
Diss. ETH No. 25568

Idealizations of Practical
Cryptographic Building Blocks

A thesis submitted to attain the degree of

Doctor of Sciences of ETH Zurich
(Dr. sc. ETH Zurich)

presented by

Christian Badertscher
MSc ETH in Computer Science, ETH Zurich

born on August 24, 1988
citizen of Zäziwil BE, Switzerland

accepted on the recommendation of

Prof. Dr. Ueli Maurer, examiner
Prof. Dr. Aggelos Kiayias, co-examiner
Prof. Dr. Srdjan Čapkun, co-examiner

2018

Acknowledgements

First and foremost, I would like to thank my advisor Ueli Maurer for the
opportunity to do a PhD in the exciting field of cryptography and in a
environment that is driven by the quest of finding convincing answers to
fundamental problems in cryptography. Our research discussions deeply
inspired me and his theoretical and abstract way of thinking led to many
interesting insights and shaped my ability to solve problems.

Sincere thanks go to Aggelos Kiayias and Srdjan Čapkun for co-
refereeing this thesis.

I would like to take the opportunity to thank all my co-authors
during my PhD studies. For the exciting former and hopefully future
collaborations and the fruitful exchange of ideas, I thank Fabio Banfi,
Sandro Coretti, Juan Garay, Peter Gaži, Daniel Jost, Aggelos Kiayias,
Chen-Da Liu Zhang, Christian Matt, Ueli Maurer, Phillip Rogaway,
Alexander Russell, Björn Tackmann, Daniel Tschudi, and Vassilis Zikas.

Special thanks go to Vassilis Zikas for the many great formal and infor-
mal discussions on various aspects of life, MPC, and of course blockchain
protocols. Many thanks go to Martin Hirt for being a valuable discussion
partner and an amazing lecturer throughout all these years.

I thank Joel Alwen, Ämin Baumeler, Grégory Demay, Robert Ender-
lein, Gian-Pietro Farina, Thomas Holenstein, Christoph Lucas, Marta
Mularczyk, Christopher Portmann, Pavel Raykov, Guilherme Rito, Gregor
Seiler, Stefan Wolf, and Jiamin Zhu for interesting discussions, passionate
table-soccer games, and exciting Magliaso retreats, and Beate Bernhard,
Claudia Günthart, and Denise Spicher for the administrative support.

Needless to say, this thesis would not have been possible without the
love of Anna, the invaluable encouragement of my family, and the support
of my dear friends. Merci!

Abstract

Security definitions are at the core of cryptographic research. Their impor-
tance stems from the fact that they enable security proofs of protocols in a
mathematically rigorous way. More specifically, one has to develop formal
models and security notions such that the derived security guarantees of a
protocol are sound and convincing. Most existing security definitions are
property-based or game-based, which means that a protocol is secure if it
fulfills a postulated set of requirements. While this approach seems fine at
first sight, it has several drawbacks. The reason is that such properties are
formulated with respect to an attacker with a defined set of capabilities.
However, if a protocol is used in an application where an attacker has
more influence than previously assumed, all proven guarantees turn out
to be void.

A much better approach is to define security as a construction and in
particular to specify what ideal system or module a cryptographic protocol
achieves in any possible context. Turned around, any application can be
assured that running the protocol is as if the ideal system was available in
the first place. For example, a protocol for secure communication could be
expected to emulate an ideal secure channel, i.e., a system that allows to
transmit a message from a sender to a receiver and no one except for the
intended recipient should learn the contents of the message. A security
proof consists of showing that a protocol, based on certain assumptions, is
indeed indistinguishable from the ideal system. Such proofs are typically
quite involved and more complex than property-based proofs.

In this thesis, we follow the above methodology to study practically
relevant cryptographic problems for which it is important to have clean se-
curity statements that hold in any possible context. This thesis contributes
to the following areas:

vi ABSTRACT

In the realm of secure communication, we formulate which ideal sys-
tems are achieved by protocols that are based on symmetric primitives. We
further show the limits of such protocols by showing that no protocol can
perfectly emulate a secure channel only based on a shared secret key and
insecure communication. We further extend our study to communication
protocols that are based on public-key primitives.

In the realm of secure outsourced storage, we develop a novel framework
to reason about the achieved security of data-outsourcing schemes. We
show which ideal systems are desired and possible to achieve. We hereby
observe that existing definitions are often weaker than what would be
needed by applications and we show how to improve existing protocols to
achieve a higher level of security.

In the context of digital signature schemes, we present a novel way to
capture their security following the above methodology and prove that
this novel view is equivalent to the standard game-based definition.

Finally, in the context of blockchain protocols, we show which ideal
functionality is achieved by the Bitcoin blockchain. Since numerous emerg-
ing applications rely on the security provisions of blockchain protocols,
identifying the ideal module which any such application can rely on is of
great practical importance.

Zusammenfassung

Sicherheitsdefinitionen sind ein zentraler Bestandteil in der kryptogra-
phischen Forschung. Die grosse Bedeutung stammt vom Wunsch, ma-
thematisch beweisbare Sicherheit von Protokollen zu zeigen. Um dies zu
erreichen, müssen Modelle und Definitionen entwickelt werden, so dass ein
mathematischer Beweis möglich und dessen Schlussfolgerung überzeugend
ist. Viele existierende Sicherheitsdefinitionen sind im Kern eine Liste von
wünschenswerten Eigenschaften, die ein Protokoll zu erfüllen hat. Ein
solches Vorgehen scheint auf den ersten Blick sinnvoll, hat jedoch einige
negative Apsekte. Protokolleigenschaften sind meistens relativ zu einem
Angreifer mit fest definierten Möglichkeiten formalisiert. Wenn nun ein
Protokoll in einer speizifischen Applikation genutzt wird, in welcher der
Angreifer mehr Möglichkeiten hat Einfluss zu nehmen, so ist die Liste der
Eigenschaften nutz- und die Sicherheitsbeweise wertlos.

Ein viel besserer und modernerer Ansatz ist stattdessen, dass man
formalisiert, was für eine ideale Funktionalität ein Protokoll emuliert in
einem beliebigen Kontext. Man gibt also genau an, was beliebige Applika-
tionen von einem Protokoll erwarten können, indem man die Schnittstellen
abstrahiert und das Protokoll als idealisiertes Modul modelliert, welches
ein bestimmtes Verhalten garantiert. Zum Beispiel könnte man von einem
sicheren Netzwerkprotokoll erwarten, dass es sich verhält wie ein ideales
Modul zum Senden von Nachrichten, wo niemand ausser dem Sender
und Empfänger die Nachricht sehen kann. Ein Sicherheitsbeweis besteht
nun daraus, zu zeigen, dass ein Protokoll das ideale Modul implemen-
tiert. Solche Beweise sind typischerweise viel komplexer, als nur gewisse
Eigenschaften zu zeigen.

In dieser Dissertation wenden wir diese Methodologie auf praktisch
relevante Problemstellungen an, bei denen es besonders wichtig ist, dass

viii ZUSAMMENFASSUNG

man Sicherheitsgarantien geben kann, die in beliebigen Kontexten gelten.
Dazu gehören die folgenden Themenbereiche:

Im Bereich der sicheren Kommunikation zeigen wir, welche idealen
Module von symmetrischen Protokollen wie TLS implementiert werden
sollen und zeigen auch, dass es nicht möglich ist, ein in jeder Hinsicht
perfekt sicheres Kommunikationsprotokoll zu entwickeln. Wir wenden
die gleiche Methodik auf asymmetrische Protokolle an (basierend auf
Public-Key Kryptographie).

Im Bereich der sicheren externen Datenspeicherung entwickeln wir ein
neues Rahmenwerk um die Sicherheit von Protokollen zu erfassen. Wir
zeigen, welche idealen Module möglich und wünschenswert sind. Dabei
entdecken wir, dass bisherige, auf Eigenschaften basierte Definitionen,
oftmals zu schwach sind. Wir zeigen, wie man existierende Protokolle
verstärken kann, um mehr Sicherheit zu erreichen.

Im Bereich der digitalen Signaturen präsentieren wir eine alternative
Möglichkeit, die Sicherheit zu fassen und zeigen, dass unsere Darstellung
äquivalent zu existierenden Definitionen ist.

Schliesslich zeigen wir, welche ideale Funktionalität von Blockchains,
insbesondere der Bitcoin Blockchain, implementiert wird. Dies ist äusserst
wichtig, da unzählige und verschiedenste Applikationen auf der Sicherheit
der Blockchain basieren. Dieses ideale Modul zu identifizieren und zu
beweisen, dass Bitcoin dieses tatsächlich implementiert, ist von enormer
praktischer Relevanz.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Security Notions and Applications 2
1.3 Overview and Contributions 3

1.3.1 Secure Communication Primitives 4
1.3.2 Secure Outsourced Storage 5
1.3.3 Digital Signatures Schemes 7
1.3.4 Blockchain Protocols 8

1.4 Related Work . 9

2 Preliminaries 11
2.1 Notation . 11

2.1.1 General conventions 11
2.1.2 Algorithms, Games, and Random Experiments . . 12

2.2 Basic Cryptographic Primitives 13
2.2.1 Symmetric-Key Encryption 13
2.2.2 Message Authentication Codes 14
2.2.3 Erasure Codes . 14
2.2.4 Digital Signature Scheme 16

2.3 Constructive Cryptography 16
2.3.1 Basic Concepts . 17
2.3.2 Constructions . 20
2.3.3 Composition . 21
2.3.4 An Important Special Case 22
2.3.5 An Example of Resources and Constructions . . . 23
2.3.6 Specifications . 26

x CONTENTS

2.4 Overview of the UC Framework 27
2.4.1 Basics . 27
2.4.2 Real-world process 29
2.4.3 Ideal-world process 30
2.4.4 Hybrid worlds . 31
2.4.5 Secure Realization and Composition 33

2.5 Large Deviation Bounds 34

I Secure Communication 35

3 Authenticated Encryption 37
3.1 Introduction . 37

3.1.1 Motivation and Contribution 37
3.1.2 Authenticated Encryption with Associated Data . 38
3.1.3 The Constructive Cryptography Setting 40

3.2 Augmented Secure Channels 40
3.2.1 An Improved Secure Channel 40
3.2.2 Formal Description 41
3.2.3 Construction . 41
3.2.4 Application: On TLS Security 50

4 Robust Authenticated Encryption 57
4.1 Introduction . 57

4.1.1 Motivation . 57
4.1.2 RAE: Standard Definition 58
4.1.3 The Constructive Cryptography Setting 60
4.1.4 Specific Contributions 60

4.2 Shared Uniform Random Injections 63
4.2.1 Definition of RAE Security 64

4.3 Random Injection Channels 65
4.3.1 Constructing Random Injection Channels 66

4.4 What is Best-Possible Security? 73
4.4.1 RIC Characterizes Best-Possible Security 74

4.5 Further Applications of the New Concept 75
4.5.1 Security by Verifiable Redundancy 76
4.5.2 Guarantees for Nonce-Reuse 78

