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Abstract We show how to turn three-move proofs of knowledge into
non-interactive ones in the random oracle model. Unlike the classical
Fiat-Shamir transformation our solution supports an online extractor
which outputs the witness from such a non-interactive proof instanta-
neously, without having to rewind or fork. Additionally, the communi-
cation complexity of our solution is significantly lower than for previous
proofs with online extractors. We furthermore give a superlogarithmic
lower bound on the number of hash function evaluations for such online
extractable proofs, matching the number in our construction, and we also
show how to enhance security of the group signature scheme suggested
recently by Boneh, Boyen and Shacham with our construction.

1 Introduction

The Fiat-Shamir transformation [FS86] is a well-known technique to remove
interaction from proofs of knowledge and to derive signature schemes from such
proofs. The starting point is a three-move proof between a prover, holding a
witness w to a public value x, and a verifier. The prover sends a commitment
com, then receives a random challenge ch from the verifier and finally replies
with resp. For the non-interactive version the prover computes the challenge
himself by applying a hash function H to the commitment. The security of this
transformation has later been analyzed under the idealized assumption that the
hash function behaves as a random oracle [BR93,PS00], and has led to security
proofs for related signature schemes.

Limitations. In the interactive case, all common knowledge extractors work by
repeatedly rewinding the prover to the step after having sent com and completing
the executions with independent random challenges. This eventually yields two
valid executions (com, ch, resp), (com, ch′, resp′) for different challenges ch 6= ch′

from which the extractor can compute the witness w. The same technique is
reflected in the security proofs of the non-interactive version: The extractor
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continuously rewinds to the point where the prover has asked the random oracle
H about com and completes the executions with independent hash values to find
two valid executions (called “forking” in [PS00]).

The notable fact above is that, although the proof is non-interactive, the
extractor still works by rewinding. As pointed out by [SG02] for example, this
causes problems for some cryptographic schemes. Consider for example the ElGa-
mal encryption (R,C) = (gr, pkr ·m) for messages m. One attempt to make this
scheme secure against chosen-ciphertext attacks is to append a non-interactive
proof of knowledge for r = logR to the ciphertext. The idea is that, giving such
a proof, any party generating a ciphertext would already “know” r and therefore
m = C · pk−r. In other words, decryption queries in a chosen-ciphertext attack
should be simulatable with the help of the knowledge extractor. However, this
intuition cannot be turned into a proof, at least not with the rewinding extrac-
tor. Consider for example an adversary which sequentially puts n hash queries
for the proofs of knowledge and then asks a decryption oracle for ciphertexts
involving these hash queries in reverse order. Then, to answer each decryption
query the extractor would have to rewind to the corresponding hash query. By
this, it destroys all previously simulated decryption queries and must redo them
from scratch, and the overall running time would become exponential in n.

We remark that the rewinding strategy also causes a loose security reduction.
The results in [PS00] show that, if the adversary makes Q queries to the random
oracle and forges, say, Schnorr signatures in time T with probability ε, then we
can compute discrete logarithms in expected time QT/ε with constant probabil-
ity. Hence, the number of hash queries enters multiplicatively in the time/success
ratio. In contrast, for RSA-PSS and similar schemes [Cor00,Cor02,KW03] tight
reductions are known. For other schemes like discrete-logarithm signatures dif-
ferent approaches relying on potentially stronger assumptions have been taken
to get tight security results [GJ03].

Constructing Online Extractors. The solution to the problems above is to use
extractors which output the witness immediately, i.e., without having to rewind.
Following the terminology of [SG02], where this problem was discussed but cir-
cumvented differently, we call them online extractors.1 Informally, such an ex-
tractor is given the value x, a valid proof π produced by a prover and all hash
queries and answers the prover made for generating this proof (i.e., even queries
which are later ignored in the proof). The extractor then computes the witness
w without further communication with the prover. Note that here we use the
fact that we work in the random oracle model, where the extractor sees the hash
queries.

One known possibility to build such online extractors is to use cut-and-choose
techniques combined with hash trees [Pas03,Mer88]. That is, one limits the chal-
lenge space to logarithmically many bits and repeats the following atomic proto-
col sufficiently often in parallel. The prover computes the initial commitment com
of the interactive protocols and computes the answers for all possible challenges.

1 Sometimes such extractors are also called straight-line extractors in the literature.
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Since there are only polynomially many challenges and answers, the prover can
build a binary hash tree with all answers at the leaves. Then he computes the
actual challenge as the hash value over com and the root of the tree, and opens
only the corresponding answer and all siblings on the path up to the root as a
proof of correctness. For reasonable parameters these revealed hash values easily
add about 10, 000 to 25, 000 bits to the non-interactive proof for all executions
together, and thus cause a significant communication overhead.

Here we propose a different approach to build online extractors, producing
much shorter proofs than the tree-based solution while having comparable ex-
traction error and running time characteristics. In this introduction we provide a
simplified description of our solution, omitting some necessary modifications. We
also start with a polynomially bounded challenge space and a non-constant num-
ber of parallel executions. For each execution i the prover first computes comi

but now tries all polynomially many challenges chi = 0, 1, 2, . . . and answers
respi = respi(chi) till it finds one for which a predetermined (at most logarith-
mic) number of least significant bits of H(x, ⇀

com, i, chi, respi) are all zero. The
prover outputs the vector ( ⇀

com,
⇀

ch,
⇀

resp), no further hash values need to be in-
cluded, and the verifier now also checks in all executions that the lower bits of
the hash values are zero.

The honest prover is able to find a convincing proof after a polynomial num-
ber of trials for each execution (except with negligible probability which can be
adapted through parameters). It is also clear that any prover who probes at most
one valid challenge-response pair for each execution most likely does not find a
hash value with zero-bits.2 If, on the other hand, the prover tries at least two
samples, then the knowledge extractor can find them in the list of hash queries
and compute the witness. It follows that the (online) extraction probability is
negligibly close to the verifier’s acceptance probability.

Our construction, outlined above, still requires a non-constant number of
parallel repetitions in order to decrease the soundness error from polynomial
to negligible. However, for proofs which are already based on small challenges,
such as RSA with small exponents or “more quantum-resistant” alternatives like
the recently proposed lattice-based proofs with bit challenges [MV03], several
repetitions have to be carried out anyway, and our construction only yields an
insignificant overhead in such cases. For other scenarios, like proofs of knowledge
for discrete logarithms, the repetitions may still be acceptable, e.g., if the proof is
only executed occasionally as for key registration. Alternatively, for the discrete
logarithm for example, the prover can precompute the commitments comi = gri

offline and the verifier is able to use batch verification techniques [BGR98] to
reduce the computational cost.

A Lower Bound. Both the hash-tree construction and our solution here require
a non-constant number of repetitions of the atomic protocol. An interesting

2 We presume that it is infeasible to find distinct responses to a single challenge.
Indeed, this requirement is not necessary for the Fiat-Shamir transformation, yet all
proofs we know of have this additional property.
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question is if one can reduce this number. As a step towards disproving this
we show that the number of hash function evaluations for the prover must be
superlogarithmic in order to have an online extractor (unless finding witnesses is
trivial, of course).3 While this superlogarithmic bound would be straightforward
if we restrict the hash function’s output size to a few bits, our result holds
independently of the length of hash values.

The proof of our lower bound requires that the knowledge extractor does not
have the ability to choose the hash values. If we would allow the extractor to
program the random oracle then we could apply the hash function to generate a
common random string and run a non-interactive zero-knowledge proof of knowl-
edge in the standard model (based on additional assumptions, though) [DP92].
For unrestricted (but polynomial) output length a single hash function evalua-
tion for both the prover and verifier would then suffice. For non-programming
extractors the number of hash function evaluations in our construction and the
hash-tree solution are optimal with respect to general protocols.

A Word About Random Oracles. Our solution is given in the random oracle
model, and a sequence of works [CGH98,GT03,MRH04,BBP04] has shown that
constructions in this model may not yield a secure scheme in the real world when
the oracle is instantiated by some function. It is therefore worthwhile to take a
look at the way we utilize the random oracle. In our transformation we essentially
use the random oracle as a predicate with the following properties: The only
way to evaluate this predicate is by computing it explicitly (thus “knowing” the
input), that predicate outcomes are well distributed (i.e., random), the predicate
values for related inputs are uncorrelated.

In comparison to the Fiat-Shamir transformation our construction somewhat
“decouples” the hash function from the protocol flow. Indeed, the dependency of
the answer and the hash function in the Fiat-Shamir transformation is exploited
by Goldwasser and Tauman [GT03] to prove insecurity of the random oracle
approach for the transformation. Because of the aforementioned separation of
the protocol flow and the hash function in our solution, the counterexample in
[GT03] does not seem to carry over (yet, similar results may hold here as well).
The point is that our solution is provided as an alternative to the Fiat-Shamir
transformation, given one accepts the random oracle model as a viable way
to design efficient non-interactive proofs. Finding truly efficient non-interactive
proofs of knowledge without random oracles is still open.

