
Efficient and Optimally Secure Key-Length Extension for Block
Ciphers via Randomized Cascading?

Peter Gaži1,2 and Stefano Tessaro3,4

1 Department of Computer Science, Comenius University, Bratislava, Slovakia
2 Department of Computer Science, ETH Zurich, Switzerland

peter.gazi@inf.ethz.ch
3 Department of Computer Science and Engineering

University of California San Diego, La Jolla CA, USA
4 MIT, Cambridge MA, USA

tessaro@mit.edu

Abstract. We consider the question of efficiently extending the key length of block
ciphers. To date, the approach providing highest security is triple encryption (used e.g. in
Triple-DES), which was proved to have roughly κ+ min{n/2, κ/2} bits of security when
instantiated with ideal block ciphers with key length κ and block length n, at the cost of
three block-cipher calls per message block.
This paper presents a new practical key-length extension scheme exhibiting κ+ n/2 bits
of security – hence improving upon the security of triple encryption – solely at the cost of
two block cipher calls and a key of length κ+n. We also provide matching generic attacks
showing the optimality of the security level achieved by our approach with respect to a
general class of two-query constructions.

Keywords. Block ciphers, Cascade encryption, Provable security.

? A preliminary version of this paper appears in the proceedings of EUROCRYPT 2012. This is the full version.

1 Introduction

1.1 Key-Length Extension for Block Ciphers

Several practical block cipher designs have been proposed over the last decades and have been the
object of extensive cryptanalytic efforts. Examples include DES [1], IDEA [19], BLOWFISH [28],
and the currently in-use AES [4]. Within applications, we typically demand that these block ci-
phers are a good pseudorandom permutation (PRP), i.e., in the eyes of a computationally bounded
attacker, they behave as a randomly chosen permutation under a random secret key. For instance,
PRP security of the underlying block cipher is necessary to infer security of all modes of opera-
tions for message encryption (such as counter-mode and CBC encryption [8]) as well as of message
authentication codes like CBC-MAC [9] and PMAC [12].

In practice, we define the PRP security level of a block cipher as the complexity required to
distinguish it from a random permutation with non-negligible advantage. The key length κ of a block
cipher crucially limits the achievable security level, since the secret key K can be recovered given
black-box access to E(K, ·) evaluating E(·, ·) approximately 2κ times; obviously, this also yields a
PRP distinguishing adversary with equal complexity. Such weakness is generic, in the sense that
it only depends on κ, and even an ideal block cipher suffers from the same attack.5 In contrast, no
real dependency exists between security and the block length n of a block cipher: No generic attack
faster than 2κ exists even if n = 1. In the following, let us refer to a block cipher with key and
block lengths κ and n, respectively, as a (κ, n)-block cipher.
Key length extension. With a continuous increase of the availability of computing resources,
the role of the key length has hence never been more important. Key lengths of say fewer than 64
bits are no longer sufficient to ensure security, making key recovery a matter of a few hours even
on modest architectures. This is a serious problem for legacy designs such as DES which have very
short keys of length 56 bits, but which otherwise do not seem to present significant non-generic
security weaknesses. Constructions based on DES also remain very attractive because of its short
block length n = 64 which allows enciphering short inputs. This is for example crucial in current
applications in the financial industry, such as the EMV standard [6], where the block cipher is
applied to PIN numbers, which are very short.

The above described situation motivates the problem of key-length extension, which is the main
object of this paper: We seek for very efficient constructions provably transforming any (κ, n)-block
cipher E into a (κ′, n)-block cipher E′ with both κ′ > κ and higher PRP security, i.e., the PRP
security of E′ should be higher than 2κ whenever E does not exhibit any non-generic weaknesses.
We aim both at providing very efficient approaches to key length extension and at understanding
the optimal security achievable by such constructions. Our main contribution will be a new and very
efficient two-call key-length extension method outperforming the efficiency of existing solutions by
a large margin, and achieving security levels which we prove optimal, and which are comparable
(and even better) than those of earlier, less efficient, designs.
Ideal cipher model. In our proofs, we model the absence of generic weaknesses of the underlying
block cipher by analyzing our constructions when instantiated with an ideal block cipher E. In this
model, complexity is measured in terms of the number of queries to E (so-called ideal block cipher
queries) and to either E′ under a random κ′-bit key or the given random permutation (we refer
to these as construction queries). It should be noted that proving security of key-length extension
in the ideal cipher model implies absence of generic attacks, treating the underlying cipher as a
5 As usual, an ideal block cipher E : {0, 1}κ × {0, 1}n × {+,−} → {0, 1}n is the system associating with each key
k ∈ {0, 1}κ an independent randomly chosen permutation E(k, ·) and allowing the adversary to learn E(k, x) and
E−1(k, y) for k, x, y of her choice.

2

black-box, and as we will explain in the next section, all attacks on existing schemes are indeed
generic.

1.2 Existing Approaches to Key-Length Extension

The short key length κ = 56 of DES has constituted the main motivation behind previous work
on key-length extension. However, we stress that all previous constructions are generic, and can be
applied to any block cipher with short keys, hence extending the applicability of these results (as
well as the results of this paper) way beyond the specific case of DES.

A first proposal called DESX (due to Rivest) stretches the key length of DES employing a
technique called key whitening (this approach was later used by Even and Mansour [15]): It is
defined such that

DESXki,ko,k(m) = ko ⊕DESk(ki ⊕m)

for all m, ki, ko ∈ {0, 1}64 and k ∈ {0, 1}56. DESX can be generalized to a generic transformation
from a (κ, n)-block cipher to a (κ + 2n, n)-block cipher whose security was studied by Kilian and
Rogaway [18]: They proved that any successful PRP distinguishing attack requires 2

κ+n
2 queries.6

They also observe that the same key may be used in both whitening steps (i.e., ki = ko) and provide
an attack using 2max{κ,n} queries.

An alternative to whitening is cascading (or cascade encryption), i.e., sequentially composing
` block-cipher calls with usually different keys. (This is referred to as a cascade of length `.) It is
well known that a cascade of length two does not substantially increase security due to the meet-
in-the-middle attack [13]. (Even though a security increase in terms of distinguishing advantage is
achieved for low attack complexities [7].) The security properties of a cascade of different ciphers
was studied by Even and Goldreich [14] showing that a cascade is at least as strong as the strongest
of the ciphers used; and by Maurer and Massey [23] proving that it is at least as secure as the first
cipher of the cascade, however in a more general attack model.

The meet-in-the-middle attack makes triple encryption the shortest cascade with a potential for
significant security gain and indeed it has found widespread usage as Triple-DES (3DES) [2,3,5],
where given keys k1, k2, k3 ∈ {0, 1}56, a 64-bit message m is mapped to

3DESk1,k2,k3(m) = DESk1(DESk2(DESk3(m))) .

(A variant with shorter keys 3DES′k1,k2(m) = DESk1(DES−1
k2

(DESk1(m))) is also sometimes used.)
For 3DES (and a variant of 3DES′ with independent keys), Bellare and Rogaway [11] and subse-
quently Gaži and Maurer [16] have shown security up to roughly 2κ+min{n,κ}/2 queries when DES
is replaced by an ideal block cipher. For the case of DES parameters, their result gives concretely
security up to 278 queries, whereas the best known attack due to Lucks [21] shows that no security
better than 290 can be expected. (It should also be noted that the proof of [16] extends to prove
that longer cascades can achieve better security for short keys.)

We emphasize that despite the availability of modern designs with built-in larger keys (e.g.,
κ ∈ {128, 192, 256} for AES), Triple-DES remains nowadays popular, not only because of back-
wards compatibility, but also because its short block size (n = 64 vs. n ≥ 128 for AES) is well
suited to applications enciphering short inputs such as personal-identification numbers (PINs). For
example, it is the basis of the EMV standard for PIN-based authentication of debit and credit card
transactions [6]. However, the use of three calls per processed message block is widely considered a
drawback within applications which we address and solve in this paper.
6 Their result is in fact more fine-grained, as they show that 2ρ construction and 2κ+n−ρ ideal block cipher queries,

respectively, are necessary for all integers ρ; while different bounds for both query types are sometimes justified,
we adopt a (by now more standard) worst-case approach only bounding the sum of both query numbers.

3

Other related work. It is worth mentioning that several works have studied cascading-based
security amplification of block ciphers only assumed to satisfy weaker forms of PRP security, both
in the information-theoretic [32,24,25,17] as well as in the computational settings [20,26,31]. These
results however consider an orthogonal model to ours and are hence incomparable.

