
Multi-party Computation with Hybrid Security

Matthias Fitzi1, Thomas Holenstein2, and Jürg Wullschleger3

1 Department of Computer Science
University of California, Davis

fitzi@cs.ucdavis.edu
2 Department of Computer Science

ETH Zurich, Switzerland
holenst@inf.ethz.ch

3 Département d’Informatique et Recherche Opŕationnelle
Université de Montréal, Canada
wullschj@iro.umontreal.ca

Abstract. It is well-known that n players connected only by pairwise
secure channels can achieve multi-party computation secure against an
active adversary if and only if
– t < n/2 of the players are corrupted with respect to computational

security, or
– t < n/3 of the players are corrupted with respect to unconditional

security.
In this paper we examine to what extent it is possible to achieve condi-
tional (such as computational) security based on a given intractability
assumption with respect to some number T of corrupted players while
simultaneously achieving unconditional security with respect to a smaller
threshold t ≤ T . In such a model, given that the intractability assump-
tion cannot be broken by the adversary, the protocol is secure against T
corrupted players. But even if it is able to break it, the adversary is still
required to corrupt more than t players in order to make the protocol
fail.
For an even more general model involving three different thresholds tp,
tσ, and T , we give tight bounds for the achievability of multi-party com-
putation. As one particular implication of this general result, we show
that multi-party computation computationally secure against T < n/2
actively corrupted players (which is optimal) can additionally guarantee
unconditional security against t ≤ n/4 actively corrupted players “for
free.”

Keywords: Broadcast, computational security, multi-party computa-
tion, unconditional security.

1 Introduction

Secure distributed cooperation among mutually distrusting players can be achiev-
ed by means of general multi-party computation (MPC). Typically, the goal of
such a cooperation consists of jointly computing a function on the players’ in-
puts in a way that guarantees correctness of the computation result while keeping

C. Cachin and J. Camenisch (Eds.): EUROCRYPT 2004, LNCS 3027, pp. 419–438, 2004.
c© International Association for Cryptologic Research 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Ja
 Piktogramme einbetten: Ja
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [600 600] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 600 dpi
 Downsampling für Bilder über: 900 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein
 Bitanzahl pro Pixel: Wie Original Bit

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Untergruppen bilden unter: 100 %
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: []
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
 Methode: Standard
Arbeitsbereiche:
 Graustufen ICC-Profil:
 RGB ICC-Profil: sRGB IEC61966-2.1
 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Nein
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Nein
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Nein
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Nein
 EPS-Info von DSC beibehalten: Nein
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Nein

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue false
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed []
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [600 600]
>> setpagedevice

420 Matthias Fitzi, Thomas Holenstein, and Jürg Wullschleger

the players’ inputs private — even if some of the players are corrupted by an
adversary.

Different models for MPC have been proposed in the literature with respect
to communication, corruption flavor, and adversarial power. In this paper, we
restrict our view to the following parameters.

Communication: We exclusively consider synchronous networks meaning
that, informally speaking, the players are synchronized to common communica-
tion rounds with the guarantee that a sent message will be delivered still during
the same communication round.

Corruption: We assume a central threshold adversary with respect to a
given, fixed threshold t, meaning that it can select up to arbitrary t out of the
n players and corrupt them (meaning to take control over them). Such a player
is then said to be corrupted whereas a non-corrupted player is called correct. An
active adversary (active corruption) corrupts players by making them deviate
from the protocol in an arbitrarily malicious way.

Security: A protocol achieves unconditional security if even a computa-
tionally unbounded adversary cannot make the protocol fail — except for some
negligible error probability. A protocol achieves computational security if an ad-
versary restricted to probabilistic polynomial time computations cannot make
the protocol fail except for some negligible error probability. In this paper, we
consider both kinds of security.

1.1 Previous Work

The MPC problem was first stated by Yao [Yao82]. Goldreich, Micali, and
Wigderson [GMW87] gave the first complete solution to the problem with re-
spect to computational security. For the model with a passive adversary (passive
model, for short), and given pairwise communication channels, they gave an ef-
ficient protocol that tolerates any number of corrupted players, t < n. For the
model with an active adversary (active model), and given both pairwise and
broadcast channels, they gave an efficient protocol that tolerates any faulty mi-
nority, t < n/2, which is optimal in the sense that no protocol exists for t ≥ n/2.
Note that when not demanding security to the full extent, computationally se-
cure MPC is also achievable in presence of an active adversary that corrupts
t ≥ n/2 players [GMW87, GHY87, BG89, GL90, FGH+02, GL02, FHHW03].
However, in this case, robustness cannot be guaranteed, i.e., it can not be guar-
anteed that every player receives a result [Cle86].

With respect to unconditional security, Ben-Or, Goldwasser, and Wigder-
son [BGW88], and independently, Chaum, Crépeau, and Damg̊ard [CCD88] gave
efficient protocols for the passive model that tolerate t < n/2 and protocols for
the active model that tolerate t < n/3 — assuming only pairwise communi-
cation channels in both cases. Both bounds are tight. Beaver [Bea89], Rabin,
and Ben-Or [RB89] considered the active model when given both pairwise and
broadcast channels among the players. They gave efficient protocols that achieve
unconditional security for t < n/2 which is optimal. A more efficient protocol
for this model was given by Cramer et al. [CDD+99].

Multi-party Computation with Hybrid Security 421

With lack of better knowledge, protocols with computational security must
be based on unproven intractability assumptions, i.e., they must build up on
cryptographic primitives such as trapdoor permutations that are not known to
exist. Furthermore, even if such primitives existed, the particular choice of a
candidate implementation of such a primitive might be a bad one.

In order to prevent complete failure in these cases, Chaum [Cha89] consid-
ered a “hybrid” security model for MPC that achieves computational security for
some large threshold T but, at the same time, unconditional security for some
smaller threshold t ≤ T — meaning that, in order to make the protocol fail,
the adversary must either corrupt more than T players, or corrupt more than
t players but additionally be able to break the underlying computational hard-
ness assumption. In the passive model, given pairwise communication channels,
Chaum’s protocol achieves computational security with respect to T < n and un-
conditional security with respect to t < n/2. Thus, this protocol simultaneously
achieves the optimal bounds for computational and unconditional security.

In the active model, given pairwise and broadcast channels, his protocol
achieves computational security with respect to T < n/2 and additionally pro-
vides unconditional privacy for all players’ inputs as long as up to t < n/3 players
are corrupted. Note that the later results in [Bea89, RB89, CDD+99] strictly im-
ply this result: unconditional security for t < n/2 when assuming broadcast.4 In
[WP89], the same “hybrid” model was considered with respect to the simulation
of broadcast when given only pairwise communication channels.

