputs from honest parties before he has to provide inputs from
the corrupted parties. Furthermore, for probabilistic functions, the adversary
can freely choose the random string.

3 Gradual Verifiable Secret Sharing

We first briefly review the standard definition of verifiable secret sharing (VSS)
schemes. Then, we define a new property for VSS schemes introducing the notion

2 In our constructions, all abort decisions are based on publicly known values. Hence,
we have agreement on abort for free. Note that the impossibility proofs hold even
when agreement on abort is not required.

3 We write T1 ≤ T2 if ∀(ta, tp) ∈ T1 : (ta, tp) ≤ T2.

208 Martin Hirt, Christoph Lucas, and Ueli Maurer

Ideal Functionality F : Given (T r, T f , T s, T c) and (D∗, E∗) ≤ T c.
1. Receive inputs from honest parties P \ E∗.
2. If (D∗, E∗) 6≤ T s: send these inputs to the adversary.
3. Receive inputs from the adversary for the parties in E∗.
4. For probabilistic functions only:

If (D∗, E∗) ≤ T s: sample a random bit string r of appropriate length.
Otherwise: Receive r from the adversary.

5. Evaluate the function.
6. If (D∗, E∗) 6≤ T f : send the output to the adversary.
7. If (D∗, E∗) 6≤ T r: receive a bit from the adversary, and abort if the bit is 1.
8. Send the output to the honest parties P \ E∗ and to the adversary.

Fig. 1. Sketch of the Ideal Functionality for non-reactive MPC.

of gradual reconstruction.4 Finally, we present schemes that achieve the new
requirements.

3.1 Definitions

A Verifiable Secret Sharing (VSS) scheme allows a designated party (the dealer)
to share a value s among all parties, such that the parties can jointly reconstruct
the value. The following definition captures the standard, well-known properties
of verifiable secret sharing:

Definition 1 (VSS). A (T s, T r)-secure Verifiable Secret Sharing (VSS) is a
pair of protocols Share and Rec, where Share takes input s from the dealer and
Rec gives output s′ to each party, if the following conditions are fulfilled:
Secrecy: If (D∗, E∗) ≤ T s, then in Share the adversary obtains no information
about s.
Correctness: After Share, the dealer is bound to a value s′, where s′ = s if
the dealer is correct. Furthermore, in Rec, either each (correct) party outputs s′

or all (correct) parties abort.
Robustness: The adversary cannot abort Share. If (D∗, E∗) ≤ T r, then the
adversary cannot abort Rec.

For (D∗, E∗) 6≤ T r, this definition does not rule out that the reconstruction
protocol aborts even in an unfair way, where the honest parties do not learn the
secret but the corrupted parties do. In fact, most VSS schemes in the literature
show this undesired behavior: When corrupted parties do not broadcast their
shares, they still learn the shares from the honest parties and can compute the
secret, but the honest parties do not obtain enough shares and abort.

Clearly, a certain level of unfairness cannot be avoided when secrecy and
robustness are to be guaranteed with respect to many corruptions. In particular,

4 This notion should not be confused with the notion of gradual release of secrecy as
introduced by [Blu83].

A Dynamic Active/Passive Tradeoff in Secure MPC 209

whenever a sharing scheme is secret with respect to some subset M ⊆ P of the
parties, then it cannot be robust with respect to the complement P \M of this
subset: When the parties in M have no information about the shared value after
Share, and the parties in P \M do not participate in Rec, then the value cannot
be reconstructed. Hence, the collection of subsets against which a sharing is
secret implicitly defines the collection of subsets that can abort reconstruction
(namely, the complements). In usual reconstruction protocols, all correct parties
directly broadcast their entire shares, i.e., secrecy is given up against all subsets
at once, before robustness against a single subset is achieved. This means that
during reconstruction, any subset of parties that can abort, can also abort in an
unfair way. Our new definition below requires that the transition from secrecy to
robustness is gradual, such that when a small set of parties does not broadcast
their share, then only a large subset of parties jointly obtains information about
the secret.

Definition 2 (Gradual VSS). A (T s, T r)-secure VSS is gradual if the fol-
lowing conditions are fulfilled: If Rec aborts, each party outputs a non-empty
set B ⊆ D∗, and the adversary obtained no information about the secret s if
(|D∗|, |E∗|) ≤ T s and |E∗| < n− |B|.

