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Abstract. The notion of oblivious transfer with hidden access control policies (HACOT) was recently proposed by Ca-
menisch et al. (Public-Key Cryptography 2011). This primitive allows a user to anonymously query a database where each
record is protected by a hidden attribute-based access control policy. At each query, the user either learns the value of a
single record if the attributes in his key satisfy the policy, or the mere fact that his attributes do not satisfy the policy. The
database, even when colluding with the key issuer, learns nothing about the identity of the user, the index or the access
policy of the record, or whether access was granted or denied. At the same time, the database can keep an eye on the overall
access frequency to prevent the data from being “crawled”.
In this paper, we present a new HACOT scheme which is more efficient and offers more expressive policies than the scheme
presented by Camenisch et al. We construct our HACOT protocol based on a hidden ciphertext-policy attribute-based en-
cryption (HP-ABE) scheme by Nishide et al.: users are issued HACOT decryption keys based on HP-ABE attributes and
HACOT records are encrypted under HP-ABE policies. However, as we will see, this simple approach does not work and
we need to extend the Nishide et al. scheme as follows. First, we add protocols that allows users to verify that the public key
of the issuer and ciphertexts are correctly formed. Second, we reserve one attribute and give the corresponding decryption
key only to the database. Thereby users can no longer decrypt records by themselves but require the help of the database.
Third, we provide a joint decryption protocol between the user and the database, so that the database does not learn which
ciphertext is decrypted. The latter will also allow one to optionally add revocation of the users’ access. We prove our con-
struction secure by a reduction to the security of Nishide et al.’s scheme, the Symmetric External Diffie-Hellman (SXDH)
and Simultaneous Flexible Pairing (SFP) assumptions.
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1 Introduction

Consider a medical database containing patients’ medical records. Clearly, proper encryption and access control
mechanisms need to be in place to protect such sensitive data. Different access control policies may apply to
different records, ensuring for example that only relevant specialists and the treating medical staff have access to
a patient’s record. Given the frequent changes in medical personnel at hospitals, a role-based or attribute-based
approach seems a natural solution.

Mere access control may not be enough, however. First, the access control policy by itself may leak sensitive
information about a patient’s illness. For example, the nature of a patient’s health problem is pretty clear if an
oncologist, a psychiatrist, or a plastic surgeon has access to his or her record. The treating medical staff may
also have an interest in hiding the access control policies, e.g., to avoid being approached by the press when
treating celebrities. Second, the query pattern for a particular record may reveal considerable information about
the seriousness of the patient’s condition or the phase of treatment. It is therefore desirable that the database can
be queried anonymously, so that the database administrator remains oblivious as to who accesses which record at
which time. Third, the database owner may want to prevent its users from abusing their anonymity to “crawl” the
database and re-create a copy outside the owner’s control. The database must therefore be able to detect unusual
query activity to throttle requests, e.g., by inserting time delays or by presenting CAPTCHAs.

Narayan et al. [NGSN10] proposed a privacy-preserving Electronic Health Records (EHR) system that allows
one to share patient data among healthcare providers in the cloud, using attribute-based encryption. However, the
cloud provider still learns which files get downloaded (the scheme does not provide oblivious access to the data),
the access control policy of records is not hidden, and revocation only works when all data is deleted from the
user’s device after each query.

A full-fledged solution is given by Camenisch et al. [CDNZ11], who combine adaptive oblivious transfer (OT),
anonymous credentials, and zero-knowledge proofs to build a primitive called Oblivious Transfer with Hidden
Access Control Policies (HACOT).

As observed by Camenisch et al. [CDNZ11], attribute-based encryption with hidden ciphertext policies
(HP-ABE) [KSW08,NYO08,LOS+10] is a similar primitive: a user’s decryption key is associated with a list of
attributes, while a ciphertext is associated with a hidden access control policy so that it can only be decrypted
by users whose attributes satisfy the policy. Thus one could attempt to apply an HP-ABE scheme in the scenario
above: issuing decryption keys to the medical personnel, encrypting each patient’s record under the appropriate
policy, and sending all ciphertexts to all users, all mentioned security requirements are met. However, this approach
does not offer all the necessary security features, as we will discuss in detail in this paper. For example, it allows
users to crawl the database and “bulk-decrypt” all records to which they have access offline. Also, it is not possible
to revoke access, an indispensable feature in a changing environment such as a hospital’s workforce. Revocation
is notoriously difficult to implement in identity-based and attribute-based encryption systems, with most practical
solutions requiring a painful trade-off to be made between security and frequency of key updates and database
re-encryptions. Finally, as we will explain in more detail later, a HP-ABE scheme does not exclude that a single
ciphertext decrypts to different plaintexts for different users, leading to anonymity problems. So, a plain application
of HP-ABE is not satisfactory and, indeed, the construction of an HACOT scheme based on HP-ABE was left as
an open problem by Camenisch et al. [CDNZ11].

Our Contributions. In this paper, we extend the HP-ABE scheme by Nishide et al. [NYO08,Nis08] as follows
into an HACOT scheme to bring it to the same level of functionality as the HACOT protocol of [CDNZ11]. First,
we add protocols that allow users to verify that the public key of the issuer and ciphertexts are correctly formed.
Second, we reserve one attribute and give the corresponding decryption key only to the database so that users can
no longer decrypt records by themselves but require the help of the database. Instead, we provide a joint decryption
protocol between the user and the database, so that users can again decrypt records under the control of the database
but with the database not learning which particular ciphertext is decrypted. The latter will also allow to optionally
add revocation of the users’ access. Thus, when using our functionality/scheme with an authenticated encryption
scheme [BN08], one indeed obtains the required solution.
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We also address a deficiency in the definition and protocol by Camenisch et al. [CDNZ11]: in their ideal
functionality, users are returned⊥ if they do not have the necessary access rights, but in their protocol, they receive
a random message in this case. We address this as follows: we define the ideal functionality 1) to handle only
encryption keys that can then be used to derive keys for a symmetric encryption scheme and 2) in case a user has
no access, the functionality will return a random key to the user.

Our construction relies on interactive zero-knowledge proofs of knowledge [CDM00], Groth-Sahai non-in-
teractive proofs [GS08], the privacy-friendly signature scheme by Abe et al. [AFG+10] and an HP-ABE scheme
that allows transformations described in Section 4. Our HACOT protocol offers several advantages over that of
Camenisch et al. [CDNZ11]. First, access control policies in our protocol are specified as vectors of subsets of
polynomial-size attribute universes, which is more expressive than the boolean attributes of their scheme. Commu-
nication and computation by the database in the decryption protocol is independent of the number of attributes in
our scheme, versus linear in theirs. Indeed, already for 3 attributes all operations are more efficient in our scheme
except the key generation where ours is costly (using realistic security parameters for both schemes).

We prove our construction secure in the common reference string (CRS) model under the Symmetric eXternal
Diffie-Hellman (SXDH) assumption, the Simultaneous Flexible Pairing (SFP) [AFG+10] assumption, and the se-
curity of the underlying HP-ABE scheme (in the case of Nishide et al.’s scheme: generic bilinear group model).
We also implemented a prototype of our protocol and provide a theoretical efficiency analysis and experimental
performance results. Notice that database updates are also supported in our scheme, and records can be added to
the database without having to re-encrypt the whole database. The database provider just distributes an update
containing the ciphertexts of the new records.

Related Work. All attribute-based [SW05,BSW07,NYO08,LOS+10] and predicate [KSW08,LOS+10] encryp-
tion schemes allow for offline decryption, and can therefore not be used as such for the scenario we envisage.
Some of these schemes [KSW08,NYO08,LOS+10] are policy-hiding, meaning that users cannot deduce anything
about the policy of a ciphertext except whether their key satisfies it. The schemes of Katz et al. and Lewko et
al. [KSW08,LOS+10] allow for conjunctions and disjunctions in the policy, but require composite-order bilinear
groups. The scheme of Nishide et al. [NYO08] allows for slightly less powerful policies but works in a prime-order
group setting. The scheme of Lewko et al. [LOS+10] and the second construction of Nishide et al. [NYO08] are
fully secure in the generic group model [Nis08], whereas the other schemes are only selectively secure.

There is an extensive body of literature on the subject of oblivious transfer [Rab81]. In this paper we use the
adaptive k-out-of-n variant [NP99,CNS07], where a user may query for up to k records from a database of n
records. The user does not learn anything about the (n − k) records he did not query, while the database does not
learn which records were queried. The goal is to “amortize” communication costs so that the encrypted database of
size linear in n is transmitted once, but each transfer afterwards has communication cost independent of n. Several
extensions to adaptive k-out-of-n OT have been proposed, including pricing [CDN10] and access control with
known [CDN09,CGH09] and hidden [CDNZ11] policies. Our protocol is an alternative instantiation of the latter
primitive.

Zhang et al. [ZAW+10] have proposed a scheme that combines the OT protocol of Camenisch el al. [CNS07]
with the attribute based encryption scheme of Lewko et al. [LOS+10] and achieves oblivious transfer with access
control functionality, but their scheme does not cover the hidden policy case and does not provide revocation of
users. We also show in Section 4 that this scheme cannot be extended to a hidden policy while preserving our
HACOT security properties.

Green et al. [GHW11] propose a way to outsource the main computation for decrypting ABE ciphertexts to
a (possibly passively malicious) proxy, however their approach does not fit well with our real-world/ideal-world
security notions since it is not clear what guarantees the user has if the proxy maliciously deviates from its specifi-
cations.

2 Definitions

An oblivious transfer protocol with hidden access control policies (HACOT) is run between an issuer, who sets
up the system, and generates keys of users; one or more databases, who publish records and control users’ access
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rights to the database by setting access policies; and users, who anonymously fetch records that they are entitled to
access. Let I denote the issuer, DB the set of all databases, DB% the database with index %, U the set of all users,
Uϕ the user with index ϕ.

2.1 Syntax and Basic Terminology

By N we denote the set of natural numbers, by Nn the set of all natural numbers between 0 and (n − 1). By Zp
we denote the ring of integers modulo p. We use N∗n and Z∗p to denote Nn \ {0} and Zp \ {0}, respectively. By
e : G1 ×G2 7→ GT we denote a bilinear map. If κ ∈ N, then 1κ denotes the string consisting of κ ones.

If A is a set, then a $← A means we set a to a random element of that set. If A is a Probabilistic Polynomial-
Time (PPT) algorithm or interactive machine, then y $← A(x) means we assign y to the output of A when run
with fresh random coins on input x. If A and B are two interactive machines, then let (InA||InB)→ (OutA||OutB)
denote the sets of inputs and outputs of A and B during the interaction between these two machines.

2.2 Record Policies and User Attributes

Our HACOT scheme uses the same policy framework as the HP-ABE scheme by Nishide et al. [NYO08]. We recall
the notation below for convenience.

All records in the database are encrypted. The database DB% can specify an access policy for an encrypted
record C%,ψ, which is called a ciphertext policy (W%,ψ). The issuer gives Uϕ a secret decryption key corresponding
to the set of access attributes (Lϕ) granted to the user.

We denote languages for the attributes and policies as LL and LW respectively. We write L |= W to mean that
W is satisfied by L, and L 6|= W if not (i.e., a user key corresponding to L, respectively can and cannot decrypt a
ciphertext with policy W ).

We now describe the structure of attributes and policies in more detail. The keys issued to users are associated
with a list of attributes L = (L1, . . . , Ln) from n different categories. Let ni ∈ N be the (finite and polynomial)
number of possible attribute values in the i-th category. Without loss of generality, we can encode the ni attributes
of category i as elements of Nni , so that Li ∈ Nni . For example, in a hospital scenario, the n = 3 categories could
be (Job Title, Department, Gender), where Job Title can take any of the n1 = 5 attributes {student, nurse, doctor,
surgeon, administration}, Department can take any of the n2 = 4 attributes {cardiology, maternity, neurology,
oncology}, and Gender can be any of the n3 = 2 attributes {male, female}.

Each record in the database has an access control policy associated with it. A policy W = (W1, . . . ,Wn) is
expressed as a list of n subsets of attributes Wi ⊆ Nni . A key endowed with the attribute list L is authorized to
access a record if and only if all attributes in the key are also in the ciphertext policy, i.e., L |= W ⇔ ∀i ∈ N∗n+1 :
Li ∈ Wi. For example, Alice may be a surgeon in the oncology department, so that her key is associated with
(surgeon, oncology, female), while Bob, who is an administrative assistant in the maternity department, has key
(administration, maternity, male). If a patient’s medical record is protected by a policy W =({doctor, surgeon},
{cardiology, oncology}, {male, female}), then Alice can access the record, but Bob cannot.

One could view the ciphertext policy as implementing a limited version of conjunctive normal form: within a
category, the policy specifies an OR condition on the attribute the user key has for that category; and all attributes
of the key have to be in the access structure, basically an AND condition. Note that the access structure is hidden
from the user, meaning that he cannot recover it from the ciphertext alone.

2.3 Definition of HACOT without Revocation

A HACOT scheme is a tuple of the following eight PPT algorithms and protocols:

• IssuerSetup(LL,LW )
$→ (pkI , skI). This algorithm generates the system-wide issuer public key pkI and

corresponding secret key skI . The input to this algorithm is a description of the set of attributes LL that keys can
be endowed with, and a description of the set of ciphertext policies LW .
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• VerifyIssuerKey
(
(pkI)||(pkI , skI)

) $→ (b||ε). Upon receiving the public key of the issuer, each user and
each database runs this protocol with the issuer, so that the latter can prove that the issuer keys are correctly
formed. The common input is the issuer’s public key, the issuer’s private input is his secret key. The output is a bit
b indicating whether the user or database accepts the issuer’s key.
• DBSetup(pkI)

$→ (pkDB%, skDB%). The database with index % runs this algorithm to generate its public key
pkDB% and corresponding private key skDB%.
• VerifyDBKey

(
(pkI , pkDB%)||(pkI , pkDB%, skDB%)

) $→ (b||ε). Upon receiving the public key of DB%, each
user runs this protocol with the databaseDB%, so that the latter can prove in zero-knowledge that it knows the secret
key corresponding to its public key. The common input consists of the issuer’s and the database’s public keys. The
database’s private input is its secret key. The output is a bit b indicating whether the public key pkDB% is accepted.
• IssueRecord(pkI , pkDB%, skDB%,K%,ψ,W%,ψ)

$→ C%,ψ. The database DB% runs this algorithm to publish a
new record with index ψ. The input are the database’s key pair, the issuer’s public key, the plaintext K%,ψ ∈ GT,
and the ciphertext policy W%,ψ ∈ LW . The output is the ciphertext C%,ψ.
• CheckRecord(pkI , pkDB%,C%,ψ)

$→ b. Upon receiving a ciphertext C%,ψ, each user performs a check to test
whether it is correctly formed. The output bit b indicates the result of that check.
• Escrow(skI , pkI , pkDB%,C%,ψ)

$→ (K%,ψ,W%,ψ). With this algorithm, I can efficiently recover the plaintext
and the policy of the ciphertext C%,ψ without interacting with DB%. This algorithm models the fact that in most
HP-ABE systems, the issuer can recover a great deal of information from all ciphertexts by using his private key.
• IssueUserKey

(
(pkI , ϕ,Lϕ)||(pkI , skI , ϕ,Lϕ)

) $→ (skUϕ||ε). The user with index ϕ and the issuer run
this interactive protocol to generate a new secret key skUϕ for Uϕ. We assume that the protocol is run over an
authenticated channel. Common inputs are ϕ, attributes Lϕ ∈ LL, and the public key of the issuer. The issuer has
his secret key as private input. Only the user receives output from this protocol, namely his secret key skUϕ.
• Query

(
(skUϕ, pkI , pkDB%,C%,ψ)||(pkI , pkDB%, skDB%)

) $→ (K ′||ε). The user Uϕ queries database DB%
to attempt to decrypt record ψ. The common input contains the public keys of the issuer and database. The user’s
private input is his secret key and the ciphertext C%,ψ. (A more general definition would include the entire encrypted
database in the user’s input, but the most efficient schemes should not need this.) The database’s secret input is its
private key. Only the user receives output from this protocol, namely the recovered plaintext K ′. If decryption
was successful, then K ′ = K%,ψ, otherwise K ′ is a random element of GT. Queries take place over anonymous
channels so that the database does not know with which user it interacts.