1.2 Multi-party Computation beyond t < n/3 without Broadcast

The active model for MPC tolerating at least n/3 corrupted players typically
assumes broadcast channels [GMW87, Bea89, RB89]. This is a very strong as-
sumption and might not always be appropriate. Rather, broadcast has to be
simulated by the players using the bilateral channels. But, without further as-
sumptions, this simulation is only possible if t < n/3 [LSP82, DFF+82].

The only known way to allow for the simulation of broadcast beyond t < n/3
is to use digital signatures [LSP82]. However, it is important to note that digital
signatures by themselves are not enough. It must be additionally guaranteed
that all correct players verify each player’s signatures in the same way, i.e.,
that all players hold the same list of public keys. Otherwise, the transfer of a
signature would not be conclusive. We call such a setup a consistent public-
key infrastructure (PKI). Such a PKI allows to efficiently simulate broadcast
among the players secure against any number of corrupted players, t < n [DS82].
Not only can a PKI be based on a computationally secure digital signature
scheme but also on unconditionally secure pseudo-signatures [PW96] and thus
allowing for the simulation of unconditionally secure broadcast. Thus the results

4 Note that Chaum’s protocol still completely relies on cryptography since the pro-
tocol’s correctness is only protected by cryptographic means, i.e., by breaking the
cryptographic assumption the adversary can make the protocol fail by only corrupt-
ing one single player.

422 Matthias Fitzi, Thomas Holenstein, and Jürg Wullschleger

in [GMW87, Bea89, RB89] are equally achievable without broadcast channels
but with an appropriate PKI to be set up among the players — computationally
secure for [GMW87] and unconditionally secure for the other cases.

We believe that assuming a PKI is more realistic than assuming broadcast
channels among the players and thus follow this model.

It should be noted, though, that the use of unconditional pseudo-signatures is
not very practical. The cost of broadcasting a single bit based on (computational)
digital signatures is t+1 communication rounds and O(n3s) bits to be sent by all
players during the protocol overall — where s is the size of a signature [DS83].
The cost of broadcasting a bit using unconditional pseudo-signatures is Ω(n3)
rounds and Ω(n17) bits to be sent overall [PW96] — which is still polynomial
but nevertheless quite impractical.5

1.3 Contributions

Typical ways of setting up a PKI are to run a setup protocol among the players
or to involve trust management over the Internet such as, e.g., the one in PGP.
Evidently, both methods can fail to achieve a consistent PKI, namely, when
to many players are corrupted, or, respectively, when the trust management
is built on wrong assumptions. Thus, analogously to relying on computational
security, relying on the consistency of a previously set-up PKI also imposes a
potential security threat since the adversary might have been able to make the
PKI inconsistent.

This raises the natural question of whether MPC relying on the consistency
of a PKI and/or the security of a particular signature scheme can additionally
guarantee unconditional security for the case where only a small number of
the players are corrupted. Thus, in this paper, we extend the considerations
in [Cha89] (regarding the active model) to the case where not only the adversary
might be able to break the underlying hardness assumption but where also the
PKI might be inconsistent.

In particular, we consider the following model for hybrid MPC involving three
thresholds tp, tσ, and T , where tp, tσ ≤ T with the following properties (see also
Figure 1).

– If at most f ≤ min(tp, tσ) players are corrupted then we demand uncondi-
tional security.

– If f > tp then we assume that the PKI is consistent, i.e., for tp < f ≤ T the
computation is only as secure as the PKI.

– If f > tσ then we assume that the adversary cannot forge signatures (except
for some non-negligible probability), i.e., for tσ < f ≤ T the computation is
only as secure as the underlying signature scheme.

5 Note that there is also a (t + 1)-round variant with an overall bit complexity of ap-
proximately Θ(n6). However, this variant is only a one-time signature scheme which
basically means that the PKI only allows for a very limited number of signatures to
be issued.

Multi-party Computation with Hybrid Security 423

f players corrupted Security

f ≤ min(tp, tσ) unconditional

f ≤ tσ ∧ tp < f ≤ T as secure as PKI, independent of signature scheme

f ≤ tp ∧ tσ < f ≤ T as secure as signature scheme, independent of PKI

tp, tσ < f ≤ T as secure as PKI and signature scheme together

Fig. 1. Threshold conditions for hybrid MPC.

Or, in other words, if f ≤ tp then the protocol must be secure even if the
PKI is inconsistent, and, if f ≤ tσ then the protocol must be secure even if
the adversary is able to forge signatures. Thus, in order to make such a hybrid
protocol fail with non-negligible probability, the adversary would have to corrupt
more than f = min(tp, tσ) players and; having made for a bad PKI if f > tp, or
be able to forge signatures if f > tσ.

Result. We show that hybrid MPC is achievable if and only if

(2T + tp < n) ∧ (T + 2tσ < n) (1)

implying that, without loss of generality, we can always assume that tp ≤ tσ ≤
T .6 See Figure 2 for a graphical representation of the tight bound. Achievability
for all cases will be demonstrated by efficient protocols that neither rely on any
particular signature scheme nor on any particular way of setting up a PKI.

As an interesting special case, the optimal result of [GMW87] (assuming a
consistent PKI instead of broadcast — allowing to drop parameter tp since the
consistency of the PKI is granted) computationally secure against T < n/2 cor-
rupted players additionally allows to guarantee unconditional security against
tσ ≤ n/4 corrupted players “for free.” On the other hand, when requiring opti-
mality with respect to unconditional security, tσ = �(n− 1)/3�, then practically
no higher computational bound T can be simultaneously tolerated on top.

Finally, when basing the PKI on an unconditional pseudo-signature scheme
(which is not our focus), forgery becomes impossible by definition and the tight
bound collapses to 2T + tp < n.

Constructions. Our final MPC protocol is obtained by simulating broadcast in
the unconditional MPC protocol of [CDD+99]. Thus the main technical contri-
bution in this paper is to simulate broadcast (aka Byzantine agreement) in the
given models with respect to the required security aspects. The (efficient) proto-
col in [CDD+99] is unconditionally secure against t < n/2 corrupted players. So,
obviously, the final MPC protocol wherein broadcast is simulated is as secure as
the given broadcast protocol.

6 That is, additional forgery gives the adversary no additional power when the PKI is
inconsistent.

424 Matthias Fitzi, Thomas Holenstein, and Jürg Wullschleger

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

n 3

n 3

������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

tp
σ

T

t
n

n

n 2 n 4

n 3
n 2

Fig. 2. Graphical representation of Bound (1).

