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Abstract. It is well-known that n players, connected only by pairwise
secure channels, can achieve unconditional broadcast if and only if the
number t of cheaters satisfies t < n/3. In this paper, we show that this
bound can be improved — at the sole price that the adversary can pre-
vent successful completion of the protocol, but in which case all players
will have agreement about this fact. Moreover, a first time slot during
which the adversary forgets to cheat can be reliably detected and ex-
ploited in order to allow for future broadcasts with t < n/2. This even
allows for secure multi-party computation with t < n/2 after the first
detection of such a time slot.
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1 Introduction

1.1 Unconditional Broadcast and Multi-Party Computation

In this paper we consider a set P of n players. The goal is to achieve broadcast (or
multi-party computation, in general), unconditionally secure against an active
(Byzantine) threshold adversary that may corrupt up to t of the n players, i.e.,
the adversary may take full control of the corrupted players and make them
deviate from the prescribed protocol in an arbitrary way. Unconditional security
means that, for some arbitrarily small (but a priori fixed) error probability ε, the
probability that the protocol fails is at most ε whereas no assumptions are made
about the adversary’s computational power. As a special case of unconditional
security, perfect security allows no probability of error (ε = 0).
The goal of broadcast is to have a sender consistently distribute some input value
to all players.



Definition 1. A protocol among n players such that one distinct player s (the
sender) holds an input value xs ∈ D (for some finite domain D) and all play-
ers eventually decide on an output value in D is said to achieve broadcast (or
Byzantine agreement) if the protocol guarantees that all correct players decide
on the same output value y ∈ D, and that y = xs whenever the sender is correct.

Some weaker definition of broadcast will be important in the sequel of this paper.

Definition 2. A protocol among n players such that one distinct player s (the
sender) holds an input value xs ∈ D and all players eventually decide on an
output value in D ∪ {⊥} (with ⊥/∈ D) is said to achieve weak broadcast if the
protocol guarantees the following conditions:

– If any correct player decides on some value y ∈ D then all correct players
decide on a value in {y,⊥}.3

– If the sender is correct then all correct players decide on y = xs.

Note that broadcast for any finite domain can be achieved by combining broad-
cast protocols for a single bit (D = {0, 1}) [TC84]. Hence, for the constructions
in the sequel, we will focus on protocols for binary broadcast.
Broadcast is a special case of the more general problem of secure multi-party com-
putation (MPC ) where the players want to distributedly evaluate some agreed
function on their inputs in a way preserving privacy of the players’ inputs and
correctness of the computed result.

1.2 Previous Work

Broadcast: For the standard communication model with a complete synchro-
nous network of pairwise authenticated channels, Pease, Shostak, and Lam-
port [PSL80] proved that perfectly secure broadcast is achievable if and only
if less than a third of the players is corrupted: t < n/3. This tight bound more
generally holds with respect to a network of secure channels and unconditional
security, i.e., when even allowing a negligible error probability, as proven by
Karlin and Yao [KY]. The first optimally resilient protocol that is efficient was
proposed by Dolev et al. [DFF+82]. For the case that broadcast among ev-
ery subset of three players is possible (in contrast to the standard model with
only pairwise communication), Fitzi and Maurer [FM00] proved that (global)
broadcast is possible if and only if t < n/2. In another line of research, Baum-
Waidner, Pfitzmann, and Waidner [BPW91,PW92] proved that broadcast during
some precomputation stage allows to later achieve broadcast that tolerates any
number of corrupted players (t < n), i.e., that the functionality of the prior
broadcast can be preserved for any later time.
Multi-party computation: The concept of general multi-party computation
(MPC) was introduced by Yao [Yao82] with a first complete solution given by
3 That is, interpreting ⊥ as “invalid”, this condition expresses that no two correct

players may decide on valid values that are distinct.



Goldreich, Micali, and Wigderson [GMW87] — though with computational se-
curity. Ben-Or, Goldwasser, and Wigderson [BGW88], and, Chaum, Crépeau,
and Damg̊ard [CCD88], proved that, in the standard model with pairwise se-
cure channels, unconditionally secure MPC is achievable if and only if t < n/3
by giving efficient protocols for the achievable cases. Beaver [Bea89], and inde-
pendently, Rabin and Ben-Or [RB89] later proved that, when additionally given
global broadcast among the players, unconditionally secure MPC is achievable
if and only if t < n/2 (see also Cramer et al. [CDD+99]). The result in [FM00]
hence implies that broadcast among three players (i.e., 2-cast) is sufficient in
order to achieve MPC for t < n/2.

1.3 Contributions

In this paper we investigate how the bound t < n/3 for the achievability of
broadcast can be improved. Obviously, this requires a modification of the model.

In a first model, additionally to pairwise authenticated communication channels,
we assume the existence of an external information source that distributes corre-
lated random variables to the players that correspond to some simple probability
distribution. We show that in this model broadcast and MPC are achievable for
t < n/2.