3.2 A Gradual VSS Scheme

We describe a gradual VSS scheme based on the standard Shamir sharing scheme
[Sha79], and extended with (homomorphic) commitments to provide verifiabil-
ity (e.g. [Ped91]). To obtain the gradual property, summands s1, . . . , sd with
s1 + . . . + sd = s are chosen at random and, rather than the secret itself, these
summands are shared, where summand si is shared with degree i. Then, dur-
ing reconstruction, the summands are reconstructed one by one, in decreasing
order of the sharing degree. We assume that each party pi is assigned a unique
and publicly known evaluation point αi ∈ F \ {0},5 and that the commitments
are homomorphic and transferable by sending the opening information. This
construction results in the scheme VSSd = (Shared, Recd) for parameter d.

Definition 3 (d-sharing). A value s is d-shared, denoted by [s]d, if there are
values s1, . . . , sd, such that s1 + . . .+ sd = s and, for all i ∈ {1, . . . , d}, there is
a polynomial gi(x) of degree i with gi(0) = si, and every party pj holds a share
sij = gi(αj) and is committed to it.

The sharing protocol from [Ped91] can be extended in a straightforward way to
compute such a d-sharing. A description of the protocol can be found in Figure 2.
This share protocol provides resilience even against a corrupted dealer. It turns
out that in our protocols, essentially only ideal functionalities need to compute
d-sharings. Trivially, given a value s, such an honest dealer can directly sample
and distribute a correct sharing [s]d without running Shared. The (probabilistic)
function that samples shares of some given input s is denoted by State

d.

5 This implies that the field F must have more than n elements.

210 Martin Hirt, Christoph Lucas, and Ueli Maurer

Protocol Shared: Given input s from the dealer, compute a d-sharing of this value.
1. The dealer chooses uniformly random summands s1, . . . , sd with

∑d

i=1
si = s.

2. For i ∈ {1, . . . , d}:
(a) The dealer chooses a random polynomial gi(x) of degree i with gi(0) = si, and

computes and broadcasts (homomorphic) commitments of the coefficients of
gi(x).

(b) For each share sij = gi(αj), each party locally computes a commitment cij
(using the homomorphic property), and the dealer sends the corresponding
opening information oij to party pj . Then, pj broadcasts a complaint bit,
indicating whether oij opens cij to some value s′ij .

(c) For each share sij for which an inconsistency was reported, the dealer broad-
casts the opening information oij , and if oij opens cij , pj accepts oij . Oth-
erwise, the dealer is disqualified (and a default sharing of a default value is
used).

3. Each party pj outputs its share
(

(s1j , o1j), . . . , (sdj , odj)
)

and all commitments.

Fig. 2. The share protocol for threshold adversaries.

Lemma 1. Given a parameter d < n and input s, Shared robustly computes a
correct d-sharing [s]d. If |E

∗| ≤ d, the adversary obtains no information about s.

Proof. Correctness: Trivially, in Step 2.a, any (well-formed) commitments
broadcasted by the dealer are correct. In Step 2.b, commitments to all shares are
computed locally by each party directly from the commitments to the coefficients
broadcasted in Step 2.a. Hence, all (correct) parties have a consistent view with
correct commitments. In Steps 2.b and 2.c, due to the binding property of the
commitments, the adversary cannot distribute inconsistent opening information
without being detected. Hence, the sharing is correct (or the dealer is disqualified
and a default sharing is used).
Secrecy: The commitments are computationally hiding. Therefore, the adver-
sary obtains no information in Step 2.a of Shared. Furthermore, the summand
sd is shared with degree d. Hence, in Step 2.b, if not more than d parties are
passively corrupted, the adversary obtains no information about sd, and there-
fore not about s. In Step 2.c, whenever a value is broadcasted, the adversary
knew this value already beforehand.
Robustness: By inspection, the share protocol does not abort.

In Figure 3, we describe the reconstruction protocol for a single sharing.
Clearly, this protocol can be extended to reconstruct multiple sharings in parallel
by executing the protocol on a vector of sharings, where an abort in one instance
implies an immediate abort (in the same round) for all instances.