1.3 Our Results

None of the above efficient constructions provably achieves security beyond 2κ+min{κ,n}/2, and such
security is achieved only at the fairly expensive cost of at least three block-cipher calls per message
block. This paper aims at improving the efficiency-security trade-off in key-length extension. We
ask the following question: Suppose that we only consider constructions making at most two calls
to the underlying cipher. What is the best security level we are expected to achieve?
Better security and better efficiency. Quite surprisingly, our main result (presented in
Section 4) exposes a “win-win” situation: We devise a two-call construction of a (κ + n, n)-block
cipher from any (κ, n)-block cipher with security 2κ+n/2 in the ideal block cipher model, i.e., the
obtained security is higher than that of existing three-call designs studied in [11,16].7 Our construc-
tion – which we refer to as the double XOR-cascade (2XOR) – is obtained by careful insertion of
two randomization steps (with the same key value) to a related-key version of double encryption.
Concretely, we map each n-bit message m to

2XORk,z(m) = Eek(Ek(m⊕ z)⊕ z)
for all key values k ∈ {0, 1}κ and z ∈ {0, 1}n, and where k̃ is, for example, obtained from k by
flipping one individual bit.

We note that the key length is comparable to the one of the two-key variant of 3DES (assuming
κ ≈ n). Intuitively, our construction requires some mild form of related-key security [10] which
we obtain for free when the underlying block cipher is ideal, but may be a concern in practice.
However, it should be noted that an alternative version of the construction where k̃ is replaced by
an independent and unrelated key value k′ achieves the same security level at the cost of a longer
(2κ+ n)-bit key, which is for instance still shorter than in DESX with independent whitening keys
(for DES parameters).

The core of our security proof (cf. Theorem 3) is a technical argument of independent interest:
Namely, we prove that it is hard to distinguish two random, independent, permutations π1, π2 on
the n-bit strings from two randomly chosen permutations π1, π2 with the property that π2(π1(x⊕
Z)⊕Z) = x for all x and a random secret value Z even if we are allowed arbitrary queries to each
of π1, π2, π

−1
1 , and π−1

2 . This fact yields our main theorem by a careful adaptation of the techniques
from [11,16] to take into account both randomization and the use of related keys.
Generic attacks and optimality. With the above result at hand, it is legitimate to ask whether
we should expect two-call constructions with even better security: In Section 3, we answer this in
the negative, at least for a class of natural constructions.

As a warm up of independent interest, we confirm that only much weaker security can be
achieved by a one-call construction: Regardless of the amount of key material employed in the
construction, an attack with query complexity 2max{κ,n} always exists (using memory 2max{κ,n}),8

showing the optimality of DESX-like constructions in the case κ = n. We then turn to two-call
7 In fact, our construction tolerates arbitrarily many construction queries (i.e., up to 2n) and 2κ+n/2 ideal block

cipher queries. However, we stress that in all practically relevant cases κ ≥ n/2, hence we tacitly assume this
property throughout the paper.

8 More precisely, our attack requires roughly 2κ ideal block cipher queries and 2n construction queries.

4

of key log of the number of queries
construction queries length security lower bound best known attack

(κ, n)-block cipher 1 κ κ κ

DESX [15,18] 1 κ+ n (κ+ n)/2 max{κ, n}
double encryption [13] 2 2κ κ κ

triple encryption [11,16,21] 3 3κ κ+ min{κ, n}/2 90 (for 3DES)

double XOR-cascade [here] 2 κ+ n κ+ n/2 (Thm. 3) κ+ n/2 (Thm. 2)

Table 1. Required number of block-cipher queries, key lengths, security lower bounds and best known attacks for
various key-length extension schemes. The bounds are parameterized by the key length of the underlying block cipher
(denoted by κ) and its block size (denoted by n), and are for the usual case where κ ≥ n/2.

constructions, which are necessary to achieve higher security: Here, we prove that any construction
for which distinct inputs map to distinct first queries and distinct answers from the first call imply
distinct inputs to the second call admits a distinguishing attack making 2κ+n/2 ideal block cipher
queries and 2n construction queries. This class contains as a special case all constructions obtained
by randomizing the cascade of length two using arbitrarily many key bits, including ours.

In addition, we also show (in Appendix C) that simpler randomization methods for length-two
cascades admit distinguishing attacks with even lower complexity. For example, randomizing the
cascade of length two as Ek2(Ek1(m⊕z1))⊕z2 instead of using our approach yields a simple 2max{κ,n}

meet-in-the middle attack. This shows an interesting feature of our constructions, namely that while
targeting CCA security (i.e., we allow for forward and backward queries to the construction), our
design requires asymmetry, a fact which seems to contradict common wisdom.

Finally, note that all generic attacks presented in this paper (both against one-query and two-
query constructions) can be mounted even if the distinguisher is only allowed to ask forward con-
struction queries (i.e., in the CPA setting). In contrast, the construction we propose is proven
to be secure even with respect to an adversary allowed to ask inverse construction queries (CCA
adversary).
Final remarks. Table 1 summarizes the results of this paper in the context of previously known
results. To serve as an overview, some bounds are presented in a simplified form. Note that the
security of any key-length extension construction in our model can be upper-bounded by 2κ+n

which corresponds to the trivial attack asking all possible block cipher and construction queries.
Our results and proofs are presented using Maurer’s random systems framework [22], which we

review in Section 2 in a self-contained way sufficient to follow the contents of the paper.

2 Preliminaries

2.1 Basic Notation

We denote sets by calligraphic letters X ,Y, . . ., and by |X | , |Y| , . . . their cardinalities. We also let
X k be the set of k-tuples xk = (x1, . . . , xk) of elements of X . Strings are elements of {0, 1}k and
are usually denoted as s = s1s2 . . . sk, with ‖ denoting the usual string concatenation. Additionally,
we let Func(m, `) be the set of all functions from {0, 1}m to {0, 1}` and Perm(n) be the set of all
permutations of {0, 1}n. In particular, id ∈ Perm(n) represents the identity mapping when n is
understood from the context. Throughout this paper logarithms will always be to the base 2. Also,

r1, ..., rm
$,d← S indicates random selection of distinct elements r1, . . . , rm from a set S.

We denote random variables and concrete values they can take by upper-case letters X,Y, . . .
and lower-case letters x, y, . . ., respectively. For events A and B and random variables U and V
with ranges U and V, respectively, we let PUA|V B be the corresponding conditional probability

5

distribution, seen as a (partial) function U × V → [0, 1]. Here the value PUA|V B(u, v) = P[U =
u ∧ A|V = v ∧ B] is well defined for all u ∈ U and v ∈ V such that PV B(v) > 0 and undefined
otherwise. Two probability distributions PU and PU ′ on the same set U are equal, denoted PU = PU ′ ,
if PU (u) = PU ′(u) for all u ∈ U . Conditional probability distributions are equal if the equality holds
for all arguments for which both of them are defined. To emphasize the random experiment E in
consideration, we sometimes write it in the superscript, e.g. PEU |V (u, v). Finally, the complement of
an event A is denoted by A.

2.2 Random Systems

The presentation of this paper relies on Maurer’s random systems framework [22]. However, we
stress that most of the paper remains understandable at a very high level, even without the need of
a deeper understanding of the techniques behind the framework. Here we provide a self-contained
introduction.

The starting point of the random-system framework is the basic observation that the input-
output behavior of any kind of discrete system with inputs in X and outputs in Y can be described
by an infinite family of functions describing, for each i ≥ 1, the probability distribution of the
i-th output Yi ∈ Y given the values of the first i inputs Xi ∈ X i and the previous i − 1 outputs
Y i−1 ∈ Y i−1. Formally, hence, an (X ,Y)-(random) system F is an infinite sequence of functions
pF
Yi|XiY i−1 : Y × X i × Y i−1 → [0, 1] such that,

∑
yi

pF
Yi|XiY i−1(yi, xi, yi−1) = 1 for all i ≥ 1, xi ∈ X i

and yi−1 ∈ Y i−1. We stress that the notation pF
Yi|XiY i−1 , by itself, involves some abuse, as we are not

considering any particular random experiment with well-defined random variables Yi, Xi, Y i−1 until
the system will be interacting with a distinguisher (see below), in which case the random variables
will exist and take the role of the transcript. In general, we shall also typically define discrete
systems by a high level description, as long as the resulting conditional probability distributions
can be derived uniquely from this description.

We say that a system F is deterministic if the range of pF
Yi|XiY i−1 is {0, 1} for all i ≥ 1. Moreover,

it is stateless if the probability distribution of each output depends only on the current input, i.e.,
if there exists a distribution pY |X : Y × X → [0, 1] such that pF

Yi|XiY i−1(yi, xi, yi−1) = pY |X(yi, xi)
for all yi, xi and yi−1.