CONTENTS xi

5 Signcryption 83
5.1 Introduction . 83

5.1.1 Motivation . 83
5.1.2 Specific Contributions 85
5.1.3 The Constructive Cryptography Setting 87

5.2 Signcryption: Game-Based Notions 87
5.2.1 Multi-User Outsider Security 88
5.2.2 Multi-User Insider Security 89

5.3 Gracefully-Degrading Secure Networks 93
5.3.1 Definition . 93
5.3.2 Assumed Resources 94
5.3.3 Construction . 97

II Secure Outsourced Storage 123

6 A Model for Outsourced Storage 125
6.1 Introduction . 125

6.1.1 Motivation . 125
6.1.2 Specific Contributions 127
6.1.3 On the Importance of Composition and Robustness 132
6.1.4 The Constructive Cryptography Setting 134
6.1.5 Specific Related Work 134

6.2 Basic Server-Memory Resource 138
6.3 More Secure Memories . 140
6.4 Constructions . 143

6.4.1 Authentic Server-Memory from Basic Server-Memory
Resources . 145

6.4.2 Confidential from Authentic Server-Memory Re-
sources . 154

6.4.3 Secure from Confidential Server-Memory Resources 158
6.4.4 Do all ORAM Schemes realize a Secure Server-

Memory Resource? 169
6.5 Auditable Server-Memory Resources 173

6.5.1 Basic, authenticated, and confidential auditable
server memory . 174

6.5.2 Secure and auditable server memory 174
6.6 Constructing Auditable Server-Memories 174

xii CONTENTS

6.6.1 Making Authentic Server-Memory Resources Au-
ditable . 176

6.6.2 Making Secure Server-Memory Resources Auditable 180
6.6.3 Revisiting the Hash-Based Challenge-Response Ap-

proach . 184

III Digital Signatures 193

7 A Constructive Model for Signatures 195
7.1 Introduction . 195

7.1.1 Motivation . 195
7.1.2 Methodology and Outline of the Model 196
7.1.3 Formalizing Message Authentication 196
7.1.4 Relation to Previous Work 201
7.1.5 Specific Contribution 205
7.1.6 The Constructive Cryptography Setting 206

7.2 Message Repositories . 207
7.2.1 Description of Message Repositories 207
7.2.2 Modeling Security Guarantees by Access to the

Repository . 210
7.3 The Constructive Perspective 210

7.3.1 The Basic Definitions 210
7.3.2 Unforgeability of Signatures implies Validity of Con-

struction . 213
7.3.3 Chaining Multiple Construction Steps 218
7.3.4 Validity of Construction implies Unforgeability of

Signatures . 219
7.3.5 On the Transferability of Verification Rights 227

IV Blockchain Protocols 231

8 A Composable Model for Bitcoin 233
8.1 Introduction . 233

8.1.1 Bitcoin: A Service for Cryptographic Protocols . . 234
8.1.2 Our Contributions 236
8.1.3 Overview of Bitcoin and Related Work 238

CONTENTS xiii

8.2 Principles of our Model 241
8.2.1 Functionalities with Dynamic Party Sets 241
8.2.2 Modeling Network Assumptions 243
8.2.3 Modeling Time and Clock-dependent Protocol Exe-

cution . 247
8.2.4 Modeling Hash Queries 249
8.2.5 Assumptions as UC-Functionality Wrappers 250

8.3 The Basic Transaction-Ledger Functionality 251
8.3.1 Introduction and Overview 253
8.3.2 Specific Defining Features 254

8.4 Bitcoin as a UC Protocol 263
8.4.1 Basics of Bitcoin 263
8.4.2 Overview and Modeling Decisions 266
8.4.3 The Formal Protocol Description 268

8.5 The Bitcoin Ledger . 274
8.6 Security Analysis . 277

8.6.1 Overview . 277
8.6.2 First Proof Step 279
8.6.3 Second Proof Step 286
8.6.4 Improving the Chain-Quality Parameter 308

8.7 Special Cases of our Model and Functionality Wrappers . 310
8.7.1 Special Cases and Existing Works 310
8.7.2 Restrictions and Composition 313

8.8 Modular Constructions based on the Ledger 314
8.8.1 A Stronger Ledger with Account Management . . 316

9 Conclusion 325

A Details of Chapter 5 327
A.1 Finishing the Construction Proof 327

A.1.1 Completing Step 5.) 327
A.1.2 Completing Step 6.) 329
A.1.3 Completing Step 7.) 331
A.1.4 Completing Step 8.) 333

xiv CONTENTS

B Details of Chapter 8 337
B.1 From Unicast to Multicast 337

B.1.1 On Realizing Multicast from Unicast 338
B.2 Further Details on the Bitcoin Ledger 339
B.3 Further Details on Modularization of the Ledger Protocol 342

B.3.1 The Modular Ledger Protocol 342
B.3.2 On the Soundness of the Modular Decomposition . 343

B.4 The Simulator of the Main Theorem 348

Chapter 1

Introduction

“Imagination should be used, not to escape reality, but to
create it.”

- Colin Wilson, 1962.

1.1 Motivation
A fundamental task in cryptographic research is the design of secure
protocols and the formal study of protocol properties. This includes
precise statements on what guarantees cryptographic protocols achieve
when used in a larger application. For example, if an application requires
a shared secret key between Alice and Bob, a natural approach is that they
initiate a key agreement sub-protocol. The resulting key is then provided
to the application and used, for example, to protect future communication.
What we intuitively require from the key exchange sub-protocol is that
the resulting output is as good as if a uniformly random shared secret key
had been available to the parties in the first place.

In cryptography, the security of protocols is usually captured by
technical definitions that are prevalently motivated by an application
story that justifies the utility and the line of reasoning that led to the
definition. This justification often leads to the conclusion that a protocol
that provably satisfies a security definition, can be safely used in intended
applications. However, this final conclusion is typically not argued formally

2 CHAPTER 1. INTRODUCTION

and it is not sound in general: Many existing security definitions for
cryptographic protocols fall short in guaranteeing the security of intended
applications, and in extreme cases are even flawed and lead to successful
attacks. We hence face a situation in cryptography where a mismatch
between formal definitions and effective usage of a protocol cannot be
excluded.

To overcome this situation requires a fundamentally different method-
ology. A protocol has to be seen as a construction that transforms an
assumed setting into an idealized setting. In the example of key agree-
ment, the assumed setting could be an authenticated communication
channel and the goal of a key agreement protocol is to construct an ideal,
uniformly random shared secret key out of the communication channel. A
core property of a constructive view is composability: in any application
that assumes a shared secret key, for example symmetric encryption, it is
safe to replace the ideal key by the construction achieving it.

Consequently, a foundational task in cryptographic research is to
build a library of important constructions that formalizes the security of
fundamental cryptographic building blocks and that establishes a solid
basis to create larger applications in a modular way based on the achieved
idealizations. The main objective of this thesis is to contribute to such
a library in the area of secure communication, outsourced storage, and
blockchain protocols.

1.2 Security Notions and Applications

As briefly mentioned above, classical cryptographic definitions, including
the ones we study in this thesis, do not capture in which contexts a scheme
satisfying them can securely be used, leaving an undesirable gap between
a scheme’s security properties and its use. They consider a specific attack
model and give certain capabilities to an adversary that tries to win some
game, but it is not a priori clear which capabilities an adversary has in a
particular application, or even what the final goal would be. To illustrate
our basic point, consider the standard notions for encryption schemes,
IND-CPA and IND-CCA. While IND-CCA is stronger, it is not obvious in
which applications an IND-CCA encryption scheme is needed and where
IND-CPA would suffice. These considerations are highly security-relevant.
For complex protocols like TLS or IPSec, one has to make sure that any

1.3. OVERVIEW AND CONTRIBUTIONS 3

overall attack can be translated to an attack against the CPA or CCA
game or another hardness assumption; only then the protocol is sound.
But such analyses are complex and cannot be reused for the analysis of
other protocols or attack models. This directly calls for a more elegant
and modular approach.

Our approach. The basis of our approach is the constructive cryptog-
raphy framework (CC) developed by Maurer and Renner [Mau12, MR11].
A central concept in constructive cryptography is to model cryptographic
settings by means of resources. Resources model both the real setting in
which a protocol is executed (e.g., a protocol makes use of a secret key and
a channel) and the ideal abstraction that the parties want to achieve (e.g.,
a secure channel). The role of a cryptographic protocol is to construct the
desired resource from the assumed ones. We will formally define it later.
An important property of this construction notion is its composability.
A constructed resource can be used in any other construction as an as-
sumed resource in any further application and security is preserved if this
assumed resource is replaced by the construction achieving it. We note
that such a rigorous approach stands in sharp contrast to game-based
security definitions.

Using the framework of constructive cryptography, we want to bridge
the gap between technical security definitions of cryptographic primitives
and the security of intended applications having these primitives as a
building block. We want to find the appropriate idealizations and show
which resources can be constructed in a given setting, with a special
focus on practically relevant building blocks in order to shed new light
on existing definitions and to spot and rectify potential weaknesses and
provide better constructions if needed.

1.3 Overview and Contributions

This thesis makes contributions in various fields of cryptography that are
currently relevant in practice. This includes the study of communication
primitives, outsourced storage protocols, and blockchain protocols. In the
following, we highlight the main contributions and give pointers to the
relevant sections and the papers they are based on.

4 CHAPTER 1. INTRODUCTION

1.3.1 Secure Communication Primitives

In this thesis, Chapters 3 to 5 are devoted to investigate cryptographic
primitives that are used to secure the communication over the internet.
Two cases are discussed: symmetric primitives and asymmetric primitives.
The results in Chapters 3 to 5 are based on the publications [BMM+15a,
BMM+15b] and [BBM18], respectively.

Authenticated Encryption. Authenticated encryption (AE) schemes
were introduced to provide both authenticity and confidentiality of sent
messages with the motivation to offer a simpler interface to applications
and better performance compared to generic compositions of encryption
and authentication mechanisms. Due to their wide adoption and impor-
tance in practical protocols like TLS 1.3, it seems important to idealize
the goal of authenticated encryption schemes.

We therefore present a novel basic channel abstraction, an augmented
secure channel (ASC), that allows a sender to send a receiver messages
consisting of two parts, where one is privacy-protected and both are
authenticity-protected. We formalize this idea in constructive cryptogra-
phy and provide a construction of this kind of channel generically based
on authenticated-encryption schemes. As an immediate application, we
can look at the development of TLS 1.3 and observe that the criterion
by which all the drafts can be judged actually becomes quite simple: do
they construct an ASC? According to this measure, we can investigate
different drafts of TLS 1.3 and see what is achieved through the lens of
provable security.

Robust AE and the limits of symmetric cryptography. Robust
authenticated encryption (RAE) can be seen as an extension to AE and
is a primitive for symmetric encryption that allows to flexibly specify
the ciphertext expansion, i.e., how much longer the ciphertext is com-
pared to the plaintext. For every ciphertext expansion, RAE aims at
providing the best-possible authenticity and confidentiality. To investigate
whether this is actually achieved, we characterize exactly the guarantees
symmetric cryptography can provide for any given ciphertext expansion.
We formulate this idealization again in the constructive cryptography
framework.

1.3. OVERVIEW AND CONTRIBUTIONS 5

Our characterization reveals not only that RAE reaches the claimed
goal, but also, contrary to prior belief, that one cannot achieve full
confidentiality without ciphertext expansion. This provides new insights
into the limits of symmetric cryptography. Moreover, we provide a rigorous
treatment of two previously only informally stated additional features
of RAE; namely, we show how redundancy in the message space can be
exploited to improve the security and we analyze the exact security loss if
multiple messages are encrypted with the same nonce.