2 Definitions and Notations

2.1 Multi-party Computation

In MPC a set of players want to distributedly evaluate some agreed function(s)
on their inputs in a way preserving privacy of their inputs and correctness of the
computed result. More precisely, in an MPC among a player set P with respect
to a collection of functions (f1, . . . , fn), every player pi ∈ P holds a secret input
(vector) xi and secretly receives an output (vector) yi = fi(x1, . . . , xn).

From a qualitative point of view, the security of MPC is often broken down
to the conditions “privacy”, “correctness”, “robustness”, and “fairness”, and
ideally, a protocol should satisfy all these properties.

Privacy. A protocol achieves privacy if the adversary cannot learn more about
the correct players’ inputs than given by the inputs and outputs of the
corrupted players.

Correctness. A protocol achieves correctness if the correct players’ outputs
are indeed computed as defined by the functions fi.

Robustness. A protocol achieves robustness if every correct player finally re-
ceives his outputs.

Fairness. A protocol achieves fairness if the adversary gets no information
about the correct players’ inputs in case that robustness is not achieved.

More formally, MPC is modeled by an ideal process involving a mutually
trusted party τ where the players secretly hand their inputs to τ , followed by

Multi-party Computation with Hybrid Security 425

τ computing the players’ outputs and secretly handing them back to the corre-
sponding players [Bea91, Can00, Gol01]. This model is referred to as the ideal
model The goal of MPC is now to achieve the same functionality in the so-called
real model where there is no such trusted party such that an adversary gets no
advantage compared to an execution of the ideal protocol. An MPC protocol is
defined to be secure if, for every adversary A in the protocol, there is an adver-
sary S in the ideal model that, with similar costs, achieves (essentially) the same
output distribution as the adversary in the protocol [Bea91, Can00, Gol01].

2.2 Broadcast

Broadcast is the special case of an MPC. In broadcast, one player ps is given an
initial value which everybody is required to receive. The definition is as follows:

Definition 1 (Broadcast). A protocol among n players, where player ps ∈ P
(called the sender) holds an input value xs and every player pi (i ∈ {1, . . . , n})
computes an output value yi, achieves broadcast if it satisfies:

– Validity: If the sender is correct then all correct players pi compute output
yi = xs.

– Consistency: All correct players compute the same output value y.

Often, it is also added to the definition that the protocol is always required
to terminate. We will not mention this property explicitly since termination is
obvious for our protocols.

Note that broadcast for any finite domain easily reduces to binary broadcast
(where the sender sends a value from {0, 1}) as, e.g., shown by Turpin and
Coan [TC84]. We will thus focus on binary broadcast.

During the simulation of broadcast, using signatures, it must be avoided that
previous signatures can be reused by the adversary in a different context, i.e., an
independent phase or another instance of the protocol. This fact was observed
in [GLR95] and more profoundly treated in [LLR02]. To avoid such “replay
attacks” values can be combined with unique sequence numbers before signing.
The sequence numbers themselves do not have to be transferred since they can
be generated in a predefined manner (encoding the protocol instance and the
communication round). However, we will not explicitly state these details in the
descriptions of the sequel.

2.3 Setting

We consider a set P = {p1, . . . , pn} of n players that are connected via a complete
synchronous network of pairwise secure channels. We assume a PKI to be set up
among the players.

A given PKI is consistent if every player pi (i ∈ {1, . . . , n}) has a secret-
key/public-key pair (SKi,PKi) which was chosen by pi with respect to the key-
generation algorithm of a digital signature scheme and, additionally, that each

426 Matthias Fitzi, Thomas Holenstein, and Jürg Wullschleger

respective public key PKi is known to all players as pi’s public key to be exclu-
sively used for the verification of pi’s signatures. Asserting that, with respect to
every signer pi, each player holds the same public key PKi guarantees that pi’s
signatures can be transferred between the players without losing conclusiveness.
In our model, the PKI may or may not be consistent.7

We assume the existence of an active threshold adversary to corrupt some
of the players. The adversary may or may not be able to forge signatures. Fur-
thermore, for our protocols, the adversary is assumed to be adaptive (but non-
mobile). In contrast, our proofs of optimality even hold with respect to a static
adversary. As we have three bounds with respect to player corruption, tp, tσ,
and T , we will make a stringent distinction between these bounds and the actual
number of players corrupted at the end of the protocol, which we will denote
by f .8

2.4 Protocol Notation

Protocols are specified with respect to a player set P and stated with respect to
the local view of player pi, meaning that all players pi ∈ P execute this code in
parallel with respect to their own identity i.

With respect to pairwise communication we also consider reflexive channels
among the players for simplicity. Thus, when a player pi sends a value to each
player then pi also receives a copy himself.

For simplicity, in our protocol notation, we do not explicitly state how to
handle values received from corrupted players that are outside the specified do-
main. Such a value is always implicitly assumed to be replaced by a default value
or by any arbitrary value inside the specified domain.

3 Generic Broadcast Simulation for t < n/2

Our broadcast simulations are based on the “phase king” protocol in [BGP89].
In [FM00], it was observed that any protocol for “weak broadcast” is sufficient
in order to achieve broadcast secure against a faulty minority — as secure as
the given protocol for weak broadcast. Since all of our tight bounds imply that
strictly less than half of all players are corrupted we thus only need to give
respective protocols for weak broadcast.

Weak broadcast (as called in [FM00]) was originally introduced in [Dol82]
under the name crusader agreement. Weak broadcast is the same as broadcast
for the case that the sender is correct but, if the sender is corrupted, then some
players might end up with the “invalidity symbol” ⊥ — but still, it guarantees
that no two correct players end up with two different values in {0, 1}.
7 In case of unconditional pseudo-signatures the situation is slightly different since,

instead of the same public key PKi, each player pj holds a different “public key”
PKij (which is in fact secret).

8 As the adversary is adaptive, the number might increase during the execution of the
protocol, and reach its maximum at the end.

Multi-party Computation with Hybrid Security 427

Definition 2 (Weak broadcast). A protocol where one player ps has an input
xs ∈ {0, 1} and every player pi computes an output yi ∈ {0, 1,⊥} achieves weak
broadcast if it satisfies the following conditions:

– Validity: If ps is correct then every correct player pi computes output yi =
xs.

– Consistency: If player pi is correct and computes yi ∈ {0, 1} then every
correct player pj computes yj ∈ {yi,⊥}.
In Appendix A, we describe a reduction from broadcast to weak broadcast

that is simpler and more efficient than the one in [FM00], yielding the following
theorem.

Theorem 1. If at most t < n/2 players are corrupted then efficient achievability
of weak broadcast implies efficient achievability of broadcast.

4 Tight Bounds

We now demonstrate the tightness of the bound given in Bound (1).

4.1 Efficient Protocol

We first give an efficient protocol for broadcast and then show how to plug it
into the MPC protocol in [CDD+99] in order to get out final protocol for efficient
hybrid MPC.