We also consider systems CF that arise from constructions C(·) accessing a sub-system F. Note
that while a construction C(·) does not define a random system by itself, CF does define a random
system. The notions of being deterministic and of being stateless naturally extend to constructions.9

We also consider the parallel composition of two (possibly dependent) discrete systems F and G,
denoted (F,G), which is the system that allows queries to both systems F and G.

Examples. A random function F : {0, 1}m → {0, 1}n is a system which implements a function f
initially chosen according to some distribution on the set Func(m,n).10 In particular, the uniform
random function (URF) R : {0, 1}m → {0, 1}` realizes a uniformly chosen function f ∈ Func(m, `),
whereas the uniform random permutation (URP) on {0, 1}n, denoted P : {0, 1}n×{+,−} → {0, 1}n,
realizes a uniformly chosen permutation P ∈ Perm(n) allowing both forward queries of the form
(x,+) returning P (x) as well as backward queries (y,−) returning P−1(y). More generally, we meet
the convention (for the purpose of this paper) that any system realizing a random function (possibly

9 We dispense with a formal definition. However, we point out that we allow a stateless construction to keep a state
during invocations of its subsystem.

10 As is the case with the notion of a random variable, the word “random” does not imply uniformity of the distri-
bution.

6

by means of a construction) which is a permutation will always allow both forward and backward
queries.

Another important example of a random function is the ideal block cipher E : {0, 1}κ×{0, 1}n×
{+,−} → {0, 1}n which realizes an independent uniform random permutation Ek ∈ Perm(n) for
each key k ∈ {0, 1}κ; in particular, the system allows both forward and backward queries to each
Ek.

Finally, note that with some abuse of notation, we often write Ek or P to refer to the randomly
chosen permutation P implemented by the system Ek or P, respectively.
Distinguishers and indistinguishability. A distinguisher D for an (X ,Y)-random system ask-
ing q queries is a (Y,X)-random system which is “one query ahead:” its input-output behavior is
defined by the conditional probability distributions of its queries pD

Xi|Xi−1Y i−1 for all 1 ≤ i ≤ q. (The
first query of D is determined by pD

X1
.) After the distinguisher asks all q queries, it outputs a bit

Wq depending on the transcript (Xq, Y q). For a random system F and a distinguisher D, let DF be
the random experiment where D interacts with F, with the distributions of the transcript (Xq, Y q)
and of the bit Wq being uniquely defined by their conditional probability distributions. Then, for
two (X ,Y)-random systems F and G, the distinguishing advantage of D in distinguishing systems
F and G by q queries is the quantity ∆D(F,G) =

∣∣PDF(Wq = 1)− PDG(Wq = 1)
∣∣. We are usually

interested in the maximal distinguishing advantage over all distinguishers asking q queries, which
we denote by ∆q(F,G) = maxD∆D(F,G) (with D ranging over all such distinguishers).

For a random system F, we often consider an internal monotone condition defined on it. Such a
condition is initially satisfied (true), but once it gets violated, it cannot become true again (hence
the name monotone). Typically, the condition captures whether the behavior of the system meets
some additional requirement (e.g. distinct outputs, consistent outputs) or this was already violated
during the interaction. We formalize such a condition by a sequence of events A = A0, A1, . . .
such that A0 always holds, and Ai holds if the condition holds after query i. The probability
that a distinguisher D issuing q queries to F makes a monotone condition A fail in the random
experiment DF is denoted by νD(F, Aq) = PDF(Aq) and we are again interested in the maximum
over all such distinguishers, denoted by ν(F, Aq) = maxD νD(F, Aq). For a random system F with
a monotone condition A = A0, A1, . . . and a random system G, we say that F conditioned on A
is equivalent to G, denoted F|A ≡ G, if pF

Yi|XiY i−1Ai
= pG

Yi|XiY i−1 for i ≥ 1, for all arguments for
which pF

Yi|XiY i−1Ai
is defined. Intuitively, this captures the fact that as long as the condition A

holds in F, it behaves the same as G.
Let F be a random system with a monotone condition A. Following [25], we define F blocked by

A to be a new random system that behaves exactly like F while the condition A is satisfied. Once
A is violated, it only outputs a special blocking symbol ⊥ not contained in the output alphabet of
F.

We make use of the following helpful claims proven in previous papers. Below, we also present
an informal explanation of their merits.

Lemma 1. Let C(·) and C′(·) be two constructions invoking a subsystem, and let F and G be
random systems. Let A and B be two monotone conditions defined on F and G, respectively.

(i) [22, Theorem 1] If F|A ≡ G then ∆q(F,G) ≤ ν(F, Aq).
(ii) [16, Lemma 2] Let F⊥ denote the random system F blocked by A and let G⊥ denote G blocked

by B. Then for every distinguisher D asking q queries we have ∆D(F,G) ≤ ∆q(F⊥,G⊥) +
νD(F, Aq).

(iii) [22, Lemma 5] ∆q(CF,CG) ≤ ∆q′(F,G), where q′ is the maximum number of invocations of
any internal system H for any sequence of q queries to CH, if such a value is defined.

7

(iv) [16, Lemma 3] There exists a fixed permutation S ∈ Perm(n) (represented by a deterministic
stateless system) such that ∆q(CP,C′P) ≤ ∆q(CS ,C′S).

The first claim can be seen as a generalized version of the Fundamental Lemma of Game-Playing
for the context of random systems, stating that if two systems are equivalent as long as some
condition is satisfied, then the advantage in distinguishing these systems can be upper-bounded by
the probability of violating this condition. The second claim is even more general, analyzing the
situation where the systems are not equivalent even if the conditions defined on them are satisfied,
but their behavior is similar (which is captured by the term ∆q(F⊥,G⊥)). The third claim states
the intuitive fact that interacting with the distinguished systems through an additional enveloping
construction C cannot improve the distinguishing advantage and the last claim is just an averaging
argument over all the possible values taken by P.

3 Generic Attacks against Efficient Key-Length Extension Schemes

We start by addressing the following question: What is the maximum achievable security level for
very efficient key-length extension schemes? To this end, this section presents generic distinguishing
attacks against one- and two-call block-cipher constructions in Sections 3.1 and 3.2, respectively.
These attacks are in the same spirit as the recent line of work on generic attacks on hash functions
(cf. e.g. [27,29,30]). Along the same lines, here attack complexity will be measured in terms of
query- rather than time-complexity. This allows us to consider arbitrary constructions, while being
fully sufficient to assess security in the ideal cipher model, where distinguishers are computationally
unrestricted.

More formally, we consider stateless and deterministic (keyed) constructions C(·) invoking an
ideal cipher E : {0, 1}κ×{0, 1}n×{+,−} → {0, 1}n to implement a function CE : {0, 1}κ′×{0, 1}n×
{+,−} → {0, 1}n to serve as a block cipher with key length κ′. We assume that the construction
CE realizes a permutation for each k′ ∈ {0, 1}κ′ and hence it also provides the interface for inverse
queries as indicated. Consequently, for a random (secret) κ′-bit string K ′, we let CE

K′ denote the
system which only gives access to the permutation CE(K ′, ·) and its inverse (i.e., takes inputs from
{0, 1}n × {+,−}). (In fact, none of the attacks in this section will require backward queries.)

3.1 One-Query Constructions

Throughout this section, we assume that C(·), to evaluate input (x,+) for x ∈ {0, 1}n under a
key k′ ∈ {0, 1}κ′ , makes exactly one query to the underlying subsystem, and we denote this query
as q(k′, x). We consider two different cases, depending on the structure of q(·, ·), before deriving
the final attack. Note that we omit the proofs of our claims in this section and only provide some
intuition. All statements are proved (partially in a more general setting) in Appendix A.

The injective case. We first consider the case where the mapping x 7→ q(k′, x) is injective for
each k′. We shall denote this as a one-injective-query construction. In this case, distinct queries to
CE
k′ lead to distinct internal queries to E and hence if the distinguisher queries both CE

K′ and E at
sufficiently many random positions, one can expect that during the evaluation of the outer queries,
C(·)
K′ asks E for a value that was also asked by the distinguisher. If this occurs, the distinguisher

can, while trying all possible keys k′, evaluate C(·)
k′ on its own by simulating C(·) and using the

response from E; and by comparing the outcomes it can distinguish the construction from a truly
random permutation. This is the main idea behind the following lemma.