Applications. Clearly, proofs of knowledge with online extractors are especially
suitable for settings with concurrent executions such as key registration steps. As
another, more specific example, we show that our method can be used to enhance
security of the Boneh et al. group signature scheme [BBS04]. Roughly, a group

3 To be more precise, we give a slightly stronger result relating the number of hash
queries of the verifier and the prover. This stronger result shows for example that
hard relations cannot have efficient provers if the verifier only makes a constant
number of hash function queries to verify proofs.
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signature scheme allows a set of users to sign messages such that a signature does
not reveal the actual signer, yet a group manager holding a secret information
can revoke this anonymity and identify the true signer. A stringent formalization
of these two properties, called full anonymity and full traceability, has been put
forth by Bellare et al. [BMW03].

Although achieving strong traceability guarantees the protocol by Boneh et
al. only realizes a slightly weaker anonymity notion. In the original definition
[BMW03] anonymity of a signer of a message should hold even if an adversary
can request the group manager to open identities for other signatures (thus re-
sembling chosen-ciphertext attacks on encryption schemes). In the weaker model
such open queries are not allowed, and this property is consequently called CPA-
full-anonymity in [BBS04].

Without going into technical details we remark that the weaker anonymity
property in [BBS04] originates from the underlying (variation of the) ElGa-
mal encryption scheme and its CPA-security. A promising step towards fully
anonymous group signature is therefore to turn the ElGamal encryption into a
CCA-secure scheme. As explained before, standard Fiat-Shamir proofs of knowl-
edge for the randomness used to generate ciphertexts do not work because of the
rewinding problems. And although there is a very efficient method to secure basic
ElGamal against chosen-ciphertexts in the random oracle model [Abe04], this
technique inherently destroys the homomorphic properties of the ciphertexts.
But this homomorphic property is crucial to the design of the group signature
scheme as it allows to efficiently prove relations about the encrypted message.

Proofs of knowledge with online extractors provide a general solution. How-
ever, since one of the initial motivations of [BBS04] was to design a scheme with
short signatures of a couple of hundred bits only, the aforementioned hash-tree
based constructions with their significant communication overhead, for exam-
ple, are prohibitively expensive. We show that with our protocol we obtain a
fully-anonymous scheme and for reasonable parameters the length of signatures
increases from 1, 500 to about 5, 000 bits. In comparison, the RSA-based group
signature scheme in [ACJT00], presumably one of the most outstanding group
signature schemes, still requires more than 10, 000 bits. Based on implementa-
tion results about elliptic curves [DMPW98], and the fact that the signer in the
scheme by Ataniese et al. [ACJT00] cannot apply Chinese-Remainder techniques
to compute the exponentiations with 1, 000 and more bits, we estimate that our
variation of the Boneh group signature is still more efficient, despite the repeti-
tions for the proof of knowledge. This is especially true for the verifier who can
apply batch verification techniques on top.

Organization. In Section 2 we give the basic definitions of three-move Fiat-
Shamir proofs of knowledge and non-interactive ones with online extractors in
the random oracle model. The main part of the paper, Section 3, presents our
construction, shows that it even achieves simulation-soundness and that this
immediately gives secure signature schemes with tight security reductions. This
section concludes with our lower bound on the number of hash queries. Section 4
finally presents our enhancement of the Boneh et al. group signature scheme.
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2 Definitions

A security parameter k in our setting is an arbitrary string describing general
parameters. In the most simple case k = 1κ describes the length κ of the cryp-
tographic primitives in unary. More generally, k can for example consist of the
description of a group G of prime order q and generator g of that group, i.e.,
k = (G, q, g). The security parameter also describes a sequence of efficiently
verifiable relations W = (Wk)k.

A (possibly negative) function f(k) is called negligible if f(k) ≤ 1/p(k) for
any polynomial p(k) and all sufficiently large k’s. A function which is not negli-
gible is called noticeable. For two functions f, g we denote by f >∼ g the fact that
g − f is negligible. Accordingly, f ≈ g stands for f >∼ g and g >∼ f . A function f
with f >∼ 1 is called overwhelming.

We usually work in the random oracle model where parties have access to a
random function H with some domain and range depending on k. We note that
we do not let the relation W depend on the random oracle H in order to avoid
“self-referencing” problems. We occasionally let an algorithm “output a random
oracle”, H ← A, meaning that A generates a description of a (pseudo)random
function H.

We require some additional properties of the underlying Fiat-Shamir proof
to make our transformation work. First, we need that the prover’s initial com-
mitment com has nontrivial entropy. This can be achieved easily by appending
a superlogarithmic number of public random bits to com if necessary. Second,
we need that the verifier sends a uniform bit string as the challenge ch; all com-
mon proofs have this property. Third, we require that the prover’s response is
quasi unique, i.e., it should be infeasible to find another valid response resp′

to a proof (com, ch, resp), even if one knows the witness. This holds for ex-
ample if resp is uniquely determined by x, com, ch, e.g., as for the protocols by
Guillou-Quisquater [GQ88] and Schnorr [Sch91], but also for Okamoto’s witness-
indistinguishable variations these protocols [Oka92] (if the parameter k contains
the system parameters like the RSA modulus N with unknown factorization).

Definition 1. A Fiat-Shamir proof of knowledge (with `(k)-bit challenges) for
relation W is a pair (P, V ) of probabilistic polynomial-time algorithms P =
(P0, P1), V = (V0, V1) with the following properties.

[Completeness.] For any parameter k, any (x,w) ∈ Wk, any (com, ch, resp) ←
(P (x,w), V0(x)) it holds V1(x, com, ch, resp) = 1.

[Commitment Entropy.] For parameter k, for any (x,w) ∈Wk, the min-entropy
of com← P0(x,w) is superlogarithmic in k.

[Public Coin.] For any k, any (x,w) ∈ Wk any com ← P0(x,w) the challenge
ch← V0(x, com) is uniform on {0, 1}`(k).

[Unique Responses.] For any probabilistic polynomial-time algorithm A, for pa-
rameter k and (x, com, ch, resp, resp′)← A(k) we have, as a function of k,

Prob[V1(x, com, ch, resp) = V1(x, com, ch, resp) = 1 ∧ resp 6= resp′] ≈ 0.
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[Special Soundness.] There exists a probabilistic polynomial-time algorithm K,
the knowledge extractor, such that for any k, any (x,w) ∈ Wk, any pairs
(com, ch, resp), (com, ch′, resp′) with V1(x, com, ch, resp) = V1(x, com, ch′, resp′)
= 1 and ch 6= ch′, for w′ ← K(x, com, ch, resp, ch′, resp′) it holds (x,w′) ∈
Wk.

[Honest-Verifier Zero-Knowledge.] There exists a probabilistic polynomial-time
algorithm Z, the zero-knowledge simulator, such that for any pair of proba-
bilistic polynomial-time algorithms D = (D0, D1) the following distributions
are computationally indistinguishable4:
– Let (x,w, δ)← D0(k), and (com, ch, resp)← (P (x,w), V0(x)) if (x,w) ∈
Wk, and (com, ch, resp)← ⊥ otherwise. Output D1(com, ch, resp, δ).

– Let (x,w, δ) ← D0(k), and (com, ch, resp) ← Z(x,yes) if (x,w) ∈ Wk,
and (com ch, resp)← Z(x,no) otherwise. Output D1(com, ch, resp, δ).

Below we sometimes use a stronger kind of zero-knowledge property which
basically says that the simulator is able to generate proofs for a specific challenge,
as long as this challenge is given in advance. To formalize this let V ch

0 be a verifier
which on input x, ch merely outputs ch. Then a Fiat-Shamir proof of knowledge
(with `(k)-bit challenges) is special zero-knowledge if the following holds:

[Special Zero-Knowledge.] There exists a probabilistic polynomial-time algorithm
Z, the special zero-knowledge simulator, such that for any pair of probabilis-
tic polynomial-time algorithms D = (D0, D1) the following distributions are
computationally indistinguishable:
– Let (x,w, ch, δ) ← D0(k), and (com, ch, resp) ← (P (x,w), V ch

0 (x, ch)) if
(x,w) ∈Wk, and (com, ch, resp)← ⊥ else. Output D1(com, ch, resp, δ).

– Let (x,w, ch, δ)← D0(k), and (com, ch, resp)← Z(x, ch,yes) if (x,w) ∈
Wk, and (com, ch, resp)← Z(x, ch,no) else. Output D1(com, ch, resp, δ).

We note that all common protocols obey this special zero-knowledge property.
In Appendix A we prove formally that any Fiat-Shamir proof of knowledge is
special zero-knowledge if the challenge size `(k) = O(log k) is logarithmic (which
holds for our transformation in the next section).