Signcryption. Our study on communication primitives is concluded by
considering the asymmetric (or public-key) counterpart of authenticated
encryption: Signcryption. This is a public-key cryptographic primitive,
originally introduced by Zheng in 1997, that allows parties to establish
secure communication without the need of prior key agreement. Instead,
a party registers its public key at a certificate authority (CA), and only
needs to retrieve the public key of the intended partner from the CA before
being able to protect the communication. Like authenticated encyrption,
signcryption schemes provide both authenticity and confidentiality of
sent messages. Although introduced two decades ago, the question which
security notions of signcryption are adequate in which applications has
still not reached a fully satisfactory answer.

We again conduct a constructive analysis to derive what signcryption
schemes should ideally achieve. We identify the goal of signcryption as
a gracefully-degrading secure network, which is basically a network of
independent parties that allows secure communication between any two
parties. However, when a party is compromised, its respective security
guarantees are lost, while all guarantees for the remaining users remain
unaffected. A signcryption scheme should enable a construction of this
network solely based on a CA and an insecure network. As part of our
study, we derive the game-based security notions that are sufficient for
the construction to be achieved, which helps to understand what the
“standard” game-based notions of signcryption should be.

1.3.2 Secure Outsourced Storage

In Chapter 6 of this thesis, we discuss the problem of securely outsourcing
storage to an external service provider. Indeed, the security of data

6 CHAPTER 1. INTRODUCTION

outsourcing mechanisms has become a crucial aspect of today’s IT in-
frastructures and they are the cryptographic foundations of real-world
applications. The very fundamental goals are ensuring storage integrity
and auditability, confidentiality, and access pattern hiding, as well as
combinations of all of them. Despite sharing a common setting, secu-
rity analyses of these tasks are often performed in a stand-alone fashion
expressed in different models, which makes it hard to assess the overall
security of a protocol or application involving several security schemes
at once. We fill this gap by providing a framework suitable to capture
various aspects of outsourced storage security and its applications. Again,
we propose the relevant idealizations and the corresponding constructions
that achieve these idealizations.

Aside of the new model, Chapter 6 makes three specific contributions
to the realm of outsourced storage security:

1. We present a novel definition for secure and robust outsourcing
schemes and underline why this is needed in practice. Our definition
is stronger than previous definitions for oblivious RAM or software
protection in that it assures strong security guarantees against active
attacks. Schemes meeting the definition not only assure that an
attacker cannot learn the access pattern, but guarantee resilience to
errors and the prevention of targeted attacks to specific locations.
Unfortunately, several existing schemes cannot achieve this high
level of security. For completeness, we provide a protocol based
on Path ORAM that showcases that stronger security is actually
achievable.

2. We present a novel definition for auditable storage, capturing the
guarantee that a successful audit implies that the current server
state allows the client to retrieve his data. We develop an audit
mechanism, based on secure and robust outsourcing schemes, that
is similar to the construction by Cash et al. (Eurocrpyt 2013), but
is universally composable and fault-tolerant.

3. We revisit the security claim of a widely-used challenge-response
audit mechanism, in which the server has to compute a hash H(F ||c)
on the file F concatenated with a uniformly random challenge c
chosen by the client. Being concerned with composable security, we
prove that this audit mechanism is not secure, even in the random

1.3. OVERVIEW AND CONTRIBUTIONS 7

oracle model, without additional assumptions. The composable
security of this basic audit scheme was implicitly assumed in Ris-
tenpart et al. (Eurocrypt 2011). To complete the picture, we state
the additional assumptions for this audit mechanism to be prov-
ably secure and investigate the (in)applicability of hash-function
constructions in this setting.

The results of Chapter 6 are published in [BM18].

1.3.3 Digital Signatures Schemes

The stage for Chapter 7 are digital signature schemes (DSS), a very funda-
mental cryptographic primitive with various and diverse application sce-
narios. Because of this, a security definition that specifies the guarantees
of a DSS under composition is needed. Canetti (FOCS 2001, CSFW 2004)
as well as Backes, Pfitzmann, and Waidner (CCS 2003) have described
ideal functionalities for signatures in their respective composable-security
frameworks. All these proposals have their benefits and shortcomings,
one reason being that due to this diversity in applications, it is not at all
clear for signatures how an idealization should be formulated best.

We therefore require a more fundamental and more abstract approach
to capture what signature schemes should ideally achieve. In Chapter 7
we hence describe digital signature schemes from a different, more abstract
perspective. Instead of modeling all aspects of a DSS in a monolithic ideal
functionality, our approach characterizes a DSS as a construction of a
repository for authentically reading values written by a certain party from
certain assumed repositories, e.g., for transmitting verification key and
signature values. This approach resolves several technical complications of
previous simulation-based approaches, captures the security of signature
schemes in an abstract way, and allows for modular proofs. One major
contribution we make is that our new definition is equivalent to the
existence of a signature scheme that is existentially unforgeable under
chosen message attacks. We hope that our more fundamental approach can
be the foundation for studying idealizations of cryptographic primitives for
which a main or most important application scenario cannot be properly
identified.

The results of Chapter 7 are published in [BMT18].

8 CHAPTER 1. INTRODUCTION

1.3.4 Blockchain Protocols

In 2008, an unknown person (or group of people) referred to by the
pseudonym Satoshi Nakamoto first proposed Bitcoin as a decentralized
cryptocurrency. After this whitepaper has been published, the area of
cryptocurrencies, and more general blockchain protocols, have received a
lot of attention, and researchers have been analyzing and/or predicting
its behavior under different attack scenarios. However, a core question
remained, namely how we can idealize the service that Bitcoin provides, or
more explicitly, what functionality can Bitcoin provide to cryptographic
protocols and what assumptions are needed to realize such a functionality?

An intuitive answer to this question was already given in Nakamoto’s
original work: Bitcoin aims to achieve some form of consensus on a set
of valid transactions. The core difference of this consensus mechanism
with traditional consensus is that it does not rely on having a known
(permissioned) set of participants, but everyone can join and leave at
any point in time. This is often referred to as the permissionless model.
Consensus in this model is achieved by shifting from the traditional
assumptions on the fraction of cheating versus honest participants, to
assumptions on the collective computing power of the cheating participants
compared to the total computing power of the parties that support the
consensus mechanism. The core idea is that in order for a party’s action to
affect the system’s behavior, it needs to prove that it is investing sufficient
computing resources. In Bitcoin, these resources are measured by means
of solutions to a presumably computation-intensive problem.

Although the above idea is implicit in Nakamoto’s paper, a formal
description of Bitcoin’s goal had not been proposed or known to be
achieved (and under what assumptions) until the recent works of Garay,
Kiayias, and Leonardos (Eurocrypt 2015) and Pass, Seeman, and shelat
(Eurocrypt 2016). However, these existing security analyses are property-
based, and as such they do not support composition.

In Chapter 8, we put forth a universally composable treatment of the
Bitcoin protocol. We specify the goal that Bitcoin aims to achieve as a
ledger functionality in the (G)UC model of Canetti et al. [TCC’07]. We
prove that the functionality we proposed here is securely UC realized
under standard assumptions by an appropriate abstraction of Bitcoin as a
UC protocol. We further show how known property-based approaches can
be cast as special instances of our treatment and how their underlying

1.4. RELATED WORK 9

assumptions can be cast in (G)UC without restricting the environment or
the adversary.

The results of Chapter 8 are published in [BMTZ17] which serves as the
foundation of further research in the blockchain area [BGM+18, BGK+18].

1.4 Related Work
This thesis is divided into several parts, where each part covers a certain
field. Due to this variety, we provide the relevant related work for each of
the topics in the respective chapters. The bibliography is found at the
end of this document.

Chapter 2

Preliminaries

2.1 Notation

2.1.1 General conventions

We describe algorithms and the behavior of systems with pseudocode
using the following conventions: We write x← y for assigning the value y
to the variable x. For a distribution D over some set, x � D denotes
sampling x according to D. For a finite set X, x� X denotes assigning
to x a uniformly random value in X. For a positive integer n ∈ N, we
define [n] := {1, . . . , n}.

We denote the empty list by [] and for a list L, L ∥ x denotes the list
L with x appended. Furthermore, |L| denotes the number of elements in
L and the ith element in L is denoted by L[i] for i ∈ {1, . . . , |L|}. For
a FIFO queue Q, we write Q.enqueue(x) to insert x into the queue and
Q.dequeue() to retrieve (and remove) the element of the queue that was
inserted first among all remaining elements. For n,m ∈ N, Inj (Σn,Σm)
denotes the set of injective functions Σn → Σm. For an injective function
f : X → Y , we denote by f−1 the function Y → X ∪ {⊥} that maps y
to the preimage of y under f if existing, and to the distinct element ⊥
otherwise.

Typically queries to systems (for example a channel) consist of a
suggestive keyword and a list of arguments, such as (send,m) to send a
message m. We ignore keywords in writing the domains of arguments, e.g.,

12 CHAPTER 2. PRELIMINARIES

(send,m) ∈ M indicates that m ∈ M. The systems generate a return
value upon each query which is output at an interface of the system. We
omit writing return statements in case the output is a simple constant
whose only purpose is to indicate the completion of an operation.

2.1.2 Algorithms, Games, and Random Experiments

When describing game-based security, we stick to the following conventions.
If A is an algorithm then y ← A(x) denotes executing A on input x and
assigning the return value to y. If A is probabilistic, then A(x; r) denotes
the execution of A on input x and randomness r ∈ {0, 1}∗ of sufficient
length, and in the expression A(x), the randomness is chosen uniformly
at random. For algorithms A and O, AO(·)(x) denotes the execution
of A (on input x) with oracle access to O. We often call O simply an
oracle. For a cryptographic game G that typically consists of a set of
oracles provided to an adversary A (such as an encryption or decryption
oracle), we write AG(·) to denote the execution of A having oracle access
to the oracles provided by G. Often, the input x to the adversary is
the encoding of a security parameter in such cases we omit it from the
description for simplicity (see below). When talking about game-based
security, this execution is called the random experiment of an adversary A
with game G. For such random experiments, we use the standard notation
Pr

[
AG = 1

]
to denote the probability that the output of an adversary

is 1 when interacting with game G, and Pr
[
AG sets flag

]
to denote the

probability that the adversary sets a boolean (or binary) variable flag,
(defined by the security game G), to the value true (or 1). For an arbitrary
random experiment Exp and an event E defined with respect to that
experiment, we use the notation PrExp[E] to denote the probability of
event E.

To measure the performance of an adversary A, one usually defines
an advantage function which is a function of a security parameter κ. To
simplify notation, we often omit the security parameter as an explicit
input, for example we just write Advind-cpa

EA for the CPA-advantage of an
adversary A (with respect to a scheme E) instead of Advind-cpa

EA (κ).
In this thesis, we follow a concrete security approach, i.e., asymptotic

considerations and notions such as efficiency and negligibility do not play
a major role. For completeness, whenever we refer to an efficient algorithm

2.2. BASIC CRYPTOGRAPHIC PRIMITIVES 13

A in explanations or definitions, we mean probabilistic polynomial time,
i.e., there is a polynomial p(·) such that the execution A(x) terminates
after at most p(|x|) steps in a standard model of computation. In a
game-based cryptographic treatment, an adversary A typically takes as
input the unary encoding 1κ of the security parameter κ and is required
to be efficient with respect to this input. Finally, a function f is called
negligible if it vanishes faster than the inverse of any polynomial, i.e., for
any polynomial q(·) there is an integer n0 ∈ N such that for all n ≥ n0,
f(n) < 1

q(n) .