Lemma 2. Given is a d-sharing [s]d for d < n. If |D∗| < n − d, then Rec
d

(robustly) outputs s to all parties. Otherwise, either it outputs s to all parties,
or it aborts and outputs a non-empty set B ⊆ D∗, and the adversary obtained
no information about the secret if |E∗| < n− |B|.

A Dynamic Active/Passive Tradeoff in Secure MPC 211

Protocol Recd: Given a d-sharing of some value s, reconstruct s to all parties.
1. For i = d down to 1:

(a) Each party pj opens the commitment to its share sij via broadcast.
(b) If at least i+1 parties correctly opened the commitments to their respective

shares, each party locally interpolates gi(x) and computes si = gi(0). Oth-
erwise, the protocol is aborted and each party outputs the set B of parties
that did not broadcast correct opening information.

2. Each party outputs s = s1 + . . .+ sd.

Fig. 3. The protocol for gradual reconstruction for threshold adversaries.

Proof. Correctness: The only operation in the protocol is the opening of
commitments. Hence, given a correct sharing and the binding property of the
commitment scheme, incorrect parties cannot deviate without being detected.
Robustness: To abort the reconstruction of some si, at least n − i ≥ n − d
parties must refuse to correctly open their respective commitments. Hence, for
|D∗| < n− d, the protocol is robust.
Gradual: The reconstruction aborts (with B) only if in the ith iteration (for
some i), the reconstruction of si failed. In that case, strictly less than i+ 1 par-
ties opened their commitments correctly, hence |B| ≥ n − i. Clearly, B ⊆ D∗,
since only active parties do not open their commitments correctly. Furthermore,
if |E∗| < n − |B|, the adversary has no information about s|E∗| since the recon-
struction of s|E∗| did not yet start (note that |E∗| < n− |B| ≤ i).

The following corollary summarizes Lemma 1 (Shared) and Lemma 2 (Recd):

Corollary 1. Given a parameter d < n, VSSd = (Shared, Recd) is a computa-
tionally (T s, T r)-secure, gradual VSS where (|D∗|, |E∗|) ≤ T s if |E∗| ≤ d, and
(|D∗|, |E∗|) ≤ T r if |D∗| < n− d.

4 Non-Reactive Multi-Party Computation

4.1 Overview

Our protocol for non-reactive MPC is based on an idea from [IKLP06]: Given the
function f and the inputs x1, . . . , xn, the protocol first distributedly computes
y = f(x1, . . . , xn) using a correct and secret, but non-robust MPC protocol. Yet,
instead of y itself, this MPC protocol outputs a sharing of y that was computed
according to some VSS scheme. Then, the parties reconstruct this sharing.

In [IKLP06], whenever the non-robust MPC protocol aborts, the computation
of y = f(x1, . . . , xn) is repeated with a robust MPC protocol, which provides
security against an actively corrupted minority. Yet, if the reconstruction of y
aborts, the adversary might already have learned the output, and repeating the
computation would violate security. In contrast, by using a gradual VSS scheme
to share y (cf. Section 3), our protocols achieve stronger security guarantees.

212 Martin Hirt, Christoph Lucas, and Ueli Maurer

Given a set of actually (actively) cheating parties, a gradual VSS allows to
maintain as much secrecy as possible. Then, in case of an abort during the
reconstruction, the cheaters are identified and eliminated, and if the gradual
VSS still guarantees enough secrecy,6 the computation of y = f(x1, . . . , xn)
is repeated using again the same MPC protocol among the remaining parties.
Otherwise, the execution halts.

The protocol in [GMW87] (in the following denoted by GMW) provides security
with abort for t < n corrupted parties (i.e., correctness and secrecy against t < n
corrupted parties, and, in case of an abort, each correct party outputs the same
non-empty set B ⊆ D∗). However, it can easily be seen that correctness (but
not secrecy) can also be achieved for t = n corrupted parties.7 We use GMW to
implement the ideal functionality computing f and then a sharing of the result
y.8

4.2 Construction

We use the gradual VSS scheme described in Section 3.2 with degree d = n−1. In
fact, we only require the reconstruction protocol Recn−1 and the (probabilistic)
function State

n−1 that, given a value y, samples shares of y according to VSSn−1.
Furthermore, the protocol receives a robustness parameter e stating the number
of actively corrupted parties that the protocol can eliminate (and then repeat
the run) without violating security. A set of parties is eliminated by removing
the parties from P and reducing n and e accordingly. For details see Figure 4.