We next define non-interactive proofs of knowledge with online extractors.
We note that, in the random oracle model, the verifier can be assumed wlog. to
be deterministic. This is formally proven in Appendix B. The online extraction
property says that the knowledge extractor K is able to output a witness w
from any statement x with a valid proof π, given the hash queries the (possibly
malicious) prover A made to prepare π. The extractor, unlike the zero-knowledge
simulator, is not given the opportunity to program the random oracle, though.

Definition 2. A pair (P, V ) of probabilistic polynomial-time algorithms is called
a non-interactive zero-knowledge proof of knowledge for relation W with an on-
line extractor (in the random oracle model) if the following holds.

4 Meaning that the probability that D1 outputs 1 is the same in both experiments, up
to a negligible difference.
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[Completeness.] For any oracle H, any (x,w) ∈Wk and any π ← PH(x,w) we
have Prob

[
V H(x, π) = 1

]
>∼ 1.

[Zero-Knowledge.] There exist a pair of probabilistic polynomial-time algorithms
Z = (Z0, Z1), the zero-knowledge simulator, such that for any pair of proba-
bilistic polynomial-time algorithms D = (D0, D1) the following distributions
are computationally indistinguishable5:
– Let H be a random oracle, (x,w, δ) ← DH

0 (k), and π ← PH(x,w) if
(x,w) ∈Wk, and π ← ⊥ otherwise. Output DH

1 (π, δ).
– Let (H0, σ) ← Z0(k), (x,w, δ) ← DH0

0 (k), and (H1, π) ← Z1(σ, x,yes)
if (x,w) ∈Wk, and (H1, π)← Z1(σ, x,no) otherwise. Output DH1

1 (π, δ).
[Online Extractor.] There exist a probabilistic polynomial-time algorithm K, the

online extractor, such that the following holds for any algorithm A. Let H
be a random oracle, (x, π) ← AH(k) and QH(A) be the sequence of queries
of A to H and H’s answers. Let w ← K(x, π,QH(A)). Then, as a function
of k,

Prob
[
(x,w) /∈Wk ∧ V H(x, π) = 1

]
≈ 0.

Note that we allow the zero-knowledge simulator to program the random
oracle, but only in two stages. Namely, Z0 generates H0 for D0 and then Z1

selects H1 for the find-stage of D1. Since the adversary D0 in the first stage
can pass on all interactions with H0 to D1 through the state information δ, the
simulator Z1 must guarantee that H1 is consistent with H0. However, Z1 now
has the opportunity to adapt oracle H1 with respect to the adversarial chosen
theorem x. Simulator Z1 also gets the information whether x is in the language
or not (in which case the simulator can simply set π ← ⊥).

3 Constructions

Our starting point are interactive Fiat-Shamir proofs with logarithmic challenge
length `. Note that such proofs can be easily constructed from proofs with smaller
challenge length l by combining d`/le parallel executions. It is easy to verify
that all required properties are preserved by these parallel executions, including
unique responses and honest-verifier zero-knowledge. Analogously, we can go the
other direction and limit the challenge size to at most ` bits while conserving
the properties.

3.1 Generic Construction

Recall the idea of our construction explained in the introduction. In each of the
r repetitions we let the prover search through challenges and responses to find a
tuple (com, ch, resp) whose b least significant bits of the hash are 0b for a small
b. From now on we assume for simplicity that H only has b output bits; this can
always be achieved by cutting off the leading bits.
5 Meaning that the probability that D1 outputs 1 is the same in both experiments, up

to a negligible difference.

8



Instead of demanding that all r hash values equal 0b we give the honest prover
more flexibility and let the verifier accept also proofs (comi, chi, respi)i=1,2,...,r

such that the sum of the r hash values H(x, ⇀
com, i, chi, respi) (viewed as natu-

ral numbers) does not exceed some parameter S. With this we can bound the
prover’s number of trials in each execution by 2t for another parameter t, slightly
larger than b, and guarantee that the prover terminates in strict polynomial time.

For sake of concreteness the reader may think of b = 9 (output length of the
hash function), t = 12 (challenge size), r = 10 (number of repetitions) and S =
10 = r (maximum sum). For these values the probability of the honest prover
failing to find a valid proof is about 2−60, and the knowledge extractor will obtain
the witness whenever the proof is valid, except with probability approximately
Q · 2−70 where Q denotes the number of hash queries the prover makes.

Construction 1. Let (PFS, VFS) be an interactive Fiat-Shamir proof of knowl-
edge with challenges of ` = `(k) = O(log(k)) bits for relation W . Define the
parameters b, r, S, t (as functions of k) for the number of test bits, repetitions,
maximum sum and trial bits such that br = ω(log k), 2t−b = ω(log k), b, r, t =
O(log k), S = O(r) and b ≤ t ≤ `. Define the following non-interactive proof
system for relation W in the random oracle model, where the random oracle
maps to b bits.

[Prover.] The prover PH on input (x,w) first runs the prover PFS(x,w) in r in-
dependent repetitions to obtain r commitments com1, . . . , comr. Let ⇀

com=
(com1, . . . , comr). Then PH does the following, either sequentially or in
parallel for each repetition i. For each chi = 0, 1, 2, . . . , 2t − 1 (viewed as
t-bit strings) it lets PFS compute the final responses respi = respi(chi) by
rewinding, until it finds the first one such that H(x, ⇀

com, i, chi, respi) = 0b;
if no such tuple is found then PH picks the first one for which the hash
value is minimal among all 2t hash values. The prover finally outputs π =
(comi, chi, respi)i=1,2,...,r.

[Verifier.] The verifier V H on input x and π = (comi, chi, respi)i=1,2,...,r accepts
if and only if V1,FS(x, comi, chi, respi) = 1 for each i = 1, 2, . . . , r, and if∑r

i=1H(x, ⇀
com, i, chi, respi) ≤ S.

Note that for common iterated hash functions like SHA-1 the prover and the
verifier can store the intermediate hash value of the prefix (x, ⇀

com) and need not
compute it from scratch for each of the r repetitions.

Our protocol has a small completeness error. For deterministic verifiers this
error can be removed in principle by standard techniques, namely, by letting the
prover check on behalf of the verifier that the proof is valid before outputting it;
if not the prover simply sends the witness to the verifier. In practice, in case of
this very unlikely event, the prover may just compute a proof from scratch.

Theorem 2. Let (PFS, VFS) be an interactive Fiat-Shamir proof of knowledge
for relation W . Then the scheme (P, V ) in Construction 1 is a non-interactive
zero-knowledge proof of knowledge for relation W (in the random oracle model)
with an online extractor.
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Proof. We show that completeness, zero-knowledge and online extraction ac-
cording to the definition are satisfied.

Completeness. For the completeness we show that the prover fails to convince
the verifier with negligible probability only. For this let si be the random value
H(x, ⇀

com, i, chi, respi) associated to the output of the i-th execution. Then,

Prob[∃i : si > S] ≤ r ·
(
1− (S + 1)2−b

)2t

≤ r · e−(S+1)2t−b

because in each of the at most 2t tries the prover gets a random hash value of at
most S with probability at least (S + 1)2−b, and all hash values are independent.
The probability of having a value larger than S in one execution is thus negligible
as r is logarithmic and 2t−b is superlogarithmic. Hence, the sum of all r values
exceeds rS with negligible probability only, and we from now on we can condition
on the event that the sum of all si is at most rS. We also presume r ≥ 2 in the
sequel, else the claim already follows.

In order for the honest prover to fail the sum T of the r values s1, . . . , sr ≥ 0
must be larger than S. For any such T = S + 1, S + 2, . . . , rS there are at most(
T+r−1

r−1

)
ways to split the sum T into r non-negative integers s1, . . . , sr.6 This is

upper bounded by(
T + r − 1
r − 1

)
≤

(
e(rS + r − 1)

r − 1

)r−1

≤ (e(2S + 1))r−1 ≤ er ln(e(2S+1))

On the other hand, the probability of obtaining such a sum for a given partition,
s1 = s1, . . . , sr = sr, is at most

r∏
i=1

Prob[ si = si] ≤
r∏

i=1

Prob[ si ≥ si] ≤
r∏

i=1

(
1− si2−b

)2t

≤
r∏

i=1

e−si2
t−b

= e−(
P

si)2
t−b

= e−T2t−b

≤ e−(S+1)2t−b

By choice of the parameters the probability of getting a sum T with S < T ≤ rS
is therefore limited by exp(r ln(e(2S+1))−(S+1)2t−b). Since ln(2S+1) ≤ S+1,
r = O(log k) and 2t−b = ω(log k) this is negligible.