We assume that the CRS and system parameters are generated according to the appropriate distributions and
are made available to all participants.

This definition is similar to the definition of HACOT in [CDNZ11]. The differences are as follows: 1) our
definition allows for more expressive policies; 2) records can be added individually instead of setting them up all
at once at system startup; 3) our system allows for multiple independent databases; and 4) we explicitly model the
level of access that the issuer has in our system though the Escrow functionality. With respect to the last point,
our scheme is at a disadvantage compared to [CDNZ11]: while the issuer in [CDNZ11] can always generate for
himself a user key that decrypts all records, he must interact with the database to recover the plaintext of a record;
to recover the policy, one interaction with the database per attribute is necessary.

2.4 Security Definitions

To define the security of our protocol we take an approach from [CNS07,CDNZ11] which is inspired by universal
composability [Can00] and reactive systems [PW00,PW01]. Namely, we prove a HACOT protocol secure through
an indistinguishability argument between the instantiation of HACOT in the real worldRHACOT, where players run
the set of cryptographic protocols, and an ideal world functionality FHACOT, which applies the functionality the
cryptographic protocols are supposed to realize.

In the real world after receiving a message from the environment E all parties run the corresponding crypto-
graphic algorithms or engage in the protocols described in Section 2.3.

We briefly describe the FHACOT functionality below and provide a formal ideal world definition in Appendix
B. We note that the interfaces between the environment E andRHACOT and between E and FHACOT are identical.
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Ideal World (sketch). In the ideal world, FHACOT performs all actions only after relaying all received messages to
the simulator S and getting an approval from S. After receiving a first message from the issuer, FHACOT fixes the
set of possible attributes and policies. It further relays all messages between users, databases and issuer during the
Issuer and Database Setup phases and creates a list of all databases and users. Note that after Setup is completed,
it is not possible to add users or databases. Later, during Record Issuance, FHACOT stores records and their policies
upon request from the database. This can be repeated any number of times, meaning that the records can be added
at any time. When receiving a key request from a user, FHACOT stores an entry with the set of attributes for that
user’s key. Finally, during a Query, FHACOT removes the user and record identifier from the user’s request before
forwarding it to S and to the corresponding database. After the database replies with a bit b,FHACOT checks whether
the set of user’s attributes satisfies the policy of the requested record; if b = 0, then it sends ⊥ to the user; if b = 1
and the policy is satisfied, it sends the stored record back to the user, otherwise, it sends back a random group
element.

Discussion of Security Properties. Informally, the specification of the ideal functionality FHACOT is such that
the following security properties are trivially satisfied. Hence, any real-world implementation of the scheme must
satisfy the same properties.

Database security. Users need to contact the database for each record that they want to access, so the database
can keep an eye on the overall access frequency and throttle too-frequent requests. Users cannot determine whether
their key satisfies the access policy of the record before the interaction. They cannot deduce anything about the
contents of a record if they did not query it with a valid key that satisfies the policy. After a successful interaction,
users cannot deduce anything about the policy except whether their key satisfies it or not. Cheating and colluding
users cannot query any records that one of them could not have queried individually. In particular, they cannot
“combine” or “rearrange” attributes in their keys.

User security. The only information that the database sees during a query is the mere fact that a query takes place.
In particular, it cannot determine which user queries which record, which policy is associated to the record, which
attributes the user has, and whether access to the record was granted or not. User security is valid even if the
database colludes with the issuer and other users. If the query protocol completes successfully, honest users are
guaranteed that 1) if access was granted, then their key satisfies the policy of the record and 2) if access was denied,
then their key does not satisfy the policy of the record.

3 Preliminaries

In this section we describe the security assumptions and building blocks used in our scheme.

3.1 Assumptions

Decisional Diffie-Hellman (DDH) Assumption. Let G be either G1, G2 or GT (and let g be the corresponding
generator of the group, viz. g1, g2, gT). Let a, b, z $← Zp. DDH is hard in G if for every PPT algorithm A:

AdvDDH
G

def=
∣∣∣Pr
[
A(g, ga, gb, gab)

$?
= 1
]
− Pr

[
A(g, ga, gb, gz)

$?
= 1
]∣∣∣ = negl. (1)

Symmetric External Diffie-Hellman (SXDH) Assumption. We say that the SXDH assumption holds if DDH
holds in G1, G2 and GT. This assumption holds only for type-3 [GPS08] bilinear maps: this means there exists no
efficiently computable homomorphism from G1 to G2 or vice-versa. It is believed SXDH holds in certain subgroups
of MNT elliptic curves.
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`-Simultaneous Flexible Pairing (SFP) Assumption. Let A,B $← G1, Ã, B̃ $← G2 and gZ , fZ , gR, fU
$← G∗1.

For j ∈ N∗`+1 let Pj
def=
(
Zj , Rj , Sj , Tj , Uj , Vj ,Wj

)
that satisfies:

e(A, Ã) = e(gZ , Zj) e(gR, Rj) e(Sj , Tj) ∧
e(B, B̃) = e(fZ , Zj) e(fU , Uj) e(Vj ,Wj) .

(2)

We say that the `-SFP assumptions holds in G1 if for all PPT algorithms A (3) is satisfied [AFG+10,AHO10],
where P`+1 satisfies (2) and Z`+1 6= 1 ∧ ∀i ∈ N∗`+1 : Z`+1 6= Zi.

Adv`−SFP
G1

def= Pr
[
A
(
gZ , fZ , gR, fU , A,B, Ã, B̃,

(
Pj
)`
j=1

)
$?
= P`+1

]
= negl. (3)

We define `-SFP in G2 analogously by exchanging the groups G1 and G2 above.
This assumption is parameterized by ` (unlike the other assumptions which are static), where a larger ` means

a stronger assumption. This assumption was proven to hold in the generic bilinear group model [AHO10], as long
as `� √p (quadratic bound).

3.2 Zero-Knowledge Proofs

ZKPK denotes an interactive zero-knowledge proof (or argument) of knowledge [CDM00], while NIZK denotes
a non-interactive zero-knowledge proof [GS08]. We will use the Camenisch-Stadler notation [CS97] to describe
what is being proven, for example: ZKPK{(α, β) : y = gα ∧ z = gβhα}. Variables in parenthesis denote the
elements knowledge is proven about, such that the formula after the colon is true. Further details can be found in
Appendix A.1 and A.2.

3.3 Hidden-Policy Attribute-Based Encryption

A HP-ABE scheme is a tuple of the following four PPT algorithms:

• IssuerSetup(1κ,LL,LW )
$→ (pkhI , skhI). Using LL, LW , and a security parameter as input, this algorithm

outputs the public and secret keys of I.
• IssueUserKey(skhI , pkhI , L)

$→ skhU . Given a permissible set of attributes L ∈ LL and the issuer’s key
pair, this generates a new user key skhU endowed with L.
• Encrypt(pkhI ,K,W )

$→ C. Given a plaintext K ∈ GT, a permissible ciphertext policy W ∈ LW , and the
issuer’s public key pkhI , this algorithm generates a corresponding ciphertext C.
• Decrypt(skhU , pkhI ,C)→ K ′. Given a ciphertext C, the user’s secret key skhU , and the issuer’s public key

pkhI , this algorithm decrypts the ciphertext with the user’s secret key. If the key satisfies the policy (L |= W ), then
the correct plaintext is recovered (K ′ = K). If the key does not satisfy the policy then K ′ 6= K with overwhelming
probability.

Security of HP-ABE. Informally, an HP-ABE scheme is secure if an adversary, who can adaptively get as many
keys issued as he wants, cannot tell if a given challenge ciphertext decrypts to some plaintext M0 under policy W0

or to some other plaintext M1 under W1 of his choosing (modulo the trivial cases). A precise definition is given in
Appendix A.5. Note that some HP-ABE schemes are only selectively secure (meaning the adversary must fix the
challenge plaintexts and policies before he receives the issuer’s key), but this is not sufficient for our scheme.

We use the second construction of Nishide et al.’s HP-ABE [NYO08] scheme. It is proven secure in the generic
bilinear group setting [Nis08], and requires Type-3 pairings. It allows the issuer to add attributes and categories
after system setup. In their scheme the issuer is assumed to be trusted, unlike our HACOT scheme.

3.4 Structure-Preserving Signatures

To hide the record index during a query, but at the same time make sure that the user is asking to decrypt a correct
ciphertext, we need a signature scheme that allows for zero-knowledge proof-of-possession. As the ciphertext is
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a set of group elements, we use the basic signature scheme by Abe et al. [AFG+10] for signing group elements.
This scheme does not require the signer to know the discrete logarithm of the group elements he is signing. It is
existentially unforgeable against adaptive chosen message attacks if the Simultaneous Flexible Pairing assumption
[AFG+10] holds.

This signature scheme Sig allows the user to re-randomize (blind) the signature and prove in zero-knowledge
that this is still a correct signature. The user’s anonymity is thus preserved, and the database has the guaran-
tee that it is not helping the user to decrypt invalid ciphertexts. The scheme consists of a key generation algo-
rithm Sig.KeyGen; a signing algorithm Sig.Sign; a verification algorithm Sig.Verify; a re-randomization algorithm
Sig.Rerand, that takes as input a signature σ of a message m and outputs a re-randomized signature σ′, which is
also a valid signature on m; and two algorithms Sig.KeyProve and Sig.Prove for proving in zero-knowledge the
validity of the key and the signature respectively. See Appendix A.3 for more details.

4 Achieving HACOT from HP-ABE

Let us give some intuition and a high-level description of our scheme, in particular how to extend a HP-ABE
scheme into an oblivious access control system with hidden policies. In our protocol we use a concrete HP-ABE
scheme by Nishide et al. [NYO08], but one can apply a similar trick to other HP-ABE schemes. Recall that in
HP-ABE, a user’s decryption key is associated with a list of attributes, while a ciphertext is associated with a
hidden access control policy. A user can decrypt a ciphertext offline only if the attributes from his key satisfy the
cipertext policy. Assume a database would just employ an HP-ABE scheme to encrypt all records and then publish
these encryptions. Users would be issued the HP-ABE decryption keys corresponding to their attributes. In this
approach, the access control policies would indeed be hidden and also users would only be able to access the
records for which their attributes match the access control policies. Unfortunately, this solution does not provide
all the properties that HACOT requires:

• First, somewhat counterintuitively, anonymity of the users is not guaranteed: in case the database and the issuer
are malicious, they could deviate from the key issuance and encryption procedures so that if two users with the same
attributes decrypt a record their result will still be different; hence, the scheme would not satisfy our ideal world
definition. In a higher-level protocol, the two users might be distinguishable.
• Second, users can immediately decrypt all the records for which they have the necessary attributes. This will

allow colluding users to derive information about the policies. Furthermore, the database has no control over the
access frequency of records and cannot revoke access rights.

To address the first issue, we make the operations by the issuer and the database verifiable. We add an ad-
ditional protocol (VerifyIssuerKey) in which the issuer proves that its keys were generated correctly, we turn the
IssueUserKey algorithm that generates users’ decryption keys into a two-party computation between the issuer and
the user, and we provide a protocol VerifyEncryption allowing users to check that the ciphertexts are correctly
formed.

Addressing the second issue is a bit trickier. A first idea to ensure that users cannot decrypt without the help of
the database could be to combine a standard OT protocol to encrypt records twice, first under the OT protocol and
then under the appropriate policies using the HP-ABE scheme. (Zhang et al. [ZAW+10] used a similar approach to
obtain an OT protocol with public access control policies.) This does not suffice, however, as users can perform the
outer HP-ABE decryption step without interacting with the database and learn information about the access policies
by observing whether decryption succeeds. Encrypting first under the HP-ABE scheme does not work either, since
colluding users could start by doing a single OT query, and then attempt decrypting the inner HP-ABE ciphertext
without oversight. Besides violating our ideal world definition, such a scheme excludes any interactive revocation
scheme.

On a high level, our approach is the following. We create a dedicated “zeroth” attribute category of the HP-ABE
scheme so that the issuer only issues decryption keys for one particular attribute WI in this zeroth category, but
each database encrypts records under policies that require a different attributeWDB% for the zeroth category. The
database has a “transformation key” that allows it to convert a ciphertext encrypted for WDB% into one for WI .
When the user wants to decrypt a record, she blinds the ciphertext and engages in a joint decryption protocol with
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1. Generate HP-ABE key:
w, β

$← Z∗p ; Y←gwT ; B←gβ1 ;

{{ai,t
$← Z∗p ; Ai,t←g

ai,t
1 }

ni−1
t=0 }ni=0 ;

skhI←
(
{ai,t}, w, β

)
;

pkhI←
(
{Ai,t}, Y, B

)
.

2. Generate signing keys:
(sgkI , vkI)

$← Sig.KeyGen(1κ) ;
Output skI←(skhI , sgkI) ;

pkI←(pkhI , vkI).

Fig. 1. IssuerSetup algorithm.

1. Generate HP-ABE keys for the
DB-specific attribute:
k%

$← Zp ;

A0,%←A
k%
0,0 = g

a0,0k%
1 ;

skhDB%←k% ; pkhDB%←A0,%.

2. Generate signing keys:
(sgkDB%, vkDB%)

$← Sig.KeyGen(1κ) ;

Output skDB%←(skhDB%, sgkDB%) ;

pkDB%←(pkhDB%, vkDB%).