Broadcast. For the constructive part, according to Theorem 1, it is sufficient
to give a construction for weak broadcast. The following protocol is designed for
any selection of thresholds tp, tσ, and T , (tp ≤ tσ ≤ T), satisfying Bound (1).

Let xs be ps’s input value, and let σs(xs) be a signature by ps on the value xs.
Furthermore, let V be the signature verification algorithm with respect to the
underlying signature scheme computing V (x, σ, PK) = 1 if σ is a valid signature
on x with respect to public key PK, and V (x, σ, PK) = 0 otherwise. Let PKs

i

be player pi’s version of ps’s public key. We use V s
i (x, σ) as a short cut for

V (x, σ, PKs
i). With respect to player pi, we say that a given signature σ is valid

if it is valid with respect to pi’s view, i.e., V s
i (x, σ) = 1. In particular, a valid

signature with respect to player pi’s view might in fact not have been issued by
the respective signer.

The protocol works as follows. The sender ps signs his input value and sends
his input together with its signature to every other player: (xs, σs(xs)). Every
player except for the sender now redistributes this information to everybody
(but without signing this new message himself). Now, every player received n
values, one from every player. Each player pi now decides on the outcome of the
protocol:

– Let xs
i be the bit he directly received from the sender. If the bit xs

i is received
from at least n−tp different players overall then he computes output yi = xi.

428 Matthias Fitzi, Thomas Holenstein, and Jürg Wullschleger

– Otherwise, if he received the bit xs
i together with a valid signature by ps

from the sender and at least n − tσ different players overall then he decides
on yi = xi.

– Otherwise, if he received the bit xi together with a valid signature by ps

from the sender and at least n− T different players overall — but no single
correct signature by ps for bit 1 − xi — then he decides on yi = xi.

– Otherwise, he decides on yi = ⊥.

Protocol 1 WeakBroadcastps (P, xs)
1. if i = s then SendToAll(xs, σs(xs)) fi; Receive(xs

i , σ
s
i);

2. if i �= s then SendToAll(xs
i , σ

s
i) fi; ∀j �= s: Receive(xj

i , σ
j
i);

3. U0
i := {pj ∈ P |xj

i = 0}; U1
i := {pj ∈ P |xj

i = 1};
4. S0

i := {pj ∈ P |xj
i = 0 ∧ V s

i (0, σj
i) = 1};

S1
i := {pj ∈ P |xj

i = 1 ∧ V s
i (1, σj

i) = 1};
5. if

∣
∣
∣U

xs
i

i

∣
∣
∣ ≥ n − tp then yi := xs

i (A)

elseif ps ∈ S
xs

i
i ∧

∣
∣
∣S

xs
i

i

∣
∣
∣ ≥ n − tσ then yi := xs

i (B)

elseif ps ∈ S
xs

i
i ∧

∣
∣
∣S

xs
i

i

∣
∣
∣ ≥ n − T ∧ S

1−xs
i

i = ∅ then yi := xs
i (C)

else yi := ⊥ fi; (D)
6. return yi

Lemma 1 (Weak Broadcast). Protocol 1 among the players P = {p1, . . . , pn}
achieves efficient weak broadcast with sender ps ∈ P if 2T +tp < n and T +2tσ <
n.

Proof. We show that the validity and consistency properties are satisfied. For
this, let f be the number of corrupted players at the end of the protocol. Effi-
ciency is obvious.
Validity: Suppose that the sender ps is correct. Hence, every correct player
pi receives the sender’s input xs during Step 1 of the protocol, xs

i = xs, and a
signature σs

i .
If f ≤ tp then every correct player pi receives the value xs from at least

n − tp different players (including the sender) during Steps 1 and 2. Hence,
|Uxs

i | ≥ n − tp, and pi computes yi = xs according to Condition (A) in Step 5.
If tp < f ≤ tσ then every correct player pi receives the value xs together

with a valid signature by ps (note that the PKI is consistent in this case) from
at least n − tσ different players (including the sender) during Steps 1 and 2.
Hence, |Sxs

i | ≥ n − tσ, and pi computes yi = xs according to Conditions (A)
or (B) in Step 5.

If tσ < f ≤ T then every correct player pi receives the value xs together with
a valid signature by ps from at least n−T different players (including the sender)
during Steps 1 and 2. Hence, |Sxs

i | ≥ n − T and S1−xs

i = ∅ since the adversary
cannot forge signatures in this case. Hence, pi computes yi = xs according to
Conditions (A), (B), or (C).

Multi-party Computation with Hybrid Security 429

Consistency: Suppose that some correct player pi computes output yi 	= ⊥. We
have to show that hence, every correct player pj computes an output yj ∈ {yi,⊥}.

Suppose first, that pi decides according to Condition (A) in Step 5, i.e.,
|Uyi

i | ≥ n − tp. For pj this implies that |Uyi

j | ≥ |Uyi

i | − T ≥ n − tp − T > T

and hence that |S1−yi

j | ≤ |U1−yi

j | < n − T and thus that pj cannot compute
yj = 1 − yi, neither according to Conditions (A), (B), nor (C).

Second, suppose that pi decides according to Condition (B) in Step 5, i.e.,
|Syi

i | ≥ n−tσ. It remains to show that pj does not decide on yj = 1−yi according
to Conditions (B) or (C) (the rest is out-ruled by the last paragraph). For pj

the assumption implies that

|Uyi

j | ≥ |Uyi

i | − f ≥ n − tσ − f ≥
{

n − 2tσ > T , if f ≤ tσ ,
n − tσ − T > tσ , if f ≤ T .

Now, if f ≤ tσ then |S1−yi

j | ≤ |U1−yi

j | < n−T , and pj cannot compute yj = 1−yi

according to Conditions (B) or (C). If tσ < f ≤ T then |U1−yi

j | < n − tσ, and
Syi

j 	= ∅ (since the PKI is consistent and pi holds and redistributes a valid
signature on yi), and thus pj still cannot compute yj = 1 − yi according to
Conditions (B) or (C).

Third, suppose that pi decides according to Condition (C) in Step 5, i.e.,
|Syi

i | ≥ n − T and S1−yi

i = ∅. It remains to show that pj cannot decide on
yj = 1 − yi according to Condition (C). Now, f ≤ tp implies |U1−yi

j | < n − T
(since |Uyi

j | ≥ n − T − tp > T), and f > tp implies Syi

j 	= ∅ (since the PKI
is consistent). Finally, both implications rule out that pj computes yj = 1 − yi

according to Condition (C).
�

Multi-party Computation. The MPC protocol in [CDD+99] unconditionally
tolerates an (adaptive) adversary that corrupts up to t < n/2 players — but
assuming broadcast channels to be available.