Zero-Knowledge. The zero-knowledge simulator Z = (Z0, Z1) in the first stage
simply lets H0 be a (pseudo)random oracle. For the second stage, Z1 defines H1

to be consistent withH0 on previous queries. For any other query toH1 simulator

6 For the simple proof consider first the number of combinations to split T into r
strictly positive values. Envision T balls and T − 1 gaps and place separators in
r − 1 distinct gaps. Assign the i-th value the number of balls between separators
(i − 1) and i. There are

`
T−1
r−1

´
possibilities to put the separators and therefore the

same number of representations. To deal with non-negative integers simply map the
integers x to x + 1 and consider the sum T + r instead of T .
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Z1, on input x (and yes, the case no is trivial), first samples 2t random b-bit
strings for each i and assigns them to the t-bit challenges chi ∈ {0, 1}t. Let
τi : {0, 1}t → {0, 1}b describe this assignment. Let chi be the first one (in
lexicographic order) obtaining the minimum over all these 2t values. Z1 next
runs the (wlog.) special zero-knowledge simulator ZFS of the underlying Fiat-
Shamir proof r times on x and each chi to obtain r tuples (comi, chi, respi).
It then defines the hash function H1 for any query (x, ⇀

com, i, ch∗i , resp
∗
i ) with

V1,FS(x, comi, ch
∗
i , resp

∗
i ) = 1 to be the value τi(ch∗i ). All other values of H1 are

chosen (pseudo)randomly. The simulator outputs π = (comi, chi, respi)i=1,2,...,r

as the proof.
Assume for the moment that the tuples (comi, chi, respi) are generated by

genuine runs between PFS(x,w) and V ch
FS (x, chi), instead of being sampled through

ZFS(x, chi). Recall that V ch
FS (x, chi) is the special verifier which merely copies chi.

We only have to show that the simulation of Z = (Z0, Z1) on these tuples, called
hybrid simulation, cannot be distinguished from the genuine behavior between
P and V in our protocol. Since the hybrid simulation is efficiently computable
given the transcripts, it follows from the special zero-knowledge property of the
underlying Fiat-Shamir protocol —and a standard hybrid argument reducing
the indistinguishability of r executions to a single one— that our construction
inherits the zero-knowledge property.

So let all (comi, chi, respi) in the simulator’s proof π be generated by running
PFS and V ch

FS . Define the following two events in the hybrid simulation. The first
event, denoted InconsistentOracle, occurs if D0 as some point queries H0 about
the values (x, ⇀

com, i, chi, respi) for its output x and the i-th proof part in the
simulator’s output π —which is randomly generated after D’s query. In this case
the simulator Z1 would not have the possibility to program the random oracle
H1 accordingly. The other event AmbiguousResponse occurs if D at some point
queries H0 or H1 about (x, ⇀

com, i, ch, resp) and (x, ⇀
com, i, ch, resp′) for some i,

where resp 6= resp′ but V1,FS(x, comi, ch, resp) = V1,FS(x, comi, ch, resp
′) = 1. In

this case the simulated hash value of H1 equals the same value τi(ch) for both
values and would be distinguishable from random.

Given that neither InconsistentOracle nor AmbiguousResponse happens, we
claim that the hybrid simulation and executions of our protocol are indistin-
guishable. This follows easily as the challenge chi in each execution is determined
in the same way for both PH and Z1. Both algorithms search through the chal-
lenges in lexicographic order and the challenges are mapped to random b-bit
values (either through H or through τi). The remaining parts of the transcript,
comi, respi, are in both cases chosen by the prover PFS(x,w). The claim now
follows under the condition that neither of the two events above occurs because
then all other hash values are independently distributed.

It thus remains to bound the probabilities for events InconsistentOracle and
AmbiguousResponse. The former event has negligible probability since the min-
entropy of the commitments is superlogarithmic. That is, adversary D0 can
query H0 only about a polynomial number of commitments, and the probabil-
ity that one of the r random commitments com1, . . . , comr, chosen afterwards,
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equals any of those previously selected commitments is negligible. Conditioning
on ¬ InconsistentOracle, event AmbiguousResponse also has a negligible probabil-
ity. Otherwise we could easily construct an efficient algorithm, using Z and D
as subroutines, to refute the property of unique responses (in the plain model).

Online Extraction. We present a knowledge extractor K(x, π,QH(A)) that, ex-
cept with negligible probability over the choice of H, is able to output a wit-
ness w to x for an accepted proof π = (comi, chi, respi)i=1,2,...,r. Algorithm K
browses through the list of queries and answers QH(A) and searches for a query
(x, ⇀

com, i, chi, respi) as well another query (x, ⇀
com, i, ch′i, resp

′
i) for a different

challenge chi 6= ch′i but such that VFS(x, comi, ch
′
i, resp

′
i) = 1. If it finds two such

queries it runs the knowledge extractor KFS of the Fiat-Shamir proof on these
values and copies its output; if there are no such queries then K outputs ⊥.

It is clear that K succeeds every time it finds two valid queries for the same
prefix (x, ⇀

com, i). Hence, it suffices to bound the probability that there are no
two such queries but V still accepts. Consider the set of tuples (x, ⇀

com) such
that A queries H about (x, ⇀

com, i, chi, respi) for some i, chi, respi and such that
V1,FS(x, comi, chi, respi) = 1. Note that we can neglect tuples with invalid proofs
(comi, chi, respi). LettingQ = |QH(A)| and counting the tuple in A’s final output
(x, π) as well, there are at most Q+ 1 many of these tuples (x, ⇀

com).
Fix one of the tuples for the moment, say, (x, ⇀

com). By assumption, for
this tuple and any i algorithm A never queries H about two values (x, ⇀

com,
i, chi, respi), (x, ⇀

com, i, ch′i, resp
′
i) with chi 6= ch′i which VFS would accept. Sim-

ilarly, we can assume that A never queries about (x, ⇀
com, i, chi, respi), (x, ⇀

com
, i, chi, resp

′
i) with respi 6= resp′i, else this would contradict the property of unique

responses and can therefore happen with negligible probability only. This allows
us to assign a set of unique values s1, . . . , sr to (x, ⇀

com) such that si equals
H(x, ⇀

com, i, chi, respi) if A queries about some tuple (x, ⇀
com, i, chi, respi), and a

random b-bit value if A never queries about any such tuple. Conclusively, the
values s1, . . . , sr assigned to (x, ⇀

com) are all random and independent.
Given such an assignment we calculate the probability that the sum does not

exceed the threshold value S. We consider again the
(
T+r−1

r−1

)
combinations to

represent a sum T ≤ S with r values s1, . . . , sr ≥ 0. There are

S∑
T=0

(
T + r − 1
r − 1

)
≤ (S + 1) ·

(
S + r − 1
r − 1

)
≤ (S + 1) ·

(
e(S + r)
r − 1

)r−1

possibilities. Since S = O(r) we have S + r ≤ c(r − 1) for some constant c,
and the number of combinations is bounded above by (S+ 1) · 2log(ec)r, which is
polynomial in k. Since s1, . . . , sr are random, the probability of obtaining such
a sum T ≤ S is this number of combinations divided by 2br. By the choice of
parameters this is negligible.

Finally, we extend the analysis from a fixed query to the set of the Q + 1
possibilities (x, ⇀

com). Since Q is polynomial the probability of finding a valid
proof among this set for which the extractor also fails is bounded by (Q+1)(S+
1) · 2(log(ec)−b)r. This remains negligible. ut
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We remark that the upper bounds derived on the number of representations
of T with r integers, for completeness and extraction, have not been optimized.
Moreover, we providently note that our knowledge extractor only needs the hash
queries in QH(A) with prefix (x, ⇀

com) to extract the witness for theorem x; all
other queries are irrelevant to K.

Comparison to Hash-Tree Construction. We compare our construction with on-
line extractors based on hash tress. Recall that, for the hash tree construction, in
each of the r repetitions the prover computes the commitment com and all possi-
ble responses resp(ch) for challenges ch ∈ {0, 1}b. Hash values of all 2b responses
are placed as leaves in a hash tree, and a binary tree of depth b is computed. This
requires altogether 2b + 2b − 1 ≈ 2b+1 hash function evaluations. The challenge
is computed as the hash value over all commitments and tree roots, and in each
tree the corresponding leaf is opened together with the siblings on the path.

To compare the efficiency of the two approaches, we set b = 9, t = 12,
r = 10 and S = 10 for our construction and b′ = 8 and r′ = 10 for the hash-
tree construction. Then the total number of hash function evaluations is roughly
r · 29 in both cases, and the number of executions of the underlying protocol are
identical. In favor of the hash tree construction it must be said that our solution
requires twice as many response computations on the average, though.

