
Perfect MPC over Layered Graphs

Bernardo David1(B), Giovanni Deligios2, Aarushi Goel3, Yuval Ishai4,
Anders Konring1, Eyal Kushilevitz4, Chen-Da Liu-Zhang3,

and Varun Narayanan4

1 IT University of Copenhagen, Copenhagen, Denmark
beda@itu.dk

2 ETH Zurich, Zürich, Switzerland
3 NTT Research, Sunnyvale, USA

4 Technion - Israel Institute of Technology, Haifa, Israel

Abstract. The classical “BGW protocol” (Ben-Or, Goldwasser, and
Wigderson, STOC 1988) shows that secure multiparty computation
(MPC) among n parties can be realized with perfect full security if
t < n/3 parties are corrupted. This holds against malicious adversaries in
the “standard” model for MPC, where a fixed set of n parties is involved
in the full execution of the protocol. However, the picture is less clear
in the mobile adversary setting of Ostrovsky and Yung (PODC 1991),
where the adversary may periodically “move” by uncorrupting parties
and corrupting a new set of t parties. In this setting, it is unclear if full
security can be achieved against an adversary that is maximally mobile,
i.e., moves after every round. The question is further motivated by the
“You Only Speak Once” (YOSO) setting of Gentry et al. (Crypto 2021),
where not only the adversary is mobile but also each round is executed
by a disjoint set of parties. Previous positive results in this model do not
achieve perfect security, and either assume probabilistic corruption and
a nonstandard communication model, or only realize the weaker goal of
security-with-abort. The question of matching the BGW result in these
settings remained open.

In this work, we tackle the above two challenges simultaneously. We
consider a layered MPC model, a simplified variant of the fluid MPC
model of Choudhuri et al. (Crypto 2021). Layered MPC is an instance
of standard MPC where the interaction pattern is defined by a layered
graph of width n, allowing each party to send secret messages and broad-
cast messages only to parties in the next layer. We require perfect secu-
rity against a malicious adversary who may corrupt at most t parties in
each layer. Our main result is a perfect, fully secure layered MPC pro-
tocol with an optimal corruption threshold of t < n/3, thus extending
the BGW feasibility result to the layered setting. This implies perfectly
secure MPC protocols against a maximally mobile adversary.

1 Introduction

The goal of classic Secure Multiparty Computation (MPC) protocols is for a set
of n mutually distrusting parties to jointly compute a function on their secret

This paper is a merged version of the papers [19,20].
c© International Association for Cryptologic Research 2023
H. Handschuh and A. Lysyanskaya (Eds.): CRYPTO 2023, LNCS 14081, pp. 360–392, 2023.
https://doi.org/10.1007/978-3-031-38557-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38557-5_12&domain=pdf
https://doi.org/10.1007/978-3-031-38557-5_12

Layered MPC 361

inputs without revealing anything but the output of the function. The protocols
are typically run in the presence of an adversary and security is guaranteed if
no more than t out of the n parties in the system are compromised for the
duration of the entire protocol. In this setting, the well known result by Ben-or,
Goldwasser and Wigderson [4] (BGW) shows that it is possible to achieve perfect
full security when t < n/3, i.e. security against an unbounded active adaptive
adversary corrupting t < n/3 parties with guaranteed output delivery (G.O.D.).

Inspired by real-world scenarios with long-running computations where par-
ties may recover from corruptions, Ostrovsky and Yung [41] put forward a notion
of a mobile adversary that is able to compromise all parties eventually, but is
limited to a threshold of t out of n parties at any given time. In this setting, an
execution is divided in rounds that are grouped into epochs. The adversary can
“move” at the onset of every epoch by choosing a new set of parties to corrupt
and remains static for the remainder of the epoch. Former corrupted parties are
“rebooted” into a clean initial state (or, equivalently, update their internal state
and securely erase past state). In [41], it is proven that there exists a fully secure
proactive MPC protocol in the presence an active mobile adversary but allowing
only a small constant fraction of corrupted parties. Subsequent works [2,3,22,34]
explored more efficient protocols with other security guarantees under further
restrictions on the mobile adversary, but still fell short of 1-round epochs or
achieving the optimal corruption threshold (t < n/3) of BGW.

Departing from player replaceability1 and anonymous committees of dis-
tributed ledgers, the notion of You Only Speak Once (YOSO) MPC (introduced
in [28]) takes proactive security one step further, by having a freshly elected
anonymous committee of parties execute each round of the protocol. As an extra
restriction, parties are only allowed to send messages once (i.e. when they exe-
cute their role in the protocol). However, YOSO assumes parties can use ideal
target-anonymous channels to send messages to parties who are elected to exe-
cute a role in any future round without learning their identities. The fact that
each round is executed by anonymous parties elected at random, makes the cor-
ruption model probabilistic: even though an adaptive adversary may corrupt any
party at any time (up to a corruption threshold t), it only successfully corrupts a
party executing a certain round with some small constant probability (given that
committees are large enough). In this setting, it was shown [28] that statistically
secure MPC with G.O.D. is possible when the adversary corrupts t < n/2 par-
ties, albeit not for constant n due to probabilistic corruptions. Fluid MPC [13] is
a variant of this model without target-anonymous channels, where parties may
act in more than one round before being substituted, but the results presented
in [13] fall short of full security, as they do not achieve G.O.D. Another variation
was shown in SCALES [1], which allows for special clients who provide an input
and receive an output to act in more than one round (while server committees
may only act once), focusing on protocols with computational security.

1 A term from [30] for protocols where a new set of parties executes each round.

362 B. David et al.

Inspired by the original mobile adversary characterized by [41] and the recent
line of work on MPC with dynamic committees [1,13,28], we ask again the
question originally settled in BGW [4] but now in a more challenging setting:

Is it possible to construct MPC with dynamic committees achieving perfect full
security against an adaptive rushing adversary and with optimal corruption

threshold?

1.1 Our Contributions

Layered MPC. We first define layered MPC, which captures the most stringent
setting in the intersection of the mobile adversary and the YOSO models. In
layered MPC, parties communicate through a directed layered graph of d layers
corresponding to each protocol round. Each round is executed by a unique set
of n parties sitting at a layer, which is disjoint from all other sets of parties in
other layers. Parties in one layer can only receive messages from parties in the
immediately previous layer and send messages to the parties in the immediately
next layer. We consider an active, adaptive, rushing adversary that corrupts up
to t out of n parties in each layer. We write (n, t, d)-layered MPC as shorthand
for a layered MPC protocol with d layers (i.e. rounds) of n parties out of which
t may be corrupted. We provide a formalization of this model and show that
layered MPC protocols can be analyzed within well established frameworks such
as the real/ideal world paradigm [8,31] and Universal Composability [9].

Layered MPC is similar to maximally-Fluid MPC [13] with parties only exe-
cuting one round. We show that a secure layered MPC protocol is also secure
against a maximally mobile adversary [41], that moves after every round. In
comparison to YOSO [28], layered MPC imposes stronger restrictions on honest
parties, who cannot receive a message from a party in an arbitrary past com-
mittee or send a message to a party in an arbitrary future committee. Moreover,
similar to Fluid MPC, the adversary is not restricted to probabilistic corrup-
tions but is limited to corrupting t out n parties in each layer, allowing for
threshold-optimal protocols.

Main Results. In Sect. 3 we construct basic primitives that help realize layered
VSS based on CNF2 (replicated) secret sharing. We present a nontrivial adap-
tation of a VSS protocol of Gennaro et al. [27] to the layered setting. The main
challenge is to eliminate the repeated interaction between the parties and the
dealer, which is not possible in the layered setting. While CNF-based protocols
scale exponentially with n, they are simpler than their Shamir-based counter-
parts that we will present next, and can have efficiency advantages for small
values of n, especially when settling for computational security.

Theorem 1 (CNF-Based Layered VSS). For any n, t such that t < n/3,
and d ≥ 5, there exists an (n, t, d)-layered MPC protocol realizing CNF-VSS. For
2 In CNF-based secret sharing, the secret is first split into

(
n
t

)
additive shares–a share

rT for each set T ⊂ [n] of size t–and party i receives all shares rT such that i �∈ T .

Layered MPC 363

d = O(1) and secrets of length �, the protocol requires � · 2O(n) bits of communi-
cation, counting both point-to-point messages and broadcast. When settling for
computational security with perfect correctness and using a black-box PRG with
seed length λ, there is a protocol with λ · 2O(n) + O(n�) bits of communication.

In Sect. 4 we build on the above VSS protocol to obtain a general layered
MPC protocol based on CNF secret sharing. The protocol applies to layered
arithmetic circuits, in which each layer of the circuit only takes inputs from the
previous layer. Every circuit of depth D can be converted to a layered circuit with
D layers, incurring at most a quadratic but typically (nearly) linear overhead
to the circuit size. Building on a constant-round protocol from [17], in the full
version of this paper [19] we describe how to amortize the overhead of CNF
secret sharing by settling for computational security.

Theorem 2 (CNF-Based Layered MPC). Let f be an n-party functionality
computed by a layered arithmetic circuit C over a finite ring, with D layers and
M gates. Then, for any t < n/3, there is an (n, t, O(D))-layered MPC protocol
for f . The communication consists of 2O(n) · M ring elements. Alternatively,
settling for computational security with perfect correctness and using a black-
box PRG with seed length λ, there is a (n, t, O(1))-layered MPC protocol for a
Boolean circuit (i.e., the ring is F2) with M gates with λ · 2O(n)+O(n5 ·M) bits
of communication.

While the CNF-based protocols are relatively simple and have concrete effi-
ciency benefits for small values of n, they do not yield a general feasibility result
that scales polynomially with n. In Sect. 5 we establish such a result using (the
bivariate version of) Shamir’s secret-sharing scheme.

Theorem 3 (Efficient Layered MPC). Let f be an n-party functionality
computed by a layered arithmetic circuit C over a finite field F, with D layers
and M gates. Then, for any t < n/3, there is a polynomial-time (n, t, O(D))-
layered MPC protocol for f . More concretely, the communication consists of
M · O(n9) field elements.

Further, in Sect. 6, we present a computationally secure, efficient layered protocol
that achieves G.O.D. against adversaries who can corrupt t < n/2 parties in each
layer.

Theorem 4 (Efficient Layered MPC for t < n/2). Let f be an n-party
functionality computed by a layered arithmetic circuit C over a finite field F, with
D levels and M gates. Then, for any t < n/2, there is an (n, t, O(D))-layered
MPC protocol for f assuming non-interactive linearly-homomorphic equivocal
commitments. The communication complexity is M · O(n9) field elements over
the point-to-point channels and M · O(n5) field elements + M · O(n10 · λ) bits
over the broadcast channels, where λ is the security parameter.

Proactive MPC. The original concept of proactive MPC put forward by [41]
considered an adversary that has the ability to corrupt a fresh set of parties in

364 B. David et al.

every round of the protocol. We refer to such an adversary as maximally mobile.
This notion is formally defined in the full version of the paper [19], while protocols
that can thwart such an adversary are called maximally proactive. We show that
a secure layered MPC protocol is a maximally proactively secure protocol. We
also remark on an alternate and stronger notion of maximal adversary in the
full version [19, Remark 2], against which perfectly secure VSS and MPC are
impossible with the optimal threshold of t < n/3 corruptions in each layer. This
allows us to extend our security analysis from the layered to the proactive setting.
The full version [19] defines maximally Proactive Secret Sharing and MPC and
we obtain the following threshold-optimal result by combining Theorem 3 and
[19, Lemma 1].

Corollary 1 (Perfectly Secure Maximally Proactive MPC). Let f be
an n-party functionality computed by a layered circuit C over a field F, with D
layers. Then, for t < n/3, there is an efficient maximally proactive MPC protocol
computing f in r = O(D) rounds.