Theorem 2. Hybrid MPC is efficiently achievable if 2T + tp < n and T +2tσ <
n.

Proof. Efficient achievability of hybrid broadcast for 2T +tp < n and T +2tσ < n
follows from Lemma 1 and Theorem 1. We can now simulate each invocation of
a broadcast channel in [CDD+99] with an instance of such a hybrid broadcast
protocol. Since Bound (1) implies 2T < n, we have that tp ≤ tσ ≤ T < n/2.
Thus, an adversary that is tolerated in the broadcast protocol is automatically
tolerated in the MPC protocol.
�

4.2 Tightness

We now show that Bound (1) is tight. We do this in three steps. First, we show
that hybrid broadcast is impossible if tp > 0, tσ = 0, and 2T + tp ≥ n. Second,
we show that hybrid broadcast is impossible if tp = 0, tσ > 0, and T + 2tσ ≥ n.
Third, we use the fact that MPC is impossible whenever 2T ≥ n [Cle86].

430 Matthias Fitzi, Thomas Holenstein, and Jürg Wullschleger

Impossibility of Broadcast for tp + 2T ≥ n when tp > 0. The proof pro-
ceeds along the lines of the proof in [FLM86] that unconditional broadcast for
t ≥ n/3 is impossible. The idea is to assume any protocol among n players that
(possibly) achieves broadcast for n ≤ 2T + tp (tp > 0, tσ = 0) and to use it
to build a different distributed system whose behavior demonstrates that the
original protocol must be insecure. It is important to note that this new system
is not required to achieve broadcast. It is simply a distributed system whose
behavior is determined by the protocol or, more precisely, by the corresponding
local programs of the involved players. Also, it is assumed that no adversary is
present in this system. Rather, with respect to some of the players, the way the
new system is composed simulates an admissible adversary with respect to these
players in the original system. Thus, with respect to these players, all conditions
of broadcast are required to be satisfied among them even in this new system.
Finally, it is shown that all of these players’ respective conditions cannot be
satisfied simultaneously and thus that the protocol cannot achieve broadcast.

Building the new system. Assume any protocol Ψ for a player set P with sender
p0 and |P | = n ≥ 3 that tolerates 2T + tp ≥ n (with tp > 0).

Let Π = {π0, . . . , πn−1} be the set of the players’ corresponding processors
with their local programs sharing a consistent PKI where player pi’s secret-
key/public-key pair is (SKi, PKi) and player pj ’s copy of the respective public
key is PKij . Since 0 < tp ≤ T , it is possible to partition the processors into
three sets, Π0∪̇Π1∪̇Π2 = Π , such that 1 ≤ |Π0| ≤ tp, 1 ≤ |Π1| ≤ T , and
1 ≤ |Π2| ≤ T .

For each πi ∈ Π0, let π′
i be an identical copy of processor πi. Let the number

i denote the type of any processor πi (or π′
i, respectively). Furthermore, let

Π ′
0 = {π′

i |πi ∈ Π0 } form an identical copy of set Π0. For all πi ∈ Π ′
0, generate

a new secret-key/public-key pair (SK′
i, PK′

i) and overwrite πi’s own secret key
SKi := SK′

i. Additionally, for all πj ∈ Π2∪Π ′
0, overwrite πj ’s copy of πi’s public

key: PKij := PK′
i (and PKi := PK′

i). See Figure 3.
Instead of connecting the original processors as required for broadcast, we

build a network involving all processors in Π0∪Π1∪Π2∪Π ′
0 with their pairwise

communication channels connected in a way such that each processor πi (or π′
i)

communicates with at most one processor of each type j ∈ {1, . . . , n} \ {i}.
Consider Figure 3. Exactly all pairs in (Π0∪Π1)×(Π0∪Π1), (Π1∪Π2)×(Π1∪

Π2), and (Π2∪Π ′
0)×(Π2∪Π ′

0) are connected by pairwise channels. There are no
connections between the sets Π0 and Π2, and no connections between the sets Π1

and Π ′
0. Messages that originally would have been sent from a processor in Π0 to

a processor in Π2 are discarded. Messages that originally would have been sent
from a processor in Π2 to a processor in Π0 are delivered to the corresponding
processor in Π ′

0. Messages sent from a processor in Π ′
0 to a processor in Π1 are

discarded.
We now show that for the sets Π0 ∪ Π1, Π1 ∪ Π2, and Π2 ∪ Π ′

0, and for
inputs x0 = 0 and x′

0 = 1, each set’s joint view is indistinguishable from its view
in the original setting for an adversary corrupting the remaining processors in

Multi-party Computation with Hybrid Security 431

Π1Π0 Π 0Π2
’

PK 0

PK 1

PK 2 PK 2

PK /SK1 1 PK 1

PK /SK2 2

PK ’ /SK ’0 0

PK 1

PK 2

PK /SK0 0 PK ’0

t T T tp p

Fig. 3. Rearrangement of processors in proof of Theorem 3.

an admissible way, and possibly have made for a bad PKI if it corrupts at most
f ≤ tp processors.

Lemma 2. If the input of π0 is x0 = 0 then the joint view of the processors
in Π0 ∪ Π1 is indistinguishable from their view in the original system when the
adversary corrupts the processors in Π2 in an admissible way.

Proof. By corrupting all processors in Π2 in the original system the adversary
simulates all processors in Π2∪Π ′

0 of the new system. For all πi ∈ Π ′
0 it generates

a new secret-key/public-key pair (SK′
i, PK′

i) and overwrites πi’s own secret key
SKi := SK′

i and, for all πj ∈ Π2 ∪ Π ′
0, overwrites πj ’s copy of πi’s public key:

PKij := PK′
i (and PKi := PK′

i). Initially, the adversary overwrites input x′
0 := 1.

The PKI among the processors in Π0 ∪ Π1 is still fully consistent and thus the
joint view of the processors in Π0∪Π1 in the original system is exactly the same
as their view in the new system.
�

Lemma 3. If the input of π′
0 is x′

0 = 1 then the joint view of the processors
in Π2 ∪ Π ′

0 is indistinguishable from their view in the original system when the
adversary corrupts the processors in Π1 in an admissible way.

Proof. By symmetry, this case follows from Lemma 2.9
�

Lemma 4. The joint view of the processors in Π1∪Π2 is indistinguishable from
their view in the original system when the adversary corrupts the processors in
Π0 in an admissible way.

9 The only difference in this case is that Π ′
0 takes the role of the original set and

Π0 the role of its copy. Accordingly, the initial key pairs are (SK′
i, PK′

i), the pairs
(SKi, PKi) are newly generated by the adversary, and x0 := 0 is overwritten.