We have already remarked that the communication complexity of the hash-
tree construction is significantly larger than for our construction, i.e., the partly
disclosed hash trees add br = 90 hash values (typically of 160 or more bits) to
the proof, while our solution does not add any communication overhead. As for
the extraction error, the exact analysis for our construction with the given pa-
rameters shows that the extractor fails with probability at most Q·2−72 where Q
is the maximal number of hash queries (assuming that finding distinct responses
is beyond feasibility). The extraction for the hash-tree construction basically
fails only if one manages to guess all r challenges in advance and to put only
one correct answer in each tree. This happens with probability approximately
Q/2br = Q · 2−80 and is only slightly smaller than for our construction. Yet,
extraction in the hash-tree construction also requires that no collisions for the
hash function are found. Finally, we note that the honest prover always man-
ages to convince the honest verifier for the hash-tree construction whereas our
protocol has a small completeness error.

Properties. Concerning the type of zero-knowledge, if there is a unique response
for each x, com, ch, then our transformation converts an honest-verifier perfect
zero-knowledge protocol into a statistical zero-knowledge one (against malicious
verifiers). The small error is due to the negligible collision probability of com-
mitments and applies to the standard Fiat-Shamir transformation as well.

As for proving logical combinations, given two interactive Fiat-Shamir pro-
tocols for two relations W 0,W 1 it is known [CP92,CDS95,DDPY94] how to
construct three-move proofs showing that one knows at least one of the wit-
nesses to x0, x1 (i.e., prove OR), or one can also show that one knows both
witnesses (i.e., prove AND). Since the derived protocols in both cases preserve
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the zero-knowledge and extraction property, and therefore constitute themselves
Fiat-Shamir proofs of knowledge, our conversion can also be carried out for
proving such logical statements.

3.2 Simulation-Soundness

Before specifying our signature scheme we first prove formally that our non-
interactive proof is simulation sound. That is, even if the zero-knowledge sim-
ulator has simulated several proofs for adversarial chosen theorems, the online
extractor can still extract the witness from the adversarial proof for a valid the-
orem (as long as either the theorem or the proof is new). For this we also extend
the notion of zero-knowledge to the case where the distinguisher sees multiple
zero-knowledge proofs. We remark that we take advantage of special properties
of our protocol to achieve both properties, i.e., they are not known to follow
immediately from the basic properties.

Theorem 3. Let (PFS, VFS) be an interactive Fiat-Shamir proof of knowledge for
relation W and let (P, V ) be derived through Construction 1. Then the protocol
has the following additional properties:

[Multiple Zero Knowledge.] There exists a probabilistic polynomial-time algo-
rithm Z, the zero-knowledge simulator, such that for any probabilistic poly-
nomial-time algorithm D the following distributions are computationally in-
distinguishable:
– Let H be a random oracle. Set π0 = ε and δ0 = k. For i = 1, 2, . . . , n (un-

til D stops) repeat (xi, wi, δi)← DH(i, πi−1, δi−1) where πi ← PH(xi, wi)
if (xi, wi) ∈Wk and ⊥ otherwise. Copy D’s final output.

– Let (H0, σ0) ← Z(0, k), π0 = ε and δ0 = k. For i = 1, 2, . . . , n (until
D stops) repeat (xi, wi, δi) ← DHi−1(i, πi−1, δi−1) where (Hi, σi, πi) ←
Z(i, xi, σi−1,yes) if (xi, wi) ∈ Wk and (Hi, σi, πi) ← Z(i, xi, σi−1,no)
otherwise. Copy D’s final output.

[Simulation Soundness.] There exists a probabilistic polynomial-time algorithm
K, the online extractor, such that the following holds for every probabilistic
polynomial-time algorithm B. Let (H0, σ0) ← Z(0, k) , π0 = ε and β0 = k.
For i = 1, 2, 3, . . . , n (until B stops) repeat (xi, wi, βi)← BHi−1(i, πi−1, βi−1)
where (Hi, σi, πi) ← Z(i, xi, σi−1,yes) if (xi, wi) ∈ Wk and (Hi, σi, πi) ←
Z(i, xi, σi−1,no) otherwise. Let (x, π) be B’s final output and QB(H) be the
communication of B with oracles H0,H1, . . . ,Hn. Let w ← K(x, π,QH(B)).
Then, as a function of k,

Prob
[
(x,w) /∈Wk ∧ V Hn(x, π) = 1 ∧ (x, π) /∈ {(x1, π1), . . . , (xn, πn)}

]
>∼ 0.

Proof. The multiple zero-knowledge property follows easily from the basic simu-
lator for single theorems, because for each query the more sophisticated simulator
here computes independent commitments —which are unique with overwhelming
probability— and can therefore adapt the random oracle values accordingly.
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We show simulation soundness. We claim that the same extractor K as in the
basic case works. So assume towards contradiction that there exists an algorithm
B refuting the property for this extractor K. From B we construct an algorithm
A contradicting the basic extraction property of system (P, V ), i.e., A manages
to generate a valid proof for a theorem without having seen other proofs before,
but the knowledge extractor cannot extract a witness with sufficiently close
probability.

We first show that we can exclude some trivial attacks. Namely, the proba-
bility that B only changes one of the responses in the proof πj = (comij , chij ,
respij)i=1,2,...,r of a previous theorem x = xj , and still succeeds, is negligible.
Else it would be straightforward to construct an algorithm refuting the prop-
erty of unique responses for (PFS, VFS), where this algorithm works in the plain
model and uses the zero-knowledge simulator to emulate the random oracle and
to generate proofs. Similarly, if B copies a theorem x = xj but changes one
of the (simulated) challenge-response pairs (chij , respij) in the proof πj to an-
other valid transcript (ch′ij , resp

′
ij), then the extractor can already derive the

witness from these two valid transcripts. In the sequel we therefore condition
on B succeeding by producing a new tuple (x, ⇀

com), distinct from all previous
theorem-commitment pairs (xj ,

⇀
comj).

Algorithm AH(k), contradicting the basic extraction property of the underly-
ing protocol, simulates B as follows. A sets π0 = ε and β0 = k. For i = 1, 2, . . . , n
it runs B on input (i, πi−1, βi−1). In each loop the random oracle queries of B
are relayed between A’s oracle H and B. If B outputs (xi, wi, βi) at the end of
one round, then A checks (in polynomial time) if (xi, wi) ∈Wk; if so, it runs the
prover P (with oracle access to H) to compute πi ← PH(xi, wi); if not, it sets
πi ← ⊥. When B finally outputs (x, π) algorithm A outputs (x, π), too.

We construct a distinguisher D against the multiple zero-knowledge property
to show that the extraction error in A’s experiment is negligibly close to the one
in B’s experiment. Since the latter is assumed to be noticeable, so is the former,
contradicting the extraction error of the underlying system (P, V ).

Algorithm D proceeds in rounds, where at the end of each round D outputs
(xi, wi, δi) and expects a proof at the beginning of the next round. D either
experiences simulated proofs from the zero-knowledge simulator (and a simulated
random oracle), or gets genuine proofs from the original prover (and has access to
a truly random oracle). D uses B, which also proceeds in rounds, as a subroutine.
Each time B outputs (xi, wi, βi) at the end of one round, D copies this output
and finishes this round as well. During each round every hash oracle query of B is
forwarded toD’s (simulated or real) hash oracle, and the answer is returned to B;
all queries and answers are recorded in δi. When B eventually returns (x, π) and
stops, D invokes V H on (x, π), verifies (in polynomial time) if (x,w) /∈ Wk for
w ← K(x, π,QH(B)) (where QH(B) is the recorded list of queries and answers
of B and the hash oracle), and D checks that (x, π) /∈ {(xj , πj)}. Algorithm D
outputs 1 if and only if all tests succeed.

For the analysis, if D communicates with the zero-knowledge simulator then
it outputs 1 with the extraction error in B’s experiment. If, on the other hand, D
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interacts with the original prover and a random oracle, then we claim that D re-
turns 1 with the extraction error in A’s experiment. The only difference between
A’s experiment and the D’s simulation in this case lies in the hash queries of the
algorithms: A’s list QH(A) also includes queries A uses to internally simulate
the prover PH , but those queries do not appear in D’s records. As noted before,
our basic extractor K only needs to see A’s hash queries corresponding to the
tuples (x, ⇀

com). All queries referring to (x1,
⇀

com1), . . . , (xn,
⇀

comn) different from
this tuple (which include all queries of PH) can be neglected without decreasing
the extraction probability. In conclusion, if the probabilities for D’s two experi-
ments would be far apart then D would contradict the multiple zero-knowledge
property. Hence, they must be negligibly close and the claim follows. ut

3.3 Constructing Signature Schemes

In order to derive a signature scheme from the three-move proof of knowledge
the classical Fiat-Shamir transformation suggests to compute the challenge as
the hash value over com and the message to be signed. In our case, the challenge
is not derived as a hash value. We can, however, incorporate m by computing
the b-bit hash values over (x,m, ⇀

com, i, chi, respi) for the public key x, i.e., m
becomes part of the theorem. Indeed, if we have an interactive proof of knowledge
for relation W then this also constitutes a proof of knowledge for the relation
Wmsg

k = {((x,m), w) | (x,w) ∈Wk }. The protocol also inherits completeness
and the multiple zero-knowledge property and our transformation also yields a
simulation-sound non-interactive proof system.