Secure Message Transmission and Broadcast. Sending a message to a
party that acts in an arbitrary future round is a recurring problem in settings
such as layered MPC. In YOSO [28] it is circumvented by assuming target-
anonymous channels, an ideal resource that allows a party in round r to send
a message to a party who is elected to perform a certain role in round r′ >
r + 1 without learning its identity. We take steps to obtain a similar primitive
(although without anonymity guarantees) by relying only on the parties in the
layered graph to carry the message forward, despite our much more restrictive
interaction pattern that precludes such communication. In Sect. 3.1 we provide
a thorough analysis of an important primitive in layered MPC called Future
Messaging. The functionality fFM is described in Sect. 3.1 and presented in [19,
Figure 3.1]. Future Messaging takes as input a message m from a sender in L0

and, if the sender is honest, the message m arrives at the recipient. In the context
of layered MPC this primitive is close to an instance of 1-way Secure Message
Transmission (SMT) over a directed graph. We show that it is possible to self-
compose this primitive to carry a message from a sender in L0 to a designated
receiver in Ld for d > 1. The following theorem characterizes our construction.

Theorem 5 (Restatement of Theorem 7). For any d > 0, any n and
t where t < n/3, and message domain M , there exists a protocol ΠFM that
realizes fFM from L0 to Ld with perfect t-security and communication complexity
O(n�log d� log |M |).

Using the layered protocol for Shamir VSS and resharing, which we construct
building on Future Messaging, we can make the dependence of the communica-
tion cost of Future Messaging on d linear. This is achieved by having the sender
verifiably secret the message using VSS and then reshare it repeatedly until
reaching the layer previous to that of the receiver, at which point the share-
holders of the value can reveal the message to the receiver by transferring all its

Layered MPC 365

shares. Communication cost of VSS and of resharing across a constant number
of layers is poly(n), making the communication of Future Messaging linear in d.

The layered model allows for layer-to-layer broadcast: any party in La may
broadcast to parties in La+1. It turns out that this assumption is necessary, since
we prove that deterministic broadcast in the setting of layered MPC is possible
only if t = 0. Our analysis is shown in the full version [19], where we cast the
result of [26] to the setting of layered MPC and obtain the following result.

Theorem 6. Deterministic perfect Broadcast in the setting of layered MPC is
possible iff t = 0.

This limitation can be overcome by the use of randomization. Several works
achieve broadcast in the honest-majority setting with overwhelming probability
after a number of rounds that is linear in the security parameter, without setup
tolerating t < n/3 corruptions [23], and with different types of setup tolerating
t < n/2 corruptions [24,25,29,36].

These protocols can be ported to the layered setting at the cost of decreasing
the corruption threshold by a factor that is linear in the security parameter.
This is done by naively porting the protocol to the layered setting after ensuring
that the parties ‘persist’ across all the layers by simply forwarding the view of
each party to their counterpart in the next layer. When the adversary corrupts t′

parties in each layer, by the end of the protocol, the adversary would corrupt at
most t = t′ ·O(κ) parties executing different party roles, for security parameter κ.
If the total number of corruptions that the original protocol tolerates is bounded
by t < n/3 (resp. t < n/2), we have that the ported protocol remains secure.
Obtaining the optimal corruption threshold t′ < n/3 without setup, or t′ < n/2
with setup, for broadcast is beyond the scope of this paper.

1.2 Related Work

We summarize the relationship between previous works in similar settings and
our results in Table 1. We discuss further related works below.

Proactive Secret Sharing (PSS). PSS protocols aim at solving the problem
that shares learned by the adversary are compromised forever by resharing the
secret periodically. The static group setting where resharing is done among the
same set of parties is considered in [2,3,11,34]. However, this is often insufficient
since it assumes a world where a server never fails to the extend that it cannot
recover again. The setting of dynamic groups where resharing is done towards
a different (possibly disjoint) set of parties is considered in [21,22,44]. Finally,
proactive techniques in asynchronous settings have been treated in [7,43].

Permissionless Networks. In the context of permissionless networks where
parties are allowed to join and leave as they wish, the dynamic group property
has taken on a new meaning. The notion of player replaceability (where the set of
parties get replaced in every round) has previously been studied in the context of
consensus primitives [6,12,40,42]. The recent focus on this setting spurred new
interest in (dynamic) proactive techniques [32,38]. Particularly interesting, is the

366 B. David et al.

Table 1. Protocols realizing primitives in the most extreme proactive settings.
(∗protocol security relies on the adversary only doing probabilistic corruption, †assumes
access to ideal target-anonymous channels for future messaging)

Results for Maximally Proactive MPC with Dynamic Committees
Functionality Reference Level Security Complexity Threshold

Future Messaging Section 3.1 perfect full poly(n) t < n/3

VSS [5] computational full poly(n) t < n/4∗

Section 4.2 perfect full 2O(n) t < n/3

Section 5 perfect full poly(n) t < n/3

MPC [28] (YOSO) statistical full (w/setup†) poly(n) t < n/2∗

[13] (Fluid) statistical w/abort poly(n) t < n/2

[41] perfect full poly(n) t < n/d

Section 4.4 perfect full 2O(n) t < n/3

Section 5 perfect full poly(n) t < n/3

Section 6 computational full poly(n) t < n/2

definition of evolving committee secret sharing [5] that places the responsibility
of keeping a tolerable corruption threshold on the protocol designer.

Maximally PSS and MPC with Dynamic Committees. Recently, a num-
ber of works [1,13,28,30] have considered extreme settings with dynamic com-
mittees, where each round of a protocol is executed by a new set of parties
considering maximally mobile (or even adaptive) adversaries. In YOSO [28], an
ideal mechanism guarantees that a set of anonymous parties is selected at random
to execute each round, effectively limiting the adversary to probabilistic corrup-
tions. Hence, YOSO is incompatible with settings where n and t are constant.
Moreover, parties have access to ideal target-anonymous channels allowing for
communication to any party in the future. Hence, results in the YOSO model do
not directly translate to our setting even if we settle for non-optimal corruption
thresholds, as YOSO protocols may crucially rely on the ability to send mes-
sages across many layers. For example, in the information theoretical signature
protocol of [28, Section 3.3], a cut-and-choose mechanism is realized assuming
that a sender can commit to a set of message authentication codes (MACs) by
sending them directly to a receiver, after which verifiers broadcast random sub-
sets of keys, which the receiver uses to check these MACs. The security of this
technique crucially relies on the fact that using ideal target-anonymous channels
guarantees that the sender cannot changes the MACs sent to the user after the
verifiers announce the checking keys. This technique does not work in the lay-
ered MPC setting with our weaker Future Messaging protocol, which does not
commit a corrupted sender to the messages it transmits to future layers.

Closest to layered MPC is Fluid MPC [13] in its most extreme configura-
tion (fully fluid), where parties can execute a single round of the protocol and
immediately leave but are not necessarily selected anonymously and at random.
Curiously, one of the goals of Fluid MPC is maintaining a small state complexity.
In particular, the computation and communication of each committee in Fluid

Layered MPC 367

MPC is independent of the size of the circuit. While this is attractive, we do
not make any such claims and we also only consider already layered circuits3.
Finally, a crucial difference is that the known protocols for Fluid MPC only
enjoy security-with-abort while we aim for full security.

While the use of an arbitrary interaction pattern in layered MPC is similar
to [33], our focus is on a specific interaction pattern capturing extreme cases of
MPC with dynamic committees and a maximally mobile adversary.

1.3 Technical Overview

The goal of this paper is to build a layered MPC protocol that takes inputs from
a set of clients in the input layer and securely delivers a function of the inputs
to a set of output clients in a later layer. For t < n/3, we present two layered
protocols for general MPC with t-security: a simple but inefficient construction
based on CNF secret sharing and a more complex but efficient construction based
on Shamir secret sharing.

Owing to a highly restrictive communication pattern and the presence of a
very powerful adversary, implementing layered MPC with optimal corruption
threshold presents several interesting challenges. The most apparent is the com-
plete prohibition of interaction, as parties executing the protocol do not persist.
We emulate a limited kind of interaction by having a party who wants to speak
a second time hide all possible messages it may want to convey in a future layer
and selectively reveal the appropriate message to the next layer. In such cases,
it is imperative to the security of the party that only the appropriate message is
revealed while the other messages are effectively destroyed. Interestingly, realiz-
ing this limited form of interaction takes us a long way in implementing layered
MPC. This leads us to the first primitive we construct in this presentation:

Future Messaging. Future messaging allows a party (sender) to securely send a
message to another party (receiver) situated in a later layer. To send a message
two layers down, the sender can secret share the message onto the next layer
using any t-secure secret sharing scheme; parties in the next layer can then
forward these shares to the receiver who can recover the message by robust
reconstruction of the received shares. We extend this intuition to allow a sender
to securely send a message to a designated receiver in any future layer. This
protocol is non-commiting; hence, a corrupt sender can choose the message to
deliver to the receiver based on the adversary’s view until the layer in which the
receiver is situated. Effectively, future messaging allows rushing till the receiver’s
layer! Future messaging allows a sender to distribute a secret sharing of a value
onto a future layer; parties in this layer can disclose this value to a receiver
(or broadcast it to all parties) in the next layer based on a unanimous decision
(potentially depending on computation that was carried out in an intermediate

3 The inherent issue with state complexity originates from a common misconception
(see fx [18]) that any general arithmetic circuit can be transformed into a layered
circuit with same depth and only linear overhead in width.

368 B. David et al.

layer). In this manner, we emulate the aforementioned (limited) interaction by
the sender.

MPC using CNF Shares. Equipped with a protocol for future messaging,
we set out to build a layered protocol for verifiable secret sharing (VSS). We
will then follow the standard approach for secure function evaluation, where a
layered arithmetic circuit computing the function is evaluated by progressively
and securely computing secret shares of the value on the output wire of each
gate using the secret shares of the values on the input wires, finally revealing
the values on the output wires of the circuit to the output clients.
Verifiable CNF Secret Sharing. To achieve verifiable CNF secret sharing, it suf-
fices to implement a seemingly simpler primitive, namely future multicast, which
allows a dealer to securely send a message to a designated subset of receivers in
a later output layer with the guarantee that all receivers get the same message
even if the sender is corrupt. Verifiable CNF secret sharing is achieved by having
the dealer split the secret into

(
n
t

)
additive shares (a share rT for each n− t sized

set T ⊂ [n]) and multicast rT to all output clients in T .
While implementing multicast, we encounter many challenges inherent to

layered MPC. When realizing multicast, the sender sends the same message to a
(sub)set of parties in the next layer, who raise a complaint if they receive distinct
messages, in which case the sender publicly discloses the message. Clearly, this
sequence of interactions is non-trivial to realize in a layered network, where the
sender cannot speak a second time and the parties in a layer cannot communicate
with each other. Hence, we use a weak notion of secure addition (See Sect. 3.2)
to allow the receiving parties to securely reveal the difference between the values
they received to all parties two layers down. If the difference is non-zero for any
pair of values, the layer that learns this difference collectively decides to disclose
the sender’s message using the trick we previously outlined.

Having implemented verifiable CNF secret sharing, we proceed to secure
computation of arithmetic gates. Since the secret sharing is linear, addition and
multiplication-by-constant gates can be computed by local processing, which
leaves us with the secure computation of the multiplication gate that takes the
secret shares of two values and computes a secret sharing of their product.
Multiplication. Our layered protocol for multiplication is built by porting the
classic protocol for secure multiplication in the standard (non-layered) setting.
In this process, we face all the challenges we encountered while realizing future
multicast. Suppose a value is secret shared on a layer and is also required in
another layer. Naively replicating the same share in the later layer is insecure
since the adversary can reconstruct the secret by corrupting t parties in each of
these layers and obtaining 2t shares. We get around this problem with a simple
trick that avoids using a full-fledged protocol for resharing CNF shares.