8

Lemma 2. Let E : {0, 1}κ×{0, 1}n×{+,−} → {0, 1}n be an ideal block cipher, let C(·) : {0, 1}κ′×
{0, 1}n × {+,−} → {0, 1}n be a one-injective-query construction and let P be a URP on {0, 1}n.
Then, for a random key K ′ ∈ {0, 1}κ′ and every parameter 0 < t < 2min{n,k}−1,11 there exists a
distinguisher D such that

∆D((E,CE
K′), (E,P)) ≥ 1− 2/t− 2κ

′−t·(n−1) ,

and which makes at most 4t · 2max {(κ+n)/2,κ} queries to the block cipher E, as well as at most
2 · 2min{(κ+n)/2,n} forward queries to either of CE

K′ and P.

The above lemma covers most of the natural one-query constructions, since these typically
satisfy the injectivity requirement (e.g. the DESX construction). In the following we see that con-
structions asking non-injective queries do not achieve any improvement in security.

Non-injective queries. We now permit that the construction C(·) might, for some key k′, invoke
the underlying ideal cipher in a non-injective way, i.e., q(k′, ·) is not an injective map. We prove that,
roughly speaking, such a construction CE

K′ might be distinguishable from a URP P based solely on
an entropy argument. The intuitive reasoning is that if C(·) allows on average (over the choice of the
key k′) that too many queries x map to the same q(k′, x), then it also does not manage to obtain
sufficient amount of randomness from the underlying random function to simulate P convincingly,
opening the door to a distinguishing attack. In the following, let q(k′) = |{q(k′, x) : x ∈ {0, 1}n}|
for all k′ ∈ {0, 1}κ.

Lemma 3. Let C(·) : {0, 1}κ′ × {0, 1}n × {+,−} → {0, 1}n be a one-query construction, let P be a
URP on {0, 1}n and let E : {0, 1}κ × {0, 1}n × {+,−} → {0, 1}n be an ideal block cipher. Also, let
K ′ ∈ {0, 1}κ′ be a random key, and assume that there exists q∗ such that q(K ′) ≤ q∗ with probability
at least 1

2 . Then, there exists a distinguisher D asking 2n forward queries such that

∆D
(
CE
K′ ,P

) ≥ 1
2 − 2κ

′+n·q∗−log(2n!) .

Putting the pieces together. We can combine the techniques used to prove Lemma 2 (some-
what relaxing the injectivity requirement) and Lemma 3, to obtain the following final theorem
yielding an attack for arbitrary one-query block-cipher constructions.

Theorem 1. Let n ≥ 6 and κ′ ≤ 2n − 1, let E : {0, 1}κ × {0, 1}n × {+,−} → {0, 1}n be an ideal
block cipher, let C(·) : {0, 1}κ′ × {0, 1}n × {+,−} → {0, 1}n be a one-query construction, and let P
be a URP on {0, 1}n. Then, for a random key K ′ ∈ {0, 1}κ′ and for all parameters 0 < t < 2n−2,
there exists a distinguisher D such that

∆D
(
(E,CE

K′), (E,P)
) ≥ min

{
1
4 ,

1
2 − 2

t − 2κ
′−t·(n−1)

}
,

and which asks at most 8t · 2κ queries to E and 2n forward queries to either of CE
K′ and P.

Theorem 1 shows that no one-query construction can achieve security beyond 2max{κ,n} queries,
hence in our search for efficient key-length extension schemes we have to we turn our attention
towards constructions issuing at least two queries.

11 Roughly speaking, higher t increases the advantage but also the required number of queries; we obtain the desired
bound using a constant t. For a first impression, consider e.g. t = 4 and κ′ ≈ 2n.

9

EK̃(EK(x⊕ Z)⊕ Z)EK(.)

K

EK̃(.)

K̃ZZ

x

Fig. 1. The double XOR-cascade construction analyzed in Theorem 3.

3.2 Two-Query Constructions

We now consider an arbitrary deterministic stateless construction C(·) : {0, 1}κ′×{0, 1}n×{+,−} →
{0, 1}n that makes exactly two queries to an ideal block cipher E : {0, 1}k × {0, 1}n × {+,−} →
{0, 1}n to evaluate each query. In the following, these constructions shall be referred to as two-
query constructions. We denote by q1(k′, x) ∈ {0, 1}κ × {0, 1}n × {+,−} the first query C(·) asks
its subsystem when it is itself being asked a forward query (k′, x,+). Moreover, we denote by
q2(k′, x, s) ∈ {0, 1}κ × {0, 1}n × {+,−} the second query it asks when it is itself being asked a
forward query (k′, x,+) and the answer to the first query q1(k′, x) was s ∈ {0, 1}n. Since C(·) is
deterministic and stateless, both q1 and q2 are well-defined mappings.

Theorem 2. Let C(·) : {0, 1}κ′ ×{0, 1}n×{+,−} → {0, 1}n be a two-query construction satisfying
the following two conditions:

1. for every k′ ∈ {0, 1}κ′ the mapping q1(k′, ·) is injective,
2. distinct answers to the first query imply distinct second queries, i.e., for every k′ ∈ {0, 1}κ′ and

every x, x′ ∈ {0, 1}n if s 6= s′ then q2(k′, x, s) 6= q2(k′, x′, s′).

Then for a random key K ′ ∈ {0, 1}κ′, for a URP P on {0, 1}n and for every parameter 0 < t <
2n/2−1, there exists a distinguisher D such that

∆D((E,CE
K′), (E,P)) ≥ 1− 2/t− 13 · 2−n2 − 2κ

′−t·(n−1),

where D makes at most 2(t+ 4) ·2κ+n/2 queries to E as well as 2n forward queries to either of CE
K′

and P.

The proof of Theorem 2 is given in Appendix B.
Hence, no two-query construction from the large class described in the above theorem can

achieve security beyond 2κ+n/2 queries. In the following section we present a simple and efficient
construction from this class that achieves the above limit.

4 The Double XOR-Cascade Construction

We present a two-query construction matching the upper bound 2κ+n/2 on security proved in the
previous section. The construction, which we call the double XOR-cascade construction (2XOR),
consists of two applications of the block-cipher interleaved with two XOR operations: Given a
(κ, n)-block cipher E, we define the (κ+ n, n)-block cipher 2XORE such that

2XORE
k,z(m) = Eek(Ek(m⊕ z)⊕ z)

for all k ∈ {0, 1}κ, z,m ∈ {0, 1}n, and where k̃ = π(k) for some understood fixpoint-free permuta-
tion π ∈ Perm(κ) (e.g., π(k) = k ⊕ 0κ−11, i.e., π flips the last bit). The construction is depicted in
Figure 1. Note that both XOR transformations use the same value z and the two block-cipher calls
use two distinct keys such that one can be deterministically derived from the other one. We also
consider a construction 2XOR′ of a (2κ+ n)-block cipher where k̃ is replaced by an (independent)
κ-bit key.

10

Security of 2XOR. We now discuss the security of the double XOR-cascade construction in the
ideal cipher model. To this end, let X(·) : {0, 1}κ × {0, 1}n × {0, 1}n × {+,−} → {0, 1}n denote a
(deterministic stateless) construction which expects a subsystem E : {0, 1}κ × {0, 1}n × {+,−} →
{0, 1}n realizing a block cipher. XE then answers each query (k, z, x,+) by Eek (Ek (x⊕ z)⊕ z)
and each query (k, z, y,−) by E−1

k (E−1ek (y) ⊕ z) ⊕ z. As before, for randomly chosen (secret) keys
(K,Z) ∈ {0, 1}κ × {0, 1}n, we let XE

K,Z be the system which gives access to the permutation
XE(K,Z, ·) in both directions (i.e., takes inputs from {0, 1}n × {+,−}).
Theorem 3. Let P and E denote a URP on {0, 1}n and an ideal (κ, n)-block cipher, respectively;
let (K,Z) ∈ {0, 1}κ×{0, 1}n be uniformly chosen keys. For the construction X(·)

K,Z defined as above,
and for every distinguisher D making q queries to E,

∆D
((

E,XE
K,Z

)
, (E,P)

) ≤ 4 ·
(q

2κ+n/2

)2/3
.

In particular, D can make arbitrarily many queries to either of XE
K,Z and P.

We also note that an analogous statement for the construction 2XOR′ can be easily derived
from the presented claim.
Proof intuition. The proof, given below, follows a two-step approach. In the first part, we prove
that for any parameter h ≤ 2n/2, the above advantage is upper bounded by ε(h) + q

h2κ−1 , where
ε(h) is an upper bound on the advantage of a h-query distinguisher in telling apart the following
two settings, in both of which it issues both forward and backward queries to two permutations
π1, π2 ∈ Perm(n):

1. In the first case, π1, π2 are chosen uniformly and independently.
2. In the second setting, a uniform n-bit string Z is chosen, and π1 and π2 are chosen uniformly

at random such that π2(π1(· ⊕ Z)⊕ Z) = id.