Fig. 2. DBSetup algorithm.

the database to obtain a transformed ciphertext for WI . To make sure that the user blinded a ciphertext that was
previously published by the database, the database signs all of its ciphertexts. During the decryption protocol, the
user proves knowledge of a valid signature for her blinded ciphertext—without revealing the signature, of course.

Now that the database is involved in the decryption process of the user, it becomes much easier to add revoca-
tion. Users are issued an anonymous credential and the database will only run the joint decryption protocol if the
user’s credential has not been revoked. There are a number of possible schemes to employ here and we will follow
the choice by Camenisch et al. for their HACOT scheme [CDNZ11].

5 Our Construction Without Revocation

In this section we describe in detail how to construct our HACOT protocol (without the optional revocation mech-
anism) when instantiated with the second HP-ABE scheme by Nishide et al. [NYO08]. The description of the
construction will be followed by a discussion about asymptotic complexity. The changes needed to handle revoca-
tion are described in Appendix C.

5.1 Detailed Construction

We now present the realizations of all algorithms and protocols of our scheme listed in Section 2.3 in detail.

System Parameters. We assume that the following parameters are generated by a trusted third party (or alter-
natively generated jointly via a multiparty computation) and are an extra (implicit) input to all algorithms and
protocols. Concretely, all primitives we use require a common bilinear map setting: (p,G1,G2,GT, g1 ∈ G1, g2 ∈
G2, e)←Gen(1κ). We denote gT

def= e(g1, g2). For the Groth-Sahai proofs we also need a common reference string
CRS←{U1,2←ga2,U2,1←gt2,U2,2←gat2 }, where a, t

$← Z∗p.

Issuer Key Generation and Verification. In addition to the n regular categories, the issuer creates an additional
zeroth category, and creates one attribute WI in that category. Let A0,0 = g

a0,0
1 be the public key component

associated to that attribute (a0,0 is the private key component). All the users’ keys he issues will contain thisWI
attribute (that is L0 = 0). The key generation algorithm IssuerSetup is depicted in Figure 1, and takes as input the
number of categories n and the number of attributes possible per category {ni}ni=1; n0 = 1.

Each party who receives the issuer’s public key checks that the latter’s key was generated correctly by running
the VerifyIssuerKey protocol, which consists of checking that Y 6= 1, B 6= 1, Ai,t 6= 1, and running the fol-
lowing proof of knowledge with the issuer: ZKPK1

def= ZKPK
{(

sgkI , w, β, {{ai,t}}
)

: Y = gwT ∧ B = gβ1 ∧∧n
i=0(

∧ni−1
t=0 (Ai,t = g

ai,t
1 )) ∧ Sig.KeyProve(sgkI , vkI)

}
.
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1. Encrypt the record with respect to the policy with the HP-ABE scheme:(
Ĉ, C0, C0,1, C0,%,2, {{Ci,t}ni−1

t=0 }ni=1

) $← Encrypt(pkhI ,K%,ψ,W%,ψ), that is:
Choose {ri

$← Z∗p}ni=0 ; {εi,t
$← Z∗p for all t ∈ (Nni \Wi)}ni=1.

Set r =
∑n

i=0 ri mod p ; {εi,t←0 for all t ∈Wi}ni=1 ; Ĉ←KY r ;

C0←Br ; C0,%,2←Ar00,% ; {Ci,1←gri1 }ni=0 ; {{Ci,t,2←Arii,tg
εi,t
1 }

ni−1
t=0 }ni=1.

2. Generate a Groth-Sahai proof π = NIZK3 to assert correctness of the encryption:
π def= NIZK{({ri}ni=0) :

∧n
i=0 (Ci,1 = gri1 ) ∧ C0 =

∏n
i=0B

ri ∧ C0,%,2 = Ar00,%}.
3. Sign the ciphertext component C0,%,2 : σ′

$← Sig.SignsgkDB%(C0,%,2).

Output C%,ψ←
(
π, σ′, Ĉ, C0, C0,1, C0,%,2, {{Ci,t}ni−1

t=0 }ni=1

)
.

Fig. 3. IssueRecord algorithm.

Database Key Generation and Verification. Recall that % is the implicit database identifier. Each database DB%
that joins the system extends the zeroth category with a new attribute,WDB% . The public key component associated
to that attribute is A0,% = A

k%
0,0, where k% is part of the database’s private key. The value A0,% = g

a0,0k%
1 can be

considered as part of the public key of the “related” HP-ABE scheme, i.e., the secret key component corresponding
toWDB% thereby implicitly becomes a0,% = a0,0k% (mod p).

The database setup consists of an algorithm DBSetup shown in Figure 2 to generate the database’s key pair.
Each user receiving pkDB% checks that the database’s public was generated correctly with the protocol

VerifyDBKey, which consists of first checking that A0,% 6= 1, and then running the following proof of knowledge
with the database: ZKPK2

def= ZKPK
{(

sgkDB%, k%
)

: A0,% = A
k%
0,0 ∧ Sig.KeyProve(sgkDB%, vkDB%)

}
.

Verifiable Encryption of Records. To encrypt a record with (implicit) index ψ, containing the plaintext K ∈ GT

and the hidden ciphertext policy W%,ψ = [W0, . . . ,Wn], where ∀i : Wi ⊆ Nni , the database runs IssueRecord
as shown in Figure 3. If one wants to use messages M ∈ {0, 1}∗ instead, one can use an authenticated encryp-
tion [BN08] algorithm AuthEnc that uses elements from GT as symmetric keys to encrypt M using the key K.

For the zeroth category, only the ciphertext component C0,%,2 for theWDB% attribute is published and not C0,0,2

for the WI attribute. For the latter the users will have the decryption key but not for the former. However, as
C0,0,2 = (C0,%,2)k

−1
% , users can decrypt a record if (and only if) the database helps them.

Users need to verify all ciphertexts by running CheckRecord, which for each record verifies correctness of the
GS proof π and the signature σ′ on C0,%,2.

Issuing Decryption Keys to Users. Let (L1, . . . , Ln), Li ∈ Nni , be the attributes of the user. We add to these
L0 = 0 (corresponding toWI) and set Lϕ = (L0, L1, . . . Ln). The protocol depicted in Figure 4 ensures that the
keys are generated in an honest way, i.e., that the Di,j’s are computed correctly with respect to Li and contain a
random λi. To this end, the user chooses an ephemeral ElGamal key pair and a random λ′′i and sends the issuer

encryptions of gλ
′′
i

2 . As discussed in Section 4, this will ensure the anonymity for the user during decryption. The
issuer then chooses his own values of λ′i and then computes the encryptions of the HP-ABE keys by modifying
the received encryptions so that λi ≡ λ′i + λ′′i (mod p) will hold. For this to work, the user and the issuer have
to prove to each other that they did their computation correctly with the following two proof protocols. With the
first protocol ZKPK4

def= ZKPK{(x, {λ′′i , ri}ni=1) : X = gx2 ∧ (
∧n
i=1(Ei = g

λ′′i
2 Xri ∧ Fi = gri2 ))} the user

proves to the issuer that (Ei, Fi) is a valid encryption of the value gλ
′′
i

2 . With the second proof of knowledge

ZKPK5
def= ZKPK{(w, β, s, {λ′i, ãi}ni=0, {r̃i}ni=1) : Y = gwT ∧ B = gβ1 ∧ 1 = gw2 g

s
2(D−1

0 )β ∧ D0,2 = g
λ′′0
2 g

λ′0
2 ∧

D0,1 = gs2D
ã0
0,2∧(

∧n
i=0(Ai,Li = gãi1 ))∧(

∧n
i=1(Ẽi = g

λ′i
2 Ei∧ Êi = gs2Ẽ

ãi
i X

r̃i ∧ F̂i = F ãii g
r5,i
2 ))} the issuer proves

to the user that the encryptions he sent 1) were computed correctly and were based on the values he received from
the user; 2) indeed encode the correct attributes, i.e., those defined by the Ai,Li’s contained in the issuer’s public
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User ϕ (pkI , ϕ, Lϕ): Authenticated channel Issuer (pkI , skI , ϕ, Lϕ):

(λ′′0 , x)
$← (Z∗p)2 ; X←gx2 ;

{λ′′i , ri
$← (Zp)2}ni=1 ;

{(Ei, Fi)←(g
λ′′i
2 Xri , gri2 )}ni=1.

s
$← Z∗p ;

{ãi def= ai,Li ; r̃i
$← Zp}ni=1 ;

{λ′i
$← Zp}ni=0 .X, λ′′0 , {Ei, Fi}ni=1,ZKPK4-

{Ẽi←gλ
′
i

2 Ei}ni=1 ; D0,2←gλ
′
0+λ

′′
0

2 ;

{Êi←gs2Ẽãii X
r̃i ; F̂i←F ãii gr̃i2 }ni=1 ;

σ′′←Sig.SignsgkI(D0,2) ;

D0←g2
w+s
β ; D0,1←gs2D

a0,0
0,2 .D0, D0,1, D0,2, σ

′′,{
Ẽi, Êi, F̂i}ni=1,ZKPK5�{Di,1←ÊiF̂−xi }

n
i=1 ;

{Di,2←ẼiF−xi }
n
i=1.

Return skUϕ←(Lϕ, σ
′′, D0, {Di,1, Di,2}ni=0). Return ε.

Fig. 4. Interactive issuing of a user’s decryption keys. The proofs ZKPK4 and ZKPK5 are defined in the text.

User ϕ (skUϕ, pkI , pkDB%, C%,ψ): Anonymous channel Database % (pkI , pkDB%, skDB%) :
Blind C0,%,2 of record ψ and D0,2 of user ϕ :

kc, kd
$← Z∗p ; C′←Ckc0,%,2 ; D′′←D

kd
0,2.

Re-randomize sigantures:
σ̃′

$← Sig.Rerand(σ′) ; σ̃′′
$← Sig.Rerand(σ′′). C′, D′′,ZKPK6 -

Transform input: P ′← e(C′, D′′)k
−1
% .P ′,ZKPK7�Unblind P ′: P←P ′k

−1
c k−1

d .

Return K′← Ĉ
∏n
i=0 e(Ci,1,Di,1)

P e(C0,D0)
∏n
i=1 e(Ci,Li,2,Di,2)

. Return ε.

Fig. 5. The Query protocol. The proofs ZKPK6 and ZKPK7 are defined in the text.

key. Finally, the issuer signs the value D0,2 using the Abe et al. signature scheme, such that the user can prove to
the database that he uses the correct input in the Query protocol.

Decryption of a Record. Assume a user wants to decrypt a record; HP-ABE decryption would work as in Equation
4 assuming the user’s key satisfies the ciphertext policy (cf. [NYO08]).

K ′←
Ĉ
∏n
i=0 e(Ci,1, Di,1)

e(C0, D0)
∏n
i=0 e(Ci,Li,2, Di,2)

(4)

Intuitively, each key component Di,2 allows the user to decrypt a ciphertext component Ci,Li,2 if Di,2 corresponds
to attribute Li. However, in our scheme, even if the attributes (L1, . . . Ln) in the user’s key all satisfy the policy, he
could by construction not decrypt the ciphertext component C0,%,2, because all users lack the key component for

this zeroth attribute. Indeed, the key for this would be Dk−1
%

0,2 , where k% is the database’s secret. Thus, to decrypt,

the user has to run the Query protocol with the database to compute P def= e(C0,%,2, D
k−1
%

0,2 ) = e(C0,%,2, D0,2)k
−1
%

and then run the HP-ABE decryption. This protocol is given in Figure 5. It is of course important that 1) the
database cannot learn C0,%,2 nor D0,2 because otherwise it would learn which record a user attempts to decrypt and
2) the database is nevertheless ensured that the user indeed wants to compute this expression on valid inputs. The
latter is achieved by having the user prove that he knows signatures on C0,%,2 and D0,2 from the database and the
issuer, and the former is ensured by proper blinding of these two inputs. Note that if the user does not possess the
necessary decryption keys, decryption will result in a random symmetric key K ′ to be recovered (which will make
the authenticated decryption algorithm AuthDec return ⊥).

The user proves possession of signatures on C0,%,2 andD0,2, specific to the record ψ and user ϕ respectively, by

the proof protocol ZKPK6
def= ZKPK{(k−1

c , k
−1
d , σ̃

′, σ̃′′) : Sig.Prove(vkDB%, C
′k−1
c , σ̃′)∧Sig.Prove(vkI , D′′k

−1
d , σ̃′′)}.

By the proof protocol ZKPK7
def= ZKPK{(k%) : (P ′)k% = e(C ′, D′′)∧A0,% = A

k%
0,0} the database proves to the user

that P ′ is indeed correctly computed with respect to its secret key k% that is defined by A0,%.
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Real-world escrow. The issuer can recover the plaintext from a given ciphertext C with the help of skI :
K ′←Ĉ e(C0, g2)−wβ

−1
= KgwrT e(gβr1 , g2)−wβ

−1
= K. The issuer now checks if the authenticated ciphertext

can be decrypted with AuthDec with key K. If AuthDec succeeded, the issuer can recover the ciphertext policy
thus: {Wi←{t ∈ Nni |C

ai,t
i,1 = Ci,t,2}}ni=1. For i = 0, the perfect soundness of the NIZK3 proof guarantees that

C0,%,2 is well-formed and that r =
∑
ri, therefore W0←{%}. If AuthDec failed, the issuer simply sets W1 = ∅

(the message can never be decrypted).

5.2 Protocol Complexity

A significant amount of work is done during setup and record issuing phases. Let Nusers, Nrecords, and V denote
the number of users, records, and attributes respectively. The players have to perform computations in time linear
either to Nusers · V , or to Nrecords · V , but never linear to the product of the three Nusers · Nrecords · V , similarly to
[CDNZ11].

For each query, the user has to do work linear in n (number of categories), while the database has to do only a
constant1 amount of work (in contrast, in [CDNZ11] both the user and the database have to do work linear in n). In
the worst case, each user will query each ciphertext, so it is very important to ensure a fast query protocol for the
database, which has to bear most of the work.

Adding revocation does not have a big influence on the complexity analysis: the complexity of the query phase
remains the same. The public key of the issuer however will increase linearly in size to Nusers.

6 Security Analysis

Theorem 1 If the HP-ABE scheme by Nishide et al. is secure, the SXDH assumption holds, and the max(Nusers,
Nrecords)-SFP assumption holds in the chosen bilinear group, then our scheme presented in Section 5.1 securely
implements the HACOT functionality described in Section 2.

Corollary 2 Our HACOT scheme is secure in the generic bilinear group model.