We realize secure computation by evaluating a layered arithmetic circuit
using the protocols we constructed so far. To properly process the layered circuit,
we rely on the invariant that the secret shares of the values on all the input
wires to any layer of the circuit are simultaneously available on the same layer
of the layered network. However, secret shares of the output of a linear gate

Layered MPC 369

(addition or multiplication-by-constant) can be computed locally while those of
a multiplication gate using our protocol consume several layers. To keep the
invariant, we need the outputs of the linear gates to be available on the output
layer of multiplication. Once again, the shares of the outputs cannot be naively
secret shared. Instead, we attach a multiplication gate to the output wire of
linear gate that takes identity as the other input; this ensures that the shares of
the values on all output wires are available simultaneously on the same layer.
Composability of Layered Protocols. We use simpler layered protocols as subrou-
tines for building more complex ones. For example, the multiplication protocol
uses a protocol for verifiable secret sharing (among others) as a subroutine.
Hence, it is necessary that the concurrent execution of layered protocols pre-
serve their security guarantees under concurrent composition. We refrain from
first proving UC security of our building blocks and then using modular compo-
sition theorems since such an analysis will be cumbersome over a synchronous
layered graph. Instead, we prove the security of our protocols by constructing
simulators and carefully arguing their security. We establish game based proper-
ties of layered protocols that are preserved when they are used as subroutines and
prove the security using hybrid arguments that exploit these properties. Finally,
a few of our constructions make exclusively sequential (non-concurrent) calls to
subroutines that have been proven to be standalone secure; in such instances, we
use the sequential composition theorem of Canetti [8] to argue security (see the
security proofs for future messaging and secure function evaluation protocols).
Efficient MPC using Shamir Secret Sharing. We build layered protocols
whose communication complexity scales polynomially with the number of parties
per layer. This is achieved by porting the cannonical secure function evaluation
protocol using Shamir secret shares into the layered model. To achieve this, we
first develop a layered protocol for verifiable Shamir secret sharing.
Verifiable Shamir Secret Sharing. We “port” the classic protocol for VSS in the
standard setting to the layered setting using the tools we developed in the previ-
ous sections along the way to tackle the usual challenges faced in the process. At
the end of this process, the parties in the layer right after the input layer hold
the purported shares of the dealer’s secret and parties 5 layers down publicly
hold the updates to the purported shares such that, they together form a valid
secret sharing. The parties cannot transfer these shares to the shareholders in the
output layer without causing duplication. To get around this, the dealer secret
shares coefficients of a random degree-t polynomial they wish to use for Shamir
secret sharing; the evaluation of the polynomial at distinct points is computed
using linear operations and securely delivered to the shareholders in the output
layer. This ensures privacy of the secret when the dealer is honest.

Equipped with a layered protocol for Shamir VSS, we use known techniques
to realize resharing which allows a layer holding valid shares of a value to securely
deliver fresh shares of the same value to a later layer. Using VSS and resharing,
porting protocols for secure multiplication and then secure function evaluation
into the layered setting is relatively straightforward. We depart form the pro-
tocol for general MPC provided in [16]. The protocol uses a form of reinforced

370 B. David et al.

secret sharing where the shares of a secret are further secret shared among the
shareholders, which is straightforward to implement using VSS and resharing.

2 Preliminaries

2.1 Layered MPC

A layered MPC protocol can be viewed as a special case of standard MPC with a
general adversary structure, specialized in the following way: (1) the interaction
pattern is defined by a layered graph; (2) the adversary can corrupt at most t
parties in each layer. This is illustrated in full version [19, Fig. 1] and formalized
below.

Definition 1 (Layered MPC). Let n, t, d be positive integers. An (n, t, d)-
layered protocol is a synchronous protocol Π over secure point-to-point channels
and a broadcast channel, with the following special features.

– Parties. There are N = n(d + 1) parties partitioned into d + 1 layers Li,
0 ≤ i ≤ d, where |Li| = n. Parties in the first layer L0 and the last layer Ld

are referred to as input clients and output clients, respectively.
– Interaction pattern. The interaction consists of d rounds, where in round

i parties in Li−1 may send messages to parties in Li over secure point-to-
point channels. By default, we additionally allow each party in Li−1 to send
a broadcast message to all parties in Li.

– Functionalities. We consider functionalities f that take inputs from input
clients and deliver outputs to output clients.

– Adversaries. We consider adversaries who may corrupt any number of input
and output clients, and additionally corrupt t parties in each intermediate
layer Li, 0 < i < d. We consider active, rushing, adaptive4 adversaries.

We say that a protocol Π is a layered MPC protocol for f if it realizes f in the
standard sense of (standalone) secure MPC with general adversary structures [8,
31,35]. We require perfect full security (with guaranteed output delivery).

Remark 1 (Generalized layered MPC). The above definition is meant to give the
simplest formalization of the core problem we study. It can be naturally extended
to allow a different number of parties ni and a different corruption threshold ti
in each layer (our main feasibility result extends to the case where ti < ni/3),
and to allow inputs and outputs from parties in intermediate layers. Our strict
notion of perfect full security can also be relaxed in the natural ways. In some
cases, we will present efficiency improvements that achieve computational (full)
security with perfect correctness, meaning that the effect of a computationally
unbounded adversary on the outputs of honest parties can be perfectly simulated.

4 In the coming sections our security analysis is with respect to non-adaptive adver-
saries for simplicity. In Sect. 2.2 we justify this leap appealing to the work of [10].

Layered MPC 371

The Need for Ideal Broadcast: In the full version [19, Appendix 3] we show
that broadcast for layered MPC is impossible if t > 0. Hence, we must assume
ideal broadcast.
Layered MPC Implies Proactive Security: In the [19, Section 2.2] we
precisely define maximally proactive security and prove that it is implied by
layered MPC. Also see Remark 2 in the section that addresses a natural and
stronger notion of maximally proactive security.

2.2 Adaptivity and Composability in Layered MPC

Let Πg be a layered protocol realizing functionality g with standalone t-security,
and let Πf be another layered protocol in which Πg is used as a subroutine to
implement g. Suppose the layers where g is computed using Πg do not execute
any other protocol in parallel; i.e., only a single invocation of Πg is made in
such layers. Then, to prove the security of Πf , it is sufficient to show that Πf

is t-secure in the so called g-hybrid model, where the calls to the sub routine
Πg is replaced with calls to the functionality g itself. This allows for a modular
construction and analysis of protocols.

Formally, the g-hybrid model involves a communication protocol as well as
calls to functionality g. Suppose l is the designated output layer of g. In a protocol
Πf in g-hybrid model, parties in layer i−1 can send their inputs to functionality
g in round i. The functionality will deliver the output of g to receivers in the
output layer l in round l which may be used by the parties in executing Πf .

The following proposition adapts the sequential composability theorem of [8]
to the layered setting. The proposition holds simply because a layered protocol
with d layers and n parties per layer is essentially a nd party protocol with
communication between a pair of adjacent layers in every round.

Proposition 1 (Sequential Composability for layered protocols). Sup-
pose a (n, t, d)-layered protocol Θ implements a functionality g with perfect stan-
dalone t-security [8,31]. Suppose a layered protocol Π with input layer L0 and
output layer L′

d, d
′ > d invokes Θ as a subroutine from La to La+d, where

0 ≤ a < a + d ≤ d′. Π making subroutine calls to Θ is t-secure if it is t-secure
in the g-hybrid model.

Universal Composability. As discussed in Definition 1, we are interested in
realizing functionalities f that take input from the input clients in layer L0 by
default and deliver outputs to the output clients in the last layer (layer Ld) of
a layered network. We develop a protocol for computing general functionalities
in the stand-alone model showing perfect security by means of a straight-line
black-box simulator and, thus, we can invoke Theorem 1.2 in [37] and argue that
the protocol is, in fact, secure under the definition of universal composability5.
5 While we can meaningfully argue that the final protocol for computing general func-

tionalities is UC-secure, we do not treat individual components of this protocol in a
UC manner. This would require a significant modelling effort of communication and
synchronization for layered MPC and would be counterproductive in our effort to
present layered MPC as a simple special case of secure MPC as in [8,31].

372 B. David et al.

On Adaptive Adversaries. In Definition 1, we define layered MPC in the
presence of a rushing and adaptive adversary. Clearly, this extra power for the
adversary separates layered MPC from maximally proactive MPC and shows
that layered MPC is strictly stronger. Looking forward, we will, however, only
analyze the layered protocols with respect to static (and rushing) adversaries.
To argue adaptive security, we need to be able to simulate even when the real
world adversary corrupts a party midway through the protocol. [10] showed an
exotic example of a perfectly secure protocol with static security against mali-
cious adversaries but without adaptive security. Fortunately, all our protocols
are based on linear secret sharing which makes extending our analysis to layered
(and adaptive) MPC significantly easier.

As an example, consider a simulator’s job when a set of parties C is already
corrupted during a protocol execution and a new party Pi has just been added
to this set. First, the simulator needs to construct a complete view (including
the input) of the honest Pi that is consistent with all messages exchanged with
the ideal functionality and communication with parties in C. Secondly, the sim-
ulator’s state needs to be “extended” with this new information. Concretely, the
state should be as if Pi has been corrupted from the start of the protocol but
behaved honestly until this point. In our protocols for perfect layered MPC, we
let the simulator handle this challenge using conditional sampling. Since parties
in C will only hold shares of a linear secret sharing scheme, even if the newly
corrupted Pi is the dealer of such shares we can simulate the randomness used in
the sharing algorithm. This is feasible since as long as the shares of n − t honest
parties are fixing the secret, the simulator is free to change the randomness to
be consistent with the shares of parties in C. Finally we note that when referring
to computationally secure (PRG-based) protocols, we either need to settle for
non-adaptive security or implement the PRG in the random oracle model.

3 Basic Primitives

We introduce the basic primitives Future Messaging (fFM) and Multiparty Addi-
tion (fadd) that serve as building blocks for later constructions. In the layered
model, Future Messaging is a primitive which allows an input client S to securely
send a message m to an output client R in a later layer. Multiparty Addition
allows a subset of parties in a layer to broadcast the sum of their inputs to all
parties in a later layer.

3.1 Future Messaging

Future Messaging emulates a secure channel between a sender S and a receiver R
in a future layer. As such, the primitive is similar6 to Secure Message Transmis-
sion (SMT) over the specific directed and layered network where intermediate
nodes may take part in the protocol and not merely forward messages from
adjacent nodes. The functionality is formalized in full version [19, Figure 3.1].
6 The instance of Future Messaging with honest sender in L0 and honest receiver in

L2 is equivalent to perfect 1-way SMT.

Layered MPC 373

Parallel Composition. Functionality fFM delivers a message from a sender to
a receiver in a later layer Ld. However, when our protocol implementing fFM
is composed in parallel, the resulting functionality is not the natural parallel
composition of fFM which takes the input from each sender to each receiver and
delivers them.

In fact, this functionality is impossible to realize even in the trivial case of
messaging from one layer to the very next using the provided secure communi-
cation link. As an example, suppose communication from S1 ∈ L0 to R1 ∈ L1

and from S2 ∈ L0 to R2 ∈ L1 are composed in parallel. Now, a rushing adver-
sary corrupting S1 and R2 can collect the message from S2 to R2 and set this as
the message from S1 to R1. Interestingly, this limitation persists when parallely
composing our protocol for realizing fFM from L0 to Ld (even for d > 1) with
t-security for t < n/3. See the full version [19] for more details.

We capture the functionality realized by parallel execution of our future
messaging protocol using a corruption aware functionality in Fig. 3.1.

Figure 3.1 (Corruption-aware parallel Future Messaging functionality fn
FM)

Public parameters: Senders S1, . . . ,Sn ∈ L0, receivers R1, . . . ,Rn ∈ Ld

where d > 0. The domain Mi,j of message from Si to Rj .
Secret inputs: Each Si wants to send each Rj a message m(i,j) ∈ Mi,j .
Additional input to functionality: Set of corrupted parties I0 ⊆ L0

and corrupted receivers Id ⊆ Ld.

1. For each honest Si /∈ I0 and each Rj ∈ Ld, fn
FM receives message m(i,j)

from Si to Rj .
2. For each honest Si /∈ I0 and corrupt Rj ∈ Id, fn

FM forwards m(i,j) to the
(ideal) adversary.