2.2 Basic Cryptographic Primitives
In this section, we define those cryptographic primitives that are used
throughout several chapters of this work. More specialized primitives,
such as authenticated encryption or signcryption, are presented in the
respective chapters.

2.2.1 Symmetric-Key Encryption
In this work, we need symmetric-key encryption schemes secure against
chosen-plaintext attacks.

Definition 2.2.1. A symmetric-key (or private-key) encryption scheme
E := (Gen,Enc,Dec) for message space M, key space K, and cipher-
text space C consists of a (probabilistic) key generation algorithm Gen
that returns a key sk ∈ K, a (probabilistic) encryption algorithm Enc
that given a message m ∈ M and the key sk ∈ K returns a ciphertext
c ← Enc(sk ,m) ∈ C, and a (possibly probabilistic) decryption algo-
rithm Dec, that given a ciphertext c ∈ C and the key sk ∈ K returns
a value m′ ← Dec(sk , c) ∈ M ∪ {⊥}. We require correctness, i.e., that
Dec(sk ,Enc(sk ,m)) = m for all keys sk in the support of Gen and all
messages m ∈M.

Definition 2.2.2. For a symmetric-key encryption scheme E , we define
the CPA-advantage of an adversary A as the difference in the probability
that it outputs 1 when interacting with game IND-CPA0

E or with game
IND-CPA1

E depicted in Figure 2.1, i.e.,

Advind-cpa
E,A := Pr

[
AIND-CPA0

E = 1
]
− Pr

[
AIND-CPA1

E = 1
]
.

14 CHAPTER 2. PRELIMINARIES

The scheme E is called IND-CPA-secure if this advantage is negligible for
all efficient adversaries.

2.2.2 Message Authentication Codes

In this work, we use the following simple definition of a message authenti-
cation code.

Definition 2.2.3. A message authentication code for message space M,
tag space T , and key space K (with an associated distribution) is a
function f : K ×M→ T (called the MAC function).

Definition 2.2.4. For a MAC function f , we define the EU-CMA advan-
tage of an adversary A as the probability that it wins the unforgeability
game EU-CMAmac

f depicted in Figure 2.1, i.e.,

Adveu-cma
f,A := Pr

[
AEU-CMAmac

f sets win
]
.

The MAC function f is called secure if this advantage is negligible for all
efficient adversaries.

2.2.3 Erasure Codes

Erasure codes are a special type of error-correcting codes and defined as
follows.

Definition 2.2.5. An (n, k, d) erasure code over an alphabet Σ with
error symbol ⊥ ̸∈ Σ, is a pair of (efficient) algorithms (E,D) that satisfy
the following requirement for all F ∈ Σk: Let F̄ := E(F) ∈ Σn and define
the set

CF̄ := {F̄ ′ ∈ (Σ ∪ {⊥})n | ∀i : F̄ ′i ∈ {F̄i,⊥} ∧
at most d− 1 positions of F̄ ′ are equal to ⊥}.

Then, for all F̄ ′ ∈ CF̄ , it holds that D(F̄ ′) = F .

2.2. BASIC CRYPTOGRAPHIC PRIMITIVES 15

IND-CPAbE

Initialization
sk � Gen

Oracle Enc

Input: m ∈ M
return Enc(sk ,m)

Oracle Challenge

◃ Silent after first completed
invocation.

Input: (m1,m2) ∈ M2 ∧ |m1| = |m2|
return Enc(sk ,mb)

EU-CMAmac
f

Initialization
sk � K
Q← ∅
win← false

Oracle Sign

Input: m ∈ M
Q← Q ∪ {m}
return fsk(m)

Oracle Forge

Input: (m, t) ∈ M× T
if m ̸∈ Q ∧ fsk(m) = t then

win← true

EU-CMAsig
DS

Initialization
(sk , vk) � Gen
Q← ∅
win← false

Oracle Sign

Input: m ∈ M
Q← Q ∪ {m}
return s← Sign(sk ,m)

Oracle Forge

Input: (m, s′) ∈ M× S
if m ̸∈ Q ∧ Ver(vk ,m, s′) = 1 then

win← true

Figure 2.1: The security games to define the standard security notions
that are used throughout this work.

16 CHAPTER 2. PRELIMINARIES

2.2.4 Digital Signature Scheme

Signature schemes play an important role in this work and we state here the
standard notion, namely existential unforgeability under chosen-message
attacks.

Definition 2.2.6. A digital signature scheme DS := (Gen,Sign,Ver) for
a message space M, signature space S, and key space K = SK × PK
consists of a (probabilistic) key generation algorithm Gen that returns a
key pair (sk , vk) ∈ K, a (possibly probabilistic) signing algorithm Sign,
that given a message m ∈ M and the signing key sk ∈ SK returns
a signature s ← Sign(sk ,m), and a (possibly probabilistic, but usually
deterministic) verification algorithm Ver, that given a message m ∈ M,
a candidate signature s′ ∈ S, and the verification key vk ∈ PK returns
a bit Ver(vk ,m, s′). The bit 1 is interpreted as a successful verification
and 0 as a failed verification. We require correctness, that is, we demand
that Ver(vk ,m,Sign(sk ,m)) = 1 for all m ∈ M and all pairs (vk , sk) in
the support of Gen.

Definition 2.2.7. For a digital signature scheme DS, we define the EU-
CMA advantage of an adversary A as the probability that it wins the
unforgeability game EU-CMAsig

DS depicted in Figure 2.1, i.e.,

Adveu-cma
DS,A := Pr

[
AEU-CMAsig

DS sets win
]
.

The scheme E is called EU-CMA-secure if this advantage is negligible for
all efficient adversaries.

2.3 Constructive Cryptography

In this section, we outline the model that underlies most of the results
stated in this work. While constructive cryptography is a general theory
that goes beyond cryptography, the purpose of this section is to describe
the way we use it to prove our cryptographic statements.

2.3. CONSTRUCTIVE CRYPTOGRAPHY 17

2.3.1 Basic Concepts

Discrete Systems

The basic objects in the constructive security statements of this work are
reactive discrete systems that can be queried by their environment: Each
interaction consists of an input from the environment and an output that
is given by the system in response. Discrete reactive systems are modeled
formally by random systems [Mau02], and an important similarity measure
on those is given by the distinguishing advantage. More formally, the
advantage of a distinguisher D in distinguishing two discrete systems, say
R and S, is defined as

∆D(R,S) = Pr[DR = 1]− Pr[DS = 1] , (2.1)

where Pr [DR = 1] denotes the probability that D outputs 1 when con-
nected to the system R. More concretely, DR is a random experiment,
where the distinguisher repeatedly provides an input to one of the inter-
faces and observes the output generated in reaction to that input before
it decides on its output bit.

A further important concept for discrete systems is a monotone binary
output (MBO) [Mau02] or bad event [BR06]. This concept is used to
define a similarity between two systems, the game equivalence [Mau02]
or equivalence until bad [BR06], which means that two systems behave
equivalently until the MBO is set (i.e., as long as the bad event does
not occur), but may deviate arbitrarily thereafter. A widely-used result
is the so-called Fundamental Lemma of Game Playing [Mau02, BR06],
which states that the distinguishing advantage between two such systems
is bounded by the probability of provoking the MBO (i.e., bad event).

Resources and Converters

The central object in constructive cryptography is that of a resource
available to parties, and the resources we discuss in this work are modeled
by reactive discrete systems. As in general the same resource may be
accessible to multiple parties, such as a communication channel that
allows a sender to input a message and a receiver to read it, we assign
inputs to certain interfaces that correspond to the parties: the sender’s
interface allows to input a message to the channel, and the receiver’s

18 CHAPTER 2. PRELIMINARIES

interface allows to read what is in the channel. More generally, a resource
is a discrete system with a finite set of interfaces I via which the resource
interacts with its environment.

Converters model protocols used by parties and can attach to an
interface of a resource to change the inputs and outputs at that interface.
This composition, which for a converter π, interface I, and resource R
is denoted by πIR, again yields a resource. In this work, a converter
π is modeled as a system with two interfaces: the inner interface in

and the outer interface out. The inner interface can be connected to
an interface I of a resource R and the outer interface then becomes the
new interface I of resource πIR. Two special converters in this work
are the identity converter 1, which does not change the behavior at an
interface, and the converter 0, which blocks all interaction at an interface
(no inputs or outputs). For two converters π1, π2, their concatenation
π1 ◦ π2 (sometimes called sequential composition) is a converter defined
via (π1 ◦ π2)IR := πI1π

I
2R.

For a tuple of converters π = (πI1 , . . . , πIn) with Ii ∈ I, and a subset
of interfaces P ⊆ {I1, . . . , In}, πPR denotes the resource where πI is
connected to interface I of R for every I ∈ P . In this context, we also use
the convention that P := I \ P. Finally, the concatenation of two tuples
of converters (of the same size) is simply defined as the tuple obtained by
component-wise concatenation of the respective converters.

For I-resources R1, . . .Rm the parallel composition [R1, . . . ,Rm] is
again an I-resource that provides at each interface access to the corre-
sponding interfaces of all subsystems. If the two interfaces do not have
the same interface set, one can simply add “dummy interfaces” that do
not take any input and output to lift them to identical interface sets.
In this sense, we also allow resources with different interface sets here.
Finally, for converters π1, . . . , πm, their parallel composition [π1, . . . , πm]
is a converter defined via [π1, . . . , πm]I [R1, . . . ,Rm] := [πI1R1, . . . π

I
mRm].

Similar to above, the parallel composition of tuples of converters (of the
same size) is the tuple obtained by component-wise parallel composition
of the respective converters.

Protocols and Types of Interfaces

A protocol corresponds to the actions that parties are expected to execute,
for example applying an encryption scheme to protect the content of

2.3. CONSTRUCTIVE CRYPTOGRAPHY 19

a message). For each interface, these actions are formally captured by
attaching a particular converter. Since in a cryptographic context some
parties may deviate from the prescribed behavior, we naturally have
several types of interfaces. These types are implicit in the definition of a
construction below and explained here.

• Honest interfaces: Interfaces that belong to this type always apply
the specified converter in a construction and hence the prescribed
behavior is the actual behavior. In secure communication, we often
consider how the sender Alice (interface A) and receiver Bob (inter-
face B) protect their communication against an entity controlling
the network, often denoted to by the name Eve.

• Potentially dishonest interfaces: Interfaces of this type formalize
the possibility that the behavior can deviate from what is prescribed
by the protocol converter for this interface. Such dishonest behavior
is thus captured by replacing the protocol converter by an arbitrary,
adversarial strategy. We think of the protocol converter for this
interface as the default behavior in case it is honest. The set
of possibly dishonest interfaces is typically called U . Following
up the basic example from above, the interface of the possibly
dishonest entity that controls the network, i.e., Eve, belongs to this
set (interface E).