This step follows a pattern similar to the one used in [11,16] to analyze the security of plain cascades,
but with obvious modifications and extra care to take into account randomization as well as key
dependency.

Then, the main technical part of the proof consists of proving a bound 3h2/2n+1 on ε(h), which
is a new result of independent interest. The intuition here is that without knowing Z, it is hard to
come up with two queries, one to π1 and one to π2, which result in input-output pairs π1(x) = y
and π2(x′) = y′ satisfying x = y′ ⊕Z and x′ = y⊕Z simultaneously. However, as long as this does
not happen, both permutations appear independent and random.

We stress that our double-randomization is crucial here: omitting one of the randomization
steps, as well as adding a third randomization step for the same Z, would all result in invalidating
the argument. In particular, Appendix C provides some useful extra intuition as for why other
simpler randomization methods for the cascade fail to provide the required security level.

Proof. We start by noting that the system (E,XE
K,Z) simply can be seen as providing an interface

to query 2κ + 1 (dependent) permutations

Ek1 ,Ek2 , . . . ,Ek2κ ,EK̃ (EK (· ⊕ Z)⊕ Z) ,

each both in forward and backward direction, where k1, k2, . . . , k2κ is an enumeration of the κ-
bit strings. By the group structure of Perm(n) under composition, the joint distribution of these
permutations does not change if we start by choosing the last permutation uniformly at random,

11

i.e., we replace it by P, then choose K and Z and finally choose the permutations of the block
cipher independently and randomly except for the one corresponding to the key K̃, which we set
to x 7→ P

(
E−1
K (x⊕ Z)⊕ Z). Hence, let G(·) be a system that expects a single permutation as its

subsystem (let us denote it P) and itself provides an interface to a block cipher (let us denote it
G). It answers queries to G in the following way: in advance, it chooses random keys (K,Z) and
then generates random independent permutations for G used with any key except K̃. For K̃, G
realizes the permutation x 7→ P

(
G−1
K (x⊕ Z)⊕ Z), querying P for any necessary values. Then the

above argument shows that (E,XE
K,Z) = (GP,P) and hence we obtain

∆q

((
E,XE

K,Z

)
, (E,P)

)
= ∆q

((
GP,P

)
, (E,P)

) ≤ ∆q

((
GS , S

)
, (E, S)

)
,

where the last inequality follows from claim (iv) in Lemma 1 and S denotes the fixed permutation
whose existence is guaranteed by this claim. Since S is fixed and hence known to the distinguisher,
it makes no sense to query it and thus it remains to bound ∆q

(
GS ,E

)
for any permutation S.

From now on, we denote the system GS by G to simplify the notation.

We shall refer to all forward or backwards queries to G involving the permutations indexed by K
or K̃ as relevant. Similarly, the system E can be seen as also choosing some random key K (and
hence K̃), this just does not affect its behavior, and we can hence define relevant queries for E
in an analogous way. Let Ah and Bh denote monotone conditions defined on systems E and G
respectively, such that each of these conditions remains satisfied as long as at most h of the queries
asked so far were relevant. The parameter h will be chosen optimally at the end of the proof. We
require h < 2n/2.

It is easy to upper-bound the probability of asking more than h relevant queries in E: since the
key K does not affect the responses of the system (and therefore the behavior is also independent
of the associated monotone condition), we only have to consider non-adaptive strategies. Hence,
for any distinguisher D asking q queries, the expected number of relevant queries among them is
q · 21−κ and using Markov inequality, we obtain ν(E,Ahq) ≤ q/h2κ−1. Let E⊥ and G⊥ denote the
systems E and G blocked by Ah and Bh, respectively. Then we can apply claim (ii) of Lemma 1 to
obtain

∆q(G,E) ≤ ∆q(G⊥,E⊥) + ν(E,Ahq) ≤ ∆q(G⊥,E⊥) + q/h2κ−1 .

Now, one can observe that the systems G⊥ and E⊥ only differ in a small part. More specifically,
we have G⊥ = CS and E⊥ = CT, where:

- S is a system that chooses Z ∈ {0, 1}n at random and provides access (by means of both forward
and backward queries) to two randomly chosen permutations π1, π2 on {0, 1}n such that they
satisfy the equation π2(π1(· ⊕ Z)⊕ Z) = id;

- T is a system providing access (by means of both forward and backward queries) to two uni-
formly random permutations π1, π2 ∈ Perm(n) that are independent;

- C(·) is a (randomized) construction that expects a subsystem which provides two permutations
π1 and π2. C(·) itself provides access to a block cipher C as follows: it chooses a uniformly
random key K and sets CK := π1 and CK̃ := π2 ◦ S. (C only queries its subsystem once it
is asked a relevant query). The permutations for all other keys are chosen independently at
random. Moreover, C only allows h relevant queries, after that it returns ⊥.

By Lemma 1(iii), the above observation gives us ∆q(G⊥,E⊥) ≤ ∆h(S,T).

Hence it remains to bound ∆h(S,T). We start by taking a different view of the internal workings
of the system S. Once the values Z, π1, π2 are chosen, the internal state of S can be represented by

12

a set T of 2n 4-tuples (x1, y1, x2, y2) such that π1(x1) = y1 and π2(x2) = y2, and x2 = y1 ⊕ Z and
x1 = y2 ⊕ Z. For any I ⊆ {1, . . . , 4}, let TI be the projection of T on the components in I. Then
note that for any two distinct tuples (x1, y1, x2, y2), (x′1, y

′
1, x
′
2, y
′
2) ∈ T we have x1 6= x′1, y1 6= y′1,

x2 6= x′2, and y2 6= y′2, in other words T{i} = {0, 1}n for every i ∈ {1, . . . , 4}.
Equivalently, it is not hard to verify that S can be implemented using lazy-sampling to set up

T : Initially, T = ∅ and Z is a uniform n-bit string. Then, S answers queries as follows:

- Upon a query π1(x), it returns y if (x, y) ∈ T{1,2} for some y. Otherwise, it returns a random
y ∈ {0, 1}n \ T{2} and adds (x, y, y ⊕ Z, x⊕ Z) to T .

- Upon a query π−1
1 (y), it returns x if (x, y) ∈ T{1,2} for some x. Otherwise, it returns a random

x ∈ {0, 1}n \ T{1} and adds (x, y, y ⊕ Z, x⊕ Z) to T .
- Upon a query π2(x), it returns y if (x, y) ∈ T{3,4} for some y. Otherwise, it returns a random
y ∈ {0, 1}n \ T{4} and adds (y ⊕ Z, x⊕ Z, x, y) to T .

- Upon a query π−1
2 (y), it returns x if (x, y) ∈ T{3,4} for some x. Otherwise, it returns a random

x ∈ {0, 1}n \ T{3} and adds (y ⊕ Z, x⊕ Z, x, y) to T .

We consider an intermediate system S′ obtained from S: In addition to T , it also keeps track of sets
P1 and P2, both consisting of ordered pairs of n-bit strings. (Again Pi,1 and Pi,2 denote the strings
appearing as first and second component in Pi, respectively.) Initially each Pi is empty and during
the experiment, Pi keeps track of input-output pairs for πi which were already defined by directly
answering a πi query in either direction (as opposed to those that were defined internally by S′

when answering a π3−i query). Concretely, S′ answers a query π1(x) by y if (x, y) ∈ T{1,2} ∪ P1 for
some y. Otherwise, it returns a uniformly chosen y ∈ {0, 1}n \P1,2 and adds (x, y) to P1. Moreover,
if y /∈ T{2}, it also adds the tuple (x, y, y ⊕ Z, x ⊕ Z) to T . Queries π−1

1 (y), π2(x), and π−1
2 (y) are

answered in a symmetric fashion. Having this description of S′, note that we obtain the system T
if a query π1(x) is answered by some given y only if (x, y) ∈ P1, and otherwise a fresh random
output is generated (but the 4-tuples are still added to T as above).

We now define two monotone conditions A and B on S′:

- The condition A = A0, A1, . . . fails at the first query πi(x) answered by a random y which
satisfies y ∈ T{2(i−1)+2}, or π−1

i (y) answered by a random x such that x ∈ T{2(i−1)+1}.
- The condition B = B0, B1, . . . fails at the first query πi(x) such that there exists y which

satisfies (x, y) ∈ T{2(i−1)+1,2(i−1)+2} \ Pi, or π−1
i (y) such that there exists x satisfying (x, y) ∈

T{2(i−1)+1,2(i−1)+2} \ Pi.
By the above representations of S and T, one can easily verify that S′|A ≡ S and S′|B ≡ T.
Therefore, by the triangle inequality and by claim (i) from Lemma 1,

∆h(S,T) ≤ ∆h(S,S′) +∆h(S′,T) ≤ ν(S′, Ah) + ν(S′, Bh).