3. For each corrupt Si ∈ I0 and each Rj ∈ Ld, fn
FM receives from the (ideal)

adversary the message m(i,j) that Si wants to send to Rj .
4. For each Si ∈ L0 and Rj ∈ Ld, fn

FM sends m(i,j) to Rj as message from Si.

A Protocol for Future Messaging. Realizing Future Messaging from a sender
in L0 to a receiver in L1 is trivial since there is a secure communication link
between any such pair.

A (n, t, 2)-layered protocol for Future Messaging from a sender in L0 to a
receiver in L2 can be achieved as follows. Sender S ∈ L0 shares the message
m among the parties in L1 using a t-secure robust secret sharing scheme. The
parties in L1 forward their shares to the receiver R ∈ L2 who uses the reconstruc-
tion algorithm on the received shares to recover the message. By t-security of
the secret sharing scheme, an adversary corrupting at most t parties in L1 learns
nothing about the message. However, since the secret sharing scheme is t-robust,
R correctly reconstructs m even if at most t corrupt parties send incorrect shares.

374 B. David et al.

This idea can be generalized to construct Future Messaging from L0 to Ld for
any d > 2 using the secure (n, t, �)-layered protocol for Future Messaging from
L0 to L� and then from L� to Ld. Here, � is any number such that 0 < � < d;
specifically, we can take � =

⌊
d
2

⌋
. This is achieved as follows. The sender S ∈ L0

produces shares (s1, . . . , sn) of its message m, and sends the share si to the i-th
party (P�

i) in L� using Future Messaging from L0 to L�. Each party in level �
forwards its share to the receiver using Future Messaging from L� to Ld.

This protocol can be executed in parallel, for each sender in L0 and receiver
in Ld, in order to realize the corruption aware (parallel) functionality fn

FM (Fig.
3.1) from L0 to Ld using fn

FM from L0 to L� and from L� to Ld. The protocol is
formally described in Fig. 3.2.

Figure 3.2 (Πn
FM, an (n, t, d)-layered protocol realizing fn

FM)

Public parameters: Senders S1, . . . ,Sn ∈ L0, receivers R1, . . . ,Rn ∈ Ld

where d > 1.
Secret inputs: Each Si wants to send m(i,j) ∈ M to a each receiver Rj .
Resources: fn

FM (with message domain Mn) from L0 to L� and L� to Ld.

1. Each Si, i ∈ [n] samples (s(i,j),1, . . . , s(i,j),n) ← Sh(m(i,j)) for each j ∈ [n].
2. For k ∈ [n], Si sets the message to P�

k ∈ L� in fn
FM from L0 to L� to(

s(i,1),k, . . . , s(i,n),k
)
.

3. Each party P�
k : k ∈ [n] receives (ŝ(i,1),k, . . . , ŝ(i,n),k) from Si, i ∈ [n] (deliv-

ered by fn
FM).

4. P�
k, k ∈ [n] sets the message to Rj ∈ Ld in fn

FM from L� to Ld to
(ŝ(1,j),k, . . . , ŝ(n,j),k).

5. Each receiver Rj : j ∈ [n] computes the message from Si : i ∈ [n] as
Rec(ŝ(i,j),1, . . . , ŝ(i,j),n).

Lemma 1 (Layered protocol for fn
FM). Let (Sh,Rec) be a robust (t, n) secret-

sharing scheme [19, Definition 6], the (n, t, d)-layered protocol in Fig. 3.2 realizes
the functionality fn

FM in Fig. 3.1 with perfect security for t < n/3.

We formally describe the simulator and provide a formal proof in the full ver-
sion [19].

Going forward, we will focus on the (non-parallel) Future Messaging func-
tionality fFM [19, Figure 3.1] from a designated sender in a layer to a designated
receiver in a later layer. This is, indeed, a special case of fn

FM (n = 1) and a
protocol was outlined informally in the beginning of this section.

Theorem 7. For any d > 0, and message domain M , there exists an (n, t, d)-
layered protocol ΠFM that realizes fFM from a sender in L0 to a receiver in Ld

with communication complexity O(n�log d� log |M |).

Proof. For d = 1, there is a trivial protocol that realizes fFM in which the sender
sends the message (from a domain M) directly to the receiver using the provided

Layered MPC 375

secure communication link. The communication complexity of realizing this is
simply log |M |.

Suppose d > 1 and � =
⌊

d
2

⌋
. Consider protocols Π and Π ′ that realize func-

tionalities fn
FM from L0 to L� and from L� to Ld, respectively for message domain

Mn. In the protocol in Fig. 3.2, the fn
FM from L0 to L� and fn

FM from L� to Ld are
called, sequentially. Hence, by the sequential modular composition theorem for
layered protocols in Proposition 1, the protocol obtained by replacing these oracle
calls with subroutine calls to Π and Π ′, is secure against any layered adversary
that corrupts at most t parties in layers 1 to � − 1 and � + 1 to d − 1 in addi-
tion to corrupting at most t parties in layer �. The communication complexity of
the resulting protocol is the sum of communication complexity of Π and Π ′. The
statement of the theorem is obtained by recursion using this observation and the
existence of the trivial protocol for realizing fFM from L0 to L1. �	

Corollary 2. Suppose ΠFM is a (n, t, d)-layered protocol realizing fFM from a
sender S ∈ L0 to a receiver R ∈ Ld. The following statements hold when ΠFM is
executed in the presence of any adversary A described in Definition 1:

(a) If S is honest, R correctly recovers the input of S at the end of ΠFM.
(b) When S and R are honest, and for any pair of inputs m,m′ ∈ M ,

ADVRΠFM,A(m) ≡ ADVRΠFM,A(m′).

3.2 Multiparty Addition

The Multiparty Addition functionality fadd takes inputs from a set of input
clients and delivers the sum of the inputs to all output clients in L2. However, fadd
allows the adversary to choose the inputs of corrupt input clients after learning
the sum of the inputs of the honest clients. Hence, if at least one party with
input to fadd is corrupt, the adversary can choose the value that fadd outputs.
Note that, this necessarily makes fadd a corruption aware functionality. The
functionality is formally defined in [19, Figure 3.4] and can be realized by an
(n, t, 2)-layered protocol as outlined below.

Each party in Si ∈ S secret shares its input xi to the parties in next layer
using a t-robust linear secret sharing scheme. Parties in L1 broadcasts the sum
of their respective shares for each of the inputs. Each party in L2 recovers the
output by running the reconstruction algorithm on the received sum of shares.
A formal description of the protocol is presented in the full version [19]. Clearly,
all honest parties output the same value at the end of the protocol, irrespective
of the number of corruption in S. If all parties in S are honest, each party in L2

receives a share of
∑

Si∈S xi for each party in L1. Although corrupt parties in L1

can potentially send invalid shares, by t-robustness of the secret sharing scheme
all honest parties in L2 correctly reconstruct the sum of the inputs. Finally, the
adversary who corrupts a non-empty set of parties in L2 only learns the sum of
the shares of the honest parties’ inputs. Since the secret sharing scheme is linear,
this would only reveal the sum of the honest parties’ inputs.

376 B. David et al.

The following lemma formally states the game based security guarantees of
any (n, t, d)-layered protocol realizing Multiparty Addition as per above.

Lemma 2. The following statements hold when an (n, t, d)-layered protocol real-
izing fadd is executed in the presence of any adversary A described in Definition 1:

1. All honest clients output the same value at the end of Πadd. If all input clients
are honest, this value coincides with the sum of the inputs.

2. The view of A only reveals the sum of the inputs of the honest parties.

4 Layered MPC Based on CNF Secret Sharing

In this section, we start by building a protocol for Future Multicast based on
primitives from Sect. 3. The protocol is then used in a simple way to obtain VSS
using CNF-shares. We will build on this VSS protocol in order to realize secure
multiplication and, finally, a protocol for layered MPC for any function.

4.1 Future Multicast

Future Multicast fFMcast allows a sender S to send a secret to a set of receivers R
located in a later layer. It guarantees that all honest receivers output the same
value even if the sender is corrupt; if the sender is honest, this value coincides
with the sender’s input. Finally, if all receivers (and the sender) are honest, the
secret remains hidden from the adversary. This primitive will be the backbone
of our layered VSS protocol. Standard (Secure) Multicast is often described as
the simplest non-trivial example of secure computation. Also, in layered MPC,
Future Multicast generalizes Future Messaging and Future Broadcast7 but is
substantially harder to realize. The functionality is described in [19, Figure 4.1].

A Protocol for Future Multicast. As a first step towards realizing fFMcast,
we construct a protocol that achieves a weaker notion of Future Multicast. In this
protocol, sender S in layer L0 sends a share to a set of intermediaries UT = {P1

i :
i ∈ T} ⊂ L1, in the next layer, who communicate it to the receivers R ⊆ L5.
The protocol for weak Future Multicast provides the following guarantees which
are formally stated in Lemma 3.

1. (Agreement). If a majority of the intermediaries are honest, all honest receivers
output the same value at the end of the protocol even if S is corrupt; if the
sender is honest, this value coincides with the sender’s input.

2. (Security). If the sender, all the intermediaries in UT and all the receivers are
honest, a layered adversary does not learn the sender’s secret.

7 Here, we refer to the primitive in the setting of layered MPC that ensures termi-
nation, validity and agreement among all parties located in some layer d > 1. Not
Future Broadcast as defined in [28].

Layered MPC 377

Observe that, when t < n/3, each subset UT of n − t parties in L1 contains a
strict minority of corrupt parties. Furthermore, there is at least one such set that
contains only honest parties. Given these observations, realizing fFMcast from the
weaker notion is straight forward: For each set UT ⊂ L1 of n − t parties, S
sends rT to the receivers using parties in UT as intermediaries, where rT for
all possible T , form an additive secret sharing of the sender’s secret. When the
sender is honest and each set of intermediaries has an honest majority, by (1), all
rT reach the receivers correctly. Furthermore, for one set of intermediaries UT ∗ ,
by (2), rT ∗ remains hidden from the adversary. Thus, receivers can compute the
sum of rT for distinct sets T to obtain the secret, which will remain hidden from
the layered adversary if all receivers are honest. Finally, by (1), the outputs of
all honest receivers are consistent even if the sender is corrupt.

Weak Future Multicast. With the aid of a set of intermediaries UT = {P1
i :

i ∈ T} ⊂ L1, weak Future Multicast can be achieved as follows: S sends the mes-
sage rT to every party in UT . In addition, S distributes a robust secret sharing
of rT among the parties in L3 using Future Messaging. Every pair of interme-
diaries broadcasts the difference between the values they received to all parties
in L3 using a protocol for the fadd functionality. Additionally, each intermedi-
ary distributes a secret sharing of the value they received among the parties in
L4. If the difference comes out non-zero for any pair, the parties in L3 effec-
tively reveals rT to all parties in L4 by broadcasting the shares of rT that S
distributed. Parties in L4 then forwards (using layer-to-layer broadcast) rT to
all the receivers in R. By robustness of the secret sharing scheme, parties in L4

recover rT if it was secret shared properly by the sender; moreover, even if S sent
invalid shares, all honest parties recover the same value. Hence, receivers recover
rT from this because at most t < n/3 parties in L4 are corrupt. If the difference
is zero for every pair of intermediaries, each party in L4 reveals the share sent
to them by every intermediary to all the receiver in R. Using these shares, each
receiver reconstructs the value that was shared by each intermediary. If the dif-
ference was zero for every pair of intermediaries, then all honest intermediaries
must have received the same value from S (which is rT if S is honest). Hence, a
majority of the values recovered by every receiver coincides with this value. This
ensures (1). If S and all intermediaries are honest, rT is not revealed to parties
in L4, and, hence, is disclosed only to the receivers ensuring (2).

An (n, t, 5)-layered protocol for Future Multicast ΠFMcast is formally
described in the full version [19]. Importantly, it includes the sub-protocol for
weak Future Multicast Πweak-FMcast. We identify two important properties of
ΠFMcast that will be used going forward. The properties are stated in Lemma 3
and a formal proof is provided in [19].