Lemma 3. Given a function f and a robustness parameter e, the protocol for
non-reactive MPC computes f in presence of an adversary corrupting (|D∗|, |E∗|).
It is always correct, robust if |D∗| ≤ e, secret if |D∗|+ |E∗| < n or |E∗| < n−e,
and fair if |D∗|+ |E∗| < n.

Proof. Correctness and robustness follow trivially by inspection.
Secrecy: GMW is secret for any number of corrupted parties. Furthermore, since
|E∗| ≤ n − 1 (otherwise there is no secrecy requirement), it follows from Corol-
lary 1 that the output [y]n−1 reveals no information to the adversary. Hence, he
obtains no information about the inputs in Step 1. Steps 2 and 3 are indepen-
dent from the inputs given the output. Therefore, if the protocol does not abort,

6 The protocols are described with respect to a robustness parameter rather than a
secrecy parameter as suggested here. It turns out that this simplifies the description
and the proof.

7 In particular this holds also in the setting with mixed adversaries where some parties
are actively and all remaining parties are passively corrupted. This follows from the
fact that each party has to prove the correctness of the messages it sends using a
zero-knowledge protocol. Given instant randomness (i.e., randomness generated only
when needed), even the challenges of passively corrupted parties are unpredictable
to the adversary.

8 Vanilla [GMW87] considers only Boolean circuits. However, any ideal functionality
can be converted into a Boolean circuit in a straightforward way.

A Dynamic Active/Passive Tradeoff in Secure MPC 213

Non-reactive MPC: Given are a function f and a robustness parameter e.

1. Employ GMW to first compute y = f(x1, . . . , xn), where xi is the input from party
pi, then evaluate Staten−1 on y, and finally output to each party its correspond-
ing share, resulting in [y]n−1. If GMW aborts with a set B of active cheaters, repeat
with P = P \B, n = n− |B|, and e = e− |B|.

2. Invoke Rec
n−1 on [y]n−1. On abort with a set B of active cheaters: If |B| ≤ e,

then repeat the whole protocol with P = P \ B, n = n − |B|, and e = e − |B|.
Otherwise, halt the execution.

3. Output y.

Fig. 4. The protocol for non-reactive MPC for threshold adversaries.

secrecy is maintained. Yet, secrecy may be violated if the adversary can force
a repetition of the protocol after learning the output.9 If the protocol aborts
in Step 2 with B ⊆ D∗, then in the case |D∗| + |E∗| < n we directly have
|E∗| < n− |D∗| ≤ n− |B|, hence secrecy is maintained. In the case |E∗| < n− e,
we either have that |E∗| < n−|B| (and secrecy is maintained), or |E∗| ≥ n−|B|,
hence |B| ≥ n − |E∗| > e and the protocol aborts, i.e. the adversary learns at
most one output value.
Fairness is a subcase of secrecy and therefore omitted.

Given Lemma 3, we can derive a tight bound for (non-reactive) MPC:

Theorem 1. In the model with broadcast and multi-threshold adversaries, com-
putationally secure (non-reactive) MPC among n parties with thresholds T c, T s,
T r, and T f , where T f ≤ T s ≤ T c and T r ≤ T c, is possible if either T s = {(0, 0)},
or (

∀(tsa, t
s
p) ≤ T s, (tra, ·) ≤ T r : tra + tsp < n ∨ tsa + tsp < n

)

∧
(

∀(tfa , t
f
p) ≤ T f : tfa + tfp < n

)

.

This bound is tight: If violated, there are (non-reactive) functionalities that can-
not be securely computed.

Proof. The proof of necessity can be found in Section 4.3. To prove sufficiency,
first consider the (trivial) case T s = {(0, 0)}. Then, every party simply broad-
casts its inputs and computes the function on the broadcasted values (c.f. Sec-
tion 2.4).