To upper bound ν(S′, Ah), note that each time a fresh random value is chosen from {0, 1}n \ Pi,j
when answering the ith query, it is in T2(i−1)+j with probability at most i−1

2n−i ≤ 2 i−1
2n , hence the

union bound gives us ν(S′, Ah) ≤ h2

2n .
In order to bound ν(S′, Bh), let us introduce a monotone condition C = C0, C1, . . . on T which

fails under the same circumstances as B in S′ (note that this can be done since T also keeps
track of the sets T and Pi). As a consequence of these equivalent definitions and the fact that the
behaviors of S′ and T are the same as long as the respective associated conditions are satisfied, we
have ν(S′, Bh) = ν(T, Ch). However, the input-output behavior of T is independent of Z (and C
failing), and hence we can equivalently postpone the sampling of Z to the end of the interaction,
go through the generated transcript to construct T , and upper bound the probability that C has

13

failed at some query. This implies that for the choice of Z, one query must have been bad in the
following sense:

- A query π1(x) is preceded by a π2-query resulting in an input-output pair (x′, y′) such that
y′ ⊕ Z = x;

- A query π−1
1 (y) is preceded by a π2-query resulting in an input-output pair (x′, y′) such that

x′ ⊕ Z = y;
- A query π2(x′) is preceded by a π1-query resulting in an input-output pair (x, y) such that
y ⊕ Z = x′;

- A query π−1
2 (y′) is preceded by a π1-query resulting in an input-output pair (x, y) such that

x⊕ Z = y′.

Given the transcript, and for randomly chosen Z, the ith query is bad with probability at most
(i − 1)/2n, and the probability that at least one query is bad is thus at most h2

2n+1 by the union
bound.

Putting all the obtained terms together, the part of the distinguisher’s advantage that depends
on h is f(h) = q/h2κ−1 + 3h2/2n+1. This term is minimal for h∗ = (1

3q2
n−κ+1)1/3 which gives us

f(h∗) < 4 ·
(

q
2κ+n/2

)2/3
as desired. ut

Acknowledgements. We thank Mihir Bellare and Ueli Maurer for insightful feedback. Peter Gaži
was partially supported by grants SNF 200020-132794, VEGA 1/0266/09 and UK/95/2011. Stefano
Tessaro’s work was done while at UC San Diego, partially supported by NSF grant CNS-0716790
and by Calit2. He is currently supported by DARPA, contract number FA8750-11-2-0225.

References

1. FIPS PUB 46: Data Encryption Standard (DES). National Institute of Standards and Technology (1977)
2. ANSI X9.52: Triple Data Encryption Algorithm Modes of Operation (1998)
3. FIPS PUB 46-3: Data Encryption Standard (DES). National Institute of Standards and Technology (1999)
4. FIPS PUB 197: Advanced Encryption Standard (AES). National Institute of Standards and Technology (2001)
5. NIST SP 800-67: Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher. National

Institute of Standards and Technology (2004)
6. EMV Integrated Circuit Card Specifications for Payment Systems, Book 2: Security and Key Management, v.4.2.

EMVCo (Jun 2008)
7. Aiello, W., Bellare, M., Crescenzo, G.D., Venkatesan, R.: Security amplification by composition: The case of

doubly-iterated, ideal ciphers. In: Advances in Cryptology — CRYPTO ’98. Lecture Notes in Computer Science,
vol. 1462, pp. 390–407 (1998)

8. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of symmetric encryption. In: FOCS
’97: Proceedings of the 38th IEEE Annual Symposium on Foundations of Computer Science. pp. 394–403 (1997)

9. Bellare, M., Kilian, J., Rogaway, P.: The security of cipher block chaining message authentication code. In:
CRYPTO ’94: Proceedings of the 14th Annual International Cryptology Conference on Advances in Cryptology.
pp. 341–358. Lecture Notes in Computer Science (1994)

10. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs, RKA-PRFs, and applications.
In: Advances in Cryptology — EUROCRYPT 2003. Lecture Notes in Computer Science, vol. 2656, pp. 491–506
(2003)

11. Bellare, M., Rogaway, P.: Code-based game-playing proofs and the security of triple encryption. In: Advances in
Cryptology - EUROCRYPT 2006. Lecture Notes in Computer Science, vol. 4004, pp. 409–426. Springer-Verlag
(2006), full version at http://eprint.iacr.org/2004/331.

12. Black, J., Rogaway, P.: A block-cipher mode of operation for parallelizable message authentication. In: Advances
in Cryptology — EUROCRYPT 2002. Lecture Notes in Computer Science, vol. 2332, pp. 384–397 (2002)

13. Diffie, W., Hellman, M.E.: Exhaustive Cryptanalysis of the NBS Data Encryption Standard. Computer 10(6),
74–84 (1977)

14. Even, S., Goldreich, O.: On the power of cascade ciphers. ACM Trans. Comput. Syst. 3(2), 108–116 (1985)

14

http://eprint.iacr.org/2004/331

15. Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom permutation. In: Journal of
Cryptology. pp. 151–161. Springer-Verlag (1991)

16. Gaži, P., Maurer, U.: Cascade encryption revisited. In: Advances in Cryptology — ASIACRYPT 2009. Lecture
Notes in Computer Science, vol. 5912, pp. 37–51 (Dec 2009)

17. Gaži, P., Maurer, U.: Free-start distinguishing: Combining two types of indistinguishability amplification. In:
The 4th International Conference on Information Theoretic Security - ICITS 2009. Lecture Notes in Computer
Science, vol. 5973, pp. 28–44 (2010)

18. Kilian, J., Rogaway, P.: How to Protect DES Against Exhaustive Key Search (an Analysis of DESX). Journal of
Cryptology 14, 17–35 (2001)

19. Lai, X., Massey, J.L.: A proposal for a new block encryption standard. In: Advances in Cryptology — EURO-
CRYPT ’90. pp. 389–404. Lecture Notes in Computer Science (1990)

20. Luby, M., Rackoff, C.: Pseudo-random permutation generators and cryptographic composition. In: STOC ’86:
Proceedings of the eighteenth annual ACM symposium on Theory of computing. pp. 356–363 (1986)

21. Lucks, S.: Attacking triple encryption. In: Fast Software Encryption. Lecture Notes in Computer Science, vol.
1372, pp. 239–253 (1998)

22. Maurer, U.: Indistinguishability of random systems. In: Advances in Cryptology — EUROCRYPT 2002. Lecture
Notes in Computer Science, vol. 2332, pp. 110–132 (May 2002)

23. Maurer, U., Massey, J.L.: Cascade ciphers: The importance of being first. Journal of Cryptology 6(1), 55–61
(1993)

24. Maurer, U., Pietrzak, K.: Composition of random systems: When two weak make one strong. In: Theory of
Cryptography Conference — TCC 2004. Lecture Notes in Computer Science, vol. 2951, pp. 410–427 (Feb 2004)

25. Maurer, U., Pietrzak, K., Renner, R.: Indistinguishability amplification. In: Advances in Cryptology — CRYPTO
2007. Lecture Notes in Computer Science, vol. 4622, pp. 130–149 (Aug 2007)

26. Maurer, U., Tessaro, S.: Computational indistinguishability amplification: Tight product theorems for system
composition. In: Advances in Cryptology — CRYPTO 2009. Lecture Notes in Computer Science, vol. 5677, pp.
350–368 (Aug 2009)

27. Rogaway, P., Steinberger, J.P.: Security/efficiency tradeoffs for permutation-based hashing. In: Advances in Cryp-
tology — EUROCRYPT 2008. Lecture Notes in Computer Science, vol. 4965, pp. 220–236 (2008)

28. Schneier, B.: Description of a new variable-length key, 64-bit block cipher (blowfish). In: Fast Software Encryption
– FSE ’93. Lecture Notes in Computer Science, vol. 809, pp. 191–204 (1994)

29. Stam, M.: Beyond uniformity: Better security/efficiency tradeoffs for compression functions. In: Advances in
Cryptology — CRYPTO 2008. Lecture Notes in Computer Science, vol. 5157, pp. 397–412 (2008)

30. Steinberger, J.P.: Stam’s collision resistance conjecture. In: Advances in Cryptology — EUROCRYPT 2010.
Lecture Notes in Computer Science, vol. 6110, pp. 597–615 (2010)

31. Tessaro, S.: Security amplification for the cascade of arbitrarily weak PRPs: Tight bounds via the interactive
Hardcore Lemma. In: Theory of Cryptography — TCC 2011. Lecture Notes in Computer Science, vol. 6597, pp.
37–54 (2011)

32. Vaudenay, S.: Decorrelation: a theory for block cipher security. Journal of Cryptology 16(4), 249–286 (2003)

A Attacks against One-Query Constructions

In this appendix we give the proofs of all claims presented in Section 3.1. To capture the full
generality of our argument, we prove the underlying lemmas in a slightly more general scenario.
Instead of an ideal block cipher E, we consider an arbitrary random function F : {0, 1}d → {0, 1}∗
as the available component for the construction. The presented lemmas also hold in this more
general setting, which might be of independent interest. Clearly, the setting from Section 3.1 is
easily obtained by considering d := κ+ n+ 1 (the input size of the ideal blockcipher E).