• Free interface: A free interface models that the resource may be
affected by its environment in ways we cannot or do not want to
fix in the resource description. This allows to abstract from certain
technical details by delegating them to the environment. As we see
below, in the construction statements no converter is attached at
the free interface which gives the distinguisher direct access in both,
the “real world” and the “ideal world”. A construction is thus valid
independently of what happens at the world interface. In this thesis,
a resource has at most one free interface that we call interface W and
we refer to it as the world interface. This interface plays a crucial
role in several of our results, notably in Chapter 6.

Formally, a protocol is a tuple of converters that specifies one converter
for each interface except the free interface.

20 CHAPTER 2. PRELIMINARIES

Filtered resources

Typically, one would like to specify that certain capabilities at an interface
are only potentially available (e.g., to an attacker), but not guaranteed to
be available (i.e, not a feature of a protocol). A typical example is that
the leakage to the network attacker of a secure channel at interface E is at
most the length of the message |m| (potentially available), but of course
not guaranteed (there exist encryption schemes that hide the length
of the message). To model such situation, constructive cryptography
offers the concept called filtered resources. Let R be a resource and
φ = (φI1 , . . . , φIn) be a vector of converters. Then, the filtered resource Rφ

is a I-resource, where for an honest party at interface Ij , the interaction
through the converter φIj is guaranteed to be available, while interactions
with R directly is only potentially available to dishonest parties. The
converter φIj can be thought of as filtering or shielding certain capabilities
of interface Ij of system R, we hence denote φ as the filter. In this
context, R is called an unfiltered resource (and its behavior is equivalent
to resource Rφ if φ consists of only identity converters). Note that no
filter need to be specified for the free interface. We refer the reader to
[MR11] for more details and briefly mention that this concept has turned
out to be useful in modeling cryptographic problems and is crucially used
in Chapter 5 of this work.

2.3.2 Constructions
A constructive security statement specifies the goal of a protocol in terms
of assumed and constructed resources. The goal of a protocol is to
construct the ideal resource from the given ones. We directly state the
central definition of a construction of [MR11] that is used throughout this
work.

Definition 2.3.1. Let Rφ and Sψ be filtered resources with interface set
I ′ := I ∪ {W}, W ̸∈ I. Let π = (πI1 , . . . , πI|I|) be a protocol. Let further
be U ⊆ I be the set of interfaces with potentially dishonest behavior and
let ε be a function that maps distinguishers to a value in [−1, 1]. The
protocol π constructs Sψ from Rφ within ε and with respect to potentially
dishonest U , denoted by

Rφ

(π, ε,U)
==⇒ Sψ,

2.3. CONSTRUCTIVE CRYPTOGRAPHY 21

if there exist converters σ = (σU1
, . . . , σU|U|), Ui ∈ U , such that for all

(dishonest) subsets C ⊆ U we have that

∆D(πC φCR, σC ψCS) ≤ ε(D) (2.2)

for any distinguisher D.

Since in this work we state concrete security statements and reductions,
the mapping ε(·) is typically the advantage of an adversary A = ρ(D) in
a related security game (such as the forgery game) where ρ(·) stands for a
mapping from distinguishers to adversaries, for example implemented by
a black-box construction of such an adversary A from a distinguisher D.
To give some intuition, the condition in Definition 2.3.1 ensures that
for any combination of dishonest interfaces, whatever they can do in
the assumed resource using the unfiltered capabilities, they could do as
well with the constructed resource by applying the simulators σUi

to the
respective (unfiltered) interfaces Ui of the ideal resource. Turned around,
if the constructed resource is secure by definition (for example, a secure
channel does potentially leak at most the length of a message), there is
no successful attack on the protocol.

2.3.3 Composition

The notion of construction is composable, which intuitively means that
the constructed resource can be replaced in any context by the assumed
resource with the protocol attached. We refer to [MR11, Mau12] for the
details and the proof and provide here the statement for completeness.

Theorem 2.3.2 (Composition Theorem). Let Rφ, R′φ′ , Sψ, S′ψ′ , and
Tτ be (filtered) resources and let π1, π2, π′1 be protocols as in Defini-
tion 2.3.1. Let π3 := π2 ◦ π1 and π′3 := [π1, π

′
1] be the sequential and

parallel compositions of these protocols. We have

Rφ

(π1, ε1,U)
==⇒ Sψ ∧ Sψ

(π2, ε2,U)
==⇒ Tτ =⇒ Rφ

(π3, ε3,U)
==⇒ Tτ

and

Rφ

(π1, ε1,U)
==⇒ Sψ ∧ R′φ′

(π′
1, ε

′
2,U)

==⇒ S′ψ′ =⇒ [Rφ,R
′
φ′]

(π′
3, ε

′
3,U)

==⇒ [Sψ,S
′
ψ′],

22 CHAPTER 2. PRELIMINARIES

for specific performance functions ε3(·) and ε′3(·). In particular, consider-
ing only the universe of efficient systems, it holds that if ϵ1(·), ϵ2(·), and
ϵ′2(·) are negligible (for all efficient distinguishers), then the performance
functions ϵ3(·) and ϵ′3(·) are negligible (for all efficient distinguishers).

The last part of the theorem is stated since it is the most frequent
formulation found in the literature and corresponds to the intuition
that the constructed resource can be replaced in any context by the
cryptographic construction that achieves it — without affecting any of the
security guarantees. We do not state a definition of efficient systems here,
but simply note that what we expect from such a notion is that efficiency
is preserved when composing systems [MR11]. We omit the details here
(including the exact reductions involved in the proof of Theorem 2.3.2)
because they are not important to follow the results in this thesis.

2.3.4 An Important Special Case
In many cases, there is only one single interface with possibly dishonest
behavior and this interface is typically denoted by E. Such constructions
often occur in practice, namely in settings where the goal of honest parties
is to protect themselves against one central adversary that tries to break
the security they want to achieve. A prominent example is protecting
communication between two parties (the so-called Alice-Bob-Eve setting),
or in secure storage protocols where the possibly dishonest entity is the
server.

In such cases, it is often simpler to directly define the involved resources
with the worst-case capabilities guaranteed at interface E. We now discuss
how Definition 2.3.1 simplifies substantially in this case and present a
simpler definition that Definition 2.3.1 for the case that U = {E} as we
explain below. The main idea is that we do not invoke the concept of
filtered resources and instead explicitly speak of the default behavior at
interface E (when no attacker is present). Furthermore, a protocol needs
only specify the converters that are attached at the honest interfaces.

In the following, let P := {P1, . . . , Pk} denote the set of interfaces with
honest behavior. The simplified definition reads as follows:

Definition 2.3.3. Let R and S be resources with interface set I =
P ∪ {E, W}. Let ε be a function that maps distinguishers to a value in
[0, 1] and let sim be a converter (the simulator). Let π = (πP1 , . . . , πPk)

2.3. CONSTRUCTIVE CRYPTOGRAPHY 23

be the converters attached at the honest interfaces and let noAtckR and
noAtckS be converters that describe the default behavior at interface E.
The protocol π constructs resource S from resource R (with potentially
dishonest E) within ε and with respect to the simulator sim and the pair
(noAtckR, noAtckS), if for all distinguishers D,

∆D(noAtckR
E πPR, noAtckS

E S) ≤ ε(D) (Correctness)

∆D(πPR, sim
E S) ≤ ε(D). (Security)

The first condition ensures that the protocol implements the required
functionality if there is no attacker. For example, for communication
channels, all sent messages have to be delivered when no attacker interferes
with the protocol. The second condition ensures that whatever Eve can
do with the assumed resource, she could do as well with the constructed
resource by using the simulator sim.

It is easy to see that whenever a protocol constructs resource S from
resource R according to Definition 2.3.3 this corresponds to a construction
of resource Sψ from resource Rφ according to Definition 2.3.1, where
interface E is filtered by converters noAtckS and noAtckR, and interfaces
Pk are not filtered (i.e, the filter is the identity converter). The protocol π′
that achieves this construction according to Definition 2.3.1 is defined by
π′ := (πP1 , . . . , πPk , 1). Note that the definition also applies to resources
without free interface, in the sense that it can be considered as inactive.

2.3.5 An Example of Resources and Constructions

In the literature, communication channels are modeled as resources with
three interfaces: Interface A for sender Alice, interface B for receiver
Bob, and interface E for adversary Eve. Different types of such channels
have been studied, which differ in the capabilities of the adversary Eve,
and how to construct such channels [CMT13, Mau12, MRT12]. We will
briefly discuss the structure of these statements to provide a concrete
example that relates to the terms of assumed and constructed resources.
Throughout, we assume a generic message domain of Σ∗ for some alphabet
(i.e., a finite non-empty set) Σ.

24 CHAPTER 2. PRELIMINARIES

Assumed Resources

Insecure channel. The insecure channel IC allows messages to be
input repeatedly at interface A. Each message is subsequently leaked at
the E-interface. At interface E, arbitrary messages (including those that
were previously input at interface A) can be injected such that they are
delivered to B. This channel does not give any security guarantees to
Alice and Bob. A formal description is provided in Figure 2.2.

Shared Secret Key. The shared secret key SKK samples a key k
according to the key distribution K and upon queried at either interface
A or B, it outputs k; interface E remains inactive. A formal description is
provided in Figure 2.2.

Constructed Resource

Secure channel. The typical formalization of a secure channel follows
the same basic structure as an insecure channel but where the ability of
the adversary is limited to seeing the length of the transmitted messages
and to deliver messages input at interface A. In particular, the adversary
cannot inject new messages or induce out-of-order message delivery. A
description of the secure channel can be derived from Figure 2.2 by
omitting the inject-query and by restricting the leakage at interface E

to |m| on inputs (send,m) at interface A.

Secure Channel Protocol as a Construction

We can now elegantly state what a secure channel protocol should achieve:
it should construct a secure channel from an insecure channel and a shared
secret key, possibly based on some computational assumptions. A channel
protocol would formally be specified as a pair of converters (snd, rcv)
for the sender Alice and receiver Bob, respectively. We will not give a
concrete protocol here and refer to [CMT13, MRT12], and in particular
to Chapter 3 of this thesis, where candidate constructions are presented.
These constructions are typically based on cryptographic primitives (such
as authenticated-encryption schemes) that satisfy a certain game-based
security notion.

The security condition of Definition 2.3.3 is illustrated graphically
in Figure 2.3 and shows what we usually call the real and ideal worlds:

2.3. CONSTRUCTIVE CRYPTOGRAPHY 25

Resource IC

Initialization
Q ← empty FIFO queue

Interface A

Input: (send,m) ∈ Σ∗

Q.enqueue(m)
output m at interface E

Interface E

Input: deliver

if |Q| > 0 then
m← Q.dequeue()
output m at interface B

Input: (inject,m) ∈ Σ∗

output m at interface B

Resource SKK

Initialization
k � K

Interface A

Input: getKey
output k at A.

Interface B

Input: getKey
output k at B.

Figure 2.2: Top: The insecure channel resource; Bottom: The shared
secret-key resource.

the real world consists of the assumed resources, where Alice and Bob
apply their respective protocol converters, while Eve is given access
to the insecure channel. Formally, this is captured by the resource
sndA rcvB [SKK, IC]. This world has to be proven indistinguishable from
the ideal world, where Alice and Bob have access to the secure channel,
and where a simulator emulates the “real-world” view at interface E (only
having access to the length of transmitted messages). The ideal world is
formally captured as the resource simE SEC.