Otherwise, we use the protocol in Figure 4 with e = t̂ra, where t̂ra is the
maximal tra value in T r.
Correctness is always guaranteed, and Robustness follows directly from the
choice of e.
Secrecy: Since (|D∗|, |E∗|) ≤ T s, we immediately have that |D∗| + |E∗| <
n ∨ ∀(tra, ·) ≤ T r : tra + |E∗| < n. Then, it follows from the choice of e that
|D∗|+ |E∗| < n ∨ e+ |E∗| < n.

9 In that case, the adversary may learn two evaluations of f for different inputs.

214 Martin Hirt, Christoph Lucas, and Ueli Maurer

Fairness: Since (|D∗|, |E∗|) ≤ T f and ∀(tfa , t
f
p) ≤ T f : tfa + tfp < n, we immedi-

ately have |D∗|+ |E∗| < n.

Theorem 2. There exists a cryptographically secure multi-party computation
protocol among n parties for non-reactive functionalities which is fully secure
against all adversaries (D, E) with |D|+ |E| < n.

Proof. Apply Theorem 1 with T c = T s = T r = T f = {(k, n − k − 1) : k =
0, . . . , ⌊n−1

2 ⌋}.

4.3 Proof of Necessity for Non-Reactive MPC

In this section, we prove that the bound in Theorem 1 is necessary, i.e. if violated,
(non-reactive) MPC is impossible. The bound in Theorem 1 is violated if T s 6=

{(0, 0)} and
(

∃(tsa, t
s
p) ≤ T s, (tra, ·) ≤ T r : tra + tsp ≥ n ∧ tsa + tsp ≥ n

)

∨
(

∃(tfa , t
f
p) ≤ T f : tfa + tfp ≥ n

)

Case: ∃(tsa, t
s
p) ≤ T s, (tra, ·) ≤ T r : tra + tsp ≥ n ∧ tsa + tsp ≥ n

For the sake of contradiction, assume that there is a protocol for this setting,
and without loss of generality assume that tsp > 0 (there is such a tsp because
T s 6= {(0, 0)}). For each E ⊆ P, let ℓE denote the first round in the protocol
in which the parties in E jointly can efficiently compute the output. Among
all subsets E ⊆ P with |E| = tsp, let E denote the one with minimal ℓE , i.e.,
E ∈ {E ⊆ P : |E| = tsp ∧ ∄E′ ⊆ P : |E′| = tsp ∧ ℓE′ < ℓE}. Now consider an
adversary actively corrupting some subset D ⊆ E with |D| = n− tsp, and let him
abort all parties inD in round ℓ−1. By assumption, the remaining tsp parties P\D
cannot compute the output (corresponding to the actual inputs). However, the
protocol must not abort, as the actual adversary could be (D∗, E∗) = (D,D), for
which robustness is guaranteed as (|D∗|, |E∗|) = (n− tsp, n− tsp) ≤ (tra, t

r
a) ≤ T r.

Hence, the remaining parties must again take inputs and set default values for
the inputs of parties in D, but this violates secrecy if the actual adversary is
(D∗, E∗) = (D, E) (note that (|D∗|, |E∗|) = (n − tsp, t

s
p) ≤ T s), who then learns

the output of this run as well as the output of the next run with default input
values for the parties in D (note that |E∗| ≥ 1).

As an example, consider the following (generalized OT-) functionality: Each

party pi inputs three bits: a
(i)
0 , a

(i)
1 , and b(i) (with default input a

(i)
0 = a

(i)
1 =

b(i) = 0). Let d = b(1) ⊕ . . .⊕ b(n). The output is y = (a
(1)
d , . . . , a

(n)
d). The adver-

sary lets one actively corrupted party input b = 1, and all others b = 0. Then,

with the attack described above, the adversary learns both y0 = (a
(1)
0 , . . . , a

(n)
0)

and y1 = (a
(1)
1 , . . . , a

(n)
1), which clearly is a violation of secrecy.

Case: ∃(tfa, t
f
p) ≤ T f : tfa + tfp ≥ n Again, assume that there is a protocol

for this setting, and let E denote the subset among all subsets E ⊆ P with
|E| = tfp such that ℓE is minimal (see Section 4.3). Consider the adversary

A Dynamic Active/Passive Tradeoff in Secure MPC 215

(D∗, E∗) = (D, E) for D ⊆ E with |D| = n − tfp , and let him abort all parties

in D∗ in round ℓ − 1. By assumptions, the remaining tfp parties in P \ D∗ are
not able to efficiently compute the output, whereas the adversary (D∗, E∗) does
learn the output, a violation of fairness.