For our signature scheme we assume that the underlying relation W of the
proof of knowledge is accompanied by an efficiently samplable, yet hard to invert
procedure generating (x,w). For example, for the discrete-logarithm problem
and parameter k = (G, q, g) this procedure picks w ← Zq and computes x← gw.
More formally, we say that the relation W has a one-way instance generator
I if for any parameter k algorithm I returns in probabilistic polynomial-time
(x,w) ∈ Wk, but such that for any probabilistic polynomial-time algorithm I,
for (x,w)← I(k) and w′ ← I(x) the probability Prob[ (x,w′) ∈Wk] is negligible
(as a function of k).

Construction 4. Let (PFS, VFS) be an interactive Fiat-Shamir proof of knowl-
edge for relation W with one-way instance generator I, and let (P, V ) be derived
through Construction 1. Define the following signature scheme (KGen,Sig,Ver)
in the random oracle model:

[Key Generation.] Algorithm KGen(k) generates a key pair (pk, sk)← I(k).
[Signing.] Algorithm SigH for inputs pk, sk and message m ∈ {0, 1}∗ computes

a proof of knowledge s← PH((pk,m), sk) for the relation Wmsg
k and returns

s as the signature.
[Verification.] Algorithm VerH for input pk,m and s returns the verifier’s deci-

sion V H((pk,m), s) for relation Wmsg
k .
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Proposition 1. The signature scheme (KGen,Sig,Ver) in Construction 4 is ex-
istentially unforgeable against adaptive chosen-message attacks (in the random
oracle model). In particular, if there is an algorithm mounting a chosen-message
attack in time T with success probability ε, then there is an algorithm inverting
I in time T ′ = O(T ) with probability ε′ ≈ ε.

In fact, our result even shows that the derived signature scheme is strongly
unforgeable, i.e., it is also infeasible to take a message-signature pair (m, s) and
produce a new signature for this message m.

Proof. Security follows from the simulation soundness of the proof of knowledge.
Suppose that there is a successful attacker A on the signature scheme which
forges signatures with noticeable probability. We show that this would contradict
the one-wayness of the instance generator.

First note that if A faces the simulator of the multiple zero-knowledge prop-
erty instead of the honest prover and a genuine random oracle, then A’s success
probability of forging signatures cannot drop significantly. Else it would be easy
to derive a distinguisher for the zero-knowledge property. Thus, the adversary
has also noticeable success probability in this hybrid experiment with simulated
proofs and oracles.

Next, we explain how to use A to contradict the one-wayness of I. Given
the public part pk, generated as (pk, sk) ← I(k), initialize the zero-knowledge
simulator to obtain oracle H0. Run the attacker on pk and with oracle access
to H0. Each time the attacker asks for a signature for a message mi we run the
zero-knowledge simulator on (pk,mi,yes) to obtain a proof si (i.e., a signature)
for this theorem and to get oracle Hi. We answer with si and continue the
simulation with oracle Hi. If the adversary finally outputs a forgery (m, s) then
we run the knowledge extractor K on (pk,m), s and the list of oracle queries A
has made. Return the extractor’s output sk′.

It is easy to see that if A manages to output a valid signature s (i.e., an
accepted proof) for a new message m (i.e., a new theorem (pk,m)) with no-
ticeable probability in the hybrid experiment, then the knowledge extractor can
efficiently extract a matching secret key sk′ (i.e., a witness) with noticeable prob-
ability. Specifically, the probability of A succeeding while the extractor does not
return a witness is negligible by simulation soundness. We derive the contradic-
tion to the one-wayness of I as we can efficiently return a witness with noticeable
probability. ut

The result of the theorem holds more generally if the extractor merely com-
putes a function f(w) of the witness, as long as computing such a value f(w) is
infeasible.

3.4 Lower Bound for Hash Queries of Online Extractors

In this section we show our superlogarithmic lower bound on the number of
hash function evaluations for non-programming online extractors. For notational
convenience we let f(k) = OK(log k) or f(k) = polyK(k) refer to a function f(k)
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which grows only logarithmically or polynomially, restricted to all k ∈ K, i.e.,
there is a constant c such that f(k) ≤ c log k or f(k) ≤ kc for all k ∈ K. For any
k /∈ K the function f might exceed these bounds.

Recall from the previous section that a one-way instance generator I for a
relation W generates random x such that finding a witness w to x is infeasible.

Proposition 2. Let (P, V ) be a non-interactive zero-knowledge proof of knowl-
edge for relation W with an online extractor K in the random oracle model.
Let ρ = ρ(k) and ν = ν(k) be the maximum number of hash oracle queries the
prover P resp. the verifier V makes to generate and to check a proof π. Then
maxv=0,1,...,ν

(
ρ
v

)
= polyK(k) for an infinite set K implies that W does not have

a one-way instance generator I.

Clearly,
(
ρ
v

)
obtains its maximum at

(
ρ

dρ/2c
)
, where dρ/2c is the rounded-

off integer of ρ/2, and if ρ = OK(log k) for an infinite set K, then
(

ρ
dρ/2c

)
≤

(2e)dρ/2c = polyK(k) for the same set K, and the requirements of the proposition
are satisfied. This implies that ρ = ω(log k) must grow superlogarithmically
for a one-way instance generator. Similarly, if the verifier only makes a constant
number of hash function queries then the prover must perform a superpolynomial
number of hash function evaluations, or else the instance generator cannot be
one-way.

Proof. The high level idea of the proof is that, under the assumption that
maxv

(
ρ
v

)
= polyK(k) is polynomial, replacing the hash queries QH(P ) the prover

makes to generate the proof π by the queries QH(V ) the verifier makes to verify
the proof suffices to extract the witness. Specifically, we prove thatK(x, π,QH(V ))
then returns a witness w with noticeable probability. Replacing the original proof
by an indistinguishable one from the zero-knowledge simulator Z(x) (without
access to w) and running K(x, π,QH(V )) on this proof implies that we can
compute the witness w with noticeable probability from x alone.

We now turn the above idea into a formal proof. Suppose that there is an
instance generator I for relation W . We construct an algorithm I that succeeds
in finding a witness for a random instance x with noticeable probability, and
therefore the generator cannot be one way. Inverter I works as follows:

– Algorithm I gets as input x where (x,w)← I(k).
– I invokes the zero-knowledge simulator to generate (H,π)← Z(x).
– The inverter next runs the verifier V H(x, π) and records all communication

of V with H in QH(V ).
– I executes the extractor K(x, π,QH(V )) and outputs the answer w.

For the analysis we first construct, in a thought experiment, a prover P ′ from
P which tries to make at most those queries V makes for verification. P ′, on
input w, x and with access to H, first picks a random subset Q of all subsets
of {1, 2, . . . , ρ} of size at most ν, e.g., by choosing a random v between 0 and ν
and then picking a subset of size v. It next emulates P on w, x. If P generates
the i-th query to the oracle then, for i ∈ Q, prover P ′ forwards this query to H
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and returns the answer to P ; if i /∈ Q then P ′ simply returns a random value
from H’s range.7 If P at the end outputs a proof π then P ′ runs the (wlog.8 )
deterministic verifier V H by relaying communication between V and the genuine
oracle H and eventually outputs π (even if V aborts or rejects).

For notational convenience denote by H ′ the function which is defined by
H and P ′ actions, i.e., which agrees on H on all queries except for the ones for
which P ′ gave random answers instead. Clearly, P ′ may sometimes fail to provide
a proof that V H accepts, especially if V queries H about a value for which H ′ is
different. But since maxv

(
ρ
v

)
= polyK(k) for an infinite set K, prover P ′ predicts

the subset of queries V makes among the queries of P correctly (event Consistent-
Oracle) with probability 1/p(k) for all k ∈ K and some polynomial p(k). Given
that the guess is right, V ’s view is identical when run with H or with H ′. Hence,
taking the negligible completeness error of the original protocol into account,
V H accepts the proof of P ′ with probability at least 1/2p(k) for all sufficiently
large k ∈ K.

It follows that the knowledge extractor K, run on the queries of P ′ to H,
returns a valid witness with probability negligibly close to 1/2p(k), which is
certainly larger than 1/4p(k) for all large k ∈ K. Furthermore, given Consistent-
Oracle we have QH(P ′) = QH(V ); the inclusion QH(P ′) ⊆ QH(V ) follows from
the correct guess and equality from the fact that P ′ conclusively runs the deter-
ministic V on π. Under this condition P ′ also generates the same distribution
on π as P does (given x,QH(V )) and the extractor’s view is identical in that
case. Hence, K(x, π,QH(V )) also returns a witness with noticeable probability
1/4p(k) in the actual protocol between P and V .