Our second model assumes only standard communication, namely pairwise se-
cure communication channels, but the goal is to achieve a slightly weaker form
of broadcast or MPC, called detectable broadcast (or MPC ), where the adver-
sary can force abortion of the protocol but in which case all correct players
have agreement about this fact, i.e., they commonly detect that the protocol
was not successful. Besides this, the adversary can neither violate correctness,
nor privacy, nor any other condition of the original problem. In other words,
the detectable variant of a problem can be seen as the original problem without
requiring robustness.
We show that detectable broadcast and MPC are achievable for t < n/2 by
presenting efficient protocols that are based on the protocols given for the model
involving an external information source. Consider, for example, the special case
of n = 3 and t = 1 where broadcast and MPC are not achievable. Our results
imply that such a protocol can nevertheless be run in an “optimistic” manner.
If no player is corrupted then the protocol satisfies all conditions of the original
problem whereas one corrupted player can only make the protocol abort in the
worst case. This is strictly more than previously achievable.
Furthermore, a slightly modified version of the protocol achieves that a first time
slot where the adversary is not actively cheating can be detected and exploited
in order to establish (standard) broadcast for the future. This could be seen as
a lunch-time attack against the adversary : if once the adversary is absent for a
short period4, the players can secure themselves for future broadcast that will
be reliable even when the adversary will be present again. Together with the
4 This could for instance be enforced by rebooting one or more of the servers.



result of [Bea89,RB89,CDD+99] this more generally allows for future MPC for
t < n/2 as soon as such a period has been detected.
As opposed to the results in the model with an external information source or
the results in [Bea89,RB89,CDD+99,FM00,BPW91,PW92], in this model, the
bound of t < n/2 is achieved from scratch, i.e., with no further assumptions on
the communication model than pairwise secure channels.
Our “optimistic” model is of particular interest when faults or corruption are
expected to be rare but to appear in bursts. Virus infections of servers, for
example, only occur from time to time but then it must be expected that many
servers get infected at the same time. A first phase where no server is infected
can thus be exploited in order to “vaccinate” the system against future infections
of any minority of the servers.

2 Summary of Required Previous Results

In this section we briefly summarize previous results that are important for the
results derived in this paper.

Proposition 1. [Bea89,RB89,CDD+99] Consider a set of n players. In the
communication model with a complete, synchronous network of pairwise secure
channels among the players and global broadcast channels unconditionally secure
MPC is (efficiently) achievable if and only if at most t < n/2 players are actively
corrupted.

Proposition 2. [FM00] Consider a set of n players. In the communication
model with a complete, synchronous network of pairwise authenticated channels
among the players and broadcast among each set of three players (i.e., 2-cast)
unconditionally secure global broadcast is (efficiently) achievable if and only if
at most t < n/2 players are actively corrupted.

Finally, an unconditionally secure protocol for weak 2-cast can be easily turned
into an unconditionally secure protocol for 2-cast. Consider a sender s and two
recipients r0 and r1. Then the following protocol Amplify achieves 2-cast.

Protocol 1: Amplify [Precondition: s, r0 and r1 have executed weak 2-cast]

1. s decides on his own input to the prior weak 2-cast;

2. r0, r1: exchange decision values y0 and y1;

3. rk (k ∈ {0, 1}): adopt other recipient’s decision value if and only if yk =⊥;

4. rk (k ∈ {0, 1}): if yk =⊥ then yk = 0 fi;

Note that resilience of this 2-cast protocol against one single corrupted player
immediately implies resilience against any number of corrupted players since,
in the presence of more than one corrupted player, the only condition to be
satisfied is that a correct sender decides on his own input value — which is
obviously guaranteed.



Proposition 3. [FM00] Consider a set of 3 players. In the model with a com-
plete, synchronous network of pairwise authenticated channels weak 2-cast (i.e.,
weak broadcast) unconditionally secure against one corrupted player implies ef-
ficient 2-cast unconditionally secure against any number of corrupted players.

Hence, as follows from the previous propositions, in order to show that global
broadcast or MPC are efficiently achievable for t < n/2, it is sufficient to show
that the simulation of weak 2-cast among any set of three players is possible that
is unconditionally secure against one corrupted player. This fact is captured by
the following proposition.

Proposition 4. Consider a set of n players.
In the model with a complete, synchronous network of pairwise authenticated
channels weak 2-cast unconditionally secure against one actively corrupted player
implies efficient broadcast unconditionally secure against t < n/2 actively cor-
rupted players.
In the model with a complete, synchronous network of pairwise secure channels
weak 2-cast unconditionally secure against one actively corrupted player implies
efficient MPC unconditionally secure against t < n/2 actively corrupted players.

3 Broadcast and MPC with External Information

It can be easily proven that an additional global random source (i.e., a bea-
con) does not help to improve the classical bound of t < n/3 for broadcast
(and hence for MPC in general) in the standard model by extending the proofs
in [FLM86,FGMO01]. However, by slightly modifying the functionality of such
a beacon, as described in the following section, it does. This functionality will
be exploited in order to simulate broadcast for t < n/2 and hence allowing for
general MPC with respect to the same bound.5

3.1 The Q-Flip Model

We assume the standard communication model with a complete (fully connected)
synchronous network of pairwise authenticated channels among the players. But
similarly to the model in [FM00] we assume some additional primitive among
each triple of players, called Q-Flip.
Q-Flip, as described for the three players p0, p1, and p2, is a random genera-
tor that (for every invocation), with uniform distribution, generates a random
permutation on the elements {0, 1, 2}, (x0, x1, x2) ∈ {(0, 1, 2), (0, 2, 1), (1, 0, 2),
(1, 2, 0), (2, 0, 1), (2, 1, 0)}, and sends the element xi (i ∈ {0, 1, 2}) to player pi.
5 Note that a straightforward solution could be achieved with the help of an external

information source that simulates the whole protocol in [BPW91]. However, this
would be a rather complex task to be performed by an information source requiring
a lot of mathematical structure. In contrast, our solution is based on very simple
correlated information.



No single player pi learns more about the permutation than the value xi which
he receives, i.e., a single player does not learn how the remaining two values are
assigned to the other players.
The Q-Flip primitive helps to build pairwise one-time pads between the players
(see Appendix A) and hence the authenticated channels can be easily turned
into secure channels. This allows us to assume secure pairwise communication
for the rest of this section.
The Q-Flip primitive was originally motivated by quantum entanglement con-
siderations about the Byzantine agreement problem. A detailed description of
the quantum physical aspects of our results is given in [FGM01].