5 Reactive Multi-Party Computation

5.1 Overview

For our protocol for reactive MPC, we adapt an idea from [IKLP06] and modify
the given functionality F as follows: For each output y, instead of the value itself,
it outputs a sharing of y that was computed according to some VSS scheme.
Then, to obtain the output, the parties reconstruct this sharing. This modified
F is implemented using an MPC protocol that is always correct, and as robust
and secret as some (second) VSS scheme.

In contrast to [IKLP06], we use a gradual VSS scheme for the modification of
F . The gradual property allows to provide fairness beyond robustness. In fact,
we only require the (probabilistic) function State that, given a value y, samples
shares of y according to the gradual VSS scheme. We modify F such that it
invokes State on each output value y, and then outputs the shares of y (instead
of y itself). We modify F to use VSS

d (Section 3.2) and denote the resulting
functionality by Fd.

The MPC protocol implementing the (modified) functionality F receives as
parameter a (T s, T r)-secure VSS, and then provides correctness for any number
of corrupted parties, secrecy if (D∗, E∗) ≤ T s, and robustness if (D∗, E∗) ≤ T r.
Furthermore, if the protocol is aborted, then each party outputs the same non-
empty set B ⊆ D∗. Clearly, the non-robust protocol used in Section 4 can be
extended accordingly with a VSS as described in [GMW87].10 We instantiate the
protocol using VSSd (Section 3.2) and denote the resulting protocol by GMWd. Note
that for this extension of GMW, a standard, non-gradual VSS would be sufficient.

5.2 Construction

We use the gradual VSS scheme described in Section 3.2 with the same sharing
degree d for both the modification of F , resulting in Fd, and within GMW, resulting
in GMW

d.

Lemma 4. Given a functionality F and a parameter d < n, the protocol for
reactive MPC implements F in presence of an adversary corrupting (|D∗|, |E∗|).
It is always correct, secret if |E∗| ≤ d, robust if |D∗| < n − d, and fair if
|E∗| ≤ d ∧ |D∗|+ |E∗| < n.

10 The original description considers only VSS with a threshold of n/2. However, it is
easy to see that any VSS can be used. The resulting protocol inherits the robust-
ness and secrecy properties of the corresponding VSS, while leaving the correctness
properties unchanged. The same holds for the simplified protocol in [Gol04, p. 735].

216 Martin Hirt, Christoph Lucas, and Ueli Maurer

Reactive MPC: Given are a functionality F and a sharing degree d.

1. Invoke GMW
d implementing Fd.

2. On each output [y]d, invoke Rec
d. If it aborts, halt the execution. Otherwise,

output y.

Fig. 5. The protocol for reactive MPC for threshold adversaries.

Proof. Correctness follows trivially by inspection, and Secrecy and Ro-

bustness follow immediately from Corollary 1. Fairness: Since |E∗| ≤ d, it
follows from Corollary 1 that the adversary obtains no information in Step 1.
Furthermore, if the reconstruction of an output value aborts with B, the grad-
ual property guarantees that B ⊆ D∗. Since |D∗| + |E∗| < n, we then have
|E∗| < n− |D∗| ≤ n− |B|, hence, the adversary did not obtain any information
about y and fairness is preserved.

Given Lemma 4, we can derive a tight bound for reactive MPC:

Theorem 3. In the model with broadcast and multi-threshold adversaries, com-
putationally secure (reactive) MPC among n parties with thresholds T c, T s, T r,
and T f , where T f ≤ T s ≤ T c and T r ≤ T c, is possible if either T s = {(0, 0)},
or

∀(tra, ·) ≤ T r, (·, tsp) ≤ T s : tra + tsp < n ∧ ∀(tfa , t
f
p) ≤ T f : tfa + tfp < n

This bound is tight: If violated, there are (reactive) functionalities that cannot be
securely computed.