The final step is to let the zero-knowledge simulator Z(x) generate HZ , πZ

instead of P . For x the probability of K(x, πZ ,QHZ
(V )) extracting a witness

can only be negligibly smaller than for K(x, π,QH(V )). Otherwise it would be
straightforward to construct a distinguisher for the zero-knowledge property. It
follows that our inverter I finds a witness to a given x with noticeable probability
at least 1/8p(k) for large k ∈ K and the instance generator cannot be one-way.

ut

Optimality of the Bound. Our lower bounds make essential use of the fact that
the extractor cannot program the random oracle. In fact, if K was allowed to
choose oracle values, then the oracle H (with unrestricted output length) could
be defined to generate a sufficiently large common reference string and to run a
non-interactive zero-knowledge proof of knowledge with online extractor in the
standard model [DP92]. A single hash function evaluation would then suffice.

Also, the superlogarithmic bound cannot be improved for non-programming
extractors. Namely, if we run the hash-tree construction or an easy modifica-

7 As usual, P ′ simulates oracle queries consistently by keeping state of previous queries
and providing identical answers to identical queries.

8 Every probabilistic verifier can be replaced by a deterministic one. This only in-
creases the verifier’s number of hash function queries by one and does not change
our asymptotical result.
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tion of our solution for binary challenges and superlogarithmic r, then we get a
negligible extraction error and make only O(r) hash function queries.

4 Application to Group Signatures

In this section we show how to lift the CPA-anonymous group signature scheme
by Boneh et al. [BBS04] to a fully anonymous one. As explained in the intro-
duction, the idea is to append a non-interactive proof of knowledge with online
extractor for an ElGamal-like encryption. Although we give a brief introduction
to group signatures we refer the reader to the work by Bellare et al. [BMW03] for
a comprehensive overview about (the security of) group signatures. Recall from
the introduction that the two important security properties are full anonymity,
the impossibility of identifying the author of a signature, and full traceability,
the impossibility of generating a signature which cannot be traced to the right
origin.

Very roughly, a group signature scheme consists of a (fixed) set of users, each
user receiving a secret through an initial key generation phase carried out by a
trusted third party. In addition, a public group key is established in this phase.
Each user can run the sign protocol to generate a signature on behalf of the
group. This signature is verifiable through the group’s public key, yet outsiders
remain oblivious about the actual signer. Only the group manager can revoke
this anonymity and open the signature through an additional secret key.

The original scheme by Boneh works over bilinear group pairs (G1, G2)
where deciding the Diffie-Hellman problem is easy. That is, for groups G1, G2 of
prime order q generated by g1, g2 there is an efficiently computable isomorphism
ψ : G2 → G1 with ψ(g2) = g1, and an efficiently computable non-degenerated
bilinear mapping e with e(ua, vb) = e(u, v)ab for all u ∈ G1, v ∈ G2 and a, b ∈ Zq.

For the security of the scheme it is assumed that the q-strong Diffie-Hellman
problem —given (g1, g2, g

γ
2 , g

(γ2)
2 , . . . , g

(γq)
2 find (gγ+x

1 , x) for any x ∈ Z∗
q— is

intractable. See [BB04] for more details. It is also presumed that the decision
linear assumption in G1 holds, namely that it is infeasible to distinguish tuples
(u, v, h, ua, vb, ha+b) and (u, v, h, ua, vb, hc) for u, v, h← G1 and a, b, c ∈ Zq. This
assumption implies that ElGamal-like encryptions (ua, vb, ha+b ·m) of messages
m under public key (u, v, h) are semantically secure.

In the original scheme of Boneh et al. [BBS04] the group’s public key contains
a value w = gγ

2 and each user receives a pair (Ai, xi) with Ai = g
1/(γ+xi)
1

as the secret key. In addition, the group manager’s public key consists of a
public encryption key (u, v, h) such that uξ1 = vξ2 = h for secret key ξ1, ξ2.
To sign a message m the user encrypts Ai with the manager’s public key as
T1 ← ua, T2 ← vb and T3 ← Aih

a+b for random a, b ← Zq. In addition, the
signer also computes a non-interactive proof τ (in the random oracle model)
that (T1, T2, T3) encrypts such an Ai with e(Ai, wg

xi
2 ) = e(g1, g2). The details

of this zero-knowledge proof are irrelevant for our discussion here, we merely
remark that the message m enters in this proof and that an independent random
oracle is needed for this part. To verify a signature one verifies this proof τ . To
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revoke anonymity the group manager verifies the signatures and then decrypts
Ai = T3/T

ξ1
1 T ξ2

2 and recovers the user’s identity through Ai.
We now augment the original scheme by our proof of knowledge for the

ElGamal encryption:

Construction 5. Define the following group signature scheme:

[Key Generation.] Compute the public key as before by picking a bilinear group
pair G = (G1, G2) and generators g1, g2, h. Sample ξ1, ξ2, γ ← Z∗

q and let
uξ1 = vξ2 = h and w = gγ

2 . The public key gpk consists of (G, g1, g2, h, u, v, w).
Each of the n users obtains some xi ← Z∗

q and Ai = g
1/(γ+xi)
1 as the secret

key. The group manager receives (ξ1, ξ2, A1, . . . , An) as the secret key.
[Signing.] To sign a message m ∈ {0, 1}∗ under a secret key (Ai, xi) the user

takes the group key gpk = (G, g1, g2, h, u, v, w) and does the following:
– As in the original scheme pick a, b← Zq and encrypt Ai under the group

manager’s public key, T1 ← ua, T2 ← vb and T3 ← Aih
a+b.

– Compute as before a non-interactive proof τ that Ai = g
1/(γ+xi)
1 is en-

crypted in (T1, T2, T3) for some xi ∈ Zq, involving the message m.
– Additionally, compute a non-interactive zero-knowledge proof of knowl-

edge π for α, β, i.e., run PH on (gpk, T1, T2, T3, τ,m, α, β) for relation
Wk =

{
((gpk, T1, T2, T3, τ,m), (α, β))

∣∣ uα = T1, v
β = T2

}
to obtain π.

– Output (T1, T2, T3, π, τ) as the signature to m.
[Verification.] To verify a signature (T1, T2, T3, π, τ) for a message m run the

original verifier of the signature scheme and also run the verifier V H of
the non-interactive proof of knowledge on (gpk, (T1, T2, T3, τ,m), π). Accept
if both verifications succeed.

[Open.] To reveal the identity of a signer for a signature (T1, T2, T3, τ, π) the
group manager first verifies the validity of the signature (including the proof
π). If correct, then the manager decrypts as in the original scheme to recover
some A = T3/(T

ξ1
1 T ξ2

2 ) and compares this value to the list of Ai’s to find the
user index i.

For system parameters suggested in [BBS04], namely, |q| = 170 bits and
|G1| = 171 bits, the original signature length is 1, 533 bits. If we use the same
values b = 9, r = S = 10, t = 12 as in the previous section for our proof
system, then our scheme adds about 2r · 170 + rt = 3, 520 bits to signatures
through the r repetitions of the atomic protocol for proving the AND of the
two discrete logarithms. This proof requires 2r answers in Zq (as usual in the
discrete logarithm case, the commitments are not included in the proof π) and r
challenges of t bits. Although the communication complexity of this new scheme
is significantly larger, it is still superior to RSA-based group signatures where
signatures easily exceed 10, 000 bits [ACJT00].

Interestingly, we still expect our version of the group signature scheme to
be more efficient than the RSA-based scheme in [ACJT00], where half a dozen
exponentiations with large exponents of more than thousand bits have to be
carried out without Chinese Remainder. According to implementation results in
[DMPW98] a single exponentiation for elliptic curves is estimated to be about
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ten times faster than such RSA exponentiations; the exact figures of course
depend on implementation details.

Proposition 3. Under the Decision Linear Diffie-Hellman and the q-strong
Diffie-Hellman assumption the group signature scheme in Construction 5 is a
fully anonymous and fully traceable group signature scheme in the random ora-
cle model.

Proof. A careful analysis reveals that the proof of the traceability property ba-
sically carries over from [BBS04]. We omit this part because of the similarity.
It thus suffices to show that the new scheme achieves full anonymity. The proof
is an adaptation of the original proof in [BBS04], i.e., if there was an algorithm
A refuting the anonymity property we can derive an algorithm B breaking the
semantic security of the linear encryption scheme.