Lemma 3. For any T ∈ T , the following properties hold for any weak future
multicast protocol with UT as intermediaries when executed in the presence of
any adversary A:

(a) There exists r̂ such that all honest receivers in R output r̂ at the end of the
protocol. Furthermore, if S is honest, r̂ = r.

378 B. David et al.

(b) If S, and all intermediaries and receivers are honest, for any r, r′ ∈ M ,

ADVRΠ,A(r) ≡ ADVRΠ,A(r′).

Theorem 8. There is a secure (n, t, 5)-layered protocol realizing future multicast
with input client S and output clients in R.

Proof. Let Πweak-FMcast be a protocol realizing weak future multicast. By state-
ment (a) in Lemma 3, for every set of intermediaries {P1

i : i ∈ T}, there exists
r̂T such that all honest receivers in R output r̂T at the end of Πweak-FMcast. Fur-
thermore, if S is honest, r̂T = rT , for each T ∈ T . Hence, at the end of the
future multicast protocol, say ΠFMcast, the outputs of all receivers are the same
and coincides with the input of an honest S.

It remains to show that if the sender and all receivers are honest, A does
not learn the sender’s input. We sketch the intuition: Consider T ∗ ∈ T such
that the parties UT ∗ are all honest; such a set exists because there are at most t
corruptions in each layer. By statement (b) in Lemma 3, view of A interacting
with Πweak-FMcast with intermediaries in UT ∗ is independent of the input rT ∗ of
S. But then, the view of A in the entire protocol ΠFMcast does not depend on m
since (rT , T ∈ T) is an additive secret sharing of m. We formally prove security
of ΠFMcast by demonstrating a simulator S in the full version [19].

4.2 Verifiable Secret Sharing

Using future multicast presented in Sect. 4.1, realizing verifiable secret sharing
(VSS) is relatively straight-forward. The sender distributes the additive shares
of the secret to each set of receivers using Future Multicast. The protocol in Fig.
4.1 realizes VSS from a dealer in L0 to shareholders in L5.

Figure 4.1 (ΠVSS, an (n, t, 5)-layered protocol for fVSS)

Public parameters: Sender S ∈ L0, shareholders L5.
Definitions: Let T = {T ⊂ [n] : |T | = n − t}.
Secret inputs: S has input m ∈ M .
Subroutines: Protocol ΠFMcast realizing fFMcast functionality.

Layer L0:
1. S samples (rT)T∈T as additive secret sharing of m.
2. For each T ∈ T , execute ΠFMcast with S as sender with input rT and

{P5
i : i ∈ T} as receivers.

Layer L5:
1. Each party P5

i , i ∈ [n] recovers rT as the output of ΠFMcast with S as
sender if i ∈ T . P5

i outputs (rT)i∈T as its share.

The protocol described in Fig. 4.1 is a (n, t, 5)-layered protocol realizing VSS.
This follows from the definition of Future Multicast. The following theorem

Layered MPC 379

proves a stronger result: Suppose n protocols are executed in parallel with P0
i

as dealer and L5 as shareholders for each i ∈ [n], then we achieve a parallel
(n, t, 5)-layered protocol for VSS functionality for t < n/3. The parallel VSS
fuctionality is formally described below.

Figure 4.2 (Parallel VSS functionality fparallel-VSS)

Public parameters: Senders S1, . . . ,Sn ∈ L0, shareholders R1, . . . ,Rn ∈ L5.
The domain M of secrets.

Definitions: Let T = {T ⊂ [n] : |T | = n − t}.

1. Each Si, i ∈ [n] sends (ri
T)T∈T to the functionality.

2. For each i ∈ [n] and T ∈ T , functionality sends (i, T, ri
T) to {P5

j : j ∈ T}.

Theorem 9. The protocol in Fig. 4.1 executed in parallel realizes fparallel-VSS
with perfect t-security for t < n/3 by consuming 5 layers, and by communicating(
n
t

)3 ·O(n2) field elements over the point-to-point channels and over the broadcast
channels for each secret.

Proof. The VSS protocol is essentially several multicast protocols executed in
parallel. The security of the construction follows from the security of the multi-
cast protocol, once we ensure that the adversary cannot correlate the shares of
the corrupt parties with those of the honest parties across parallel executions of
multicast protocols. The simulator for multicast extracts the input of a corrupt
sender in L0 from the view of the honest parties in the protocol up to L4. This
allows the simulator we build for parallel VSS to extract the shares of the cor-
rupt dealers after simulating the protocol till L4 and provide them to fparallel-VSS.
Whereas, a multicast from an honest sender to a set of receivers, potentially
containing corrupt receivers, does not reveal the sent message to the corrupt
parties until L4. Hence, the adversary chooses shares for corrupt parties before
getting to see the shares chosen by the honest parties. This guarantees that the
adversary cannot correlate the shares of the corrupted parties with the shares of
the honest parties. We show a simulator and full proof in the full version of the
paper [19]. �	

Addition and Multiplication-by-Constant for CNF Shares. The CNF
secret sharing scheme is linear; hence, parties holding valid CNF shares of a value
s can locally transform it into a valid secret sharing of αs when α is a publicly
known constant. In detail, let si be the share of s held by party i. Then, there
exist (δT)T∈T such that

∑
T∈T δT = s, and si = (δT)T :i∈T for each i ∈ [n]. Then

s′
1, . . . , s

′
n such that s′

i = (αδT)T :i∈T is a CNF secret sharing of αs. Additionally,
suppose a value r is secret shared as (r1, . . . , rn) where ri = (γT)T :i∈T for each
i ∈ [n], and

∑
T∈T γT = r. Then, s′′

1 , . . . , s′′
n such that s′′

i = (δT + γT)T :i∈T is
a CNF secret sharing of r + s. In conclusion, addition and multiplication by
constant of CNF shares can be computed locally.

380 B. David et al.

4.3 Multiplication

The multiplication functionality fmult (presented in [19, Figure 4.5]) takes valid
CNF secret shares of two values r and s and computes fresh CNF secret shares
of rs. This functionality requires that the input clients hold valid CNF secret
sharing of the individual values to be multiplied, and that at most t input clients
are corrupt. In contrast, by default, a layered adversary is allowed to corrupt
arbitrarily many input and output clients.

Implementing fmult. Suppose r1, . . . , rn and s1, . . . , sn are CNF secret shares
of two values r and s, respectively. Recall that, when T = {T1, . . . , TN} = {T ⊂
[n] : |T | = n − t}, for each i ∈ [n], ri = (γj)j:i∈Tj

and si = (λj)j:i∈Tj
, where

∑N
i=1 γj = r and

∑N
i=1 λj = s. To compute a secret sharing of rs, it suffices to

compute the secret sharing of γiλj for every i, j ∈ [N]; secret shares of rs can
be computed as the sum of these secret shares, which can be obtained by local
computations. This follows from the fact that, rs =

∑N
i=1

∑N
j=1 γiλj .

The main challenge in implementing multiplication is in obtaining correct
secret shares of γiλj , for all i, j ∈ [N]. In the non-layered setting, classic protocols
tackle this by having all parties who have access to γi and λj secret share their
product. The parties then compute the difference between the values shared as
purported product γiλj by securely computing their differences. If all differences
come out to be 0, since at least one of the parties secret sharing the product
is honest, all the remaining parties must also have correctly shared the secret.
Hence, one of these CNF-shares can be taken as a valid secret sharing of λiγj .
Whenever the difference is non-zero, both γi and λj are publicly revealed, and
a trivial secret sharing of γiλj is taken instead of the ones submitted by the
parties. Finally, these shares are ‘added’ together to get a secret sharing of rs.

The above protocol is clearly correct. The security of the protocol follows from
the fact that, whenever all the parties submitting shares of γiλj for some i, j are
honest, the protocol never reaches the public reveal phase. A formal description
of the protocol in the standard setting as constructed in [39] is provided in [19,
Figure C.1]. Our multiplication protocol is a porting of the above protocol to
the layered setting. In the process, we face two main challenges.

Firstly, when the public check of equality between purported shares of γj ·λj′

provided by a pair of parties fails in step 2, γj and λj′ need to be revealed by
every party (in the input layer) with access to these values. This is tackled exactly
as in the Future Multicast protocol. Using Future Messaging, all parties in the
input layer secret share each γi and λi they hold to the layer where the equality
check is made; the parties in this layer then selectively reveal the additive shares
for which any of the equality checks fails.

The second challenge is less straightforward to handle. If the protocol is
naively ported to the layered model, VSS of γj · λj′ will be available in two
different layers: once in the layer that initiates the equality check, and then
again in the final layer that computes the VSS of r · t as the sum of VSS of
γj · λj′ for all j, j′ ∈ [N]. But then, the adversary can corrupt t parties in both
these layers, and recover γj · λj′ for each (j, j′). This is overcome as follows: For

Layered MPC 381

each j, j′, consider the special party whose share of γj · λj′ will be chosen in the
final addition (if the all equality checks for γj ·λj′ succeeds). This party samples
(δk)k∈[N] as additive secret shares of γjλj′ , and verifiable secret share each δk

instead of directly secret sharing γj · λj′ . The equality check is now carried out
to check if

∑
k δk shared by the special party equals the value shared by every

other party. Finally, parties in the output layer receive a VSS of γj ·λj′ in which
the ith share is (δk)k:i∈Tk

. This avoids reuse of the same VSS in two layers. The
protocol is presented in [19, Figure 4.6].

We first establish properties of the subroutine Πj,j′ that computes CNF
shares of γj · λj′ for each j, j′ ∈ [N]. in the lemma below, proven in the full
version of the paper [19, Section C.5].

Lemma 4. For any j, j′ ∈ [N], the following properties hold for Πj,j′ when
executed in the presence of an adversary A:

(a) There exists (δk)k∈[N] such that
∑N

k=1 δk = λjγj′ , and each honest party
P7

i , i ∈ [N] outputs (δk)k:i∈Tk
at the end of Πj,j′ .

(b) Suppose parties P0
i , i ∈ H are honest, then for any a, b, a′, b′,

ADVRΠj,j′ ,A(γj = a, λj′ = b) ≡ ADVRΠj,j′ ,A(γj = a′, λj′ = b′).

By statement (a) in Lemma 4, for each j, j′ ∈ [N], parties in the output layer
correctly receive a CNF secret sharing of γjλj′ . Hence, the output of the parties
at the end of the protocol is a CNF secret sharing of

∑N
j=1

∑N
j′=1 γjλj′ = rs.

By statement (b) in Lemma 4, if λj′ or γj is not known to the adversary, the
output of Πj,j′ does not reveal γjλj′ . This ensures that the protocol is secure.
We obtain the following theorem.

Theorem 10. There is an (n, t, 7)-layered protocol realizing fmult, for t < n/3.

Executing the above protocol in parallel realizes a parallel multiplication
functionality.

4.4 Realizing MPC from Layered Multiplication and Addition

In this section, we construct a secure (n, t, d)-layered protocol for computing any
given function f by evaluating an layered arithmetic circuit computing the func-
tion. Suppose each party P0

i , i ∈ [n] in the input layer has xi ∈ F as input, and
each party in the output layer (specified later) wants to compute f(x1, . . . , xn).
The secure computation of f proceeds in three phases: an input sharing phase,
a circuit evaluation phase and an output reconstruction phase.

In the input sharing phase, each input client verifiably CNF secret shares
their input. In the circuit evaluation phase, the layered protocol traverses the
layered circuit that evaluates f and evaluates every gate in the circuit. Evaluating
a gate amounts to securely computing a CNF secret sharing of the value on the
output wire of each gate using the CNF secret sharing of the values on its input
wires. Finally, in the output reconstruction phase, the secret sharing of the value
on the output wire is revealed to the output clients.