The corollary trivially follows from security of the Nishide et al. scheme in the generic group model [Nis08].
We prove the theorem by demonstrating indistinguishability between adversarial actions in the real protocol and
the ideal world for static corruptions: for every real-world adversary A, we show how to construct an ideal-world
adversary S, such that for every environment E : E cannot distinguish whether it is interacting with A in the real
world or with S in the ideal world, i.e.,

∀A : ∃S : ∀E : AdvHACOT
E,A

def=∣∣∣Pr
[
Exec(E ,A,RHACOT)

$?
= 1
]
− Pr

[
Exec(E ,S,FHACOT)

$?
= 1
]∣∣∣ = negl. ,

(5)

where Exec(E ,A,RHACOT) denotes the binary random variable given by the output of E when interacting with A
andRHACOT in the real world; and analogously for Exec(E ,S,FHACOT) in the ideal world.

Proof sketch. Due to space constraints we only sketch the proof here; details are given in Appendix D. In case all
parties are honest, the real and ideal worlds are indistinguishable by construction. To handle the case where some
parties misbehave, we need to show how to construct a simulator S. The construction of S is mostly straightforward:
S extracts the witnesses from all interactive zero-knowledge proofs so that S can extract blinding factors and
signature forgeries from A in the query protocol. S also simulates all interactive zero-knowledge proofs and GS
proofs, which gives it the “wiggle room” to encrypt bogus plaintexts instead of the real records, and later manipulate
the query protocol so that honest users still recover the correct record. We show that dishonest users cannot detect
the deception based on the security of the HP-ABE scheme plus the SXDH assumption, where the latter is needed
because of our tweaks in the “zeroth category” of the HP-ABE scheme. Another delicate point in the proof is that
a dishonest issuer should not be able to issue to an honest user a malformed key that permits correct decryption
even if access should be denied. We prove that the joint randomness in the issuance protocol prevents this under
the SXDH assumption.

1 Constant assuming we fix the security parameter κ. If κ varies, then the run time is O(κ3).
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7 Implementation

We implemented the scheme presented in Section 5 in C++ using the PBC Library [Lyn07]. Our implementation
uses “D”-type curves [Lyn07], on which the SDXH assumption is believed to hold. Keys and records are stored as
files on disk. Records can be files of arbitrary size. We use the NIST standard AES-256-CGM as the authenticated
encryption scheme.

Our program currently does not support revocation.
We have observed run times of around 0.5–3 seconds for most algorithms/protocols when run with groups of

order≈ 2158 and 5 categories and 22 attributes, except the IssueUserKey protocol, which took around 11.5 seconds.
Overall, the measured run times confirm our theoretical predictions.

8 Comparison with HACOT by Camenisch et al. at PKC 2011

In this section, we will compare the scheme presented by Camenisch et al. at PKC 2011 [CDNZ11] (CDNZ)
with our scheme (without revocation). We first show that the class of expressible policies in both schemes is the
same, and that there is an efficient transformation from CDNZ-policies to our policies (the transformation from our
policies to CDNZ-polices is inefficient, as it may require an exponential number of categories. We omit it due to
space constraints). We then compare the communications and runtime costs of both schemes in “steady state” (after
setup) when they are used with CDNZ-policies, and show that our scheme is faster and needs less bandwidth.

Explanation of CDNZ-policies. In CDNZ, the keys issued to users are associated with a list of bits of length `:
d = (d0, . . . , d`−1) and di ∈ N2. Each record in the database has an access control policy associated with it. A
policy c = (c0, . . . , c`−1) is also expressed as a list of ` bits (ci ∈ N2). The index of a bit in that list is called its
“category”. A key is authorized to access a record if and only if

∑`−1
i=0 cidi =

∑`−1
i=0 ci.

Expressing CDNZ Policies in our Scheme. It is easy to emulate CDNZ-policies in our scheme: simply set the
same number of categories (n←`), and create two attributes per category ∀i ∈ N∗n+1 : ni = 2. Users’ keys are
endowed with the following attributes, and policies are formed thus: ∀i ∈ N∗n+1 : Li←di ; if ci = 0 : Wi←{0, 1} ;
else Wi←{1}. We will use this transformation as the basis for comparing the two schemes.

Efficiency comparison. Tables 1, 2, and Figure 12 (in Appendix E) show that the scheme presented in this paper
has lower communication and computation costs than CDNZ in “steady state” (after setup). Assuming we use
our scheme to express CDNZ-policies (n = `, V = 2`), our records are (asymptotically) 1.6 times smaller, the
database can generate them (asympotically) 1.8 times faster, and users can check them (asymptotically) twice as
fast. The communication costs in the query protocol are constant in our scheme, versus linear in CDNZ. The
user’s computational costs during the query protocol are (asymptotically) five times lower in our scheme; and the
database’s computational costs are constant-time in our scheme (versus linear in CDNZ).

Our scheme becomes faster and requires less bandwidth than CDNZ when there are three categories or more.
It must be said however, that our scheme trades more efficient “steady state” communication, storage, and

computational costs with more expensive setup costs: for example, it takes about 18 seconds (for n = 10) to issue
a user’s key in our scheme, while this operation is nearly instantaneous in CDNZ.

9 Conclusions and Future Work

We created a scheme that allows a database to publish records that are protected by a hidden access control policy,
and that users can access without revealing their identity or choice of record. Extensions to our scheme allow the
key issuer to revoke the user’s keys. We have proved our scheme secure in the generic bilinear group model.

Our construction uses attribute-based encryption and, in comparison to the prior work based on anonymous
credentials, offers more expressive policies and improved efficiency. Finally, we have implemented our scheme.



14 Jan Camenisch, Maria Dubovitskaya, Robert R. Enderlein, and Gregory Neven

Timing results of a prototype implementation show that the scheme is scalable and sufficiently performant to be
used in practical settings.

Recently, Okamoto and Takashima [OT12] have proposed an HP-ABE scheme that is secure under the decision
linear assumption. It seems that one could extend their scheme into a HACOT scheme similarly as we have done
it for the Nishide el al. scheme, i.e., by splitting the attribute keys between the database and the users. As this
approach does not use the HP-ABE scheme as a block box, the security of such an extension of the Okamoto and
Takashima scheme will have to be proven from scratch. We leave this as future work.

Other future work is investigating how to remove the unfettered access the issuer has over the published records.

Acknowledgements. The research leading to these results has received funding from the European Community’s
Seventh Framework Programme (FP7/2007-2013) as part of the “ICT Trust and Security Research”, under grant
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A Preliminaries

A.1 Perfect Zero-knowledge Proofs of Knowledge

A zero-knowledge proof of knowledge (ZKPK) [CDM00] is a protocol in which a prover P can convince a verifier
Q that he knows a secret — for instance, the discrete logarithm of a certain element, the discrete-logarithm–based
representation of a certain element to certain bases, a pre-image of a bilinear pairing — without disclosing these to
the verifier.

We will use the notation introduced by Camenisch and Stadler[CS97] when we need to perform a ZKPK in a
protocol. For example:

ZKPK{(α, β) : y = gα ∧ z = gβhα}

is used for proving the knowledge of the discrete logarithm of y to the base g, and a representation of z to the bases
g and h such that the h-part of this representation is equal to the discrete logarithm of y to the base g [CS97]. We
use the convention that letters in the first parenthesis denote the elements whose knowledge is proven, and all other
letters denote elements which are known to the verifier.
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With ZKPK protocols it is possible to work with statements of the form:

ZKPK

{((
xi ∈ Zp

)ux
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,
(
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)ug
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,
(
ηi ∈ G2

)uh
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)
:
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)
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e(γν5,i,j , h5,i,j)
)}

where t3,i,j , Ti ∈ GT, g1,i,j , g4,i,j , Gi ∈ G1, h2,i,j , h5,i,j , Hi ∈ G2 and ν1,i,j , ν2,i,j , ν3,i,j ∈ Nux+1, ν4,i,j ∈ Nug+1,
ν5,i,j ∈ Nuh+1 and ux, ug, uh, ng, nh, nt,

(
nk,i
)5
k=1
∈ N are known to both parties.

A.2 Non-interactive Zero-knowledge Proofs

A non-interactive zero-knowledge (NIZK) proof allows a prover P to certify that a certain statement is satisfi-
able, without revealing a satisfiable assignment in the proof (however P usually needs to know such a satisfiable
assignment to be able to compute the proof). The proof he issues can be checked offline by a verifier Q.

Groth-Sahai Proofs In our construction, we will work with a subset of Groth-Sahai (GS) proofs [GS08,GSW10]
which allows us to prove the satisfiability of the following classes of statements:

NIZK

{({
xi ∈ Zp

}u
i=0

)
:

n∧
i=0

(
Gi =

ni∏
j=0

g
xνi,j
i,j

)}

where Gi, gi,j ∈ G1 and νi,j ∈ Nu+1 and u, n, ni ∈ N are known to both P and Q. GS proofs require the SXDH
assumption to hold.

GS proofs are not proofs of knowledge, since it is possible to combine several GS proofs to construct a GS
proof of a related statement (as used in [CDNZ11]).

A.3 Structure-Preserving Signatures

A structure-preserving signature scheme is a tuple of algorithms (Sig.KeyGen,Sig.Sign,Sig.Verify,Sig.Rerand,
Sig.Prove, Sig.KeyProve). The subset of the signature scheme by Abe et al. [AFG+10] shown below allows the
message to be either an element of G1 or of G2 (it is also possible to sign a tuple of group elements, see [AFG+10]).
We will show how the signature works for signing messages in G2. For messages in G1, simply switch G1 and G2

in everything below.
Figure 6 shows how to generate a signing and verification key pair, and Figure 7 shows how perform a proof

of knowledge of the signing key. Figure 8 show how to sign a message m ∈ G2, and Figure 9 shows how to
re-randomize a signature. Figure 10 show how to check a signature.

To prove possession of a signature σ for a messagemwithout revealing σ norm, one would proceed as follows:
first, the signature is re-randomized: σ̃←Sig.Rerand(σ); second the message is blinded: km

$← Zp ; m̃←mkm ; and
finally the proof of knowledge shown in Figure 11 is performed.

A.4 Authenticated Encryption

An authenticated encryption algorithm AuthEnc and corresponding decryption algorithm AuthDec is integrity-of-
ciphertext secure [BN08] if no adversaryA can, with non-negligible probability, when given access to an encryption
oracle AuthEncK(·) for a random key K $← GT, produce an authenticated ciphertext Cauth that was never output
by the encryption oracle so that AuthDecK(Cauth) 6= ⊥.
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gR, fU
$← G∗1 ; γZ , δZ , δM , γM , α, β

$← Z∗p ;

A← e(gR, g
α
2 ) ; B← e(fU , g

β
2 ) ;

gZ←g
γZ
R ; fZ←f

δZ
U ; fM←f

δM
U ; gM←g

γM
R ;

sgk← (α, β, γZ , δZ , γM , δM ) ;
vk← (gZ , fZ , gR, fU , gM , fM , A,B) ;
Output (sgk , vk).

Fig. 6. Key generation algorithm (Sig.KeyGen).

Sig.KeyProve(sgk , vk) def=
ZKPK{(γZ , δZ , δM , γM , α, β) :
A = e(gR, g2)α ∧B = e(fU , g2)β∧
gZ = gγZR ∧ fZ = f δZU ∧ fM = f

δM
U ∧ gM = g

γM
R }.

Fig. 7. Proof of knowledge of signing key.

To sign a message m ∈ G2 :

ζ, ρ, τ, ϕ, ω
$← Z∗p ; Z←gζ2 ;

R←gρ−γZζ2 m−γM ; S←gτR ; T←g(α−ρ)τ−1

2 ;

U←gϕ−δZζ2 m−δM ; V←fωU ; W←g(β−ϕ)ω−1

2 ;
Output σ←(Z,R, S, T, U, V,W ).

Fig. 8. Signing algorithm (Sig.Sign).

ρ, γ, τ, ω
$← Z∗p ;

R̃←RT ρ ; S̃←(Sg−ρR )γ ; T̃←T γ−1
;

Ũ←UW τ ; Ṽ←(V f−τU )ω ; W̃←Wω−1
;

Output σ̃←(Z, R̃, S̃, T̃ , Ũ , Ṽ , W̃ ).

Fig. 9. Re-randomization algorithm (Sig.Rerand).

Check that:
A = e(gZ , Z) e(gR, R) e(S, T ) e(gM ,m)∧
B = e(fZ , Z) e(fU , U) e(V,W ) e(fM ,m).

Fig. 10. Verification algorithm (Sig.Verify).

Sig.Prove(σ̃, m̃, km) def= ZKPK{(k−1
m , Z, R̃, Ũ) :

A = e(gZ , Z) e(gR, R̃) e(S̃, T̃ ) e(gM , m̃)k
−1
m ∧

B = e(fZ , Z) e(fU , Ũ) e(Ṽ , W̃ ) e(fM , m̃)k
−1
m }.

Fig. 11. Proof of possession of a signature.

A.5 Security Game for Hidden–ciphertext-policy Attribute-based Encryption

We say that a key with list attributes Lϕ is admissible for an HP-ABE challenge tuple (K0,K1,W0,W1) if:

• If K0 6= K1, then Lϕ 6|= W0 ∧ Lϕ 6|= W1.
• Else if K0 = K1, then (Lϕ 6|= W0 ∧ Lϕ 6|= W1) ∨ (Lϕ |= W0 ∧ Lϕ |= W1)

A HP-ABE scheme is (non-selectively) secure if no PPT adversary A has non-negligible advantage in the
following game [Nis08]2:

Setup. The challenger generates an issuer key and gives the public key to A.
Phase 1. A submits a list of attributes Lϕ ∈ LL to the challenger. The latter then generates a user key with these

attributes and gives it to A. This phase may be repeated polynomially many times (with different ϕ).
Challenge. A submits two plaintextsK0 andK1 and two ciphertext policiesW0 ∈ LW andW1 ∈ LW to the chal-

lenger, such that all the keys issued so far are admissible with respect to the challenge tuple (K0,K1,W0,W1).
The challenger then flips a random bit b, runs the encryption algorithm withKb as message andWb as ciphertext
policy, and gives A the resulting ciphertext.

Phase 2. Phase 1 is repeated, with the restriction that the key must be admissible. Like phase 1, A may ask for
polynomially many admissible keys.

Guess. The adversary outputs a guess b′ of b.

The advantage of A is defined as being
∣∣Pr[b′ = b]− 1

2

∣∣ where the probability is taken over the random coins
used by the challenger and the adversary.

2 The paper [NYO08] defines only the selective security of an HP-ABE scheme. We included the full security definition here, since our
security proof depends on the non-selective security game, which is present only in Nishide’s PhD thesis [Nis08].
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B Formal Ideal-World Definition

Messages exchanged between the players and FHACOT are formatted as 〈str, arg1, arg2, arg3〉, where str is a string
identifying the type of message, and arg1, arg2, arg3, . . . are the payload.

Unless noted otherwise, all channels in the ideal world are authenticated, secure and integer.