A channel protocol also has to ensure correctness, i.e., that sent
messages can be correctly recovered by Bob, in particular when no attacker
interferes with the protocol execution. For this, we can specify the
default behavior at interface E, required by Definition 2.3.3, by the special
converter dlv that is attached at interface E and always ensures the delivery
of messages. Concretely, on any input at its inner interface, dlv outputs
deliver to the channel connected to its inner interface and does not

26 CHAPTER 2. PRELIMINARIES

snd

SKK

IC

A

E

rcv B ≈ A

E

BSEC

sim

Figure 2.3: Illustration of security condition for the Alice-Bob-Eve setting
to formalize secure channel protocols.

provide any service at its outer interface. The correctness condition then
requires that the two systems sndA rcvB dlvE [SKK, IC] and dlvE SEC are
indistinguishable. Note that the resource dlvE SEC is actually a perfect
channel from Alice to Bob.

2.3.6 Specifications

In the cryptographic literature, construction statements typically relate
fully specified systems. Consider the definition Definition 2.3.3 with ε = 0
(perfect security) and for the Alice-Bob-Eve setting as discussed in the
previous section. The security condition in this simple setting relates two
fully specified systems: the “real world” πA1 πB2 R and the “ideal world” σES.
A benefit of such statements is that we know exactly what we assume
and what we get. On the other hand, if the assumed resource in an
application is just slightly different, the construction statement does not
apply anymore. Also, the exact behavior of simulator σ is not always of
primary interest, since the honest parties do anyway not have control over
the adversarial strategy and hence they only care that what they get is
“basically” S.

Quite surprisingly, the idea that it could be desirable to make state-
ments about settings that are not fully specified has not received much
attention in the cryptographic literature. The approach was made formal
by the concept of specifications introduced by Maurer and Renner [MR16].
Specifications are sets of resources that, for example, fulfill a certain prop-
erty. As such they are suitable to express an incomplete description of a
resource, namely by considering the set of all resources that adhere to such
a (partially defined) description. Maurer and Renner describe concrete

2.4. OVERVIEW OF THE UC FRAMEWORK 27

types of specifications such as all resources that can be distinguished
from a specific one by at most a certain advantage, or all resources that
are obtained from a specific one by applying certain transformations. A
protocol constructs from a specification R another specification S if for
each system R that satisfies (or is contained in) R there exists a system
S that satisfies S such that the protocol constructs S from R [MR16].

In this context, the basic example from above can be understood in
a very clean manner. If we define the ideal specification to be the set S
of resources that contains S and all resources that are derived from S by
applying an arbitrary converter at interface E (recall that all such systems
are acceptable in our view), then Definition 2.3.3 directly implies that
the real world πA1 π

B
2 R satisfies specification S, which is a very concise

statement.
While statements about fully-specified settings are of interest when

specifying concrete applications and what they should achieve (e.g., to
understand TLS), the specification concept turns out to be very powerful
when trying to understand low-level cryptographic primitives such as digi-
tal signatures that have a broad variety of applications and where it seems
inherently difficult to model a “characteristic” construction statement. In
this thesis, Chapter 7 is devoted to exactly this question.

2.4 Overview of the UC Framework

Some of the results in this work are formulated in the universal compos-
ability (UC) framework introduced by Canetti [Can01a]. We give a brief
introduction into the main notation of this framework.

2.4.1 Basics

The goal of the UC framework is to capture what it means for a protocol
to securely carry out a task. Different to constructive cryptography, UC
first defines the process of executing a protocol in some environment
and in the presence of an adversary, next it defines an ideal process to
formalize what securely carrying out the task means, and finally one has
to prove that no (efficient) environment can distinguish the real process
and the ideal process. Similar to constructive cryptography, the core
defining element of the ideal process is the ideal functionality, which can

28 CHAPTER 2. PRELIMINARIES

be thought of as an incorruptible party. We briefly describe the main
ingredients first and then describe the real and ideal process.

Protocol and protocol instances. Formally, a protocol π is an algo-
rithm for a distributed system and formalized as an interactive Turing
machine. An ITM has several tapes, for example an identity tape (read-
only), an activation tape, or input/output tapes to pass values to its
program and return values back to the caller (e.g., the environment).
An ITM also has communication tapes that model messages sent to and
received from the network.

While an ITM is a static object, UC defines the notion of an ITM
instance (denoted ITI), which is defined as the pair (M, id), whereM is the
description of an ITM and id = (sid, pid) is the identity string consisting
of a session identifier sid and a party identifier pid. Each instance is
associated with a configuration, which is as usual the contents of all of its
tapes and the heads, and the control state of that ITM.

An instance, also called a session, of a protocol π (represented as an
ITM Mπ) with respect to a session number sid is defined as a set of ITIs
(Mπ, idi) with idi = (pidi, sid).

Network and adversary. The UC model does not give any guarantee
for its built-in network. The network is asynchronous without guaran-
teed delivery, the messages are visible by an adversary and there is no
authenticity guarantee on the content or originator of a message.

The adversary A is also defined as an ITM. Aside of its capabilities
to send and read messages, it can at any time issue special corruption
messages to corrupt protocol ITMs. When an ITM is corrupted, the
adversary does not only learn the contents of all tapes, but it can also act
in the name of this ITM, meaning that whenever this ITM is activated,
the adversary gets actually activated and can decide on the next steps.
This corruption dynamics is the standard form of corruption and we call
such an adversary active and adaptive.

There are several deviations from this corruption model. A famous
model is passive security, where the adversary is as above, but cannot
decide on a corrupted parties next steps. Instead, the party follows
the protocol. Another common model is to restrict the adversary to
static corruption, which means that an ITM can only be corrupted if the

2.4. OVERVIEW OF THE UC FRAMEWORK 29

corruption message is issued before the ITM has executed the first step
of its program.

2.4.2 Real-world process
The real-world process for a protocol π is defined as follows. Let Z be
an environment machine and let A denote the adversary. The execution
consists of a sequence of activations, initiated by Z, where in each acti-
vation, either Z, A or some ITI running π is activated. We say that Z
invokes a new ITI Z if it activates an ITI for the first time (by passing
some inputs) upon which this new instance gets created (in the default
configuration). All ITIs invoked by Z need to have unique identities, but
need to have the same session-identifier (which is chosen by Z), i.e., for
all ITIs I in this execution, idI := (sI , sid) for some bitstring sI specific
to this instance.

Activations and execution rules. An activated ITI can change its
configuration based on its code. By the UC system model (i.e., by the
definition of external-write requests), an ITI loses its activation (i.e. is
forced to complete) after (1) writing a message on its communication
output tape (in which case the adversary gets activated next), (1) passing
an input value to a (subsidiary) ITI (like a hybrid functionality), or (3)
producing an output, i.e., writing to its subroutine output tape. In cases
(2) and (3) the next activated ITI is the ITI that was addressed in this
external-write request.

The environment Z can pass inputs to and read outputs from the
input/output tape of any party, respectively. The adversary A can access
the communication tapes of the parties and deliver messages by copying
the entries from an outgoing communication tape to an incoming commu-
nication tape. Following the external-write rules, if in some activation,
the adversary delivers a message to an ITI, then this ITI is activated next.
In addition, the adversary can corrupt parties as described above, which
produces an observable special output to the environment.

The UC model follows a set of activation rules specified by the UC
control function. We give here a brief overview. As already stated, the
environment is activated first, and upon completion of its actions (entering
a special waiting state), the adversary is activated as a second entity. The
remaining execution proceeds as described above. As a convention, in

30 CHAPTER 2. PRELIMINARIES

addition to the above rules, the UC execution model requires that if an
ITI completes without external-write request, e.g., generating no output
at all, then the environment is activated next. An important property of
these rules is that they ensure uniqueness of the next activated ITI and
that it allows free interaction between the adversary and the environment
between any two activations of protocol ITIs.

Output and transcript. The output of the protocol execution is the
output of Z and we assume that this output is a binary value v ∈
{0, 1}. We denote this output by execπ,A,Z(k, z, r) where k is the security
parameter, z ∈ {0, 1}∗ is the input to the environment, and randomness
r for the entire experiment. Let execπ,A,Z(k, z) denote the random
variable obtained by choosing the randomness r uniformly at random
and evaluating execπ,A,Z(k, z, r). Let execπ,A,Z denote the ensemble
{execπ,A,Z(k, z)}k∈N,z∈{0,1}∗ . By slight abuse of notation, we denote by
Texecπ,A,Z (k, z, r) the associated transcript of this execution, which is the
concatenation of all inputs to Z, all outputs from Z, and all messages
exchanged via the communication tapes of the ITIs. The distribution
Texecπ,A,Z (k, z) and ensemble Texecπ,A,Z are defined analogously to above.

2.4.3 Ideal-world process

Security of protocols is defined via comparing the real-world execution
with an ideal-world process that solves the task in an idealistic way. More
formally, the ideal process is formulated with respect to an ITM F which
is called an ideal functionality. In the ideal process, the environment Z
interacts with F , an ideal-world adversary (often called the simulator) S
and a set of trivial, i.e., dummy ITMs representing the protocol machines.
The dummy ITMs behave as follows: whenever activated with a request
x, they forward the request x to F and output towards Z whatever they
receive in return. F thereby specify all outputs generated for each party,
and the amount of information the ideal-world adversary learn and what
its active influence is via its interaction with F . By definition of the
corruption mechanism in standard UC, an ideal functionality is informed
(via special corruption messages) which instances of the dummy ITMs are
corrupted. We note that an ideal functionality itself, represented as an
ITI during the protocol execution, cannot be corrupted by definition.

2.4. OVERVIEW OF THE UC FRAMEWORK 31

Based on the above definitions, the ideal-world process proceeds as
the real process. It is essentially the real-world process where the ITIs
running the protocol are replaced by the dummy ITIs interacting with F
(and only one challenge session ever exists). In this interaction, the same
constraints and activation sequence restrictions are enforced by the UC
control function. For further details we refer to [Can01a].

We denote the output of this ideal-world process by execF,A,Z(k, z, r)
where the inputs are as in the real-world process. Let execF,S,Z(k, z) de-
note the random variable obtained by choosing the randomness r uniformly
at random and evaluating execF,S,Z(k, z, r). Let execF,S,Z denote the
ensemble {execF,S,Z(k, z)}k∈N,z∈{0,1}∗ . The transcript is defined analo-
gously as in the real-world process and denoted TexecF,S,Z (k, z, r).

2.4.4 Hybrid worlds

To model setup, the UC framework knows so-called hybrid worlds. We
discuss two important cases of hybrid worlds that differ in whether the
setup, typically called the hybrid functionality, is available only to an
instance of a protocol session (standard), or to multiple protocol sessions
at the same time (shared). Note that a protocol can assume several setup
functionalities of both types.

Standard (local) setup

A standard setup is modeled in UC as an ideal-functionality available in a
real-world protocol execution, i.e., as an incorruptible ITI F that provides
certain ideal guarantees to this protocol session. We consider here the
natural case that standard setups are available in real-world processes
only. However, note that while the following conventions could be applied
to ideal-world-processes as well, it still seems like an uninteresting case to
consider standard setups in ideal-processes. So, formally, the F-hybrid-
world process is identical to the real-world process with the following
additions: The parties can interact with an a priori unbounded number
of instances of F by standard interaction, i.e., sending messages, passing
output to them, or receiving input from them. Each copy of F , i.e.,
each such incorruptible ITI, is identified via a unique session identifier sid
chosen by the protocol that passes inputs to it. This in particular implies
a unique identity id of this ITI. It is stressed that by this definition, the

32 CHAPTER 2. PRELIMINARIES

environment can only access F via calls to parties or via the adversary
but not directly.