More precisely, suppose A breaks the anonymity of the group signature
scheme. That is, A first asks the group manager about some signatures to reveal
the identity, then outputs a message m and two indices i0, i1, from which one
is picked at random according to a bit b, and then user ib creates a challenge
signature s for m. The adversary may now continue to query the open oracle (for
signatures different from s) and finally outputs a guess b′ for b. By assumption,
the probability of b = b′ is noticeably larger than 1/2.

We describe our algorithm B attacking the semantic security of the encryp-
tion scheme. Algorithm B is given a tuple (G, u, v, h) and generates the comple-
mentary data for the group signature schemes (i.e., γ, w and all pairs (Ai, xi))
and starts a simulation for A on these data. B also initializes the zero-knowledge
simulator of our proof system (and possibly the simulator for generating τ) to
get a simulated random oracle H (and an independent one for the τ -part). Dur-
ing the simulation B relays and records the communication between A and the
random oracles, especially for H. If A makes a query about message m and sig-
nature (T1, T2, T3, π, τ) to the group manager, then B verifies the correctness of
the signature; if correct, B runs the knowledge extractor K of the proof system
on gpk, (T1, T2, T3, τ,m) and the list QH(A) of previously recorded hash queries.
If K returns a valid witness w = (α, β) then B computes A = T3/h

α+β and
computes the index as the group manager would; in any other case return ⊥.

If A outputs a challenge query (m, i0, i1) then B forwards (Ai0 , Ai1) to its
challenge oracle to receive a ciphertext (T1, T2, T3) of one of the values, the
choice made according to a secret random bit d. B next runs the (statistical)
zero-knowledge simulators to generate proofs π and τ . It returns (T1, T2, T3, π, τ)
as the signature and continues A’s simulation. All subsequent hash and open
queries are treated as in the first phase. If A eventually outputs a guess b′ for b,
then B copies this output as a prediction d′ for d.

For the analysis note that B’s running time is essentially the same as for A.
Algorithms B only needs to perform as many additional runs of the extractor K
as A puts open queries, plus B needs some extra time to run the zero-knowledge
simulators and to maintain the hash query list. To determine B’s success prob-
ability we take a look at the first open query of A. The simulation only yields a
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different result than in an actual attack, if the signature is valid (in particular,
π is correct) and some Ai is encrypted, yet K fails to output the witness for
the values T1, T2. The probability of this is negligible by the extraction property,
though. Conditioning on the validity of the simulation for this query we can set
the argument forth to the following queries. Because of the simulation sound-
ness this argument also holds for open request A makes after having received
the challenge signature, as either the theorem or the proof π has to be new. In
summary, the simulation fails with negligible probability only.

It follows that B predicts d correctly if A does, except with some negligible
probability. This, however, contradicts the semantic security of the underlying
encryption scheme. ut

5 Open Problems

Currently, non-interactive proofs with online extractors, including the one in this
paper, are less efficient than “regular” ones. And although we have shown that
for some type of online extractors this loss in efficiency is inevitable, and even
if our solution is optimal in some cases, our lower bound does not completely
rule out that there are better constructions. Two possible venues for improve-
ments are to take advantage of extractors programming the random oracle, or
to accept a large number of hash function evaluations but keeping the number
of repetitions of the underlying protocol small. Instead of looking into general
transformations, improvements for some popular cases such as RSA or discrete
logarithms, possibly exploiting special properties of the underlying protocol, are
also of interest.
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A Special Zero-Knowledge for Bounded Challenge Size

Lemma 1. Every Fiat-Shamir proof of knowledge (P, V ) with challenge size
`(k) = O(log k) is special zero-knowledge.
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Proof. Let Z be a (regular) zero-knowledge simulator of the protocol and let L =
L(k) = 2`(k) = poly(k). Then we construct a special zero-knowledge simulator
Zsp as follows (we only deal with the case yes, the case no is trivial):

– Algorithm Zsp gets x, ch,yes as input.
– Zsp invokes kL independent copies of Z(x,yes) to generate kL transcripts

(comi, chi, respi).
– Zsp outputs the transcript (comi, chi, respi) with the smallest index i such

that chi = ch; if none exists then Zsp outputs ⊥ instead.

The idea is that the output of Z should be indistinguishable from transcripts
generated between P and V . In particular, V picks a random challenge ch and we
thus expect the challenges output by Z to be sufficiently close to uniform. But
then we will find some output ch = chi with overwhelming probability among
the kL samples. We next formalize this intuition.

First, it follows easily by a standard hybrid argument that the kL tran-
scripts produced by Z are indistinguishable from kL independent executions of
(P (x,w), V (x)). We conclude that the probability of Zsp finding at least one
transcript (comi, chi, respi) matching the given ch, i.e., with chi = ch, is over-
whelming. Else it would be straightforward to distinguish the kL outputs of Z
from ones generated by (P (x,w), V (x)). That is, for the latter the challenges
are picked at random and the probability of covering all challenge values from
{0, 1}`(k) is at least 1 − L · (1 − 1

L )kL ≥ 1 − Le−k, which is overwhelming. A
distinguisher could now test if all challenge values are hit, and would success-
fully distinguish the two cases if the probability for Z’s transcripts would not be
overwhelming.

Under the condition that Zsp does not return ⊥ the output (com, ch, resp) of
Zsp is indistinguishable from a transcript (com, ch, resp)← (P (x,w), V ch(x, ch)).
Otherwise it would again contradict the indistinguishability of the kL transcripts
of Z(x) and (P (x,w), V (x)). We discuss this in more detail next.

Assume that there exists a successful distinguisher D = (D0, D1) for Zsp’s
output. Then we derive a distinguisher D′ = (D′

0, D
′
1) for the kL executions of

Z as follows. D′
0(k) simulates D0(k) to get an output (x,w, ch, δ); we presume

again for simplicity (x,w) ∈ Wk. Algorithm D′
0 outputs (x,w) and δ′ = (ch, δ).

In the next stage D′
1 gets kL transcripts (comi, chi, respi), either produced by Z

or by (P (x,w), V (x)). It picks the smallest index i such that chi = ch (if none
exists it stops with output 1), then it runs D1(comi, chi, respi, δ) and returns the
final output of D1.

Note that D′ only stops prematurely (if chi 6= ch for all i) with negligible
probability in either case. Under the condition that this does not happen, the
output of D′

1 for transcripts by Z has the same distribution as the output of D1

for a transcript generated by Zsp. Similarly, given D′ does not abort early, the
output of D′

1 for transcripts by (P (x,w), V (x)) is identically distributed to the
output of D1 for a transcript produced by (P (x,w), V ch(x, ch)). The claim now
follows. ut
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B Deterministic Verifiers in the Random Oracle Model

Lemma 2. For every non-interactive Fiat-Shamir proof of knowledge (P, V ) in
the random oracle model, there exist a deterministic algorithm V ′ such that
(P, V ′) is also a non-interactive Fiat-Shamir proof of knowledge for the same
relation.

Proof. Suppose V H(x, π) in the original protocol is probabilistic and uses ran-
dom coins ω of polynomially length. By a standard trick we can split ora-
cle H into two “independent” oracles Hπ and Hω (e.g., Hπ(·) = H(0, ·) and
Hω(·) = H(1, ·)) and let the prover use Hπ to produce the proof, while V H uses
ω = Hω(x, π) as the random coins to verify the proof π for x (with respect to
oracle Hπ). The extractor now only sees all queries to oracle Hπ.

Completeness and zero-knowledge are clearly preserved. For extraction note
that a malicious prover A has also access to oracle Hω through H. We show
that this cannot increase the success probability significantly, though. Denote
by SuccA the event that A manages to find (x, π) such that the transformed
V H(x, π) accepts but K(x, π,QH(A)) fails to return a valid witness w. Sup-
pose that the probability of event SuccA is noticeable. From A we construct an
algorithm A′ which contradicts the extraction property of the original protocol.

Let A make at most q many queries to Hω. We can assume that A always
asks Hω about the final output (x, π) at some point, else we could make this
additional query, increasing the total number only by one. We also assume that
all queries are distinct, and therefore all answers are independent. Our derived
algorithm A′ with oracle H initially picks an index j between 1 and q and
starts an emulation of A for oracles Hπ = H (relaying communication) and by
providing consistent random answers on behalf of Hω. If A forwards the j-th
query (x, π) to Hω then A′ outputs (x, π) and stops.

Let picki be the event that the i-th query is output by A as a candidate. Then,
for some i, Prob[SuccA ∧ picki] is at least Prob[SuccA] /q. And the guess j of A′

equals this index i with probability at least 1/q. In this case, the random choice
of ωi corresponds to a run of the probabilistic verifier on input (xi, πi) with
independent random coins. Moreover, A′ only makes queries to oracle Hπ =
H, all answers for Hω are chosen internally, Q(Hπ,Hω)(A) = QH(A′) and the
extractor has the same probability for finding a witness. This, however, would
contradict the negligible extraction error of the original protocol. ut
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