(1 – Issuer setup) FHACOT waits for a message 〈init:i,LL,LW 〉 from I, fixing the set of attributes LL keys can be
endowed with, and the set of ciphertext policies LW . FHACOT relays the message to S.
For each user Uϕ in the system: FHACOT waits for a message 〈proof:i:i:ϕ〉 from I, and relays it to S. FHACOT waits
for a message 〈proof:i:u:ϕ〉 from Uϕ, and relays it to S. FHACOT waits for a message 〈proof:i:i:ϕ:ok〉 from S, and
relays it to I. FHACOT waits for a message 〈proof:i:u:ϕ:ok〉 from S, and relays it to Uϕ. For each database DB% in
the system: FHACOT proceeds similarly (simply replace “u” with ”d” and ϕ with % in the above).
Note that after step (1) has completed, it is not possible to add users or databases.

(2 – Database setup) For every database DB% in the system: FHACOT waits for a message 〈init:d:%〉 from DB%.
FHACOT then relays the message to S.
For each user Uϕ in the system: FHACOT waits for a message 〈proof:d:d:%:ϕ〉 fromDB%, and relays it to S. FHACOT
waits for a message 〈proof:d:u:%:ϕ〉 from Uϕ, and relays it to S. FHACOT waits for a message 〈proof:d:d:%:ϕ:ok〉
from S, and relays it to DB%. FHACOT waits for a message 〈proof:d:u:%:ϕ:ok〉 from S, and relays it to Uϕ. FHACOT
proceeds similarly for the issuer (simply replace “u” with ”i” remove ϕ in the above).

The steps (3) to (5) may now be run in any order, any number of times. It means that in the real world, records
may be added to the database at any point of time without having to re-encrypt the whole database. The database
provider just distributes an update containing the ciphertexts of the new records. The scheme of [CDNZ11] can
easily be transformed to achieve this functionality as well.

(3 – Record issuance) Upon receiving 〈rec:%:ψ,K%,ψ,W%,ψ〉 from DB%, where FHACOT has not yet stored an entry
%, ψ for K; K%,ψ ∈ GT and W%,ψ ∈ LW ; FHACOT stores K%,ψ and W%,ψ and sends 〈rec:%:ψ, ` (K%,ψ), ` (W%,ψ)〉
to S. (ψ is the record identifier, and ` is a leakage function.) FHACOT waits for 〈rec:%:ψ:ok〉 from S. FHACOT then
broadcasts 〈rec:%:ψ:done〉 to all users. FHACOT also sends 〈rec:%:ψ:escrow,K%,ψ,W%,ψ〉 to I.

(4 – User key issuance) Upon receiving 〈key:u:ϕ,Lϕ〉 from Uϕ, where FHACOT has not yet stored an entry ϕ for L;
Lϕ ∈ LL; FHACOT relays the message to S. FHACOT now waits for 〈key:i:ϕ,Lϕ〉 from I, and relays it to S. FHACOT
now waits for 〈key:i:ϕ:ok〉 from S, and relays it to I. FHACOT now waits for 〈key:u:ϕ:ok〉 from S, and relays it to
Uϕ. Finally, FHACOT stores Lϕ.

(5 – Query) FHACOT prepares a counter α←0 for this step. Upon receiving 〈query:u:ϕ:%:ψ〉 from Uϕ, where
FHACOT has storedLϕ andK%,ψ,FHACOT incrementsα and sends 〈query:u:%:α〉 to S.FHACOT waits for 〈query:d:%:α,
b〉 from DB%, where b is a bit, and relays the message to S. FHACOT now waits for 〈query:d:%:α:ok〉 from S and
relays it to DB%. If it is the first time that Uϕ queried for the record ψ, FHACOT selects K ′%,ψ,ϕ

$← GT. FHACOT now
waits for 〈query:u:%:α:ok〉 from S and sends: (a) if b = 0: 〈query:u:ϕ:%:ψ, b,⊥〉; (b) else if b = 1 and Lϕ |= W%,ψ:
〈query:u:ϕ:%:ψ, b,K%,ψ〉; (c) else if b = 1 and Lϕ 6|= W%,ψ: 〈query:u:ϕ:%:ψ, b,K ′%,ψ,ϕ〉.3

C Revocation of users

In this section, we show how to add a privacy-friendly mechanism to revoke users to our HACOT scheme. We
will first provide a high-level overview of the revocation mechanism. We then update the definition of the HACOT
scheme and adapt the security definition. Next, we describe additional building blocks needed for the construction.
And finally, we present the construction.

C.1 High-level Idea

The issuer generates a key revocation list (KRL) each time the set of revoked users changes, and publishes it. In the
query phase, users then have to prove to the database in zero-knowledge that their key has not been revoked.

3 Note that authenticated encryption would detect that case and output⊥. In [CDNZ11], the corresponding step in the ideal world actually
returned ⊥, but this was a mistake: in the real world users have no way of deciding if the result of the Query step was correct or not.
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To implement the KRL concept in our protocol we take a revocation technique introduced by Nakanishi et
al. [NFHF09] and used in a recent paper by Camenisch et al. [CDNZ11]. In the later, the revoked users’ identities
are sorted in lexicographical order and the revocation list has a version number krlid . The revocation list contains
signatures for the tuples (krlid , starti, endi) for each pair of neighboring revoked user identities (starti, endi). The
interval between two neighboring revoked user identities is called a non-revocation interval.

During the setup phase, the issuer signs all possible distances within a non-revocation interval and makes them
part of his public key. Each time the issuer wants to revoke a user’s key, he adds it to the set of revoked users’ IDs
and creates a fresh public KRL by increasing krlid , sorting the updated set of the revoked users lexicographically
and signing all the pairs of the neighboring revoked users’ IDs.

When querying the database, the user takes the most recent KRLkrlid as additional input, and the database
takes the version number krlid of the most recent KRL as additional input. To show that his key is not revoked,
the user proves in zero-knowledge that his user ID lies within a non-revocation interval by proving possession of a
signature for a tuple (krlid , starti, endi), and valid signatures on the distances between his ID and the edges of this
non-revocation interval. To improve efficiency and reduce the size of the issuer’s public key, it is possible to revoke
a number of dummy user identities by default to reduce the size of the non-revocation intervals.

C.2 Modification to the Definition of HACOT

To make KRL deployment possible, the interfaces of the IssuerSetup algorithm and Query protocol of Section 2.3
must be modified, and new algorithms GenerateKRL and CheckKRL are introduced.

• IssuerSetup takes an additional parameter Nkrlsize , an estimate of the total number of users in the system. An
additional output is the initial key revocation list KRL0 .
• GenerateKRL(pkI , skI , F )

$→ KRLkrlid .
The issuer runs this algorithm to revoke all users in the subset F . The issuer needs to provide his public and secret
keys. The output of the algorithm is a key revocation list KRLkrlid , where krlid is a counter that is incremented
each time this function is called.
• CheckKRL(pkI ,KRLkrlid )

$→ b.
Upon receiving a new KRL from the issuer, each user and database runs this algorithm to test whether it is correctly
formed or not. The output is a bit b indicating the result of this check.
• In the Query protocol, the user takes the most recent KRLkrlid as additional input, and the database takes the

serial number krlid of the most recent KRL as additional input. The protocol fails if the user and the database have
a different version of the KRL, or if the user is on the list of revoked users in the KRL. Internally, the user performs
a zero-knowledge set-membership proof [CCS08] for the database that he is in the set of non-revoked users.

C.3 Modification to the Security Definition

Ideal World. At any time after issuer and database setup: When FHACOT receives a message 〈krl:krlid, F 〉 from I
(where krlid is the serial number of the KRL, and F is a subset of revoked users), FHACOT relays this message to
S. FHACOT now waits for 〈krl:krlid:ok, F 〉 from S, and relays the message to all users and all databases.

In the Query phase, FHACOT only accepts messages from users which are not in F .
Upon receiving 〈〈newkrl:krlid, F ,KRLkrlid 〉〉 from I, each database and user run the CheckKRL algorithm. If

the algorithm returns b = 1, then they send 〈〈krl:krlid:ok, F 〉〉 to E .

Discussion of Security Properties. Informally, the modified ideal world provides the following additional security
properties:

Database Security Cheating users who have been revoked cannot successfully engage in a query protocol with an
honest database (assuming the honest database has received a copy of the latest KRL).

User Security If a user engages successfully in a query protocol, the only information the database can deduce is
that the user’s key has not been revoked. The identity, and choice of record of that user remain private.
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C.4 Additional Building Blocks

For efficiency reasons, we employ two additional signature schemes: Boneh-Boyen signatures [BB08] (BB), which
allows us to sign a message consisting of one element of Zp, and BBS+ signatures [ASM06,BBS04] (BBS),
which allows us to sign a message consisting of several elements of Zp. Both schemes support key generation
(BB.KeyGen, BBS.KeyGen), signing (BB.Sign, BBS.Sign), verification (BB.Verify, BBS.Verify), proof of knowl-
edge of the private key (BB.KeyProve, BBS.KeyProve), and zero-knowledge proof-of-possession of a signature
(BB.Prove, BBS.Prove). Please refer to the cited publications for implementation details. Note that BB.Prove and
BBS.Prove are also written out in PK1 of [CDNZ11].

Additionally, we make use of the variant of the structure-preserving signature Sig which can sign messages
consisting of two elements of G2 (see [AFG+10] for details). We do not give the details of the implementation
of the 2-element Sig.Prove, since it follows immediately from the verification equations (6) and (7) of [AFG+10]
using a similar trick as we used for the 1-element Sig.Prove.

C.5 Our Construction with Revocation

In this subsection, we describe the construction of our HACOT scheme with revocation. We need to modify the
IssuerSetup, VerifyIssuerKey, IssueUserKey and Query algorithms and protocols presented in Section 5; and add
two new algorithms: GenerateKRL and CheckKRL.

System parameters. The CRS is augmented with two random elements of G∗1, which are needed for the BBS.Prove
algorithm during the Query protocol.

Issuer Key Generation. The issuer uses the 2-element variant of the structure preserving signature scheme when
calling Sig.KeyGen. Additionally, the issuer generates a different signing key pair (sgkctr , vkctr)

$←
BB.KeyGen(1κ) for signing messages consisting of one element of Zp. The issuer then signs the integers 1 through
Nkrlsize : {ςi←BB.Signsgkctr (i)}Nkrlsize

i=1 . Finally, the issuer generate another signing key pair (sgkrl , vkrl)
$←

BBS.KeyGen(1κ) for signing messages consisting of three elements of Zp.
The issuer can now generate a zeroth KRL with the GenerateKRL algorithm, as described later.

Issuer Key Verification When checking the issuer key, the signatures {ςi}Nkrlsize
i=1 and the zeroth KRL have to be

verified. The issuer has to additionally prove knowledge of the verification keys sgkctr and sgkrl .

Issuing Decryption Keys to Users. The signature σ′′ is computed on the key component D0,2 and the user ID ϕ

(user IDs must be unique and must be between 1 and O(Nkrlsize)) : σ′′ $← Sig.SignsgkI ((D0,2, g
ϕ
2 )).

KRL Generation. To generate a new revocation list, the issuer starts by incrementing the counter krlid . He generates
a set of intervals of valid keys ]starti, endi[ for i = 1..Nintervals (where Nintevals ∈ N, starti, endi ∈ Zp), where the
union of all intervals

⋃Nintervals
i=1 ]starti, endi[ contains all non-revoked users IDs ϕ, and contains no revoked user ID.

Furthermore, we require than 1 ≤ endi − starti ≤ Nkrlsize + 1.
For each of these intervals, the issuer generate a BBS+ signature on the endpoints of that interval and on krlid :

{ς̂i←BBS.Signsgkrl ((krlid , starti, endi))}Nintervals
i=1

The KRL consists of the list of intervals and their signature: KRLkrlid←
(
krlid ,

(
starti, endi, ς̂i)

Nintervals
i=1

)
.

KRL Verification. Upon receiving a fresh KRL, the user and database need to check all the signatures in the
KRL, and the diameter of the non-revocation intervals:

∧Nintervals
i=0 (BBS.Verify(vkrl , (krlid , starti, endi), ς̂i) ∧

1 ≤ endi − starti ≤ Nkrlsize + 1).
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Decryption of a Record. In the query phase, the user needs to find the interval j in the most recent KRL KRLkrlid

containing his user ID ϕ: startj < ϕ < endj . The user can find such an interval if and only if his key has not been
revoked. Let left def= ϕ−startj and right def= endj−ϕ. As in the regular protocol, the user blinds the key and ciphertext
component: C ′←Ckc0,%,2 and D′′←Dkd

0,2; and re-randomizes the associated signatures: σ̃′ $← Sig.Rerand(σ′) and

σ̃′′
$← Sig.Rerand(σ′′).
The proof protocol ZKPK6 is replaced by ZKPK6v

def= ZKPK{(k−1
c , k

−1
d , ϕ, startj , endj , σ̃′, σ̃′′, ς̂j , ςleft, ςright) :

Sig.Prove(vkDB%, C
′k−1
c , σ̃′) ∧ Sig.Prove(vkI , (D

′′k−1
d , gϕ2 ), σ̃′′) ∧ BBS.Prove(vkrl , (krlid , startj , endj), ς̂j) ∧

BB.Prove(vkctr , ϕ − startj , ςleft) ∧ BB.Prove(vkctr , endj − ϕ, ςright)}. In ZKPK6v the user proves possession of
the following signatures: 1) the signature on the ciphertext component; 2) the signature on the key component and
user ID; 3) the jth signature in the KRL; 4) the signature on the value left; 5) the signature on the value right.
Signatures 1 and 2 serve a similar role as in ZKPK6. Signatures 3, 4 and 5 ensure that the user ID lies within one
of the non-revocation intervals. All the proofs of possession are anonymous, i.e., the user ID, the record index, and
the chosen non-revocation interval are not leaked.

D Security analysis

This section is devoted to the proof of Theorem 1 presented in Section 6.

D.1 Informal introduction to the proof

Roughly speaking, we prove that any set of cooperating corrupted (dishonest) parties can essentially do no more
harm than they could in an ideal version of the HACOT protocol, FHACOT (the ideal world, which we formally
defined in Section B).

To this end, we introduce an adversary which is composed of two parts: the environment E , which tells the
honest parties in the system what they should do over the real world interfaceRHACOT and the real-world adversary
A which takes control of the corrupted parties and may behave arbitrarily. E andA may send arbitrary messages to
each other. (One can show that it is sufficient to have A be a dummy: A relays all the messages he gets from E to
the real world protocol, and relays all messages he gets from the protocol to E [Can00].)

The core idea of the proof is to show how to construct a simulator S of the “real-world adversary” which runs
with the ideal scheme FHACOT instead of the real one. When E is run with the ideal HACOT scheme, E tells the
honest parties what they should do through the ideal world interface FHACOT (which is identical to the real world
interface), and where A has been replaced by S; E will not be able to tell the difference.