432 Matthias Fitzi, Thomas Holenstein, and Jürg Wullschleger

Proof. Since |Π0| ≤ tp the adversary can have previously made the PKI incon-
sistent by generating and respectively distributing the key pairs (SK′

i, PK′
i) for

all πi ∈ Π ′
0 (according to Figure 3). By corrupting all processors in Π0 in the

original system the adversary can now simulate all processors in Π0 ∪Π ′
0 of the

new system whereas, initially, it overwrites x0 := 0 and x′
0 := 1. Thus the joint

view of the processors in Π1 ∪ Π2 in the original system is exactly the same as
their view in the new system.
�

Theorem 3. If 2T + tp ≥ n and tp > 0 then there exists no hybrid broadcast
protocol. In particular, for every protocol there exists a sender input x0 ∈ {0, 1}
such that a computationally bounded adversary can make the protocol fail with
some non-negligible probability — by either corrupting T players, or by corrupt-
ing tp players and additionally having made for an inconsistent PKI.

Proof. Assume that x0 = 0 and x′
0 = 1. Then, by Lemmas 2, 3, and 4, each

mentioned set’s joint view in the new system is indistinguishable from their
view in the original system. However, for each run of the new system, either
validity is violated among the processors in S01 = Π0 ∪ Π1 or S20′ = Π2 ∪ Π ′

0,
or consistency is violated among the processors in S12 = Π1 ∪ Π2.

Thus there is a sender input (x0 = 0 or x′
0 = 1) such that the adversary can

make the protocol fail with non-negligible probability by uniformly randomly
choosing a processor set Πi and corrupting the respective processors correspond-
ingly.
�

Impossibility of Broadcast for 2tσ + T ≥ n when tσ > 0. The proof of
this case is very similar to the proof of Theorem 3.

Theorem 4. If T +2tσ ≥ n and tσ > 0 then there exists no hybrid broadcast pro-
tocol. In particular, for every protocol there exists a sender input x0 ∈ {0, 1} such
that the adversary can make the protocol fail with some non-negligible probability
— by either corrupting T players, or by corrupting tσ players and additionally
being able to forge signatures with non-negligible probability.

Proof. Assume any protocol Ψ for a player set P with sender p0 and |P | = n ≥ 3
that tolerates 2T + tσ ≥ n (with tσ > 0).

Let Π = {π0, . . . , πn−1} be the set of the players’ corresponding processors
with their local programs. Since 0 < tσ ≤ T , it is possible to partition the
processors into three sets, Π0∪̇Π1∪̇Π2 = Π , such that 1 ≤ |Π0| ≤ T , 1 ≤ |Π1| ≤
tσ, and 1 ≤ |Π2| ≤ tσ.

For each πi ∈ Π0, let π′
i be an identical copy of processor πi and, as in the

proof of Theorem 3, let Π ′
0 = {π′

i |πi ∈ Π0 } form an identical copy of set Π0.
Consider Figure 4. Exactly all pairs in (Π0 ∪ Π1) × (Π0 ∪ Π1), (Π1 ∪ Π2) ×

(Π1 ∪ Π2), and (Π2 ∪ Π ′
0) × (Π2 ∪ Π ′

0) are connected by pairwise channels.
Again, we show that for the sets Π0 ∪ Π1, Π1 ∪ Π2, and Π2 ∪ Π ′

0, and for
inputs x0 = 0 and x′

0 = 1, each set’s joint view is indistinguishable from its view
in the original setting.

Multi-party Computation with Hybrid Security 433

Π1Π0 Π 0Π2
’

T Tt tσ σ

Fig. 4. Rearrangement of processors in proof of Theorem 3.

Joint view of Π0 ∪ Π1 with x0 = 0. By corrupting all processors in Π2 in the
original system the adversary simulates all processors in Π2 ∪ Π ′

0 of the new
system. Since |Π2| ≤ tσ, the adversary can forge all signatures by processors in
Π ′

0 required for the simulation. Initially, the adversary overwrites input x′
0 := 1.

Thus the joint view of the processors in Π0∪Π1 in the original system is exactly
the same as their view in the new system.

Joint view of Π2 ∪ Π ′
0 with x′

0 = 1. By symmetry, this case follows from the
above paragraph.

Joint view of Π1∪Π2. By corrupting all processors in Π0 in the original system
the adversary can simulate all processors in Π0∪Π ′

0 of the new system whereas,
initially, it overwrites x0 := 0 and x′

0 := 1. Note that, by corrupting the proces-
sors in Π0, the adversary gains access to all corresponding secret keys and thus
is not required to forge any signatures for the simulation. Thus the joint view
of the processors in Π1 ∪ Π2 in the original system is exactly the same as their
view in the new system.

The theorem now follows along the lines of the proof of Theorem 3.
�

Multi-party Computation. In order to complete our tightness argument, we
require the following proposition.

Proposition 1 ([Cle86]). There is no protocol for MPC secure against T ≥
n/2 actively corrupted players. In particular, fairness cannot be guaranteed.

Theorem 5. Hybrid MPC is impossible if either 2T + tp ≥ n or T + 2tσ ≥ n.

Proof. The theorem follows from Theorems 3 and 4, and Proposition 1.
�

5 Conclusion and Open Problems

We can now conclude tight bounds for the achievability of hybrid MPC with
respect to thresholds tp, tσ, and T .

434 Matthias Fitzi, Thomas Holenstein, and Jürg Wullschleger

Theorem 6. Hybrid MPC is (efficiently) achievable if and only if 2T + tp < n
and T + 2tσ < n.

Proof. The theorem follows from Theorems 2 and 5.
�
In particular, assuming the PKI to be consistent in any case (as in the alter-

native model for [GMW87] assuming a PKI instead of broadcast) we can drop
parameter tp and immediately get the tight bound 2T < n ∧ T + 2tσ < n.
This means that, with respect to this model, computational security against
f ≤ T < n/2 corrupted players can be combined with unconditional security
against f ≤ tσ corrupted players.

The characterization given in Theorem 6 is tight with respect to fully secure,
robust MPC. However, as mentioned in the introduction, non-robust MPC is
also possible in presence of a corrupted majority. Thus, for the case tp = 0, it
remains an open question whether hybrid non-robust MPC can be achieved for
any T + 2tσ < n.

References

[Bea89] Donald Beaver. Multiparty protocols tolerating half faulty processors. In
Advances in Cryptology: CRYPTO ’89, volume 435 of Lecture Notes in
Computer Science, pages 560–572. Springer-Verlag, 1989.

[Bea91] Donald Beaver. Foundations of secure interactive computation. In Ad-
vances in Cryptology: CRYPTO ’91, volume 576 of Lecture Notes in Com-
puter Science, pages 377–391. Springer-Verlag, 1991.