3.2 Broadcast for t < n/2

Since weak 2-cast secure against one corrupted player implies efficient global
broadcast for t < n/2 (Proposition 4), it is sufficient to demonstrate the existence
of an efficient protocol for weak 2-cast that tolerates one corrupted player. We
now describe such a protocol for a sender s and two recipients r0 and r1.6

Let xs ∈ {0, 1} be the input of sender s, and y0 and y1 be the values the players
r0 and r1 finally decide on (whereas s always implicitly decides on ys = xs). The
primitive Q-Flip is invoked some m times and each player receives a sequence
of m elements in {0, 1, 2}, i.e., s receives Qs = (Qs[1], . . . , Qs[m]), r0 receives
Q0 = (Q0[1], . . . , Q0[m]), and r1 receives Q1 = (Q1[1], . . . , Q1[m]), where the
triplet (Qs[i], Q0[i], Q1[i]) represents the outcome of the i-th invocation of Q-
Flip. The protocol now proceeds as follows:
First, s sends to r0 and r1 his input bit xs and the set σs of all indices i ∈
{1, . . . , m} such that s received the complement of xs for the i-th invocation of
Q-Flip (see Figure 1–A):

σs = {i ∈ {1, . . . , m} : Qs[i] = 1− xs} . (1)

If this is done correctly then σs is of large size (i.e., approximately m/3, which is
important for good statistics on the corresponding Q-Flips) and both recipients
rk (k ∈ {0, 1}) never received the value 1 − xs for any Q-Flip invocation with
respect to σs: {i ∈ σs : Qk[i] = 1− xs} = ∅.
Let xk and σk (k ∈ {0, 1}) be the information that (potentially faulty) s actually
sent to recipient rk. The recipients now decide on yk = xk if and only if σk is of
large size and the value 1− xk was never received with respect to σk:

yk :=
{

xk , if (σk large) ∧ ({i ∈ σk : Qk[i] = 1− xk} = ∅)
⊥ , else .

(2)

Now, r0 sends to r1 his value y0 and the set ρ0 of all indices i ∈ σ0 such that he
received x0 for the corresponding Q-Flip invocation:

ρ0 = {i ∈ σ0 : Q0[i] = x0} . (3)
6 The protocol descriptions in this paper do not explicitly care about received values

that are outside a domain. We implicitly assume that any value received outside
some expected domain D is automatically replaced by an arbitrary value inside D.
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Fig. 1. (A) Possible outcomes of Q-Flip and selection of σs; (B,C) Basic cheating strate-
gies for s and r0.

If y0 6= y1 but y0, y1 ∈ {0, 1}, y1 now redecides in the following way:

y1 :=
{

y0 , if (ρ0 large) ∧ ({i ∈ ρ0 \ σ1 : Q1[i] = 2} almost= ρ0)
y1 , else .

(4)

We give a rough argumentation why none of the players can make the protocol
fail.

r1 faulty: r1 cannot significantly misbehave since r1 is silent.
s faulty: In order to make the protocol fail, s must achieve that r0 and r1 decide

on distinct values y0 6= y1 such that y0, y1 ∈ {0, 1} (Equation (2)) and that
r1 does not redecide on y1 = y0 according to Equation (4). The only way
to achieve this is to select x0 ∈ {0, 1} and x1 = 1 − x0, and to basically
compose large sets σ0 and σ1 as shown in Figure 1–B (as shown with respect
to x0 = 0).7 But then, r0 learns a large set ρ0 of indices i (Figure 1–B, last
row) such that, mainly, i /∈ σ1 and Q1[i] = 2 which will “convince” r1 to
redecide to y1 = y0 according to Equation (4).

r0 faulty: In order to make the protocol fail, r0 must achieve that r1 redecides
on y1 = y0 6= xs according to Equation (4). Since correct s sends σs =
{i ∈ {1, . . . , m} : Qs[i] = xs} to both players, r0 cannot come up with a large
set ρ0 of indices i such that most of them satisfy i /∈ σs and Q1[i] = 2 (see
Figure 1–C) since r0 cannot distinguish between the outcomes corresponding
to the first and the last row.8

The detailed protocol is described by Protocol Weak 2-Cast. There, two free
protocol parameters are introduced, m0 (m0 = Ω(m); m0 < m/6) for asserting
that the sets σs and ρ0 are of sufficiently large cardinality, and λ ( 1

2 < λ < 1) for
7 Note that for every selection i ∈ σk (k ∈ {0, 1}) such that Qs[i] 6= 1 − xk, it holds

with a probability of 1
2

that Qk[i] = 1 − xk, which makes rk decide on ⊥ according
to Equation (2).

8 Note, that r0 completely learns all instances indicated by an arrow but nothing more
about the other instances.



Protocol 2: Weak 2-Cast [s to send xs ∈ {0, 1} to rk (k ∈ {0, 1})]
0. s, r0, r1: invoke primitive Q-Flip m times;

1. s
send−→ r0, r1: xs, σs = {i ∈ {1, . . . , m} : Qs[i] = 1− xs}; [rk receives xk, σk]

s: ys := xs;

2. rk: if (|{i ∈ σk : Qk[i] = xk}| ≥ m0) ∧ ({i ∈ σk : Qk[i] = 1 − xk} = ∅) then

yk := xk

else yk :=⊥ fi;

3. r0
send−→ r1: y0, ρ0 = {i ∈ σ0 : Q0[i] = y0}; [r1 receives y01 and ρ01]

4. r1: if (⊥6= y01 6= y1 6=⊥) ∧ (|ρ01| ≥ m0) ∧
(|{i ∈ ρ01 \ σ1 : Q1[i] = 2}| ≥ λ |ρ01|) then

y1 := y01

fi;

the test according to Equation (4). Both parameters will be fixed for the final
analysis of the protocol, which is given in Appendix C. The analysis yields:

Theorem 1. In the Q-Flip model, unconditionally secure broadcast and MPC
are efficiently achievable for t < n/2.