(Please see section 6 for the formal statement of the theorem.)

D.2 Organization of the proof

We will consider the two cases where the issuer is honest and where the issuer is dishonest separately. For each
case, we must deal with honest and dishonest databases, as well as honest and dishonest users. We will start by
showing how to construct the simulator S. Later, we will prove that the view of E in the real and ideal world are
computationally indistinguishable. The proofs of the supporting lemmas have been moved to their own subsections
at the end of this Section, as to not interrupt the flow of the proof with technicalities. We conclude this section by a
discussion of the limitations of our proof.

D.3 Construction of the simulator

In the HACOT scheme, there is one issuer (who might be honest or dishonest), a certain number NDB of databases
of which Ncorr-DB are corrupted (0 ≤ Ncorr-DB ≤ NDB ), and a certain number NU of users of which Ncorr-U are
corrupted (0 ≤ Ncorr-U ≤ NU).

The simulator S internally runs a copy of A. S relays all the messages he receives from E to his internal copy
ofA, and all relays all outbound messages fromA to E . Based on the behaviour ofA, S will play the role of all the
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corrupt parties in the ideal world setting. For the sake of A, S simulates the behaviour of each of the ideal honest
parties based on the information he receives from FHACOT.

Like in the real world, we assume that S simply ignores malformed messages from A. Also, S will ignore the
last message of an interactive proof from A if it does not satisfy the ZKPK verification step.

In what follows, we will surround by quotes (for example “I”) all the corrupted parties controlled by A and
all the honest parties internally simulated by S (which all operate in the “real world”, i.e., these parties run the
cryptographic algorithms and protocols). We will not put quotes around (for example I) all honest ideal parties,
and all corrupted ideal parties assumed by S.

The numbers in the following two subsections correspond to the numbering of the real and ideal world defini-
tions (see Section B).

Honest issuer Before the start of the protocol, S chooses a hiding common reference string for the Groth-Sahai
proofs (NIZK3).

(1 – Issuer setup) Upon receiving 〈init:i,LL,LW 〉 from FHACOT, S runs IssuerSetup on behalf of “I” and broad-
casts 〈〈init:i:pk, pkI〉〉.
Upon receiving 〈proof:i:i:ϕ〉 fromFHACOT (where Uϕ is an honest ideal user), S waits for the matching 〈proof:i:u:ϕ〉
from FHACOT, and sends both 〈proof:i:i:ϕ:ok〉 and 〈proof:i:u:ϕ:ok〉 to FHACOT.
Upon receiving 〈proof:i:i:ϕ〉 from FHACOT (where “Uϕ” is controlled by A), S runs the VerifyIssuerKey protocol
on behalf of “issuer” with “Uϕ”. During the protocol, S simulates ZKPK1. If the protocol completed successfully,
S sends out 〈proof:i:u:ϕ〉, 〈proof:i:i:ϕ:ok〉 and 〈proof:i:u:ϕ:ok〉 to FHACOT.
(S behaves in a similar way for the 〈proof:i:d:%〉 messages.)

(2 – Database setup) (honest database) Upon receiving 〈init:d:%〉 from FHACOT (DB% is therefore an honest ideal
database), S runs the DBSetup algorithm on behalf of “DB%” and broadcasts 〈〈init:d:pk, pkDB%〉〉.
Upon receiving 〈proof:d:d:%:ϕ〉 from FHACOT (where Uϕ is an honest ideal user), S waits for the matching
〈proof:d:u:%:ϕ〉 from FHACOT, and sends both 〈proof:d:d:%:ϕ:ok〉 and 〈proof:d:u:%:ϕ:ok〉 to FHACOT.
Upon receiving 〈proof:d:d:ϕ〉 from FHACOT (where “Uϕ “ is controlled by A), S runs the VerifyDBKey protocol
on behalf of “DB%” with “Uϕ”. During the protocol, S simulates ZKPK2. If the protocol completed successfully, S
sends out 〈proof:d:u:ϕ〉, 〈proof:d:d:ϕ:ok〉 and 〈proof:d:u:ϕ:ok〉 to FHACOT.
(S behaves in a similar way for the 〈proof:d:i:%〉 messages.)

(dishonest database) Upon receiving 〈〈init:d:pk, pkDB%〉〉 from “DB%” (controlled by A), S sends 〈init:d:%〉
to FHACOT. When “DB%” wants to runs the VerifyDBKey protocol with “Uϕ” (where “Uϕ” is controlled by S), S
sends 〈proof:d:d:%:ϕ〉 to FHACOT. S waits until it receives 〈proof:d:u:%:ϕ〉 from FHACOT, before letting “Uϕ” run
his side of the protocol. During the protocol, S extracts the database secret key skDB% in ZKPK2. If the protocol
completed successfully, S sends out 〈proof:d:d:ϕ:ok〉 and 〈proof:d:u:ϕ:ok〉 to FHACOT.
(S behaves in a similar way for the 〈proof:d:i:%〉 messages.)

(3 – Record issuance) (honest database) Upon receiving 〈rec:%:ψ, ` (K%,ψ), ` (W%,ψ)〉 from FHACOT, S chooses
a random policy W̃ %,ψ

$← LW and a random plaintext K̃%,ψ
$← GT, and runs IssueRecord on behalf of “DB%”,

yielding the bogus ciphertext C̃%,ψ. S simulates NIZK3 during the algorithm. S then broadcasts 〈〈rec:%:ψ:ct,C%,ψ〉〉
broadcasts to every user controlled by A. Then S sends 〈rec:%:ψ:ok〉 back to FHACOT. (Note that with high proba-
bility W̃ %,ψ 6= W%,ψ, and K̃%,ψ 6= K%,ψ.)

(dishonest database) Upon receiving 〈〈rec:%:ψ:ct,C%,ψ〉〉 from “DB%” (controlled byA), S runs CheckRecord.
If the check failed, S ignores the message. Else S runs Escrow on behalf of “I”, recovering the plaintext K%,ψ and
the policy W%,ψ of the record. S then sends 〈rec:%:ψ,K%,ψ,W%,ψ〉 to FHACOT. Once S has received this message
on behalf of all the users it controls and the issuer, S sends 〈rec:%:ψ:ok〉 back to FHACOT.

(4 - User key issuance) (honest user) Upon receiving 〈key:u:ϕ,Lϕ〉 from FHACOT, S waits for a message 〈key:i:ϕ,
Lϕ, b〉 from FHACOT. If b = 1, the S runs IssueUserKey internally on behalf of “Uϕ” and “I”. Then S sends
〈key:i:ϕ:ok〉 and 〈key:u:ϕ:ok〉 back to FHACOT.
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(dishonest user) Upon receiving 〈key:i:ϕ,Lϕ, b〉 from FHACOT where “Uϕ” is controlled by A, run
IssueUserKey on behalf of “I” with “Uϕ”. If b = 0, then S aborts the protocol before the last message. If b = 1,
then S chooses the key skUϕ of Uϕ independently from the input of Uϕ (S has to extract the witnesses from ZKPK4

and simulate ZKPK5 to be able to do that). After that, S sends 〈key:u:ϕ,Lϕ〉, 〈key:i:ϕ:ok〉 and 〈key:u:ϕ:ok〉 to
FHACOT.

(5 – Query) (honest user, honest database) Upon receiving 〈query:u:%:α〉 from FHACOT, where DB% is honest,
S waits for a message 〈query:d:%:α, b〉 from FHACOT. S then sends 〈query:d:%:α:ok〉 and 〈query:u:%:α:ok〉 back
to FHACOT.

(honest user, dishonest database) Upon receiving 〈query:u:%:α〉 from FHACOT, where “DB%” is controlled by
A, S chooses any of the users he controls, and any of the records that where published by “DB%”. S then runs the
Query protocol with “DB%” on behalf of the chosen user. During the protocol, S simulates ZKPK6 and extracts the
witnesses from ZKPK7. If “DB%” is cooperative in the query, S sets b = 1, else b = 0. S then sends 〈query:d:%:α,
b〉, 〈query:d:%:α:ok〉 and 〈query:u:%:α:ok〉 back to FHACOT.

(dishonest user, honest database) When a dishonest user (controlled by the adversary) wants to perform a
Query protocol with “DB%” (controlled by simulator), S extracts kc and kd from ZKPK6, which allows him to
recover D0,2 and C0,%,2, thus uniquely identifying the user “Uϕ” who makes the query, and the record used in
that query (remember that S chose these two values without influence from A). S now sends 〈query:u:ϕ:%:ψ〉
to FHACOT, and waits for 〈query:u:%:α〉 from FHACOT. S now sends 〈query:d:%:α:ok〉 and 〈query:u:%:α:ok〉 to
FHACOT, S now waits for 〈query:u:ϕ:%:ψ, b,K ′〉 from FHACOT, where K ′ = K%,ψ or K ′ = ⊥ or K ′ is random.

If b = 0, simulator aborts the query protocol before sending the last message. If b = 1, the simulator simulates
the two-party computation so that Uϕ recovers the same plaintext K ′ he would have recovered in the HP-ABE
scheme, instead of the bogus plaintext (S must simulate ZKPK7 to be able to do that).

(dishonest user, dishonest database) This case is handled internally by A, and S doesn’t need to do anything.

Dishonest issuer Before the start of the protocol, S chooses a hiding common reference string for the Groth-Sahai
proofs (NIZK3).

(1 – Issuer setup) Upon receiving 〈〈init:i:pk, pkI〉〉 from “I” (controlled by A) on behalf of a database or a user, S
sends 〈init:i,LL,LW 〉 to FHACOT.

When “I” wants to runs the VerifyIssuerKey protocol with “Uϕ” (where “Uϕ” is controlled by S), S sends
〈proof:i:i:ϕ〉 to FHACOT. S waits until it receives 〈proof:i:u:ϕ〉 from FHACOT, before letting “Uϕ” run his side
of the protocol. During the protocol, S extracts the issuer secret key skI in ZKPK1. If the protocol completed
successfully, S sends out 〈proof:i:i:ϕ:ok〉 and 〈proof:i:u:ϕ:ok〉 to FHACOT.

Since S will miss the initialization messages of dishonest users controlled by A, S must make sure he controls
at least one user Uϕ in the ideal world. S sends 〈proof:i:i:ϕ〉, 〈proof:i:u:ϕ〉, 〈proof:i:i:ϕ:ok〉, 〈proof:i:u:ϕ:ok〉 to
FHACOT for that.

(S proceeds in the same way for databases who want to check the issuer key.)
(If there are no honest users and no honest databases in the system, then S will miss this message. But in that

case, the whole simulation is internal to A anyway.)

(2 – Database setup) (honest database) This case is the same as for the honest issuer case, except that VerifyDBKey
is also done with “I” (controlled by A).

(dishonest database) This case is almost the same as for the honest issuer case. The difference is that if there
are no honest users in the system, S will not receive this message. This is not a problem, as in that case all the
dishonest databases are internal to A.

(3 – Record issuance) (honest database) Upon receiving 〈rec:%:ψ, ` (K%,ψ), ` (W%,ψ)〉 from FHACOT, S sends
〈rec:%:ψ:ok〉 back to FHACOT. S waits for 〈rec:%:ψ:escrow,K%,ψ,W%,ψ〉 from FHACOT, and then runs IssueRecord
on behalf of “DB%”, yielding C%,ψ. S then broadcasts C%,ψ to all users controlled by A.
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(dishonest database) Upon receiving 〈rec:%:ψ:ct,C%,ψ〉 from DB% (controlled by A), S uses skI (which he
got from step 1) to run the Escrow algorithm and recover K%,ψ and W%,ψ. S then sends 〈rec:%:ψ,K%,ψ,W%,ψ〉 and
〈rec:%:ψ:ok〉 to FHACOT.

(4 – User key issuance) (honest user) Upon receiving 〈key:u:ϕ,Lϕ〉 from FHACOT, S runs IssueUserKey with “I”
on behalf of “Uϕ”, except that it simulates ZKPK4 and extracts the witnesses from ZKPK5. If “I” was cooperative,
the simulator sets b = 1, else b = 0. After that, S sends 〈key:i:ϕ,Lϕ, b〉, 〈key:i:ϕ:ok〉, and 〈key:u:ϕ:ok〉 to FHACOT.

(dishonest user) This case is handled internally by A, and S doesn’t need to do anything.

(5 – Query) (honest user, honest database) This case is the same as for the honest issuer case.
(honest user, dishonest database) This case is the same as for the honest issuer case.
(dishonest user, honest database) This step is triggered when a dishonest user (controlled by the adversary)

wants to perform a Query protocol with “DB%” (controlled by simulator).
If S doesn’t yet control any malicious user in the ideal world, he will need to create one user Uϕ (this creation

is invisible to E): S chooses any random Lϕ ∈ LL, and sends 〈key:u:ϕ,Lϕ〉, 〈key:i:ϕ,Lϕ, b〉, 〈key:i:ϕ:ok〉, and
〈key:u:ϕ:ok〉 to FHACOT.
S now sends 〈query:u:ϕ:%:ψ〉 to FHACOT, and waits for 〈query:u:%:α〉 from FHACOT. S now sends

〈query:d:%:α:ok〉 and 〈query:u:%:α:ok〉 to FHACOT, S now waits for 〈query:u:ϕ:%:ψ, b,K ′〉 from FHACOT, where
K ′ = K%,ψ or K ′ = ⊥ or K ′ is random. If b = 1, simulator finishes the query protocol, except that it extracts from
ZKPK6 and simulates ZKPK7. If b = 0, simulator aborts the query protocol before sending the last message.

(dishonest user, dishonest database) This case is handled internally by A, and S doesn’t need to do anything.

D.4 Proof of indistinguishability

We are going to define a sequence of games Game1 to GameNgames , as described by Shoup [Sho04]. In the zeroth
game, everything is distributed as in the real world, whereas in the last game everything is distributed as in the ideal
world. By the piling-up lemma, the advantage of E is less than the sum of the advantages in distinguishing between
Games i and Game i+1. We are going to prove that E only has negligible advantage in distinguishing between two
consecutive games, based either on a reduction to a hard cryptographic problem, or by failure events happening
with negligible probability. As long as the number of games is polynomial with respect to the security parameter,
the total advantage of E is negligible.

We must stress that in all intermediate games, the simulator Si receives the inputs of all honest parties (i.e., we
are not in the ideal world yet). By the last game, SNgames will have isolated the part that interacts with A (which is
exactly S) from the part that behaves like FHACOT. This last game is then indistinguishable from the ideal world.

Game1: As observed in the previous paragraph, S1 receives the input of all honest parties. S1 simply runs the
parties he controls like in the real world. By construction, this setting is perfectly indistinguishable from the real
world.