Proof. To prove sufficiency, first consider the (trivial) case T s = {(0, 0)}. Then,
every party simply broadcasts its inputs and computes the function on the broad-
casted values (c.f. Section 2.4). Otherwise, we use the protocol described in Fig-
ure 5 with d = t̂sp, where t̂sp is the maximal tsp value in T s. Correctness is
always guaranteed, and Secrecy follows immediately from the choice of d.
Robustness: Since (|D∗|, |E∗|) ≤ T r and ∀(tra, ·) ≤ T r, (·, tsp) ≤ T s : tra+ tsp < n,
we have that ∀(·, tsp) ≤ T s : |D∗|+ tsp < n. Then, it follows from the choice of d
that |D∗|+ d < n.
Fairness: Given is that (|D∗|, |E∗|) ≤ T f . Since T f ≤ T s, we have |E∗| ≤ d.
Furthermore, since ∀(tfa , t

f
p) ≤ T f : tfa+tfp < n, we immediately have |D∗|+|E∗| <

n.
The proof of necessity is given in the next section.

5.3 Proof of Necessity for Reactive MPC

In this section, we prove that the bound in Theorem 3 is necessary, i.e. if violated,
(reactive) MPC is impossible. The bound in Theorem 3 is violated if T s 6=
{(0, 0)} and

∃(tra, ·) ≤ T r, (·, tsp) ≤ T s : tra + tsp ≥ n ∨ ∃(tfa , t
f
p) ≤ T f : tfa + tfp ≥ n

A Dynamic Active/Passive Tradeoff in Secure MPC 217

Case: ∃(tra, ·) ≤ T r, (·, tsp) ≤ T s : tra + tsp ≥ n Assume that there is a
secure protocol for this setting. Then, the adversary corrupts (D∗, E∗) = (D,D)
with D ⊆ P and |D| = n − tsp and has the parties in D stop sending messages.
Since there are only tsp remaining parties, the state is lost and the computation
cannot be continued. Hence, robustness is violated.11

Case: ∃(tfa, t
f
p) ≤ T f : tfa + tfp ≥ n Same as in the non-reactive case

(Section 4.3).

6 Conclusions

In this work, we have generalized and extended known results from the literature.
In particular, we improved over the work in [IKLP06] that combines optimal
results from the active and the passive world. Our protocols distinguish not only
whether or not active cheating occurs, but provides a dynamic tradeoff between
active and passive corruptions. Hence, we achieve “the best of both worlds – and
everything in between” with a single protocol.

Furthermore, we introduced the notion of gradual verifiable secret sharing.
This notion requires that, during reconstruction, secrecy is given up gradually,
one subset at a time, while immediately establishing robustness against the corre-
sponding complement set. As a consequence, intuitively speaking, the adversary
might still abort the protocol, but does not automatically learn the secret. This
technique turned out to be very useful in the setting of both non-reactive and
reactive MPC to provide more flexible and therefore more practical protocols.

Moreover, the use of multi-thresholds allows to unify two incomparable mod-
els for combining active and passive corruption. In the first model, used for ex-
ample by [IKLP06], the adversary can corrupt parties either passively or actively,
but not both at the same time. Then, for each of the two corruption options,
a maximally tolerable adversary is considered. In the second model, used for
example by [FHM98], the adversary can corrupt some parties actively, and ad-
ditionally some parties passively, at the same time. Yet, their model only allows
to consider a single maximally tolerable adversary. By using multi-thresholds,
we can provide a single protocol that subsumes results for both models simulta-
neously.

A Comparison with Related Work

For completeness, we summarize the considered models and achieved security
levels of several protocols in the literature. In case of protocols with hybrid
security, we indicate in parentheses over which properties the hybridization is
achieved.

11 Note that the proof in [IKLP06] considers only the special case where tra ≤ tsp.

218 Martin Hirt, Christoph Lucas, and Ueli Maurer

Paper Prot Adv. Security

[Cha89] MPC mixed hybrid (comp/statistical)
[DDWY93] SMT mixed perfect
[FHM98] MPC mixed statistical
[HMZ08] MPC mixed computational or statistical
[FHHW03] BA active perfect
[FHW04] MPC active hybrid (comp/stat)
[Kat07] MPC active hybrid (output guarantee)
[LRM10] MPC active hybrid (comp/stat and robustness/fairness)
[HLMR11] MPC mixed perf., hybrid (privacy/correctness/robustness/fairness)
[HLMR12] MPC mixed stat., hybrid (privacy/correctness/robustness/fairness)
this work MPC mixed comp., hybrid (privacy/correctness/robustness/fairness)

MPC/SMT/BA = MPC/secure message transmission/Byzantine agreement,
comp/stat/perf = computational/statistical/perfect.