Proof. The theorem follows from Lemma 9 and Proposition 4. ut
The following observation about the given protocol is important for the con-
struction of our protocol for the model in Section 4.

Observation 1: In Protocol Weak 2-Cast, player r1 does not send a single
message but only participates in a passive way. Even when turning the protocol
into 2-cast (by appending Protocol Amplify) the single message sent by r1 is
only considered by r0 if r0 has already reliably detected the sender s to be faulty.

4 Detectable Broadcast and MPC for t < n/2

We assume the standard communication model with a complete (fully connected)
synchronous network of pairwise secure channels among the players. Based on
the solution for the model in the previous section, we present a protocol for
detectable broadcast and MPC among n players that tolerates t < n/2 corrupted
players.

Definition 3. A protocol among n players is said to achieve detectable broad-
cast if it satisfies the following conditions:

– Correctness: If at most t < n/2 players are corrupted during the protocol
then all correct players commonly accept or commonly reject the protocol. If
they accept then the protocol achieves broadcast.



– Robustness: If no player is corrupted during the protocol then all players
accept.

– Fairness: If any correct player rejects the protocol then the adversary gets
no information about the sender’s input.

Note the difference between weak broadcast and detectable broadcast. Weak
broadcast only guarantees that no two correct players decide on distinct val-
ues inside the domain D. But generally, no player detects whether there are
still any correct players that decided on ⊥/∈ D. In contrast, at the end of de-
tectable broadcast, all correct players agree on whether or not broadcast has
been achieved.
Along the lines of [BPW91,PW92], detectable broadcast can be extended to a
precomputation protocol that, when once successfully completed, will allow for
future broadcast secure against t < n/2 corrupted players.

Definition 4. A protocol among n players is said to achieve detectable pre-
computation for broadcast (or MPC, respectively) if it satisfies the following
conditions:

– Correctness: If at most t < n/2 players are corrupted during the protocol
then all correct players commonly accept or commonly reject the protocol.
If they accept then, after the protocol, broadcast (or MPC, respectively) for
t < n/2 will be achievable.

– Robustness: If no player is corrupted during the protocol then all players
accept.

– Independence: A correct player’s intended input value for any precom-
puted broadcast (or MPC, respectively) is statistically independent from the
information he has sent during the precomputation.

Independence implies, first, that a correct sender is not required to already know
his input for any future protocol during the precomputation, and second, that
the adversary gets no information about any future inputs by correct senders.
As opposed to detectable broadcast, the advantage of detectable precomputation
for broadcast is that the preparation is separated from the actual execution of
the broadcasts, i.e., only the precomputation is “detectable”. As soon as the pre-
computation has been successfully completed standard broadcast with resilience
t < n/2 is achievable. By applying many detectable precomputations in parallel,
as many broadcasts can be precomputed for as will be later required. By using
the techniques in [PW92], in order to be able to perform u later broadcasts, the
number of broadcasts to be detectably computed for in advance can be made as
low as polynomial in n and logarithmic in u.

We now proceed by presenting according protocols for the special case n = 3
and t = 1. These solutions can then be extended to any n and t < n/2 based on
Proposition 4.



4.1 Detectable Precomputation for 2-Cast

The idea of our precomputation is to have recipient r1 (the silent recipient of
Protocol Weak 2-Cast) take the part of the Q-Flip source to correctly distribute
sequences Q, and to base future 2-cast on Protocol Weak 2-Cast of Section 3
using Q. Since r1 is silent during Protocol Weak 2-Cast, he will not be able to
exploit his complete knowledge about Q in order to mislead anybody else but
will be able to completely check consistency of information about Q provided by
any other player. In the case that r1 distributes this information correctly, this
setup will allow for some (limited) number of 2-casts by s (and even by r0 — by
having s and r0 switch their roles).
Clearly, we cannot guarantee that r1 performs this task correctly. But by cross-
checking, s and r0 will be able to detect any inconsistency in his information
that would enable the adversary to make a future 2-cast protocol (based on this
information) fail with any reasonable chance.
Finally, any player who has successfully completed this setup procedure will be
convinced that the Q-Flip information by r1 is indeed (mostly) consistent (at
least) among all correct players: r1 since he made up the states himself, and s
and r0 because the cross-check was successful.
However, this does not necessarily imply that the correct players agree on the pre-
computation outcome. The adversary can still enforce that some correct player
successfully completes (i.e., accepts) whereas the other one rejects the outcome.
Finally, in order to achieve agreement on the precomputation outcome, we have
s and r0 “2-cast” whether they accept using instances of the 2-cast protocol the
precomputation is actually preparing for but such that enough Q-Flip data re-
mains for one or more 2-casts (i.e., for the later 2-cast(s) we are in fact preparing
for). Note that these “2-casts” are not necessarily reliable, but:

Observation 2: (Note that we can assume that t = 1, see Proposition 3)
If r1 distributes inconsistent Q-Flip information then all correct players reject
already before the invocation of the two final 2-cast protocols. Hence, if any
correct player still accepts just before the invocation of the two final 2-cast
protocols then the Q-Flip information is consistent and hence the those protocols
achieve 2-cast.