Game2: S2 runs like S1, except that each time S2 runs an interactive zero-knowledge proof with A, he either
simulates the proof (if S2 is the prover) or extracts the witnesses from the proof (if S2 is the verifier).
S2 aborts if this fails. The probability that this happens is equal to the knowledge error of the ZKPKs, which is

negligible. The advantage that E has in distinguishing between Game2 and Game1 is therefore negligible.

Game3: S3 runs like S2, except that S3 chooses a hiding CRS for the Groth-Sahai proofs NIZK3.
S3 aborts if “DB%” (controlled by A) manages to produce an unsound NIZK3, i.e., if C0 6=

∏n
i=0C

β
i,1 or

C0,%,2 6= C
a0,0k%
0,0 (which would result in Escrow returning the wrong ciphertext policy). Because in the normal

Groth-Sahai setting (binding CRS) we have perfect soundness, A (and by extension E) can only do that if it
successfully distinguished the hiding CRS from a binding one.

If E has a significant advantage in distinguishing between Game3 and Game2, then we can use E to win the
SXDH game with the same advantage [GS08].
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Game4: S4 runs like S3, except that each time S4 computes NIZK3, he simulates the proof.
Because of the strong composable witness indistinguishability property of Groth-Sahai proofs, the view of E in

Game4 and Game3 is perfectly the same.

Game5: S5 runs like S4, except that S5 aborts if a user “Uϕ” (controlled by S5) can decrypt Cauth using the K%,ψ

(recovered from Query) without error from from AuthDec when he should be unable to decrypt.

Lemma 1. The probability that the failure event of Game5 happens is negligible.

See Section D.5 for the proof. The advantage that E has in distinguishing between Game5 and Game4 is therefore
negligible.

Game6: S6 runs like S5, except that when an honest ideal user performs the Query protocol with a dishonest
database DB%, S6 chooses a random user “Uϕ” among the ones he controls and performs the Query protocol with
“DB%” on behalf of “Uϕ”.

The view of E in Game6 and Game5 is perfectly the same, thanks to the zero-knowledge property of ZKPK6

and the fact that all elements sent to “DB%” were perfectly blinded by “Uϕ”.

Game7: S7 runs like S6, except that when a dishonest user “Uϕ” runs IssueUserKey with “I” (controlled by S7),
S7 ignores the input of “Uϕ” when computing skUϕ (ZKPK5 is now the proof of a false statement).

The view of E in Game7 and Game6 is perfectly the same as S7 does not change the distribution of skUϕ, and
due to the zero-knowledge property of ZKPK5.

Game8: S8 runs like S7, except that when a dishonest user “Uϕ” (controlled by A) runs the Query protocol with
an honest database “DB%” (controlled by S8), S8 recovers kc and kd (which allows him to unblind C ′ and D′′), as
well as the complete signature on the unblinded values C0,%,2 and D0,2. S8 aborts if he never issued the signature
on C0,%,2.

If S8 controls “I”, and S8 never issued the signature on D0,2, then S8 aborts.
The probability of S8 aborting in Game8 is equal to the probability of A carrying out an existential forgery on

the signature scheme. Since the signature scheme we use is existentially unforgeable under chosen message attacks,
this probability is negligible. The advantage that E has in distinguishing between Game8 and Game7 is therefore
negligible.

Game9: S9 runs like S8, except that when a dishonest user “Uϕ” (controlled by A) runs the Query protocol with
an honest database “DB%” (controlled by S9), and is denied access to the record ψ, and it is the first time that Uϕ
queries for ψ, S9 sends “Uϕ” a random value P ′ $← GT in the last step of the Query protocol (ZKPK7 is now the
proof of a false statement).

On all subsequent queries, S9 sends the adjusted value P ′(new)←P ′

(
k
(new)
c k

(new)
d

k
(old)
c k

(old)
d

)
(old) , so that “Uϕ” recovers the

same value of P after unblinding.

Lemma 2. If the SXDH assumption holds and the HP-ABE scheme is secure, then the advantage of E in distin-
guishing between Game9 and Game8 is negligible.

See Section D.6 for the proof.

Game10: S10 runs like S9, except that when an honest ideal database DB% issues a record, S10 runs IssueRecord
on behalf of “DB%” with a random plaintext K̃%,ψ

$← GT and a random policy W̃ %,ψ
$← LW as input, instead of

the plaintext and policy used by DB%.
When a dishonest user “Uϕ” (controlled by A) runs the Query protocol with “DB%”, S10 sends “Uϕ” the value

P ′←K ′kckd in the last step of the Query protocol (ZKPK7 is now the proof of a false statement); whereK ′ = K%,ψ

if the user is granted access, else K ′ is uniformly random. “Uϕ” will recover the same plaintext K ′ after unblinding
P ′ in both Game10 and Game9.
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Lemma 3. If the HP-ABE scheme is secure, then the advantage of E in distinguishing between Game10 and Game9

is negligible.

See Section D.7 for the proof.

Game11: S11 runs a copy of FHACOT internally, and runs a copy of S (as constructed in D.3) to interact betweenA
and FHACOT.

By construction, the view of E in Game11 and Game10 is perfectly the same.

Conclusion: The view of E in Game11 and the ideal world is now perfectly the same. Therefore, if the HP-ABE
scheme is secure, the SXDH assumption holds, the SFP assumption holds, and AuthEnc is integrity-of-ciphertext
secure, then E has only a negligible advantage in distinguishing between the real world and the ideal world. This
concludes the proof.

D.5 Proof of lemma 1

Remember that the decryption algorithm of the HP-ABE scheme is:

K ′←
Ĉ
∏n
i=1 e(Ci,1, Di,1)

e(C0, D0)
∏n
i=1 e(Ci,Li,2, Di,2)

= Kg
−
∑n
i=1 λiεi,Li

T . (7)

In what follows, we assume that K̃ ′ is a correct decryption key for Cauth in AuthDec. (Note that we don’t
necessarily need K̃ ′ = K: remember that in that case Escrow sets W%,ψ = ∅).
S5 aborts in Game5 if for some K̃ ′:

∃j, 0 ≤ j ≤ n : εj,Lj 6= 0 (mod p) ∧ Kg
−
∑n
i=1 λiεi,Li

T = K̃ ′ (mod p).

If “I” or “DB%” (or both) are honest, then
∑n

i=1 λiεi,Li is random (the honest “I” randomizes the λ’s, the
honest “DB%” randomizes the ε’s). The probability of S5 aborting in that case are negligible.

For the rest of the section, will handle the case where both “DB%” and “I” are malicious.
If there exists a PPT algorithm A which causes S5 to abort in Game5 with non-negligible advantage, we show

how to construct a PPT algorithm S(A) which can either break the semantic security of El-Gamal encryption (which
would in turn break the SXDH assumption) with advantage (NusersNrecordsNcategories)

−1 that of A, which is still a
non-negligible advantage, or break the integrity-of-ciphertext security of the authenticated encryption scheme.
S(A) receives an El-Gamal public key X̄ = gx̄2 from the challenger of the El-Gamal semantic-security game.

S(A) chooses m̄0, m̄1
$← Z∗p. It computes K̄0 = gm̄0

2 and K̄1 = gm̄1
2 and gives them to the challenger. The

challenger flips a coin b̄ and gives S(A) the ciphertexts C̄1 = K̄b̄X
r̄, C̄2 = gr̄2. S(A) proceeds as follows: it

chooses a key φ at random from the set of honest users and a value ̄ at random. In the key issuing protocol for key
φ it sends X̄ as its El-Gamal public key. It sends C̄1 and C̄2 instead of E(φ)

̄ and F (φ)
̄ . All other values of Ei and

Fi can be computed normally (these are simply El-Gamal encryptions). S(A) then fakes ZKPK4.
S(A) extracts the values λ′i and ai,t fromA in ZKPK5. S(A) can therefore recover the values of λ(φ)

i = λ′i+λ
′′
i

for all i 6= ̄ and, using the escrow functionality, can compute gεi,t1 from the ciphertext components Ci,t,2.
With probability at least the advantage of A (which is a non-negligible probability): There will be a query in

which a key ϕ that does not satisfy the ciphertext policy of a given record, but where the recovered plaintext after
HP-ABE decryption K̃ ′ can be used to decrypt Cauth without error using AuthDec. If ϕ 6= φ, S(A) aborts and
takes a random guess. If the ciphertext policy of record satisfies L(φ)

̄ ∈W̄, then S(A) aborts. Otherwise:
By setting λ̄ = m̄b + λ′̄ for b = 0 or b = 1, S(A) checks for which of b = 0 or b = 1, the key K ′ can be used

to decrypt Cauth with AuthDec without an error message:

K ′←K
n∏
i=0

(
g
εi,Li
1

)λi
.
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S(A) outputs the value of b for which the above test is true.
(The probability that the above equation is satisfied for both values of m̄0 and m̄1 is negligible, since the value

m̄1−b is random, and the issuer never saw this value. The authenticated ciphertext Cauth in the record’s cipher-
text must therefore have a non-negligible chance to decrypt correctly under a random key K ′. Such a ciphertext
immediately gives rise to an attack on the integrity-of-ciphertext security of the authenticated encryption scheme.)

D.6 Proof of lemma 2

We are going to define an intermediate game for the sake of this proof:

Game8.5 S8.5 runs like S8, except that when a dishonest user “Uϕ” (controlled by A) runs the Query protocol with
an honest database “DB%” (controlled by S8.5) for a record ψ, S8.5 sends “Uϕ” an incorrect value P ′ $← GT in the
last step of the Query protocol (ZKPK7 may now be the proof of a false statement):

P ′←

 Ĉ(ψ)
∏n
i=0 e(C

(ψ)
i,1 , D

(ϕ)
i,1 )

K(ψ) e(C
(ψ)
0 , D

(ϕ)
0 )

∏n
i=1 e(Q

(ψ)

i,L
(ϕ)
i ,2

, D
(ϕ)
i,2 )


kckd

, (8)

where ∀i ∈ N∗n+1∀t ∈ Nni : Q
(ψ)
i,t,2

{
←C(ψ)

i,t,2 if t ∈W (ψ)
i (component in policy);

$← G1 if t /∈W (ψ)
i (component not in policy).

On all subsequent queries for the same record ψ, S8.5 does not re-randomize the Q-values.
Note that here the values P ′ are not uniformly random, like in Game9. Also note that the value of P ′ is actually

correct for records which “Uϕ” is authorized to access.
We will now prove that E cannot distinguish between Game8 and Game8.5 with significant advantage if the

HP-ABE scheme is secure. Afterwards we will prove that E cannot distinguish between Game8.5 and Game9 with
significant advantage if the SXDH assumption holds.

Proof of indistinguishability between Game8 and Game8.5. If there exists a PPT algorithm D which distinguishes
between Game8 and Game8.5 with non-negligible advantage, then we can construct a PPT algorithm S(D) which
runs D internally and which plays the HP-ABE game with non-negligible advantage.

We defines the sequence of games: Game8−0 to Game8−Nrecords . In Game8−ω, the value P ′ for all records ψ ≤ ω
is computed as in Game8.5, and the value P ′ for all records ψ > ω is computed as in Game8. Clearly, Game8−0 is
exactly Game8, and Game8−Nrecords is exactly Game8.5. The existence of D implies the existence of Dω (for some
ω) which can distinguish between Game8−(ω−1) and Game8−ω with an advantage N−1

records that of D.
The challenger starts by generating the issuer key, which he transmits to S(Dω). S(Dω) relays it to Dω.
S(Dω) runs Dω, who may request a key with attribute list {Li} where L0 = 0. S(Dω) relays the request to the

challenger and the response back to Dω. This can be repeated polynomially many times.
When Dω wants to encrypt a record ψ 6= ω (not the challenge record), with plaintext K(ψ) and policy W (ψ)

(with W (ψ)
0 = {%}), S(Dω) computes the ciphertext under the policy W (ψ)′ = {{0, %},W (ψ)

1 ,W
(ψ)
2 , . . . ,W

(ψ)
n }

(which includes the “issuer” attribute), and sends every component except C(ψ)
0,0,2 (the one corresponding to the

“issuer” attribute) to Dω.
When Dω wants to encrypt the challenge record ψ = ω with plaintext K(ω) and policy W (ω) (with W (ω)

0 =
{%}), S(Dω) generates the following challenge plaintexts and policies: K(0)←K(ω) and W (0)←{{%},Nn1 ,Nn2 ,
. . . ,Nnn} (the most liberal policy), as well as K(1)←K(ω) and W (1)←W (ω) (these are acceptable, since all keys
issued will satisfy neither of W (0) and W (1)). These are then sent to the challenger. The challenger flips a bit
b

$← N2 and encrypts K(b) under policy W (b) yielding the ciphertext:

{C̃(b), C
(b)
0 , C

(b)
0,1, {C

(b)
0,0,2, C

(b)
0,%,2}, {C

(b)
i,1 , {Q

(b)
i,t,2}

ni−1
t=0 }

n
i=1}.
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S(Dω) now computes C(b)
i,t,2 as follows:

∀i ∈ N∗n+1 : ∀t ∈W (ω)
i : C

(b)
i,t,2←Q

(b)
i,t,2;

∀i ∈ N∗n+1 : ∀t ∈ Nni \W
(ω)
i : C

(b)
i,t,2

$← G1.

That is, S(Dω) re-randomizes all ciphertext components that are not in the policy. S(Dω) now sends the following
modified ciphertext to Dω:

{C̃(b), C
(b)
0 , C

(b)
0,1, {C

(b)
0,%,2}, {C

(b)
i,1 , {C

(b)
i,t,2}

ni−1
t=0 }

n
i=1}.

In the view of Dω, this challenge ciphertext is distributed exactly as if it was encrypted under the ciphertext policy
W (ω).
S(Dω) runs Dω, who may now ask for more keys (polynomially many times).
To process queries byDω, S(Dω) first extracts from ZKPK6 to recover the key index ϕ and the record index ψ.

S(Dω) will have no problem in processing queries for the non-challenge records ψ 6= ω to return P ′ of the requisite
distribution. For the challenge record ψ = ω, S(Dω) computes P ′ as follows, and sends the result back to Dω:

P ′←

 Ĉ(b)
∏n
i=0 e(C

(b)
i,1 , D

(ϕ)
i,1 )

K(0) e(C
(b)
0 , D

(ϕ)
0 )

∏n
i=1 e(Q

(b)

i,L
(ϕ)
i ,2

, D
(ϕ)
i,2 )


kckd

. (9)

If b = 0 or if the key ϕ satisfies the policy of record ω, then all values of Qi,t,2 in the above equation are non-
random, we therefore have that P ′ = e(C

(ω)
0,%,2, D

(ϕ)
0,2 )k

−1
% kckd and thus distributed exactly as in Game8. Else P ′ is

distributed exactly in Game8.5 (it contains random values that Dω doesn’t have).
The query phase may be repeated polynomially many times.
S(Dω) runs Dω, who now finally outputs a guess of b. S(Dω) sends b to the challenger. S(Dω) has the same

advantage in the HP-ABE security game, as Dω has in distinguishing between Game8−(ω−1) and Game8−ω.