[BG89] Donald Beaver and Shafi Goldwasser. Multiparty computation with faulty
majority. In Proceedings of the 30th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS ’89), pages 468–473, 1989.

[BGP89] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Towards optimal
distributed consensus (extended abstract). In Proceedings of the 30th An-
nual IEEE Symposium on Foundations of Computer Science (FOCS ’89),
pages 410–415, 1989.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness
theorems for non-cryptographic fault-tolerant distributed computation. In
Proceedings of the 20th Annual ACM Symposium on Theory of Computing
(STOC ’88), pages 1–10. Springer-Verlag, 1988.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic pro-
tocols. Journal of Cryptology, 13(1):143–202, 2000.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty uncondi-
tionally secure protocols (extended abstract). In Proceedings of the 20th
Annual ACM Symposium on Theory of Computing (STOC ’88), pages
11–19. ACM Press, 1988.

[CDD+99] Ronald Cramer, Ivan Damg̊ard, Stefan Dziembowski, Martin Hirt, and
Tal Rabin. Efficient multiparty computations secure against an adaptive
adversary. In Advances in Cryptology: EUROCRYPT ’99, volume 1592 of
Lecture Notes in Computer Science, 1999.

[Cha89] David Chaum. The spymasters double-agent problem. In Advances in
Cryptology: CRYPTO ’89, volume 435 of Lecture Notes in Computer Sci-
ence, pages 591–602. Springer-Verlag, 1989.

Multi-party Computation with Hybrid Security 435

[Cle86] Richard Cleve. Limits on the security of coin flips when half the processors
are faulty. In ACM Symposium on Theory of Computing (STOC ’86),
pages 364–369, Baltimore, USA, May 1986. ACM Press.

[DFF+82] Danny Dolev, Michael J. Fischer, Rob Fowler, Nancy A. Lynch, and
H. Raymond Strong. An efficient algorithm for Byzantine agreement with-
out authentication. Information and Control, 52(3):257–274, March 1982.

[Dol82] Danny Dolev. The Byzantine generals strike again. Journal of Algorithms,
3(1):14–30, 1982.

[DS82] Danny Dolev and H. Raymond Strong. Polynomial algorithms for multiple
processor agreement. In Proceedings of the 14th Annual ACM Symposium
on Theory of Computing (STOC ’82), pages 401–407, 1982.

[DS83] Danny Dolev and H. Raymond Strong. Authenticated algorithms for
Byzantine agreement. SIAM Journal on Computing, 12(4):656–666, 1983.

[FGH+02] Matthias Fitzi, Daniel Gottesman, Martin Hirt, Thomas Holenstein, and
Adam Smith. Detectable Byzantine agreement secure against faulty ma-
jorities. In Proceedings of the 21st ACM Symposium on Principles of
Distributed Computing (PODC ’02), pages 118–126, 2002.

[FHHW03] Matthias Fitzi, Martin Hirt, Thomas Holenstein, and Jürg Wullschleger.
Two-threshold broadcast and detectable multi-party computation. In Eli
Biham, editor, Advances in Cryptology — EUROCRYPT ’03, Lecture
Notes in Computer Science. Springer-Verlag, May 2003.

[FLM86] Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. Easy impossi-
bility proofs for distributed consensus problems. Distributed Computing,
1:26–39, 1986.

[FM97] Pesech Feldman and Silvio Micali. An optimal probabilistic protocol
for synchronous Byzantine agreement. SIAM Journal on Computing,
26(4):873–933, August 1997.

[FM00] Matthias Fitzi and Ueli Maurer. From partial consistency to global broad-
cast. In Proceedings of the 32nd Annual ACM Symposium on Theory of
Computing (STOC ’00), pages 494–503, 2000.

[GHY87] Zvi Galil, Stuart Haber, and Moti Yung. Cryptographic computation:
Secure fault-tolerant protocols and the public-key model. In Advances
in Cryptology: CRYPTO ’87, volume 293 of Lecture Notes in Computer
Science, pages 135–155. Springer-Verlag, 1987.

[GL90] Shafi Goldwasser and Leonid Levin. Fair computation of general functions
in presence of immoral majority. In Advances in Cryptology: CRYPTO
’90, volume 537 of Lecture Notes in Computer Science, pages 11–15.
Springer-Verlag, 1990.

[GL02] Shafi Goldwasser and Yehuda Lindell. Secure computation without agree-
ment. 16th International Symposium on Distributed Computing (DISC
’02). Preliminary version on
http://www.research.ibm.com/people/l/lindell, 2002.

[GLR95] Li Gong, Patrick Lincoln, and John Rushby. Byzantine agreement with
authentication: Observations and applications in tolerating hybrid and
link faults. In Proceedings of the 5th Conference on Dependable Computing
for Critical Applications (DCCA-5), pages 79–90, 1995.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any
mental game. In Proceedings of the 19th Annual ACM Symposium on
Theory of Computing (STOC ’87), pages 218–229. ACM Press, 1987.

[Gol01] Oded Goldreich. Secure multi-party computation, working draft, version
1.3, June 2001.

436 Matthias Fitzi, Thomas Holenstein, and Jürg Wullschleger

[LLR02] Yehuda Lindell, Anna Lysyanskaya, and Tal Rabin. On the composition
of authenticated Byzantine agreement. In Proceedings of the 34th Annual
ACM Symposium on Theory of Computing (STOC ’02), pages 514–523.
ACM Press, 2002.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine
generals problem. ACM Transactions on Programming Languages and
Systems, 4(3):382–401, July 1982.

[PW96] Birgit Pfitzmann and Michael Waidner. Information-theoretic pseudosig-
natures and Byzantine agreement for t >= n/3. Technical Report RZ
2882 (#90830), IBM Research, 1996.

[RB89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty
protocols with honest majority. In Proceedings of the 21st Annual ACM
Symposium on Theory of Computing (STOC ’89), pages 73–85, 1989.

[TC84] Russell Turpin and Brian A. Coan. Extending binary Byzantine agree-
ment to multivalued Byzantine agreement. Information Processing Let-
ters, 18(2):73–76, February 1984.

[WP89] Michael Waidner and Birgit Pfitzmann. Unconditional sender and recip-
ient untraceability in spite of active attacks — some remarks. Techni-
cal Report 5/89, Universität Karlsruhe, Institut für Rechnerentwurf und
Fehlertoleranz, 1989.

[Yao82] Andrew C. Yao. Protocols for secure computations. In Proceedings of
the 23rd Annual IEEE Symposium on Foundations of Computer Science
(FOCS ’82), pages 160–164, 1982.