Hence, if either s or r0 “2-casts” his rejection at the end of the precomputation
then all correct players that are not yet rejecting redecide to reject (since they
know that the final 2-cast protocols are reliable). On the other hand, if the final
2-cast protocols are unreliable, then all correct players have already decided to
reject before, and they simply ignore whatever is communicated during the last
round.
We now proceed with a more detailed description of the protocol in three steps.
Protocol VerifSetup describes how r1 prepares and distributes Q and how s and
r0 cross-check their information gotten from r1. Protocol Conditional 2-Cast
describes an algorithm for 2-cast based on sequences Q as generated by player
r1. Finally, these two protocols are combined in order to obtain our final protocol
for detectable precomputation, Protocol OptPrecomp.



Verifiable Setup of Q-Flip Information A straightforward way to get a
verifiably correct setup Q would be a cut-and-choose manner where r1 prepares
more information than finally required of which s and r0 would select a random
part for testing which then would be discarded whereas the remaining part would
be kept. The problem of this approach is that also r1 (who sets up the states)
must learn which part has been discarded — information that would have to be
distributed by broadcast, which is not yet available.
As a consequence, in the following protocol, yet some partial information is
tested by s and r0 but is not discarded. It can be shown that the information
thus leaked to s and r0 will not help anyone of them in order to disrupt the final
2-cast based on this setup.

Protocol 3: VerifSetup [s, r0, r1 to prepare shared Q-Flip Information]

0. All players start with status ACCEPT.
1. r1 sets up m = 6µ Q-Flip states each such that each possible outcome occurs

exactly µ times; randomly permutes the states, and secretly sends the according
values to s and r0.

2. s and r0 locally check whether they hold exactly m
3

= 2µ of each value (0, 1, 2).
Anybody whose check fails changes to status REJECT.

3. r0 sends to s his status (ACCEPT or REJECT) and, if he accepts, τ � m
random indices in {1, . . . , m} and his according values.

4. s checks whether all those values from r0 differ from his own values for the
according states. If r0 sent REJECT or if the check fails (i.e., reveals collisions)
then s sets his status to REJECT.

5. s tells r0 his status.
6. If s sent REJECT then r0 sets his status to REJECT.

Notice that r1 can undetectedly misbehave by distributing the 6 possible states
with non-uniform cardinality, e.g., by repeatedly setting up only the three states
determined by (Qs[i] = 0, Q0[i] = 1), (Qs[i] = 1, Q0[i] = 2), and (Qs[i] =
2, Q0[i] = 0) — which makes s and r0 nevertheless accept according to steps 2
and 4. However, regarding players s and r0 being correct we shall see that, for
the final 2-cast protocol, we only require that each player holds 2µ of each value
in {0, 1, 2} and that there are (almost) no collisions Qs[i] = Q0[i].

Conditional 2-Cast Conditional 2-cast is a protocol based on one instance of
protocol VerifSetup. The goal of this protocol is that, given that any correct
player accepted the setup protocol, the protocol achieves 2-cast with overwhelm-
ing probability. Note that besides its termination we do not require anything for
this protocol for the case that all correct players rejected the setup protocol.
The protocol is described by Protocol Conditional 2-Cast, which is basically
still the same as for the model of Section 3 (i.e., Protocol Weak 2-Cast followed
by Protocol Amplify). We give a short motivation for the changes compared to
the former protocol.



– Step 0 drops out since the Q-Flips are provided by Protocol VerifSetup.
– Step 1: r1 has full knowledge of Q — hence only xs is sent to r1.
– Step 2: We exploit that exactly 2µ of each value must be prepared (as is

required by Protocol VerifSetup) in order to enforce good statistical prop-
erties of σ0. Note that the condition (|{i ∈ σ0 : Q0[i] = x0}| ≥ m0) must not
be checked anymore because faulty r1 could have undetectedly avoided such
states during setup. The only thing to be checked is that s claims no col-
lisions — which is weakened to allow ε0 collisions because r1 undetectedly
could have set up a small portion of such errors.

– Step 3: r0 sends his original data from s since r1 can recalculate everything.

Protocol 4: Conditional 2-Cast [s to distribute xs ∈ {0, 1} to rk (k ∈ {0, 1})]
1. s

send−→ r0, r1: xs; [rk (k ∈ {0, 1}) receives xk]

s
send−→ r0: σs = {i ∈ {1, . . . , m} : Qs[i] = 1 − xs}; [r0 receives σ0]

s: ys := xs;

2. r0: if (|σ0| = 2µ) ∧ (|{i ∈ σ0 : Q0[i] = 1− x0}| < ε0) then

y0 := x0

else y0 :=⊥ fi;

r1: y1 := x1;

3. r0
send−→ r1: x0, σ0; [r1 receives x01 and σ01]

4. r1: determine y01 as r0 determines y0 according to step 2;

ρ01 := {i ∈ σ01 : Q0[i] = y01};
if (⊥6= y01 6= y1 6=⊥) ∧ (|ρ01| ≥ m0) ∧

(|{i ∈ ρ01 : Q1[i] = 2}| ≥ λ |ρ01|) then

y1 := y01

fi;

5. Amplify;

Definition 5. Let Pfail|acc be the probability that conditional 2-cast based on Q
(as computed by the corresponding protocol VerifSetup) does not achieve 2-
cast, given that one correct player (s, r0, or r1) accepted at the end of protocol
VerifSetup.

It remains to prove that Pfail|acc can be made negligibly small (with the protocol
remaining efficient). Our detailed proof would exceed the space limits of this pa-
per and is hence omitted. We restrict ourselves to an informal (though plausible)
argument:

– faulty s or r0 cannot successfully misbehave since then r1 is correct and sets
up Q correctly; and only a small part of the states is revealed during the
precomputation phase.