Recall that C(·) denotes a stateless and deterministic construction invoking the random function
F to implement a function CF : {0, 1}κ′×{0, 1}n×{+,−} → {0, 1}n to serve as a block cipher with
key length κ′ (in particular, CF realizes a permutation for each k′ ∈ {0, 1}κ′). Note that since the
construction C(·) itself is deterministic and stateless, any adversary with access to F can compute
the output of CF on any input from {0, 1}κ′ × {0, 1}n × {+,−} by simulating C(·) on its own and
querying F when necessary. On the other hand, for a random (secret) κ′-bit string K ′, CF

K′ denotes
the system which gives access to the permutation CF(K ′, ·) and its inverse (i.e., takes inputs from
{0, 1}n × {+,−}).

We start by proving the following generalization of Lemma 2.

15

Lemma 4. Let C(·) be a one-injective-query construction as above, let P be a URP on {0, 1}n,
and let K ′ ∈ {0, 1}κ′ be a random key. Then, for all parameters 0 < t < 2min{n,d/2}−1, there exists
a distinguisher D such that for all random functions F : {0, 1}d → {0, 1}∗,

∆D((F,CF
K′), (F,P)) ≥ 1− 2/t− 2κ

′−t·(n−1) ,

where D makes 2t ·max
{

2d/2, 2d−n
}

queries to F as well as min
{

2d/2, 2n
}

forward queries to either
of CF

K′ and P.

Proof. We start by fixing the parameter t from the given interval. The distinguisher D is described
in the top part of Figure 2, where

qS := min
{

2d/2, 2n
}

and qF := 2t ·max
{

2d/2, 2d−n
}
,

x1, . . . , xqS ∈ {0, 1}n are arbitrarily chosen distinct fixed strings and r1, . . . , rqF are randomly chosen
distinct elements of {0, 1}d, as indicated in Figure 2.

For the analysis, assume that S = CF
K′ and the key K ′ has been chosen to take the value

k′. Then, the expected size of the set S = {r1, . . . , rqF} ∩ {q(k′, x1), . . . , q(k′, xqS)} is at least 2t,
with variance upper-bounded also by 2t by Lemma 6 in Appendix D. Therefore, by Chebyshev’s
inequality, the probability that |S| < t is upper-bounded by 2/t. If |S| ≥ t then the set I is
determined on Line 6 and the condition on Line 8 is satisfied and D outputs 1. (Note that this
condition is verified by simulating the construction Ck′ and querying F for the necessary values; at
most qF queries are needed in total to verify the condition for all k′, due to the choice of I.) On
the other hand, if S = P, then for every fixed value k′ the condition on Line 8 is only satisfied with
probability (2n− t)!/2n! ≤ 2−t·(n−1). Hence, by the union bound, the probability that this condition
is satisfied for any key k′ is upper-bounded by 2κ

′−t(n−1). Putting all of this together, we see that
D(F,CF

K′) outputs 1 with probability at least 1− 2/t, whereas D(F,P) outputs 1 with probability
at most 2κ

′−t(n−1), which yields the statement of the lemma. ut
Next, we prove the following generalization of Lemma 3 for the scenario with the underlying

random function F, which we require to have a finite range {0, 1}r.
Lemma 5. Let C(·) : {0, 1}κ′ × {0, 1}n × {+,−} → {0, 1}n be a one-query construction, let P be
a URP on {0, 1}n and let F : {0, 1}d → {0, 1}r be a random function. Also, let K ′ ∈ {0, 1}κ′ be a
random key, and assume that there exists q∗ such that q(K ′) ≤ q∗ with probability at least 1

2 . Then,
there exists a distinguisher D asking 2n forward queries such that

∆D
(
CF
K′ ,P

) ≥ 1
2 − 2κ

′+r·q∗−log(2n!) .

Proof. Let K∗ be the set of keys k′ for which q(k′) ≤ q∗. By our assumption, P[K ′ ∈ K∗] ≥ 1
2 .

Also, let M be the set of mappings which can be implemented by CF
K′ given K ′ ∈ K∗. We have

|M| ≤ |K∗| · 2r·q∗ ≤ 2κ
′+r·q∗ since given K ′ ∈ K∗, CF

K′ obtains at most r · q∗ output bits from F.
Note that M only depends on C(·) and the description of F, and can hence be computed by D.

The distinguisher D queries the given system for all values in {0, 1}n×{+} and returns 1 if and
only if the mapping obtained is inM, and 0 otherwise. Obviously, D outputs 1 with probability at
least 1

2 when interacting with CF
K′ . However, if D interacts with P, the probability that it observes

a mapping from M is upper bounded by 2κ
′+r·q∗ · 2− log(2n!), which concludes the proof. ut

Finally, by combining the proof techniques of Lemma 4 and Lemma 5, we obtain a proof of
Theorem 1.

16

Distinguisher D(F,S): // S ∈ {CF
K′ ,P}

1: choose arbitrary distinct x1, . . . , xqS ∈ {0, 1}n
2: for i := 1 to qS do
3: query S on input (xi,+), obtaining value yi
4: choose r1, . . . , rqF

$,d← {0, 1}d
5: for all k′ ∈ {0, 1}κ′ do
6: let I ⊆ {1, . . . , qS} be smallest such that∣∣{q(k′, xi) : i ∈ I}∣∣ = t and ∀i ∈ I : q(k′, xi) ∈ {r1, . . . , rqF}

7: if I exists then
8: if ∀i ∈ I : yi = CF(k′, xi) then
9: return 1

10: return 0

Distinguisher D(E,S): // S ∈ {CE
K′ ,P}

1: for all x ∈ {0, 1}n do
2: query S on input (x,+), obtaining value y(x)

3: r1, . . . , rqE,1
$,d← {0, 1}κ × {0, 1}n × {+,−}

4: u1, . . . , uqE,2
$,d← {0, 1}κ × {0, 1}n × {+,−}

5: for all r ∈ {r1, . . . , rqE,1 , u1, . . . , uqE,2
}

do
6: query E on input r obtaining value e(r)
7: for all k′ ∈ {0, 1}κ′ do
8: let I ⊆ {0, 1}n be smallest such that |I| = t and ∀x ∈ I:

q1(k′, x) ∈ {r1, . . . , rqE,1} and q2
(
k′, x, e(q1(k′, x))

) ∈ {u1, . . . , uqE,2}

9: if I exists then
10: if ∀x ∈ I : y(x) = CE(k′, x) then
11: return 1
12: return 0

Fig. 2. Top: Distinguisher D for the proofs of Lemma 4 and Theorem 1. Bottom: Distinguisher D for the proof of
Theorem 2. In both descriptions, “smallest” in the choice of the set I is with respect to the lexicographic order on
sets of cardinality t.

Proof (of Theorem 1). Throughout the proof, fix q∗ = ((n− 2) · 2n − κ′ − 1) /n. Assume first that
q(K ′) ≤ q∗ with probability at least 1

2 . Then we can use Lemma 3 to obtain a distinguisher D
asking 2n queries such that

∆D
(
CE
K′ ,P

) ≥ 1
2 − 2κ

′+n·q∗−log(2n!) ≥ 1
2 − 2(n−2)·2n−log(2n!)−1 .

Applying the bound lnx! ≥ x ln(x/e) + 1 we get log(2n!) ≥ (n − 2) · 2n + 1 and therefore
∆D

(
CE
K′ ,P

) ≥ 1/4. This also trivially implies that there exists a distinguisher D asking 2n queries
such that we have ∆D

(
(E,CE

K′), (E,P)
) ≥ 1/4.

Let us address the complementary case that q(K ′) > q∗ with probability at least 1
2 . Since we

assume κ′ ≤ 2n − 1 and n ≥ 6, we note that q∗ ≥ 2n · (n− 3)/n ≥ 2n−1. Hence, roughly speaking,

17

for at least half of the keys k′ the mapping q(k′, ·) is “almost injective” and we can use the same
distinguisher as in the proof of Lemma 4 with different parameters.