Since a protocol makes explicit which local functionalities it assumes
we omit an explicit reference in the formal expressions for simplicity. For
example, we just write execπ,A,Z or Texecπ,A,Z to denote the output or
the transcript distribution ensembles in such cases.

Shared (global) setup

We briefly elaborate on the so-called externalized UC model (EUC), which
is an extension of standard UC and an important special case of what is
known as the generalized UC framework (GUC) [CDPW07a]. In EUC,
we allow a dedicated hybrid functionality, say G, to be declared as shared,
often also denoted to as global setup. The process is identical to the
hybrid-world process as above with the following addition: The UC control
function also allows this special functionality G to directly interact with
the environment Z via dummy ITIs. Technically, in this hybrid-world
process, the control function allows Z to spawn dummy ITIs (with unique
identities) for the purpose of interacting with G. Unlike standard setups,
shared setups are available in ideal-world processes as well, where they
can interact, subject to the usual rules, with the environment or the ideal
functionality and the dummy ITIs that represent the protocol interface
or the access point to the shared setup. Recall that dummy ITIs always
forward inputs, either to the ideal functionality F (protocol inputs of
this session), to the shared setup G (setup queries), and even between
functionalities such as F and G, as for example defined in [CSV16a].

We conclude that G can be used to model shared state across sessions,
and also how other sessions can interfere with the setup. In this work, the
EUC notion is the way we model global setups in UC. Notable examples of
shared setups include (global) random oracles, common reference strings,
or clocks. We point out that for a special class of protocols, including the
one in this work, the EUC notion is sufficient to satisfy the even stronger
GUC notion. We do not discuss this particular class of protocols here
since it is not important to understand the results in this work. The
relevant definition, relating to subroutine-respecting protocols, is given
in [CDPW07a] where also the associated equivalence proof of EUC and
GUC is found.

If a shared setup G is available in the real-world or ideal-world pro-

2.4. OVERVIEW OF THE UC FRAMEWORK 33

cesses, we usually make it explicit in the notation such as execGπ,A,Z or
execGF,S,Z .

2.4.5 Secure Realization and Composition
In a nutshell, a protocol securely realizes an ideal functionality F if the real-
world process is indistinguishable from the ideal-world process (relative to
F). If the protocol uses setup, we technically consider the hybrid-world
processes instead of the plain real-world or ideal-world processes. We
directly state the definitions.

Definition 2.4.1. Let us denote by X = {X(k, z)}k∈N,z∈{0,1}∗ and Y =
{Y (k, z)}k∈N,z∈{0,1}∗ two distribution ensembles over {0, 1}. We say that
X and Y are indistinguishable if for any c, d ∈ N there exists a k0 ∈ N
such that |Pr[X(k, z) = 1]−Pr[Y (k, z) = 1] | < k−c for all k > k0 and all
z ∈

⋃
κ≤kd{0, 1}κ. We use the shorthand notation X ≈ Y to denote two

indistinguishable ensembles.

Definition 2.4.2. Let n ∈ N, let F be an ideal functionality and let π be
a protocol defined for the real-world, and which potentially makes use of
some local setup functionality H and some global setup G. We say that π,
with access to its setup, securely realizes F if for any (efficient) adversaryA
there exists an (efficient) ideal-world adversary (the simulator) S such that
for every (efficient) environment Z it holds that execGπ,A,Z ≈ execGF,S,Z .

In the literature, the above condition is often referred to as π securely
realizing functionality F in the (G,H)-hybrid world, where the type of
setup is inferred by the context.

Composition. The notion of secure realization is composable. We
do not give a detailed explanation as it is not important to follow the
results in this work. In a nutshell, assume first that a protocol securely
realizes F in the H-hybrid world, where H denotes a standard (local)
setup functionality. Let further ρ be a protocol that securely realizes F .
Then the protocol π′, where each call to H is replaced by an invocation of
protocol ρ, securely realizes F . We refer the interested reader to [Can01a]
for the general formal statement and on the exact definition of π′. Along
similar lines, a composition theorem can be proven where standard (local)
hybrid functionalities are replaced by the protocols securely realizing them

34 CHAPTER 2. PRELIMINARIES

in the presence of an additional shared setup [CDPW07a]. Finally, we only
note in passing that one can also consider replacing shared functionalities
by suitable protocols. This, however, is a very subtle issue for which we
refer the interested reader to [CSV16a].

2.5 Large Deviation Bounds
We use some known results to derive large deviation bounds in our
probabilistic arguments. For proofs and further discussions we refer
to [DP09].

Theorem 2.5.1 (Chernoff bound). Let X1, . . . , XT be independent ran-
dom variables with E[Xi] = pi and Xi ∈ [0, 1]. Let X =

∑T
i=1Xi and

µ =
∑T
i=1 pi = E[X]. Then, for all Λ ≥ 0,

Pr[X ≥ (1 + Λ)µ] ≤ e−
Λ2

2+Λµ ;

Pr[X ≤ (1− Λ)µ] ≤ e−
Λ2

2+Λµ .

Theorem 2.5.2 (Azuma’s inequality (Azuma; Hoeffding).). Let X0, . . . , Xn

be a sequence of real-valued random variables so that, for all t, |Xt+1 −
Xt| ≤ c for some constant c. If E[Xt+1 |X0, . . . , Xt] ≤ Xt for all t then
for every Λ ≥ 0

Pr[Xn −X0 ≥ Λ] ≤ exp

(
− Λ2

2nc2

)
.

Alternatively, if E[Xt+1 |X0, . . . , Xt] ≥ Xt for all t then for every Λ ≥ 0

Pr[Xn −X0 ≤ −Λ] ≤ exp

(
− Λ2

2nc2

)
.

Part I

Secure Communication

Chapter 3

Authenticated Encryption

3.1 Introduction
We introduce a new abstraction of a secure channel as the idealization of
authenticated encryption with additional data. We first give an overview
of our new idealization and provide more background and pointers to
related work on authenticated encryption.

3.1.1 Motivation and Contribution
Our new channel resource is called augmented secure channel, or ASC.
Like most types of channels, an ASC lets a sender, Alice, send messages
to a receiver, Bob. But unlike more conventional types of channels, each
message has designated private and non-private parts. An active adversary,
Eve, is present in the system, but its capabilities are limited to seeing
the length of the private portion and the contents of the non-private
portion of each message—and to entirely shutting down the channel. In
particular, the adversary cannot inject messages or induce out-of-order
message delivery. Additionally, the non-private portion can contain an
implicit part, already known to the receiver, that is not transmitted but
still authenticated, e.g., to bind the message to a given context.

The service an ASC provides is motivated by the ascendancy of both
TLS and authenticated encryption. We take the rise of these tools, and
what they deliver, as an indication that customary conceptualizations of

38 CHAPTER 3. AUTHENTICATED ENCRYPTION

secure channels may not have been rich enough to deliver the service that
protocol designers routinely need.

Authenticated encryption. While ASCs are closely related to schemes
for authenticated encryption (AE) and authenticated encryption with
associated data (AEAD), an ASC and an AE/AEAD-scheme are very
different things. An ASC is a well-defined resource that parties can use. In
contrast, an AEAD-scheme is a comparatively low-level primitive: it is a
tuple of algorithms that is “good” in some particular, complexity-theoretic
sense.

The AEAD notion emerged over a sequence of works [BN00, BR00,
Jut01, KY01, Rog02, RBBK01, RS06] having two distinct purposes: to
minimize the misuse of symmetric encryption primitives and to gain
efficiency advantages over generic composition schemes (i.e., traditional
ways to meld privacy-only encryption schemes and message-authentication
codes). But in moving from conventional encryption to AEAD, the basic
conception of what symmetric encryption is was thoroughly revamped:
authenticity became an intrinsic part of the goal; so too did the allowance
of (non-private) associated data A; while probabilism, formerly seen as
indispensable, was surfaced and subsumed by a nonce N . Roughly said, an
AEAD-scheme is nowadays defined as a triple of algorithms Π = (K, E ,D)
where an efficient adversary A has poor advantage in distinguishing
encryption and decryption oracles (Ek(N,A,m),Dk(N,A, c)) from oracles
($(N,A,m),⊥(N,A, c)), where k is generated by K, the $(N,A,m) oracle
returns an appropriate number of random bits, the ⊥(N,A, c) oracle
always returns ⊥, the adversary repeats no nonce N in queries to its first
oracle, and queries that would result in trivial wins are disallowed.

This new conceptualization for symmetric encryption gained rapid
acceptance. The IEEE, IETF, ISO, and NIST all stepped in to standardize
AEAD-schemes (e.g., in NIST SP 800-38C and SP 800-38D, IEEE 802.11i,
ISO 19772, and IETF RFC 3610, 5116, 5288, 5297, and 7253) and revisions
to widely-deployed protocols started to incorporate AEAD.

3.1.2 Authenticated Encryption with Associated Data

Let Σ be an alphabet. Typically an element of Σ is a bit (Σ = {0, 1}) or a
byte (Σ = {0, 1}8). For a string x ∈ Σ∗, |x| denotes its length. We define

3.1. INTRODUCTION 39

RealaeΠ

Initialization
k � K

Oracle Enc

Input: (N,A,m) ∈ N ×H×M
c← E(k,N,A,m)
return c

Oracle Dec

Input: (N,A, c) ∈ N ×H× C
m← D(k,N,A, c)
return m

IdealaeΠ

Initialization
k � K

Oracle Enc

Input: (N,A,m) ∈ N ×H×M
c′ ← E(k,N,A,m)

c � Σ|c′|

return c

Oracle Dec

Input: (N,A, c) ∈ N ×H× C
return ⊥

Figure 3.1: Real and ideal security game for AEAD-schemes.

the syntax of a scheme for authenticated encryption with associated data
(AEAD) following [Rog02].

Definition 3.1.1. An AEAD-scheme Π is a triple of algorithms Π =
(K, E ,D), where K is a randomized algorithm that samples a key k ∈ Σ∗,
E is a deterministic algorithm that maps a key k ∈ Σ∗, a nonce N ∈ N ,
additional data1 A ∈ H, and a message m ∈M to a ciphertext c ∈ C, and
D is a deterministic algorithm that maps (k,N,A, c) ∈ Σ∗ ×N ×H× C
toM∪ {⊥}. We assume the domains N , H,M, and C are equal to Σ∗

and require for all k,N,A,m ∈ Σ∗ that D
(
k,N,A, E(k,N,A,m)

)
= m.

We further require the length of a ciphertext |E(k,N,A,m)| only depend
on the length of the corresponding message |m|.

We define the security game for AEAD-schemes using the all-in-one
formulation from [HKR15]. A scheme is considered secure if all valid and
efficient adversaries A have poor advantage according to the following
definition.

Definition 3.1.2. We define the advantage of an adversary A as the
difference in the probability that it outputs 1 in the real and ideal games

1Regarding the notation: we use the symbol H (to denote the domain of the
additional data) instead of the more natural choice A to not confuse it with our
notation of an adversary. We choose H since we often think of the additional data as
being the message header.