– r1 cannot successfully misbehave since Q can only contain a small fraction
of incorrect triplets (otherwise the precomputation would have failed), and
since r1 is silent.9

Lemma 1. There exist parameters µ, τ < µ, ε0, m0, and λ for the protocols
VerifSetup and Conditional 2-Cast such that the following conditions hold:

– If Protocol Conditional 2-Cast with the given parameters is based on a set
Q that has been set up with Protocol VerifSetup with the given parameters
which itself has been accepted by at least one correct player then the proba-
bility Pfail|acc that the protocol does not achieve 2-cast is exponentially small
in µ.

– Independently of Q, the protocol always terminates.

Detectable Precomputation for b later 2-casts The final protocol for
detectable precomputation is described in detail by Protocol OptPrecomp. It
precomputes shared information for b later broadcast instances.

Protocol 5: OptPrecomp [s, r0, r1 to precompute for b 2-casts]

0. All players start in a status of ACCEPT.
1. Run b + 2 executions of Protocol VerifSetup resulting in sets S1, . . . , Sb+2 of

Q-Flip information.
2. s and r0 decide on ACCEPT if and only if they accepted all b + 2 executions

of Protocol VerifSetup in step 1.
3. s and r0 broadcast their status by applying Protocol Conditional 2-Cast with

help of the sets Sb+1 and Sb+2.
4. Anybody who received REJECT for one of the 2-casts sets his status to RE-

JECT.

We now show that, whenever the probability Pfail|acc is negligible, the correct
players agree on their decision at the end of the precomputation and that, in
case they accept, all b later 2-casts work correctly — both with overwhelming
probability.

Lemma 2.
1. At the end of protocol OptPrecomp the correct players will agree on their

decision (ACCEPT or REJECT) with an error probability of at most P1 ≤
2Pfail|acc. Moreover, if all players are correct, they will all agree on ACCEPT
with error probability 0.

2. If the correct players accept the precomputation then, with an overall error
probability of at most P2 ≤ bPfail|acc, all b later 2-casts work reliably. More-
over, if all players are (and will be) correct, then all 2-casts work with error
probability 0.

9 More precisely, the single message by r1 that is sent during the amplification protocol
in step 5 is only considered if r1 is in fact correct.



Proof.

1. We distinguish two cases.
(a) At least one correct player accepts after step 2 of the protocol: Then each

conditional 2-cast in step 3 achieves 2-cast with an error probability of
at most Pfail|acc (see Definition 5). If now all correct players reject at the
end of the protocol we are done. On the other hand, suppose that any
correct player accepts at the end of the protocol. This player neither
sent nor received a REJECT during step 3, and hence, with an error
probability of at most P1 ≤ 2Pfail|acc, no other player sent or received a
REJECT during step 3, and all correct players accept after step 4.

(b) All correct players reject after step 2: Since no correct player ever changes
from REJECT to ACCEPT, all correct players will reject at the end of
the protocol.

Finally, it can be easily seen by inspection that, in the case that all players
are correct, all players agree on ACCEPT with error probability 0.

2. Any correct player that accepts at the end of the protocol already accepts
after step 2 of the protocol and hence, by the definition of Pfail|acc, the overall
error probability is at most P2 ≤ bPfail|acc. Furthermore, if all players are (and
will be) correct, none of the 2-cast protocols can fail. ut

The full analysis of Protocol OptPrecomp together with Lemma 2 and Proposi-
tion 3 yields:

Lemma 3. In the secure-channels model, efficient detectable precomputation for
2-cast among n = 3 players is achievable for any number of actively corrupted
players (t < n).

Together with Proposition 1 we get:

Corollary 1. In the secure-channels model, efficient detectable precomputation
for MPC among n = 3 players secure against one actively corrupted player
(t = 1) is achievable.

4.2 Detectable Precomputation for General n

In order to obtain a detectable precomputation protocol for general n and t <
n/2, Protocol OptPrecomp can be applied in parallel for each triple of players
and for every selection of a sender among them (i.e., 3

(
n
3

)
parallel protocols).

We only need the following, minor changes:

1. The steps 5 of all parallel invocations of protocol VerifSetup are merged
by having each of the n players tell each other whether or not he accepts
with respect to all triples he is involved in, and to have each player reject in
step 6 on any single reception of REJECT.



2. Protocol Conditional 2-Cast is turned into global conditional broadcast
by applying the construction in [FM00].10

3. The steps 3 of all parallel invocations of protocol OptPrecomp are merged by
having each player globally broadcast his status and by having the players
decide to reject in step 4 on one single reception of REJECT for any one of
the broadcasts.

4. In the final (conditional) broadcast protocol, each player of each a triple is
involved as a sender in 2t different 2-casts with respect to this triple [FM00].
Furthermore, n instead of 2 conditional broadcasts are executed during step 3
of Protocol OptPrecomp. Hence, instead of b + 2 invocations of VerifSetup,
2t(b+n) of them are required for each triple of players and for each selection
of a sender among them.

The following Theorem immediately follows:

Theorem 2. In the secure-channels model, efficient detectable precomputation
for broadcast and MPC for n players and t < n/2 is achievable.

Furthermore, detectable MPC can even be achieved in a slightly weaker model
than with secure channels, namely in a model with classical authenticated chan-
nels and quantum channels. Since every player has the possibility to initiate
rejection of the precomputation, we can apply quantum key agreement [BB84]
in parallel to Protocol OptPrecomp. Whenever any quantum channel between
two correct players would be eavesdropped they would detect it and just initiate
rejection of the whole precomputation.