More precisely, we use the distinguisher D depicted in the top part of Figure 2 with qS := 2n

(we query the entire domain) and qF := 8t · 2κ (recall that the ideal cipher E has domain size
κ+n+1). If k′ is chosen such that q(k′) > 2n−1 (which is true with probability at least 1

2), then the
expected value and the variance of the cardinality of S := {q(k′, x) | x ∈ {0, 1}n}∩{r1, . . . , rqF} are
at least 2t (again by Lemma 6) and hence Chebyshev’s inequality yields that |S| ≥ t except with
probability at most 2/t. Therefore D(E,CE

K′) outputs 1 with probability at least 1
2 −2/t. However,

as in the proof of Lemma 4, D(E,P) outputs 1 with probability at most 2κ
′−t·(n−1). This concludes

the proof. ut

B Attacks against Two-Query Constructions

Here we present the details of a generic attack on the broad class of two-query block-cipher con-
structions described in Theorem 2.

Proof (of Theorem 2). The distinguisher D is described in the bottom part of Figure 2, with
the parameters qE,1 := 8 · 2κ+n/2 and qE,2 := 2t · 2κ+n/2. Let us analyze the interaction of this
distinguisher with (E,CE

K′). For every fixed key k′, the size of the set {q1(k′, x) | x ∈ {0, 1}n}
is 2n due to the injectivity of the mapping q1(k′, ·). Hence the expected size of the set S :=
{q1(k′, x) | x ∈ {0, 1}n} ∩ {r1, . . . , rqE,1} is 4 · 2n/2 with the variance upper-bounded by 4 · 2n/2 by
Lemma 6. Chebyshev’s inequality then yields P[|S| < 3 · 2n/2] ≤ 22−n/2.

Let us assume that |S| ≥ 3 · 2n/2: We need to show that the image E(S) of S under E is also
sufficiently large. Indeed, note that the set S is independent of E: If an ideal block cipher is queried
at 3 · 2n/2 arbitrary distinct triples (k, x, σ) ∈ {0, 1}κ × {0, 1}n × {−,+}, then for any two such
triples (k, x, σ) and (k′, x′, σ′), the probability that the query outputs collide under E is at most
2
2n . (The case with the highest probability is when k = k′, x 6= x′, σ = −, and σ′ = +.) The
expected number of collisions is upper-bounded by 9·2n

2 · 2
2n = 9. Therefore, by Markov’s inequality

no more than 2n/2 collisions (among the values E(s) for s ∈ S) occur, except with probability at
most 9 · 2−n/2, and if at most 2n/2 collisions occur, then |E(S)| ≥ 3 · 2n/2 − 2n/2 = 2n/2+1. Due to
the assumed property of q2, this also means that the set T := {q2(k′, x, e(q1(k′, x))) : q1(k′, x) ∈ S}
has cardinality |T | ≥ 2n/2+1.

Similar to above, the estimated size of the set V := T ∩ {u1, . . . , uqE,2} is at least 2n/2+1 · 2t ·
2κ+n/2/2κ+n+1 = 2t with variance at most 2t (again by Lemma 6) and hence the probability that
|V| < t can again be upper-bounded by 2/t using the Chebyshev inequality.

Note that if |V| ≥ t then a set I will be found on Line 8 when going through the right chosen key
k′, which implies that the test on Line 10 succeeds, and we are hence guaranteed that D outputs 1,
unless one of the previously mentioned bad events happens, for which the probability is bounded
by 13 · 2−n/2 + 2/t. On the other hand, if D interacts with P, the probability that this test is
satisfied for any of the keys k′ ∈ {0, 1}κ′ can be upper-bounded by 2κ

′−t·(n−1) as in the proof of
Lemma 4. ut

C Attacks against Randomized Cascades

To justify the minimality of our approach, we briefly discuss some related constructions and their
security: Namely, we show that for various simple key-dependent randomizations of the cascade,
meet-in-the-middle attacks issuing only 2κ queries can be mounted.

18

Single randomization. We start with constructions with one single randomization step: These
are C1, C2, and C3 such that

CE
1 k1,k2,z

(m) = Ek2(Ek1(m⊕ z)) ,
CE

2 k1,k2,z
(m) = Ek2(Ek1(m))⊕ z ,

CE
3 k1,k2,z

(m) = Ek2(Ek1(m)⊕ z) .

For example, given an ideal block cipher E, we distinguish (E,CE
3 K1,K2,Z

) (for random K1,K2 and
Z) and (E,P) with advantage 1

2 using O(2κ) queries as follows: Let x1, x2, . . . , xt be fixed distinct
n-bit strings where t = d2κ+nn−1 e. For all i = 1, . . . , t and k′1, k

′
2 ∈ {0, 1}κ, we first compute ui(k′1) and

vi(k′2) by querying (k′1, xi,+) and (k′2, π(xi),−) to E, where π is the permutation implemented by
the system S ∈ {CE

3 K1,K2,Z
,P} appearing as second component. Finally, we output 1 if there exist

z′ ∈ {0, 1}n and k′1, k
′
2 ∈ {0, 1}κ with ui(k′1)⊕ vi(k′2) = z for all i = 1, . . . , t, and 0 otherwise.

Clearly, we will always output one when interacting with S = CE
3 K1,K2,Z

. However, if S = P,
then for each k′1, k

′
2 and z, the sequence vi(k′2) is a uniformly random t-tuple of distinct n-bit strings.

Hence, the probability that ui(k′1)⊕vi(k′2) = z for all i = 1, . . . , t is at most (2n−t)!/2n! < 2−t(n−1),
and the probability that there exist such k′1, k

′
2 and z is hence at most 22κ+n−t(n−1) ≤ 1

2 by the
union bound.

Similarly, for C1 one modifies the attack to compute ui(k′1) as the result of querying E with
input (k′1, xi,−), whereas vi(k′2) is obtained by applying π−1 to the output of the query (k′2, xi,+).
To attack C2, we proceed symmetrically.
Double randomization. It is slightly more complicated to attack the construction

CE
4 k1,k2,z1,z2

(m) = Ek2(Ek1(m⊕ z1))⊕ z2 .

We can only show how to do it with O(2κ) ideal block cipher queries and 2n construction queries.
Following on the above notation, we let ui(k′1) and vi(k′2) be the results of querying E with (k′1, xi,−)
and (k′2, xi,+) for all k′1, k

′
2 ∈ {0, 1}κ and i = 1, . . . ,m, but also query all of the given permutation

π (this costs us 2n queries). Then, as above we check for the existence of k′1, k
′
2 ∈ {0, 1}κ and

z1, z2 ∈ {0, 1}n such that π(z1 ⊕ ui(k′1)) = vi(k′2)⊕ z2 for all i = 1, . . . , t. Note that the probability
that this is achieved when π is chosen randomly is at most 22κ+2n · (2n−t)!2n! ≤ 1

2 if we set t = d2k+2n
n−1 e.

A similar attack can be given when z1 = z2.

D Estimating Intersection Sizes

The situation analyzed in the following lemma occurs at several occasions during our proofs. Let
E, Var and Cov denote the usual notions of expected value, variance and covariance, respectively.

Lemma 6. Let a, b ≤ N , let U be a set such that |U| = N , and let B be its subset such that |B| = b.
Now let A be chosen uniformly at random from all subsets of U of size a. If the random variable
X denotes the number of elements of the intersection A ∩ B, then we have E(X) = ab/N and
Var(X) ≤ ab/N .

Proof. First, let us derive the expected value of X. We can see the set A as determined in the
following way: we choose a mapping F uniformly at random from the set of all injective mappings
from {1, . . . , a} to U an then let A be the range of F . Now we have X =

∑a
i=1Xi where Xi is

the indicator random variable set to 1 iff F (i) ∈ B. It is easy to see that E(Xi) = b/N and by the
linearity of expectation we have E(X) =

∑a
i=1 E(Xi) = ab/N .

19

For the variance, let us consider the indicator random variables Xi again. We have

Var(X) =
a∑
i=1

Var(Xi) + 2 ·
∑

1≤i<j≤a
Cov(Xi, Xj)

and it remains to estimate the terms in this equation. We have

Var(Xi) = E(X2
i)− (E(Xi))2 =

b

N
−
(
b

N

)2

=
b(N − b)
N2

≤ b

N

Cov(Xi, Xj) = E(Xi ·Xj)− E(Xi) · E(Xj) =
b(b− 1)
N(N − 1)

−
(
b

N

)2

< 0

hence we obtain the desired result. ut

20

	Efficient and Optimally Secure Key-Length Extension for Block Ciphers via Randomized Cascading