Proof of indistinguishability between Game8.5 and Game9. We show that if a PPT algorithm D distinguishes
between Game8.5 and Game9, we can construct an algorithm S(D) which plays the DDH game in G2 with non-
negligible advantage.

For this we make use of (NusersNrecords + 1) hybrid games Game8.5−0−0 to Game8.5−Nusers−Nrecords
4, where in

Game8.5−φ−ω the values of P ′ are computed as in Game9 for all keys ϕ and records ψ satisfying (ϕ,ψ) ≤ (φ, ω)
(lexicographical comparison) and computed as in Game8.5 for (ϕ,ψ) > (φ, ω). Clearly Game8.5−0−0 is exactly
Game8.5, and Game8.5−Nusers−Nrecords is exactly Game9.

The existence of D implies the existence of Dφω (for some φ and some ω) which can distinguish between
Game8.5−φ−ω and the lexicographically preceding game with advantage 1

NusersNrecords
that of D. We now show how

to construct an algorithm S(Dφω) which plays the DDH game with advantage at least 1
Nattributes

def= 1∑n
i=1 ni

that of
Dφω, which is still a non-negligible advantage:

S(Dφω) begins by choosing a category j $← N∗n+1 and an attribute j′ $← Nni from that category at random.
S(Dφω) receives a DDH challenge

(
gγ2 , g

δ
2, g

z
2

)
where z is either γδ or random. S(Dφω) generates the public key

of the issuer and gives them to Dφω.
S(Dφω) runs Dφω for the key issuing phase. Dφω may choose to be issued up to a polynomial number of keys

(under the restriction that L0 = 0). When S(Dφω) issues the key ϕ = φ: First it checks that j′ = L
(φ)
j (else

S(Dφω) aborts and takes a random guess), then it sets λ(φ)
j = γ (without being able to compute that value), and

finally computes D(φ)
j,1←gs2(gγ2 )aj,j′ and D(φ)

j,2←g
γ
2 . All other components of the key are computed honestly. For

4 To simplify notation somewhat, we will ignore the games where no progress is made.
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all other keys ϕ 6= φ, S(Di) computes λ(ϕ)
j

$← Z∗p, D
(ϕ)
j,2←g

λ
(ϕ)
j

2 and D(ϕ)
j,1←gs2(D

(ϕ)
j,2 )

a
j,L

(ϕ)
j (so that it knows the

discrete logarithm of D(ϕ)
j,2 ), and all other key components honestly. ZKPK5 is now the proof of a false statement.

S(Dφω) runs Dφω, who chooses a plaintext K(ω) and ciphertext policy W (ω). S(Dφω) aborts if j′ ∈W (ω)
j .

S(Dφω) computes the ciphertext:

{C̃(ω), C
(ω)
0 , C

(ω)
0,1 , {C

(ω)
0,0,2, C

(ω)
0,%,2}, {C

(ω)
i,1 , {Q

(ω)
i,t,2}

ni−1
t=0 }

n
i=1}.

however instead of computingQ(ω)
j,j′,2 honestly, it embeds part of the DDH challenge in that value: it setsQ(ω)

j,j′,2 = gδ1

(without being able to compute this value since it only knowns gδ2). All other ciphertext components Q(ω)
i,t,2 are

computed honestly. Like in the last game however, S(Dφω) re-randomizes all ciphertext components which are not
part of the policy:

∀i ∈ N∗n+1 : ∀t ∈W (ω)
i : C

(ω)
i,t,2←Q

(ω)
i,t,2;

∀i ∈ N∗n+1 : ∀t ∈ N∗ni \W
(ω)
i : C

(ω)
i,t,2

$← G1.

and publishes the ciphertext:

{C̃(ω), C
(ω)
0 , C

(ω)
0,1 , {C

(ω)
0,0,2, C

(ω)
0,%,2}, {C

(ω)
i,1 , {C

(ω)
i,t,2}

ni−1
t=0 }

n
i=1}.

Note that S(Dφω) never needs to publish the value Q(ω)
j,j′,2 it couldn’t compute before.

S(Dφω) generates all records ψ 6= ω in the same way (including the re-randomization of all ciphertext compo-
nents Q(ψ)

i,t,2 not in the policy), except that it does not embed any DDH challenge in them.
The key issuing phase may be repeated.
Dφω may now perform queries for the record ψ and key ϕ (S(Dφω) extracts ϕ and ψ from ZKPK4). If the key

satisfies the ciphertext policy of the queried record, P ′ is computed honestly. Else the key doesn’t satisfy the policy:
if (ϕ,ψ) < (φ, ω), P ′ is computed randomly ; else if (ϕ,ψ) ≥ (φ, ω), P ′ is computed as in Game8.5:

P ′←

 Ĉ(ψ)
∏n
i=0 e(C

(ψ)
i,1 , D

(ϕ)
i,1 )

K(0) e(C
(ψ)
0 , D

(ϕ)
0 )

∏n
i=1 e(Q

(ψ)

i,L
(ϕ)
i ,2

, D
(ϕ)
i,2 )


kckd

. (10)

There are however two non-trivial cases of e(Q
(ψ)

j,L
(ϕ)
j ,2

, D
(ϕ)
j,2 ) def= ℘

(ψ,ϕ)
j :

• To compute this pairing for an honest key ϕ 6= φ, but for the record ψ = ω containing the DDH challenge: since

λ
(ϕ)
j (the discrete logarithm ofD(ϕ)

j,2 ) is known to S(Dφω), the pairing can be computed thus: ℘(ω,ϕ)
j ← e(g1, g

δ
2)λ

(ϕ)
j .

• To compute this pairing for the key ϕ = φ containing the DDH challenge and the record ψ = ω also containing
the DDH challenge, the pairing can be computed thus: ℘(ω,φ)

j = e(g1, g
z
2). If z is random, then ℘(ω,φ)

j is computed

according to Game8.5−φ−ω, and if z = γδ, then ℘(ω,φ)
j is computed according to the lexicographically preceding

game.

Finally Dφω outputs a guess b of which game it is in. S(Dφω) returns the same guess b for the DDH challenge.
For there to be any difference between the current game and the preceding one, the key φ must not satisfy the
policy of the record ω. This means at least one attribute in the key is not in the policy of the record; the probability
that S(Dφω) hits such an attribute is therefore at least N−1

attributes, and in all other cases it aborts and takes a random
guess.
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D.7 Proof of lemma 3

If there exists a PPT algorithm D which distinguishes between Game9 and Game10 with non-negligible advantage,
then we can construct a PPT algorithm S(D) which has rewindable black-box access to D and which plays the
security game of HP-ABE with non-negligible advantage.

Again, we consider a series of hybrid games Game9−0 to Game9−Nrecords , where in Game9−ω every record
ψ ≤ ω is handled as in Game10, and all records ψ > ω are handled as in Game9. Clearly, Game9−0 is exactly
Game9 and Game9−Nrecords is exactly Game10.

The existence of D implies the existence of Dω (for some ω) that can distinguish between Game9−(ω−1) and
Game9−ω with advantage N−1

records that of D.
The challenger computes the issuer public key and sends it to S(Dω). S(Dω) relays it to Dω.
S(Dω) runs Dω, who may now requests a key with attribute list {Li} where L0 = 0. S(Dω) relays the request

to the challenger and the response back to Dω. This can be repeated polynomially many times.
When Dω wants to encrypt a record ψ:

• If ψ < ω, S(Dω) encrypts a random plaintext K(ψ)′ $← GT under a random policy W (ψ)′ (but with W (ψ)
0

′
=

{0}). Again, C(ψ)
0,0,2 is remembered but not published.

• For the challenge record ψ = ω, S(Dω) sets K(0) = K(ω) and W (0) = W (ω), as well as K(1) $← GT and
selects W (1) randomly (but with W (1)

0 = {%}), and sends these to the HP-ABE challenger. The challenger flips a
bit b $← N2 and encrypts K(b) under policy W (b) (we shall denote the resulting ciphertext C(b)). S(Dω) relays the
ciphertext to Dω.
• If ψ > ω, S(Dω) encrypts the plaintext K(ψ) under policy W

′(ψ) = {{0, %},W (ψ)
1 ,W

(ψ)
2 , . . . ,W

(ψ)
n } (in-

cluding the “issuer” attribute). S(Dω) remembers the ciphertext component C(ψ)
0,0,2 corresponding to the “issuer”

attribute but doesn’t publish it. S(Dω) sends the rest of the ciphertext to Dω.

S(Dω) runs Dω, who may now ask for more keys (polynomially many times).
S(Dω) runs Dω, who may perform a query with a key ϕ on record ψ (S(Dω) extracts ϕ and ψ from ZKPK6).

S(Dω) checks if the key ϕ satisfies the ciphertext policy W (ψ). If the key doesn’t satisfy the policy, then S(Dω)
computes P ′ randomly. P ′ is thus distributed exactly as in both games. If it does then:

• For records ψ < ω, P ′ is computed as follows:

P ′←

 Ĉ(ψ)
∏n
i=0 e(C

(ψ)
i,1 , D

(ϕ)
i,1 )

K(ψ) e(C
(ψ)
0 , D

(ϕ)
0 )

∏n
i=1 e(C

(ψ)

i,L
(ϕ)
i ,2

, D
(ϕ)
i,2 )


kckd

. (11)

• For records ψ = ω, P ′ is computed as follows:

P ′←

 Ĉ(b)
∏n
i=0 e(C

(b)
i,1 , D

(ϕ)
i,1 )

K(0) e(C
(b)
0 , D

(ϕ)
0 )

∏n
i=1 e(C

(b)

i,L
(ϕ)
i ,2

, D
(ϕ)
i,2 )


kckd

. (12)

If b = 0 then P ′ = e(C
(ω)
0,%,2, D

(ϕ)
0,2 )k

−1
% kckd and thus distributed exactly as in Game9−(ω−1). If b = 1 then P ′ is

distributed exactly as in Game9−ω.
• For records ψ > ω, P ′ is computed as:

P ′← e(C
(ψ)
0,0,2, D

(ϕ)
0,2 )kckd .

S(Dω) sends the result P ′ back to Dω.
The query phase may be repeated polynomially many times.
S(Dω) runs Dω, who now finally outputs a guess of b. S(Dω) sends b to the challenger. S(Dω) has the same

advantage in the HP-ABE security game, as Dω has in distinguishing between Game9−(ω−1) and Game9−ω.
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D.8 Limitations

Note that the set of corrupted parties is fixed before the start of the protocol. Our scheme cannot be proven se-
cure if we allow dynamic corruptions (even with erasures): the underlying HP-ABE scheme is not receiver non-
committing, and as S may be required to publish a ciphertext containing a bogus plaintext and policy on behalf of
an honest database, S will be caught when that database becomes corrupted.

Supporting unlimited-length plaintexts M ∈ {0, 1}∗ in the ideal world causes a problem: S may be required
to publish an authenticated ciphertext containing a bogus plaintext on behalf of an honest database, S will be
caught when a user decrypts the bogus authenticated ciphertext. (We could solve this issue in Canetti’s Universal
Composability model in a similar way that he handles UC-encryption: by publishing the authenticated ciphertext
in the ideal functionality. However this approach suffers from high degree of complexity and is tricky to define
correctly.)

We further note that unless the simulator S can extract the witnesses from zero-knowledge proofs and perform
proofs of incorrect statements without rewindingA and E , our results will not hold in the Universal Composability
setting. In this respect, our security model is similar to the one used in [CNS07,CDN09,CDNZ11].
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E Comparison with CDNZ (Without Revocation)

Table 1. Comparison of the communication costs borne by the user and database when receiving records and during the transfer step. The
size estimates are theoretical and only take into account the size of the group elements. We let κ = log2(p). We use ` to denote the number
of categories in CDNZ [CDNZ11]; we use n to denote the number of categories, and V the number of attributes in this paper.

Item Paper Elements in Zp Elem. in G1 Elem. in G2 Elem. in GT Bits transfereda

Receive record (DB→user)b This work 1 V + 2n+ 11 2n+ 4 1 (V + 8n+ 30)κ
Receive record (DB→user) CDNZ — 4`+ 2 4`+ 5 1 (16`+ 23)κ

Query (user↔DB) This work 19 18 14 21 205κ
Query (user↔DB) CDNZ 6`+ 55 4`+ 40 4`+ 7 17 (22`+ 218)κ

a When ignoring overhead. Assuming D-type curves as used by the PBC library [Lyn07]: κ, κ, 3κ, 6κ bits per element in Zp, G1, G2, GT

respectively. For the curve d159: κ = 160.
b Note that the storage cost of records is the same same as the communication cost.

Table 2. Comparison of the computational costs borne by the user and database when receiving records and during the transfer step. The
run-time estimates are theoretical when considering only exponentiations and pairings. We use ` to denote the number of categories in
CDNZ [CDNZ11]; we use n to denote the number of categories, and V the number of attributes in this paper.

Item Paper Expon. G1 Expon. G2 Expon. GT Pairings Runtimea

Generate record (DB) This work V + 4n+ 16 4n+ 10 1 — V + 40n+ 108
Generate record (DB) CDNZ 4`+ 7 8`+ 9 — 1 76`+ 97

Receive/check record (user) This work — 4 — 8n+ 26 72n+ 270
Receive/check record (user) CDNZ — — — 16`+ 10 144`+ 90

Query (user) This work 27 22 38 2n+ 43 18n+ 688
Query (user) CDNZ 16`+ 99 8`+ 35 3`+ 36 1 94`+ 495

Query (DB) This work 17 9 45 41 557
Query (DB) CDNZ 12`+ 104 — 4`+ 51 18`+ 20 182`+ 386

a We take the time to do one exponentiation in G1 as the base unit. Tests on different hardware showed that for groups of 159-bit order
(the d159 curve of the PBC Library [Lyn07]), exponentiations in GT are twice as slow as in G1, and that pairings and exponentiations
in G2 are nine times slower. We ignore additions, multiplications, inversions and overhead. On a Core i7 CPU clocked at 1600 MHz, one
exponentiation in G1 on the d159 curve takes approximately 1.49 milliseconds.

n = ` = 10 categories n = ` = 100 categories

This work
PKC2011

DB issue record

User check rec.

DB query

User query

0 1 2 3 0 10 20 seconds30sec.

Fig. 12. Theoretical runtime comparison, when using CDNZ-policies with our scheme (V = 2n; n = `). The runtimes are computed
according to table 2, assuming we use the d159 curve in the PBC Library [Lyn07], and perform the computations on a Core i7 CPU
clocked at 1600 MHz.