Theorem 3. In the model with classical authenticated channels and quantum
channels, efficient detectable precomputation for broadcast and MPC for n play-
ers and t < n/2 is achievable.

5 Conclusions

To the best of our knowledge we have given the first examples of unconditionally
secure protocols for broadcast and MPC in the secure channels model that tol-
erate t < n/2 active player corruptions from scratch, i.e., without any additional
assumptions on the communication — at least in a way that the adversary can-
not achieve anything more than make all players commonly abort the protocol.
For the case of n = 3 players this is strictly more than previously achieved.
For the case of general n > 3 it is achieved at the price that the adversary
may cause non-completion only by corrupting one single player but requiring
permanent corruption.
10 Replacing every invocation of ordinary 2-cast by conditional 2-cast in their protocol

immediately yields conditional global broadcast since a player who accepts after
step 2 of the merged Protocol OptPrecomp knows that all triples involving correct
players share correct Q-Flip information.
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A Generation of One-Time Pads in the Q-Flip Model

Alice and Bob can generate a one-time pad (OTP) of length approximately k by
using 3k Q-Flip invocations shared with an arbitrary third player Charlie and
reporting to each other where they got a value different from 2. By this exchange
of information Charlie does not get any additional information about the actual
outcome of the Q-Flip invocations. Finally, the OTP is formed by those Q-Flip
instances where both, Alice and Bob, got either 0 or 1, e.g., by Alice’s according
bits — which are the complements of Bob’s.

B Chernoff and Hoeffding Bounds

For a detailed analysis of our protocols we will apply Chernoff and Hoeffding
bounds [Hoe63,Chv79] in order to estimate upper bounds on their error proba-
bilities.
The Chernoff bound gives an upper bound on the probability that of n indepen-
dent Bernoulli trials the outcome deviates from the expected value by a given
fraction.

Let Xi (1 ≤ i ≤ n) be a sequence of independent random variables with expected
value µ. By C(µ, n, λ) we denote the Chernoff bound as follows

λ < 1 : C↓(µ, n, λ) = Prob(
∑n

i=1 Xi ≤ λ µn) ≤ e−
µn
2 (1−λ)2

λ > 1 : C↑(µ, n, λ) = Prob(
∑n

i=1 Xi ≥ λ µn) ≤ e−
µn
3 (λ−1)2

(5)

Furthermore, a bound by Hoeffding can be used to estimate tail probabilities
of hypergeometric distributions. By the term H(N, K, n, k) we refer to a setting
where N items are given of which K are “good”. The experiment consists of
selecting n out of the N items at random, and H(N, K, n, k) denotes the proba-
bility that at least k of the n selections are “good”. Let t = k

n− K
N . The following

inequation holds for any t such that 0 ≤ t ≤ 1− K
N [Chv79],

H(N, K, n, k) =
n∑

i=k

(
K

i

)(
N −K

n− i

)(
N

n

)−1

≤ e−2t2n . (6)

C Broadcast and MPC with an External Information
Source: Details

Lemma 4. Let λ0 < 1 and λ1 > 1. The probability Pstats that of m invocations
of Q-Flip any one of the six possible outcomes in {(0, 1, 2), . . . , (2, 1, 0)} occurs
either less than m0 = λ0

m
6 < m

6 or more than m1 = λ1m > m
6 times satisfies

Pstats ≤ 6max (C↓(1
6 , m, λ0), C↑(1

6 , m, λ1)).11

11 See Appendix B for the definition of C↓ and C↑.



Proof. The according probability for each particular outcome, e.g. (0, 1, 2), can
be independently estimated by the Chernoff bound (with random variable Xi

representing the i-th Q-Flip). The overall probability is at most as large as the
sum of these six probabilities (union bound). ut
Lemma 5 (All players correct). If all players are correct and each possible
outcome of Q-Flip appears at least m0 times, then protocol Weak 2-Cast achieves
weak 2-cast.

Proof. By the given assumptions we have σs = σ0 = σ1 and xs = x0 = x1 after
step 1 of the protocol. Since σs = {i ∈ {1, . . . , m} : Qs[i] = 1− xs}, it holds for
both recipients rk that

{i ∈ σk : Qk[i] = 1− xk} = ∅ ∧ |{i ∈ σk : Qk[i] = xk}| ≥ m0 .

Hence y0 = y1 = xs after step 3 and hence also at the end of the protocol. ut
The following corollary follows from Observation 1 on page 6.

Corollary 2 (r1 possibly faulty). If the players s and r0 are correct and each
possible outcome of Q-Flip appears at least m0 times, then protocol Weak 2-Cast
achieves weak 2-cast.

It now remains to determine upper bounds on the error probability for the cases
that s is faulty (Ps) or that r0 is faulty (Pr0). The following lemma will be used
for the analysis of the former case in the proof of Lemma 7.

Lemma 6. If each possible outcome of Q-Flip appears at least m0 times and at
most m1 times and if (faulty) sender s submits x0 ∈ {0, 1} to r0 and x1 = 1−x0

to r1 and selects k indices i ∈ {1, . . . , m} such that either

– i ∈ σ0 ∩ σ1, or
– i ∈ σ0 \ σ1 such that Qs[i] = 2

then y0 = x0 and y1 = 1−x0 (i.e., disagreement) holds at the end of the protocol
with a probability of at most ( m1

m0+m1
)k.

Proof. If s submits one single index i ∈ σ0 ∩ σ1 then either Q0[i] = 1 − x0 or
Q1[i] = 1− x1 with a probability of at least m0

m0+m1
(since the only information

by s is Qs[i] and hence s risks, with the according probability, to produce a
collision on either recipient’s side which makes him decide on ⊥).