A Reducing Broadcast to Weak Broadcast

In this section we describe how to efficiently reduce broadcast to weak broadcast
in a way that is more direct than in [FM00]. Given that at most t < n/2 play-
ers are corrupted the resulting protocol for broadcast is as secure as the given
protocol for weak broadcast.

In a first step, weak broadcast is transformed into a protocol for graded
consensus (Section A.1), the “consensus variant” of graded broadcast introduced
by Feldman and Micali in [FM97]; and finally, graded consensus is transformed
into broadcast (Section A.2).

A.1 Graded Consensus

In graded consensus, every player has an input x and receives two outputs, a
value y ∈ {0, 1} and a grade g ∈ {0, 1}. If all correct players start with the same
value x then all players output y = x and g = 1. Additionally, if any correct
player ends up with grade g = 1 then all correct players output the same value
y, i.e., computing g = 1 means “detecting agreement.”

Definition 3 (Graded Consensus). A protocol where every player pi has an
input xi ∈ {0, 1} and computes two output values yi, gi ∈ {0, 1} achieves graded
consensus if it satisfies the following conditions:

Multi-party Computation with Hybrid Security 437

– Validity: If all correct players have the same input value x then every
correct player pi computes yi = x and gi = 1.

– Consistency: If any correct player pi computes gi = 1 then every correct
player pj computes yj = yi.

The following protocol for graded consensus basically consists of two consec-
utive rounds wherein each player weak-broadcasts a value. Note that, in Step 4
of the protocol, the domain of weak broadcast is ternary, namely {0, 1,⊥}. Fol-
lowing the restriction to focus on protocols with binary domains we can simply
interpret such a protocol as being simulated by two parallel invocations of binary
weak broadcast.

Protocol 2 GradedConsensus(P, xi)
1. ∀j ∈ {1, . . . , n} : xj

i := WeakBroadcastpj (P, xj);

2. S0
i := {j ∈ {1, . . . , n}|xj

i = 0}; S1
i := {j ∈ {1, . . . , n}|xj

i = 1};
3. if |Sxi

i | ≥ n − t then zi := xi else zi := ⊥ fi;

4. ∀j ∈ {1, . . . , n} : zj
i := WeakBroadcastpj (P, zj);

5. T 0
i := {j ∈ {1, . . . , n}|zj

i = 0}; T 1
i := {j ∈ {1, . . . , n}|zj

i = 1};
6. if |T 0

i | > |T 1
i | then yi := 0 else yi := 1 fi;

7. if |T yi
i | ≥ n − t then gi := 1 else gi = 0 fi;

8. return (yi, gi)

Lemma 5 (Graded Consensus). If Protocol WeakBroadcast achieves weak
broadcast then Protocol 2 achieves graded consensus secure against t < n/2 cor-
rupted players.

Proof.
Validity: If all correct players hold the same value x at the beginning of the
protocol then, by the validity property of weak broadcast, |Sxi

i | ≥ n − t > t
for every correct player pi and thus zi = xi = x. Finally, |T x

i | ≥ n − t > t,
|T 1−x

i | < n − t, and yi = x and gi = 1.

Consistency: Note that every correct player pi that does not compute zi = ⊥
(in Step 3) holds the same value zi = z: By the validity property of weak
broadcast, |Sxi

i | ≥ n − t implies that |S1−xi

j | ≤ t < n − t.
Now, let pi and pj be two correct players and suppose that pi decides on

yi = y ∈ {0, 1} and gi = 1. We have to show that yj = y.
From gi = 1 it follows that |T y

i | ≥ n− t > t and thus that at least one correct
player pk must have sent zk = y during Step 4, and with the above remark, that
no correct player pk can have sent zk = 1 − y during Step 4.

Let � be the number of corrupted players who distributed value y during
Step 4. Now, |T y

i | ≥ n − t implies |T y
j | ≥ n − t − � > t − � and |T 1−y

j | ≤ t − �
since only the remaining t − � corrupted players can have sent value y during
Step 4. Thus, pj computes yj := y = yi.
�

438 Matthias Fitzi, Thomas Holenstein, and Jürg Wullschleger

A.2 Broadcast

For simplicity, without loss of generality, assume s = 1, i.e., that p1 is the sender
of the broadcast.

Protocol 3 Broadcastp1 (P, x1)
1. p1: Send x1; Receive(yi)
2. pi: for k = 2 to t + 1 do

3. (yi, gi) := GradedConsensus (P, yi);

4. pk: Send yk; Receive(yk
i)

5. if gi = 0 then yi := yk
i fi

6. od; return yi

Lemma 6. Suppose that Protocol GradedConsensus achieves graded consensus.
If in Protocol 3, for some k ∈ {2, . . . , t + 1}, every correct player pi holds the
same value yi = b at the beginning of Step 3 then yi = b holds at the end of the
protocol.

Proof. Suppose that yi = b ∈ {0, 1} for every correct player pi before Step 3 (for
some k). Because of the validity property of graded consensus, after Step 3, (for
k), every correct player pi holds yi = b and gi = 1, and thus ignores Step 5, (for
k). Thus, by induction, every correct player pi ends the protocol with yi = b.
�

Lemma 7 (Broadcast). If Protocol GradedConsensus achieves graded con-
sensus then Protocol 3 achieves broadcast with sender p1 (for any t < n).

Proof. We show that the validity and consistency properties of broadcast are
satisfied.
Validity: Suppose the sender p1 to be correct with input xs = b. Hence, every
correct player pi holds value yi = b before Step 3 for k = 2. And by Lemma 6,
every correct player pi ends the protocol with yi = b.
Consistency: If the sender is correct then consistency is implied by the validity
property. Assume now that p1 is corrupted. Hence there is a correct player pk

(k ∈ {2, . . . , t + 1}). We now argue that, for such a k where pk is correct, every
correct player pi holds the same value yi after Step 5. Then, together with
Lemma 6, the consistency property follows.

First, suppose that every correct player pi holds gi = 0 after Step 3. Then
all of them adopt pk’s value, yi = yk

i , and consistency follows from Lemma 6.
Suppose now, that any correct player pi holds gi = 1 after Step 3. Then, by the
consistency property of graded consensus, pk and every other correct player pj

hold yk = yi = yj , and consistency follows from Lemma 6.
�

Theorem 1. If at most t < n/2 players are corrupted then efficient achievability
of weak broadcast implies efficient achievability of broadcast.

Proof. Since the given construction for broadcast involves a polynomial number
of invocations of weak broadcast (2n(t + 1)), the theorem follows directly from
Lemma 7.
�

	Introduction
	Definitions and Notations
	Generic Broadcast Simulation for $@mathbf {t<n/2}$
	Tight Bounds
	Conclusion and Open Problems
	Reducing Broadcast to Weak Broadcast