References

[Bea91] D. Beaver. Secure multiparty protocols and zero-knowledge proof systems
tolerating a faulty minority. Journal of Cryptology, 4(2):75–122, 1991.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness
theorems for non-cryptographic fault-tolerant distributed computation.
In STOC ’88, pages 1–10. ACM, 1988.

[Blu83] Manuel Blum. How to exchange (secret) keys (extended abstract). In
STOC ’83, pages 440–447. ACM, 1983.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty uncon-
ditionally secure protocols. In STOC ’88, pages 11–19. ACM, 1988.

[Cha89] David Chaum. The spymasters double-agent problem: Multiparty com-
putations secure unconditionally from minorities and cryptographically
from majorities. In CRYPTO ’89, pages 591–602. Springer, 1989.

[DDWY93] Danny Dolev, Cynthia Dwork, Orli Waarts, and Moti Yung. Perfectly
secure message transmission. Journal of the ACM, 40(1):17–47, 1993.

[DS82] Danny Dolev and H. Raymond Strong. Polynomial algorithms for multiple
processor agreement. In STOC ’82, pages 401–407. ACM, 1982.

[FHHW03] Matthias Fitzi, Martin Hirt, Thomas Holenstein, and Jürg Wullschleger.
Two-threshold broadcast and detectable multi-party computation. In EU-

ROCRYPT 2003, pages 51–67. Springer, 2003.
[FHM98] Matthias Fitzi, Martin Hirt, and Ueli Maurer. Trading correctness for

privacy in unconditional multi-party computation (extended abstract).
In CRYPTO ’98, pages 121–136. Springer, 1998.

[FHW04] Matthias Fitzi, Thomas Holenstein, and Jürg Wullschleger. Multi-party
computation with hybrid security. In EUROCRYPT 2004, pages 419–438.
Springer, 2004.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any men-
tal game or a completeness theorem for protocols with honest majority.
In STOC ’87, pages 218–229. ACM, 1987.

[Gol04] Oded Goldreich. Foundations of Cryptography, volume Basic Applica-
tions. Cambridge University Press, 2004.

[HLMR11] Martin Hirt, Christoph Lucas, Ueli Maurer, and Dominik Raub. Graceful
degradation in multi-party computation. In ICITS 2011, pages 163–180.
Springer, 2011.

A Dynamic Active/Passive Tradeoff in Secure MPC 219

[HLMR12] Martin Hirt, Christoph Lucas, Ueli Maurer, and Dominik Raub. Passive
corruption in statistical multi-party computation. In ICITS 2012, pages
129–146. Springer, 2012.

[HMZ08] Martin Hirt, Ueli Maurer, and Vassilis Zikas. MPC vs. SFE: Unconditional
and computational security. In ASIACRYPT 2008, pages 1–18. Springer,
2008.

[IKLP06] Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. On
combining privacy with guaranteed output delivery in secure multiparty
computation. In CRYPTO 2006, pages 483–500. Springer, 2006.

[Kat07] Jonathan Katz. On achieving the ”best of both worlds” in secure multi-
party computation. In STOC ’07, pages 11–20. ACM, 2007.

[LRM10] Christoph Lucas, Dominik Raub, and Ueli Maurer. Hybrid-secure MPC:
Trading information-theoretic robustness for computational privacy. In
PODC ’10, pages 219–228. ACM, 2010.

[Ped91] Torben P. Pedersen. Non-interactive and information-theoretic secure
verifiable secret sharing. In CRYPTO ’91, pages 129–140. Springer, 1991.

[RB89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty
protocols with honest majority. In STOC ’89, pages 73–85. ACM, 1989.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM,
22(11):612–613, 1979.

[Yao82] Andrew C. Yao. Protocols for secure computations (extended abstract).
In FOCS ’82, pages 160–164. IEEE, 1982.