382 B. David et al.

We elaborate on the circuit emulation phase below. Let C be a layered arith-
metic circuit over a field F with D layers that computes f . At the end of the
input phase, the values on the input wires of all gates in layer one of C are
simultaneously made available on the same layer of the protocol graph. In the
circuit evaluation phase, the protocol keeps the invariant that, if a layer i ∈ [D]
of C is processed, then the values on all the output wires from layer i of C are
simultaneously available of a specific layer of the protocol graph. The protocol
can then process all gates in layer i + 1 of C preserving the invariant.

Recall that every gate in C is either a multiplication-by-constant gate, an
addition gate or a multiplication gate. Given a CNF secret sharing of the value
on the input wire(s) of a multiplication-by-constant gate or an addition gate,
a secret sharing of the value on the output wire can be computed by locally
processing the share. That is, the value on the output wire of the gate is available
on the same layer (of the protocol graph) on which the values on the input
wires have been secret shared. However, for a multiplication gate, computing
a CNF secret sharing of the product of the values on the input wires using a
t-secure protocol for multiplication consumes 7 layers. This poses a challenge
when ensuring the invariant that the values on the output wires of all gates in a
layer (of C) are made available on the same layer of the protocol graph. We get
around this obstacle as follows: for a multiplication-by-constant or an addition
gate G, after locally computing the secret sharing of the value on the output
wire, we further compute a multiplication gate with value on the output wire of
G as one input and the other input value being fixed to one (identity). This is
achieved by using a trivial secret sharing of one as the other input and executing
the layered protocol for multiplication which consumes d = 7 layers. Hence, we
ensure the invariant we require.

The protocol is formally described in the full version [19, Figure 4.7]. We get
the following result.

Theorem 11. Let f be an n-party functionality computed by a layered arith-
metic circuit C over a finite field F and gates partitioned into layers L1, . . . , LD.
Then, for any t < n/3, there is an (n, t, 6 + 7D)-layered MPC protocol for f .

5 Efficient Layered MPC

In this section, we present an efficient implementation of perfectly t-secure lay-
ered MPC when t < n/3. To achieve this, we first build verifiable Shamir secret
sharing. As in our previous implementation of MPC, the only non-trivial step in
developing a protocol for general MPC after implementing VSS is that of achiev-
ing perfectly secure multiplication of two values that are secret shared. We build
the multiplication protocol by porting a multiplication protocol of [15,16] from
the standard setting to the layered setting. For want of space, we present the
formal constructions and proofs of their security in the appendix. The security
of the protocols is argued along the lines of our previous constructions, albeit,
with slightly more complex proofs.

Layered MPC 383

5.1 Verifiable Shamir Secret Sharing

In this section, we implement verifiable Shamir secret sharing in the layered
setting with perfect t-security for t < n/3. This is realized by porting a protocol
from the standard setting to the layered setting. We mostly face the same set
of challenges that we encountered while implementing future multicast in the
previous section. Recall that (t, n)-Shamir secret sharing of a secret s in a field
F involves sampling a random polynomial q(x) of degree at most t under the
constraint q(0) = s and setting the ith share to be q(i). We consider an equivalent
functionality fShamirVSS that allows a dealer to distribute the evaluation of a
degree (at most) t polynomial on distinct non-zero points. A formal description
of the parallel fShamirVSS functionality is given in [19, Figure 5.1].

Implementing fShamirVSS. The layered protocol realizing fShamirVSS is provided
in the full version [19, Figure 5.2]. We sketch the outline and the intuition behind
its construction.

The classic protocol for Shamir VSS in the standard setting proceeds as
follows. Suppose the dealer wants to share a secret s from a field F such that
|F| > n with t-security for t < n/3. The dealer samples a random bi-variate
polynomial S(x, y) of degree at most t in both the variables such that S(0, 0) = s,
and transfers fi(x) = S(x, i) and gi(y) = S(i, y) to party Pi. If the polynomials
were appropriately sampled, fi(j) = S(i, j) = gj(i) for every i, j. Each pair of
parties Pi, Pj check if fi(j) = gj(i) and fj(i) = gi(j); Pi raises a complaint
by broadcasting (i, j, fi(j), gi(j) if this check fails for Pj . The dealer addresses
every valid complaint–a complaint of the form (i, j, u, v) such that u �= fi(j) or
v �= gi(j)–and broadcasts (fi, gi); otherwise, the dealer dismisses that complaint.
This is followed by parties casting votes to accept or disqualify the dealer. Pi

votes to accept the dealer if all the following conditions are met: dealer addressed
one of every inconsistent mutual complaint–i.e., a pair of complaints (i, j, u, v)
and (j, i, u′, v′) such that u �= u′ or v �= v′; Pi itself did not issue a complaint;
and for each broadcasted (fj , gj), fi(j) = gj(i) and gi(j) = fj(i). If the dealer
receives less than n − t votes, it is declared to be corrupt. Otherwise, each Pi

updates (fi, gi) if it was broadcasted by the dealer and sets fi(0) as their share.
Using selective reveal in future messaging and checking equality using fadd

as done in future multicast, we can port the above protocol into the layered
setting. The protocol obtained in this manner is used as sub-protocol Π in
our final construction [19, Figure 5.2]. Interestingly, this construction by itself is
not a layered protocol for verifiable secret sharing. However, Π guarantees the
following: Let H1 ⊆ [n] such that P1

i is honest iff i ∈ H1; parties in L5 hold
a secret sharing of a value ŝi such that, all such ŝi (there are at least n − t of
them) define a valid secret sharing of a value ŝ. Further, if the dealer is honest,
ŝ = s and ŝi is the same as the value that the dealer transferred to P1

i . This is
formally stated in Lemma 5.

Lemma 5. The following properties hold for an execution of Π in the presence
of a layered adversary A:

(a) Let G ⊆ [n] such that P1
i is honest if and only if i ∈ H1. There exist

polynomials ĝ(x) and ĝi(x), i ∈ H1, each of degree at most t, such that

384 B. David et al.

ĝi(0) = ĝ(i) and αk
i output by each honest party P5

k coincides with ĝi(k).
Furthermore, if S is honest, ĝ(x) = F (x, 0).

(b) If S is honest, for any r, r′ ∈ F,

ADVRΠ,A(r) ≡ ADVRΠ,A(r′).

Using Π as a subroutine, verifiable secret sharing is achieved as follows
(described in [19, Figure 5.2]). Let q(x) = c0 + c1x + . . . ctx

t be the polyno-
mial that the dealer wants to secret share. For each 0 ≤ l ≤ t, dealer S
executes Π with ci as its input. When P5

i , i ∈ H5 are the set of honest par-
ties in L5. By Lemma 5, for each 0 ≤ l ≤ t, there exist polynomials ĝl(x)
and {ĝl,i(x)}i∈H1 of degree at most t such that, ĝl,i(0) = ĝl(i), and for all
k ∈ H5 and l ∈ H1, Pk

5 holds αk
l,i = ĝl,i(k). Since |H5| ≥ n − t, each

P6
j , j ∈ [n] recovers γi,j = Rec(α1

l,j , . . . , α
n
l,j) =

∑t
l=0 ĝl(i)jl for all i ∈ H1.

Hence, γj = Rec(γ1,j , . . . , γn,j) =
∑t

l=0 ĝl(0)jl. Defining q̂(x) = ĝl(0)xl, we con-
clude that each P6

j receives q̂(j) as required in verifiable Shamir secret sharing.
When S is honest, by Lemma 5 (a), ĝl(0) = cl for each 0 ≤ l ≤ t. Hence,
q̂(x) = q(x).

We next argue that, when S is honest, the view of the adversary is identical
irrespective of the value of q(0). Assume that the guarantee in Lemma 5 (b) is
preserved when Π is executed concurrently as in the protocol. Then, the view
of the adversary till L5 are identically distributed in the protocol irrespective
of the values of (cl)0≤l≤t. Hence, the view of the adversary in the protocol only
reveals q(i) for i ∈ C6, where P6

i , i ∈ C6 are the set of corrupt parties in L6.
In Protocol [19, Figure 5.2], the polynomial secret shared in L6 is exclusively

determined by αk
l,i, for i ∈ [n] and 0 ≤ l ≤ t stored by the honest parties

P5
k. In other words, the dealer is committed to polynomial ĝl(x), 0 ≤ l ≤ t

(as described in Lemma 5) when all the honest parties in L5 finish receiving
messages from their predecessors. Furthermore, by Lemma 5, when S is honest,
view of the layered adversary is identically distributed irrespective of input of
S in each invocation of Π. This ensures that, when the protocol for verifiable
secret sharing is executed in parallel, the polynomial being secret shared by a
corrupt dealer cannot be correlated with that shared by an honest dealer. In
the following theorem, we state this stronger result: when n verifiable secret
sharing protocols are executed in parallel with P0

i , i ∈ [n] as dealer and L6 as
shareholders, we realize a parallel VSS functionality with t-security.

Theorem 12. There is an (n, t, 6)-layered protocol which, when executed in par-
allel, realizes parallel Shamir-VSS for t < n/3 by communicating O(n6) field ele-
ments over the point-to-point channels and O(n4) field elements over the broad-
cast channels for each secret.

Employing the layered protocol for VSS, we proceed to port the protocol for
secure computation in [16] to the layered setting. An important functionality we
use extensively for this transformation is resharing, which allows parties in La

with (a valid) secret sharing of a secret s to “handover” the secret to parties in Lb,

Layered MPC 385

for any b > a, by providing a fresh secret sharing of s. Using parallel invocation of
VSS, realizing resharing is straight forward: secret shares of uniformly random
secrets cl, 1 ≤ l ≤ t are made available on the input layer. Then, the secret
s is reshared by distributing f(i) to shareholder i in the output layer; here
f(x) = s+

∑t
l=1 clx

l. Distributing secret shares of a uniformly random secret is
achieved by having t + 1 parties in a previous layer secret share random secrets
and the parties locally computing the shares of their sum (See functionality
in [19, Figure D.1] and its implementation in [19, Figure D.2]). The resharing
functionality is formally defined in [19, Figure D.3], and it is implemented as
outlined above in [19, Figure D.4].

5.2 Multiplication

The main challenge in realizing general MPC is securely implementing a multi-
plication protocol that computes a secret sharing of the product of two values
using their shares. Following the outline of the MPC implementation in [16], we
first realize a simpler primitive, namely multiplication with helper, where the
input clients hold secret sharing of a pair of values, and a special input client
called the helper holds both values. This primitive allows the helper to verifiably
secret share of the product of these values onto the output clients. The helper
will be disqualified if the value secret shared is not the product.

Implementing Multiplication with Helper. We realize this functionality by
porting a modified version of the implementation of the same in standard setting
as presented in [16]. The protocol in the standard setting works as follows: When
α, β are the values to be multiplied, helper samples polynomials f(x) and g(x) of
degree at most t conditioned on f(0) = α and g(0) = β. It then computes h(x) =
f(x)g(x); clearly, h(0) = αβ. It then verifiably secret shares (αl)l∈[t], (βl)l∈[t]

and (γl)0≤l≤2t, where f(x) = α +
∑t

l=1 αlx
l, g(x) = β +

∑t
l=1 βlx

l, and h(x) =
∑2t

l=0 γlx
l. The parties now enter a verification phase in which f(i), g(i) and

h(i) are revealed to Pi for each i ∈ [n]. Pi is to verify if f(i)g(i) = h(i) and
raise a complaint otherwise. For each complaint, f(i), g(i) and h(i) are publicly
revealed; parties unanimously disqualify the helper if any of the complaint is
valid. If all complaints turn out to be bogus, then h(x) is verified to be f(x)g(x)
and γ = αβ. The parties now store the secret shares of γ as the shares of the
product.