On the other hand, if s submits one single index i ∈ σ0 \ σ1 such that Qs[i] = 2
(the only possibility in order to achieve that Q0[i] = x0 and Q1[i] 6= 2) then
r0 decides on ⊥ with a probability of at least m0

m0+m1
(since s risks, with the

according probability, to produce a “collision” on r0’s side which makes him
decide on ⊥).

Finally, in order to achieve that y0 = x0 and y1 = 1−x0 holds at the end of the
protocol, s must prevent any single collision for all k index selections. This can
be achieved with a probability of at most ( m1

m0+m1
)k. ut



Lemma 7 (s possibly faulty). If the players r0 and r1 are correct and each
possible outcome of Q-Flip appears at least m0 times and at most m1 times,
then protocol Weak 2-Cast fails to achieve weak 2-cast with probability at most

Ps <
(

m1
m0+m1

)(1−λ)m0

.

Proof. The only way for s to make the protocol fail is to force the recipients
to decide on distinct bits, i.e., y0 = x0 = b ∈ {0, 1} and y1 = x1 = 1 − b.
Hence both recipients must already decide on those values during step 3 of the
protocol, which implies |ρ01| = |ρ0| ≥ m0 — since r0 would set y0 =⊥ otherwise.
Furthermore, r0 must not be able to convince r1 to redecide on y1 = y01 = y0

during step 5 of the protocol. Since the first two conditions according to step 5
are satisfied, i.e.,

• ⊥6= y0 = y01 6= y1 (since the recipients hold distinct bits), and
• |ρ01| ≥ m0 (see above),

the last condition must be violated, i.e., it must hold that

|{i ∈ ρ01 \ σ1 : Q1[i] = 2}| < λ |ρ01| .

Hence s must find some ` > (1− λ) |ρ01| ≥ (1− λ)m0 indices i such that either

• i ∈ ρ01 ∩ σ1 (⊆ σ0 ∩ σ1) , or

• i ∈ ρ01 \ σ1 ∧ Q1[i] 6= 2 (and hence Qs[i] = 2) ,

such that no collision occurs. By Lemma 6 this happens with probability at most

Ps <
(

m1
m0+m1

)(1−λ)m0

. ut

Lemma 8 (r0 possibly faulty). If the players s and r1 are correct and each
possible outcome of Q-Flip appears at least m0 times and at most m1 times then,
for any λ > m1

m0+m1
, protocol Weak 2-Cast fails to achieve weak 2-cast with a

probability of at most Pr0 ≤ H(m, m1, m0, λm0).12

Proof. The only way for r0 to make the protocol fail is to make r1 adopt y1 :=
y01 6= xs during step 5 of the protocol. Hence the following conditions must hold:

• (y01 = 1− y1 = 1− xs) ,

• (|ρ01| ≥ m0) ,

• (|{i ∈ ρ01 \ σ1 : Q1[i] = 2}| ≥ λ |ρ01|) .

Let u = |ρ01| ≥ m0. Since s is correct and hence

{i ∈ {1, . . . , m} : Qs[i] = 1− xs = y01 ∧ Q1[i] = 2} ⊆ σs = σ1 ,

r0 must select u indices i such that for λu of them it holds that i /∈ σs, and
Q0[i] = y01, and Q1[i] = 2. An optimal strategy in order to achieve this is by
12 See Appendix B for the definition of H.



randomly selecting m0 indices i such that Q0[i] = 1 − xs (corresponding to
random selections from the first and the last row in Figure 1–C).
This process corresponds to a hypergeometric distribution with N = m, K = m1,
and n = m0 (see Section B). The probability for r0 to succeed is hence given
by the tail of this distribution according to k ≥ λm0. By Equation (6), for any
λ > m1

m0+m1
, this probability can be estimated as

Pr0 ≤ H(m, m1, u, λu) ≤ H(m, m1, m0, λm0) ≤ e
−2

�
λ− m1

m0+m1

�2
m0 .

ut
Lemma 9. For every desired security parameter k > 0 there exist parameters m,
m0, and λ such that protocol Weak 2-Cast has communication and computation
complexities polynomial in k and achieves weak 2-cast with an error probability
of at most Pf < e−k.

Proof. We let λ0 = 3
4 and λ1 = 5

4 , and fix the parameterization of the protocol
as follows such that there is only one free parameter left, namely m, the number
of Q-Flip invocations:

m0 = λ0
m
6 = m

8

m1 = λ1
m
6 = 5m

24

λ = λ0 = 3
4

Now, as a function of security parameter k, let m
!≥ 288 (k + 2). According to

Corollary 2 and Lemmas 4, 7, and 8 we get the following estimations:

Pstats ≤ 6 max (C↓(1
6
, m, λ0), C↑(1

6
, m, λ1)) ≤ 6e−

m
288 (7)

Pr1 = 0 (8)

Ps ≤
(

m1

m0 + m1

)(1−λ)m0

=
(

λ1

λ0 + λ1

)(1−λ)λ0m

=
(

8
5

)− m
32

< e−
m
69 (9)

Pr0 ≤ e
−2

�
λ− m1

m0+m1

�2
m0 = e

−2
�

λ− λ1
λ0+λ1

�2
m0 = e−

3m
128 ≤ e−

m
43 (10)

Finally, the overall error probability can be estimated by the sum of the prob-
abilities that either the statistics of Q-Flip fail, i.e., that at least one of the six
possible outcomes appears less than m0 or more than m1 times, or that, given
good statistics, a faulty player can nevertheless successfully misbehave:

Pf ≤ Pstats + max(Pr1 , Ps, Pr0) ≤ 6e−
m
288 + e−

m
69 < 7e−

m
288 < e−

m−576
288 ≤ e−k .

ut