Our layered protocol follows the same logic with one notable difference. The
helper in L0 secret shares the coefficients of f(x), g(x) and h(x) to L6 using
the VSS protocol, with the exception of α and β. Recall that α and β are
secret shared on L0; it is imperative to the correctness of the protocol that
the secret shares of α and β provided to L6 are valid. But, this can be easily
ensured by having α and β in L0 reshared to L6. In the standard setting, this is
realized by “transferring” the secret sharing of α and β to the helper; resharing
ensures the same guarantees. By taking appropriate linear combinations of the
coefficients of the polynomials, parties in L6 then reveal f(i), g(i) and h(i) to

386 B. David et al.

each P7
i , i ∈ [n]. Each P7

i raises a complaint if f(i)g(i) �= h(i) to L8. For each
i ∈ [n] with a complaint, parties in L8 selectively reveal f(i), g(i) and h(i) to all
parties in L9. This is achieved by the trick we used in VSS as well as multicast
and multiplication in the previous section. Finally, γ secret shared by the helper
onto L6 is reshared to L9 and is used as the secret sharing of αβ if the parties
in L8 has not (unanimously) disqualified the helper.

When the helper is honest, throughout the protocol, the adversary only sees
at most t shares of α, β, the evaluation of f, g and h on at most t points, and
at most t shares of a sharing and resharing of γ. This ensures that the view of
the adversary is identically distributed irrespective of the values of α and β. A
corrupt helper is disqualified by the parties in L8 if and only if h(x) �= f(x)g(x).
As we observed while analyzing the protocol for VSS, the sender commits to
these coefficients by L5 as part of the VSS protocol. Hence, when this protocol
is executed in parallel, a corrupt helper is unable to correlate the event of their
getting disqualified with the secret sharing of the product achieved in another
parallel execution with an honest helper. Thus, the protocol remains secure under
parallel composition. The protocol is formally described in [19, Figure D.8].

Theorem 13. There is a layered protocol that realizes multiplication with helper
functionality with perfect t-security for t < n/3.

Multiplication. We proceed to the main primitive required to implement
MPC–secure processing of the multiplication gate. Suppose two values α, β are
Shamir secret shared using polynomials f(x) and g(x). Since f(x)g(x) is a poly-
nomial of degree at most 2t, given f(i)g(i) for at least 2t+1 distinct i ∈ [n], there
exists a linear transformation that computes f(0)g(0) = αβ. For each i ∈ [n],
suppose we execute the multiplication with helper protocol from the previous
section to verifiably secret shares the product f(i)g(i) with the help of the party
holding f(i) and g(i). The protocol guarantees that the secret sharing of the
product is accepted (and the helper is not disqualified) whenever the helper
adheres to the protocol; whereas, if the helper secret shares a value other than
the product then the helper is disqualified. Since at least n − t parties are cor-
rupt, we obtain the correct secret sharing of f(i)g(i) for n − t ≥ 2t + 1 distinct
values of i, which can be locally transformed using the aforementioned linear
transformation to obtain a secret sharing of αβ.

The above proposal has a clear flaw: to multiply f(i) and g(i) held by a
helper, both these values need to be secret shared in the same layer. Hence, we
need each f(i) and g(i) to be further secret shared onto the input layer. We refer
to the ‘data structure’ where each share of a value is further verifiably secret
shared as reinforced secret sharing (formally descrived in [19, Definition 10]).
The multiplication functionality takes reinforced secret shares of two values as
input; to promote sequential processing of multiplication, we also ensure that
the output of the functionality is a reinforced secret sharing of the product of
the input values.

It remains to convert the Shamir secret sharing to a reinforced secret sharing
of the product. This is realized by executing a protocol for reinforced resharing,

Layered MPC 387

which takes valid Shamir shares of a value from the input clients and distributes a
randomly sampled reinforced secret sharing of the same value. This functionality
is formally described in [19, Figure D.6], and implemented (along the lines of
Shamir resharing) in [19, Figure 5.4].

The protocol inherits security from the security of protocols implementing
(parallel) multiplication with helper and reinforced resharing since the protocol
exclusively uses these protocols in parallel. Indeed, the protocol remains secure
under parallel composition because both the subroutines remain secure under
parallel composition.

Theorem 14. There is a layered protocol that realizes multiplication function-
ality with perfect t-security for t < n/3.

5.3 MPC

In this section, we construct an efficient t-secure protocol for securely computing
any given function f by evaluating a layered arithmetic circuit C computing the
function. Suppose each party P0

i , i ∈ [n] in the input layer has zi ∈ F as input, and
each party in the output layer (specified later) wants to compute f(z1, . . . , zn).
Similar to our CNF secret sharing based construction, the secure computation
of f proceeds in three phases: an input sharing phase, a circuit evaluation phase
and an output reconstruction phase.

In the input sharing phase, each input client secret shares their input using
reinforced secret sharing. In the circuit evaluation phase, the protocol keeps the
invariant that, if a layer i of C is processed, then the values on all the output
wires outgoing from layer i of C are simultaneously available of a specific layer
of the protocol graph. Given a reinforced secret sharing of the value on the input
wire(s) of a multiplication-by-constant gate or an addition gate, a secret sharing
of the value on the output wire can be computed by locally processing the
share. However, for a multiplication gate, computing a Shamir secret sharing
of the product of the values on the input wires using a t-secure protocol for
multiplication consumes 10 layers. Hence, we once again face the challenge of
ensuring the invariant that the values on the output wires of all gates in a
layer (of C) are made available on the same layer of the protocol graph. We
get around this obstacle the same way we did in our previous construction: for
a multiplication-by-constant or an addition gate G, after locally computing the
reinforced secret sharing of the value on the output wire, we further compute a
multiplication gate with value on the output wire of G as one output and the
other value being fixed to one. This is achieved by taking a trivial secret sharing
of one as the other input and executing the t-secure protocol for multiplication
which consumes 10 layers. In this manner, we preserve the invariant we require.
The protocol is formally described in [19, Figure 5.5].

Theorem 15. Let f be an n-party functionality computed by a layered arith-
metic circuit C over a finite field F, with D levels and M gates. Then, for any

388 B. David et al.

t < n/3, there is an (n, t, 8+10D)-layered MPC protocol for f in which the com-
munication consists of M · O(n9) field elements over the point-to-point channels
and M · O(n7) field elements over the broadcast channels.

6 Computational Efficient Layered MPC for t < n/2

We introduce a computationally-secure layered MPC protocol with guaranteed
output delivery, based on (non-interactive) equivocal linearly homomorphic com-
mitments. We give a high-level overview and defer details to the full version [20].

Future Messaging. The primitive is achieved similarly as its perfectly-secure
counterpart, but to tolerate t < n/2 corruptions, we cannot rely on plain error
correction. Instead, parties broadcast commitments to (coefficients of) the poly-
nomials used to share their values to the future layers. Every time a party wishes
to re-share an intermediate value, they re-use the commitment to the constant
coefficient, thereby ensuring that the proper value is being re-shared.

Distributed Commitments. This primitive (also referred to as weak secret
sharing [27]) allows a dealer D ∈ Lc to commit to a value s towards a future
layer Lc′ , and later open the original value towards another further layer Lc′′ . If
D is honest, the opened value is s, and no information about s is revealed before
the opening phase. Moreover, even if D is corrupted, the commit phase uniquely
determines value s′, such that the opening phase can only output s′ or ⊥.

The dealer D ∈ Lc samples random degree-t polynomials f(x), r(x), such that
f(0) = s, computes a commitment to each coefficient in f using the coefficients
in r as randomness and broadcasts these commitments to the future layers. The
dealer then sends the evaluation points (s(i), r(i)) using future messaging to
party P c′

i . To reconstruct, layer Lc′ broadcast these pairs to the future layers,
and each party P c′′

i ∈ Lc′′ checks for each received pair whether it is consistent
with the corresponding commitment. If there are more than t consistent pairs,
interpolate a degree-t polynomial f ′(x) and output f ′(0). Otherwise, output ⊥.

Remark 2. We can achieve a distributed commitment that allows to commit to
the same value towards separate layers Lc′ and Lc′′ , such that even if P c

d is
corrupted, there exists a unique value s′ such that the value that is opened by
either layer is s′ or ⊥: let the dealer P c

d execute the above protocol towards layers
Lc′ and Lc′′ with polynomials f(x) and f ′(x) such that f(0) = s = f ′(0), but
using the same commitment for the constant coefficient.

Verifiable Secret Sharing. For VSS, the dealer D ∈ Lc with input s, samples
random degree-t polynomial f(x) with f(0) = s, and (duplicate) commits to each
coefficient of f towards layers Lc1 and Lc′ using the distributed commitment.
This results in a matrix M = [,i,j]0≤i,j≤t of public commitments, where ,i,j is a
commitment to the j-th coefficient of the polynomial used to share fi: by linearity
of the commitment, parties implicitly hold commitments to each evaluation f(i).
Using future messaging, the dealer D sends si = f(i) and its opening information
to P c1

i . Party P c1
i can check that the received information is consistent with

the published commitments, and broadcast to future layers a complaint if the

Layered MPC 389

check does not succeed. If the check succeeds, P c1
i commits to si towards layer

Lc′ ; to ensure that P c1
i commits to the value they received from P d

c , the party
uses the commitment to the constant term that is implicit from the published
commitments in M. If a complaint was raised by P c1

i , parties in layer Lc′ publicly
open si (and if the opened value is ⊥, the dealer is disqualified). To reconstruct:
for each index i corresponding to a party that did not complain, parties jointly
reconstruct si. The final layer Lc′′ then uses any t + 1 reconstructed shares to
interpolate the secret. Moreover, as in Remark 2, by having both D and parties
in layer Lc1 duplicate distribute commitments of si for all i ∈ [1, n] towards
layers Lc′ and Lc̃ for some c̃ ≥ c′, one guarantees that if D is not disqualified,
then both Lc′ and Lc̃ hold sharings of the same value.

2-Level Verifiable Secret Sharing. To simplify the description of the MPC
protocol, it is helpful that each party holds as part of their state a Shamir share
of each wire value. For that, we modify the VSS as follows: the dealer D uses
the above duplicate VSS to distribute shares of coefficients of f towards layers
Lc1 and Lc′ , where f(x) is a random degree-t polynomial with f(0) = s. Then,
each party in Lc1 (privately) reconstructs towards party P c′

i the value si = f(i).
Notice that layer Lc′ also holds sharings of all values f(j) for j ∈ [1, n] thanks
to linearity of our VSS. This version of VSS can also be similarly duplicated.

Circuit Evaluation. Input parties use 2-level VSS to distribute their inputs
towards a future layer. For each computation gate we maintain the invariant that
layer Lc holds sharings (resulting from the 2-level VSS) of the input wire values
x and y, and some future layer Lc′ for c′ ≥ c + 6 holds a sharing of the output
wire value z. Addition gates are processed locally, exploiting the linearity of 2-
level-VSS. Multiplication gates are processed by adapting a well-known protocol
of Cramer et al. [14]: each party P c

i ∈ Lc holds (as part of their 2-level VSS states
to x and y) Shamir shares xi and yi of each value, and computes a 2-level VSS
for xi, yi (but using the already known sharing to the constant coefficient of the
used polynomial) and a fresh 2-level VSS for zi = xi · yi towards a future layer.
Finally, each party carries out a distributed multiplication proof (adapted from
[14]) to prove that indeed zi = xi ·yi: if this proof fails, parties jointly reconstruct
(and adopt a standard sharing of) xi and yi to continue the computation.

Theorem 16. Let f be an n-party functionality computed by a layered arith-
metic circuit C over a finite field F, with D levels and M gates. Then, for
any t < n/2, there is an (n, t, 4 + 6D)-layered MPC protocol for f assuming
non-interactive linearly-homomorphic equivocal commitments. The communica-
tion complexity is M · O(n9) field elements over the point-to-point channels and
M ·O(n5) field elements + M ·O(n10 ·λ) bits over the broadcast channels, where
λ is the security parameter.

Acknowledgement. We thank the anonymous reviewers for helpful comments. B.
David was supported by the Independent Research Fund Denmark (IRFD) grants
number 9040-00399B (TrA2C), 9131-00075B (PUMA) and 0165-00079B. A. Konring
was supported by IRFD (TrA2C) and by the Otto Mønsted Foundation in a joint
program with Innovation Center Denmark - Israel. Y. Ishai, E. Kushilevitz, and V.

390 B. David et al.

Narayanan were supported by ISF grant 2774/20 and BSF grant 2018393. Y. Ishai and
V. Narayanan were also supported by ERC Project NTSC (742754).

References

1. Acharya, A., Hazay, C., Kolesnikov, V., Prabhakaran, M.: SCALES - MPC with
small clients and larger ephemeral servers. In: Kiltz, E., Vaikuntanathan, V. (eds.)
TCC 2022, Part II. LNCS, vol. 13748, pp. 502–531. Springer, Heidelberg (2022).
https://doi.org/10.1007/978-3-031-22365-5_18

2. Almansa, J.F., Damgård, I., Nielsen, J.B.: Simplified threshold RSA with adaptive
and proactive security. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004,
pp. 593–611. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_35

3. Baron, J., Defrawy, K.E., Lampkins, J., Ostrovsky, R.: Communication-optimal
proactive secret sharing for dynamic groups. In: Malkin, T., Kolesnikov, V., Lewko,
A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 23–41. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-28166-7_2

4. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: 20th
ACM STOC, pp. 1–10. ACM Press, May 1988

5. Benhamouda, F., et al.: Can a public blockchain keep a secret? In: Pass, R.,
Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12550, pp. 260–290. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64375-1_10

6. Blum, E., Katz, J., Liu-Zhang, C.-D., Loss, J.: Asynchronous byzantine agreement
with subquadratic communication. In: Pass, R., Pietrzak, K. (eds.) TCC 2020.
LNCS, vol. 12550, pp. 353–380. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-64375-1_13

7. Cachin, C., Kursawe, K., Lysyanskaya, A., Strobl, R.: Asynchronous verifiable
secret sharing and proactive cryptosystems. In: Proceedings of the 9th ACM Con-
ference on Computer and Communications Security, pp. 88–97 (2002)

8. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
CRYPTOLOGY 13(1), 143–202 (2000)

9. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS. pp. 136–145. IEEE Computer Society Press, October
2001

10. Canetti, R., Damgard, I., Dziembowski, S., Ishai, Y., Malkin, T.: Adaptive versus
non-adaptive security of multi-party protocols. J. Cryptology 17, 153–207 (2004)

11. Canetti, R., Herzberg, A.: Maintaining security in the presence of transient faults.
In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 425–438. Springer,
Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_38

12. Chen, J., Micali, S.: Algorand: a secure and efficient distributed ledger. Theor.
Comput. Sci. 777, 155–183 (2019)

13. Choudhuri, A.R., Goel, A., Green, M., Jain, A., Kaptchuk, G.: Fluid MPC: secure
multiparty computation with dynamic participants. In: Malkin, T., Peikert, C.
(eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 94–123. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-84245-1_4

14. Cramer, R., Damgård, I., Dziembowski, S., Hirt, M., Rabin, T.: Efficient multi-
party computations secure against an adaptive adversary. In: Stern, J. (ed.) EURO-
CRYPT 1999. LNCS, vol. 1592, pp. 311–326. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48910-X_22

https://doi.org/10.1007/978-3-031-22365-5_18
https://doi.org/10.1007/11761679_35
https://doi.org/10.1007/978-3-319-28166-7_2
https://doi.org/10.1007/978-3-030-64375-1_10
https://doi.org/10.1007/978-3-030-64375-1_13
https://doi.org/10.1007/978-3-030-64375-1_13
https://doi.org/10.1007/3-540-48658-5_38
https://doi.org/10.1007/978-3-030-84245-1_4
https://doi.org/10.1007/3-540-48910-X_22
https://doi.org/10.1007/3-540-48910-X_22

Layered MPC 391

15. Cramer, R., Damgård, I., Maurer, U.: General secure multi-party computation
from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6_22

16. Cramer, R., Damgård, I., Nielsen, J.B.: Secure Multiparty Computation and
Secret Sharing. Cambridge University Press, Cambridge (2015). https://
www.cambridge.org/de/academic/subjects/computer-science/cryptography-
cryptology-and-coding/secure-multiparty-computation-and-secret-sharing?
format=HB&isbn=9781107043053

17. Damgård, I., Ishai, Y.: Constant-round multiparty computation using a black-box
pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp.
378–394. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_23

18. Damgård, I., Escudero, D., Polychroniadou, A.: Phoenix: secure computation in an
unstable network with dropouts and comebacks. Cryptology ePrint Archive, Paper
2021/1376 (2021), https://eprint.iacr.org/2021/1376

19. David, B., Konring, A., Ishai, Y., Kushilevitz, E., Narayanan, V.: Perfect MPC
over layered graphs. Cryptology ePrint Archive, Paper 2023/330 (2023). https://
eprint.iacr.org/2023/330

20. Deligios, G., Goel, A., Liu-Zhang, C.D.: Maximally-fluid MPC with guaranteed
output delivery. Cryptology ePrint Archive, Paper 2023/415 (2023). https://eprint.
iacr.org/2023/415

21. Desmedt, Y., Jajodia, S.: Redistributing secret shares to new access structures and
its applications. Technical Report, Citeseer (1997)

22. Eldefrawy, K., Lepoint, T., Leroux, A.: Communication-efficient proactive secret
sharing for dynamic groups with dishonest majorities. In: Conti, M., Zhou, J.,
Casalicchio, E., Spognardi, A. (eds.) ACNS 2020. LNCS, vol. 12146, pp. 3–23.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57808-4_1

23. Feldman, P., Micali, S.: Byzantine agreement in constant expected time (and trust-
ing no one). In: 26th FOCS, pp. 267–276. IEEE Computer Society Press, October
1985

24. Fitzi, M., Garay, J.A.: Efficient player-optimal protocols for strong and differential
consensus. In: Borowsky, E., Rajsbaum, S. (eds.) 22nd ACM PODC. pp. 211–220.
ACM, July 2003

25. Fitzi, M., Liu-Zhang, C.D., Loss, J.: A new way to achieve round-efficient byzan-
tine agreement. In: Proceedings of the 2021 ACM Symposium on Principles of
Distributed Computing, pp. 355–362 (2021)

26. Garay, J.A.: Reaching (and maintaining) agreement in the presence of mobile
faults. In: Tel, G., Vitányi, P. (eds.) WDAG 1994. LNCS, vol. 857, pp. 253–264.
Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0020438

27. Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: The round complexity of verifi-
able secret sharing and secure multicast. In: 33rd ACM STOC, pp. 580–589. ACM
Press, July 2001

28. Gentry, C., et al.: YOSO: You Only Speak Once. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021. LNCS, vol. 12826, pp. 64–93. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-84245-1_3

29. Ghinea, D., Goyal, V., Liu-Zhang, C.D.: Round-optimal byzantine agreement. In:
Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part I. LNCS, vol.
13275, pp. 96–119. Springer, Heidelberg (May / Jun (2022). https://doi.org/10.
1007/978-3-031-06944-4_4

https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/3-540-45539-6_22
https://www.cambridge.org/de/academic/subjects/computer-science/cryptography-cryptology-and-coding/secure-multiparty-computation-and-secret-sharing?format=HB&isbn=9781107043053
https://www.cambridge.org/de/academic/subjects/computer-science/cryptography-cryptology-and-coding/secure-multiparty-computation-and-secret-sharing?format=HB&isbn=9781107043053
https://www.cambridge.org/de/academic/subjects/computer-science/cryptography-cryptology-and-coding/secure-multiparty-computation-and-secret-sharing?format=HB&isbn=9781107043053
https://www.cambridge.org/de/academic/subjects/computer-science/cryptography-cryptology-and-coding/secure-multiparty-computation-and-secret-sharing?format=HB&isbn=9781107043053
https://doi.org/10.1007/11535218_23
https://eprint.iacr.org/2021/1376
https://eprint.iacr.org/2023/330
https://eprint.iacr.org/2023/330
https://eprint.iacr.org/2023/415
https://eprint.iacr.org/2023/415
https://doi.org/10.1007/978-3-030-57808-4_1
https://doi.org/10.1007/BFb0020438
https://doi.org/10.1007/978-3-030-84245-1_3
https://doi.org/10.1007/978-3-030-84245-1_3
https://doi.org/10.1007/978-3-031-06944-4_4
https://doi.org/10.1007/978-3-031-06944-4_4

392 B. David et al.

30. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzan-
tine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium on
Operating Systems Principles, pp. 51–68 (2017)

31. Goldreich, O.: Foundations of Cryptography: volume 2, Basic Applications. Cam-
bridge University Press, Cambridge (2009)

32. Goyal, V., Kothapalli, A., Masserova, E., Parno, B., Song, Y.: Storing and retriev-
ing secrets on a blockchain. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) PKC
2022, Part I. LNCS, vol. 13177, pp. 252–282. Springer, Heidelberg (Mar (2022)

33. Halevi, S., Ishai, Y., Jain, A., Kushilevitz, E., Rabin, T.: Secure multiparty com-
putation with general interaction patterns. In: Sudan, M. (ed.) ITCS 2016, pp.
157–168. ACM, January 2016

34. Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret sharing or: how
to cope with perpetual leakage. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS,
vol. 963, pp. 339–352. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-
44750-4_27

35. Hirt, M., Maurer, U.M.: Player simulation and general adversary structures in
perfect multiparty computation. J. Cryptol. 13(1), 31–60 (2000), https://doi.org/
10.1007/s001459910003

36. Katz, J., Koo, C.-Y.: On expected constant-round protocols for byzantine agree-
ment. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 445–462. Springer,
Heidelberg (2006). https://doi.org/10.1007/11818175_27

37. Kushilevitz, E., Lindell, Y., Rabin, T.: Information-theoretically secure proto-
cols and security under composition. SIAM J. Comput. 39(5), 2090–2112 (2010).
https://doi.org/10.1137/090755886

38. Maram, S.K.D., et al.: CHURP: dynamic-committee proactive secret sharing. In:
Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019, pp. 2369–2386.
ACM Press, November 2019

39. Maurer, U.: Secure multi-party computation made simple. Discrete Appl. Math.
154(2), 370–381 (2006)

40. Micali, S.: Very simple and efficient byzantine agreement. In: Papadimitriou, C.H.
(ed.) ITCS 2017, vol. 4266, pp. 6:1–6:1. LIPIcs, 67, January 2017

41. Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks (extended
abstract). In: Logrippo, L. (ed.) 10th ACM PODC, pp. 51–59. ACM, August 1991

42. Pass, R., Shi, E.: The sleepy model of consensus. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 380–409. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70697-9_14

43. Schultz, D., Liskov, B., Liskov, M.: Mpss: mobile proactive secret sharing. ACM
Trans. Inf. Syst. Secur. (TISSEC) 13(4), 1–32 (2010)

44. Wong, T.M., Wang, C., Wing, J.M.: Verifiable secret redistribution for archive
systems. In: First International IEEE Security in Storage Workshop, 2002. Pro-
ceedings, pp. 94–105. IEEE (2002)

https://doi.org/10.1007/3-540-44750-4_27
https://doi.org/10.1007/3-540-44750-4_27
https://doi.org/10.1007/s001459910003
https://doi.org/10.1007/s001459910003
https://doi.org/10.1007/11818175_27
https://doi.org/10.1137/090755886
https://doi.org/10.1007/978-3-319-70697-9_14

	Perfect MPC over Layered Graphs
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Technical Overview

	2 Preliminaries
	2.1 Layered MPC
	2.2 Adaptivity and Composability in Layered MPC

	3 Basic Primitives
	3.1 Future Messaging
	3.2 Multiparty Addition

	4 Layered MPC Based on CNF Secret Sharing
	4.1 Future Multicast
	4.2 Verifiable Secret Sharing
	4.3 Multiplication
	4.4 Realizing MPC from Layered Multiplication and Addition

	5 Efficient Layered MPC
	5.1 Verifiable Shamir Secret Sharing
	5.2 Multiplication
	5.3 MPC

	6 Computational Efficient Layered MPC for t<n/2
	References