40 CHAPTER 3. AUTHENTICATED ENCRYPTION

defined in Figure 3.1:

Advae
Π (A) := Pr

[
ARealaeΠ = 1

]
− Pr

[
AIdealaeΠ = 1

]
.

An adversary is valid if it does not repeat Enc or Dec queries, does not ask
queries Enc(N,A,m) and Enc(N,A′,m′) (i.e., does not repeat nonces),
and does not ask a query Dec(N,A, c) where c was returned by a preceding
query Enc(N,A,m).

3.1.3 The Constructive Cryptography Setting
We consider the Alice-Bob-Eve setting of constructive cryptography as
introduced in Sections 2.3.4 and 2.3.5.That is, resources in this chapter
have the interface set I = P ∪{E}, where the set of interfaces with honest
behavior is P = {A, B}.

3.2 Augmented Secure Channels
In this section, we motivate why in many applications users might need
more services than provided, for example, by a secure channel as intro-
duced in Section 2.3. We introduce a new type of channel, which we call
augmented secure channel (ASC), that provides those missing capabilities.

Recall that in constructive cryptography, communication channels are
modeled as resources with three interfaces: Interface A for sender Alice,
interface B for receiver Bob, and interface E for adversary Eve. Different
types of such channels have been studied and we refer to Section 2.3 for a
more detailed introduction.

3.2.1 An Improved Secure Channel
In many relevant security protocols, like TLS, transmitted data packets
are usually divided into a header part and a payload part. While both
are required to be authentic, only the payload has to remain confidential.

We further observe that the header often contains context information
since binding a message to a given context is good security-engineering
practice. Moreover, parts of the context are already known to the receiver.
This part does not have to be transmitted but should still be authenticated.
This suggests splitting the header into two parts: an explicit part and an

3.2. AUGMENTED SECURE CHANNELS 41

implicit part that describe the unknown and known parts of the header,
respectively.

We conclude that there is a need for an abstract functionality that
allows one to transmit a message together with the explicit part of a
header such that the message remains private and the message as well as
both the explicit and the implicit part of the header are authenticated.

3.2.2 Formal Description

We now present the channel abstraction that formalizes the desired service.
The augmented secure channel ASC is described in Figure 3.2: The sender
can provide a triple consisting of the explicit part of a header E ∈ HE,
the implicit part of the header I ∈ HI, and a message m ∈ M. The
message remains confidential and the explicit part of the header is leaked
at the adversarial interface. If the receiver knows the implicit part of
the header, he can recover the message using the query (fetch, I) and
verify the authenticity of the message and both parts of the header. If
the verification fails, the system stops delivering messages and signals an
error by outputting ⊥. The adversary has the ability to deliver messages
and to inject a special element that will terminate the channel at the
receiver’s side once fetched. Delivering a message notifies the receiver of
the new message and provides him with the explicit part of the header.

3.2.3 Construction

After motivating the need for the new channel ASC, we now show how
to construct it using an AEAD-scheme from a shared-key resource SKK
and an insecure channel IC. These assumed resources were introduced
in Section 2.3.

Protocol

Recall that in constructive cryptography, a channel protocol is modeled as
a pair of converters that specify the actions of both honest parties Alice
and Bob. For an AEAD-scheme Π = (K, E ,D), we present the protocol
(encΠ, decΠ) as pseudocode in Figure 3.3. The converter for the sender,
encΠ, accepts inputs of the form (send, E, I,m) at its outer interface
and encrypts the message m using E . The nonce is implemented as a

42 CHAPTER 3. AUTHENTICATED ENCRYPTION

Resource ASC

Initialization
S ← empty FIFO queue
R ← empty FIFO queue
halt← 0

Interface A

Input: (send, E, I,m) ∈ HE ×HI ×M
S.enqueue((E, I,m))
output (E, |m|) at interface E

Interface B

Input: (fetch, I) ∈ HI

if |R| > 0 and halt = 0 then
(E′, I′,m′)← R.dequeue()
if I′ = I ̸= ⊥ then

output m′ at interface B
else

halt← 1
output ⊥ at interface B

Interface E

Input: deliver

if |S| > 0 and halt = 0 then
(E, I,m)← S.dequeue()
R.enqueue((E, I,m))
output (newMsg, E) at interface B

Input: (injectStop, E) ∈ HE

if halt = 0 then
R.enqueue((⊥,⊥,⊥))
output (newMsg, E) at interface B

Figure 3.2: Description of ASC, an augmented secure channel.

counter, the additional data2 is A = (E, I) and the key is provided by
the key-resource SKK. An encoding of the resulting ciphertext and the
explicit part of the header is output to the insecure channel IC.

The receiver converter decΠ receives inputs from IC and queues the
header-ciphertext pairs internally in a queue Q. For each newly arrived
message a notification is output at the outer interface. The next ciphertext
c in the queue is decrypted if decΠ is invoked with the implicit part of
the corresponding header. The parameters for decryption are again the
header as the additional data, the counter as the nonce and the shared key.
On success, the corresponding plaintext is output at the outer interface. If
decryption fails, the converter stops and signals an error by outputting ⊥.

2Here, (E, I) ∈ HE × HI denotes an encoding of that pair as an element in H.
Abusing notation, we generally do not distinguish between a tuple and its encoding as
an element in Σ∗.

3.2. AUGMENTED SECURE CHANNELS 43

Converter encΠ

Initialization
N ← 0
output getKey to SKK
let k be returned value from SKK

Interface out

Input: (send, E, I,m) ∈ HE×HI×M
A← (E, I)
c← E(k,N,A,m)
N ← N + 1
output (send, (E, c)) to IC

Converter decΠ

Initialization
Q ← empty FIFO queue
N ← 0
halt← 0
output getKey to SKK
let k be returned value from SKK

Interface in

Input: (E, c) ∈ HE × C from IC
if halt = 0 then
Q.enqueue((E, c))
output (newMsg, E) at out

Interface out

Input: (fetch, I) ∈ HI

if |Q| > 0 and halt = 0 then
(E, c)← Q.dequeue()
A← (E, I)
m← D(k,N,A, c)
N ← N + 1
if m = ⊥ then halt← 1
else output m at out

Figure 3.3: The protocol converters for the sender (left) and the receiver
(right) that construct ASC via an AEAD-scheme Π = (K, E ,D).

Security Proof

The following two lemmata relate the AEAD-security game to the distin-
guishing advantage in the correctness and security condition, respectively.
Recall Section 2.3.4 for the relevant conditions. Note that the correctness
condition does not follow directly from the correctness of the AEAD-
scheme. This is because it is not excluded that a ciphertext gets decrypted
to some message m ̸= ⊥ if the wrong additional data is supplied, while
the system dlvEASC always returns ⊥ if the wrong value for I is input
at interface B. We need the security of the AEAD-scheme to conclude
that such invalid decryptions can only occur with small probability.

Lemma 3.2.1. There is an (efficient) transformation ρ described in the
proof that maps distinguishers D for two resources to valid adversaries A =

44 CHAPTER 3. AUTHENTICATED ENCRYPTION

ρ(D) for the AEAD-security game such that

∆D(encΠ
AdecΠ

BdlvE [SKK, IC], dlvEASC) ≤ Advae
Π (ρ(D)).

Proof. In encΠ
AdecΠ

BdlvE [SKK, IC], the converter dlv is attached at in-
terface E and answers any output produced by IC with the input deliver.
This essentially converts IC into a reliable transmission channel: whatever
pair (E, c) is input by converter encΠ, it is immediately delivered to decΠ
that outputs a notification (newMsg, E) at its outer interface. Furthermore,
if the ith input at interface A is (send, Ei, Ii,mi), and the ith input at inter-
face B is (fetch, Ii), then the output at interface B is mi. The same holds
for system dlvEASC. Only if the ith input at interface B is (fetch, I ′i) for
I ′i ̸= Ii, then the behavior of the two systems can differ: While dlvEASC
always returns ⊥ in this case, for encΠ

AdecΠ
BdlvE [SKK, IC] it is possible

that a message m ̸= ⊥ is returned. Since this is the only difference be-
tween the two systems, we can upper bound the distinguishing advantage
by the probability that D can provoke such an output at interface B

when interacting with encΠ
AdecΠ

BdlvE [SKK, IC]. It remains to bound
the probability of this event, subsequently denoted by F .

Note that F occurs exactly if the decryption algorithm of the AEAD-
scheme returns a message m ̸= ⊥ on input a different additional data than
used for encryption. Based on this observation, we build an adversary
A that emulates a view towards distinguisher D that is identical to an
interaction of D with encΠ

AdecΠ
BdlvE [SKK, IC] if A gets access to its real

oracles. The probability of provoking event F is preserved in this case.
In contrast, if A gets access to the ideal oracles, the condition for event
F cannot be satisfied as we argue below. This is a suitable distinguishing
criterion.

More formally, the reduction ρ is defined as follows: The adver-
sary A = ρ(D) initially sets NA, NB ← 0, initializes an empty FIFO
queue Q, and then emulates an execution to D as follows. When D
inputs (send, E, I,m) at interface A, A ask the query (NA, (I, E),m) to
the oracle Enc to receive the answer c. It then executes NA ← NA + 1
and Q.enqueue((E, I,m, c)), and emulates the output (newMsg, E) at in-
terface B for D. Inputs (fetch, I ′) at interface B are ignored if Q is empty.
Otherwise, A executes (E, I,m, c) ← Q.dequeue(). If I ′ = I, it sets
m′ = m; if I ′ ≠ I, it asks the query (NB , (I

′, E), c) to the oracle Dec

to receive the answer m′. It then sets NB ← NB + 1 and emulates the
output m′ at interface B for D.

3.2. AUGMENTED SECURE CHANNELS 45

Converter simASC

Initialization
Q1,Q2 ← empty FIFO queues
let k̂ ∈ K, N̂ ∈ N , Â ∈ H be arbitrary

Interface in

Input: (E, ℓ) ∈ HE × N
choose mℓ ∈ M with |mℓ| = ℓ

cℓ ← E(k̂, N̂, Â,mℓ)

c � Σ|cℓ|

Q1.enqueue((E, c))
Q2.enqueue((E, c))
output (E, c) at out

Interface out

Input: deliver

if |Q1| > 0 then
(E, c)← Q1.dequeue()
execute commands for
(inject, (E, c))

Input: (inject, (E, c)) ∈ HE × C
if |Q2| = 0 then

output (injectStop, E) at in
else

(E′, c′)← Q2.dequeue()
if E = E′ and c = c′ then

output deliver at in
else

output (injectStop, E) at in

Figure 3.4: The simulator for the security condition of the construction
of ASC.

If m′ ̸= ⊥ and I ′ ̸= I (i.e., the event F occurs), A stops and returns 1.
If m′ = ⊥, A ignores subsequent inputs at interface B. When D outputs a
bit and F has not occurred, A returns 0. Observe that if A gets access to
the ideal oracles, the conditions of event F cannot be met. We conclude
the proof by noting that A is a valid adversary and Advae

Π (ρ(D)) equals
the probability of the event F .

The next lemma implies the security condition of the construction:

Lemma 3.2.2. For the simulator simASC defined in Figure 3.4, there
is an (efficient) transformation ρ′ described in the proof that maps dis-
tinguishers D for two resources to valid adversaries A = ρ′(D) for the
AEAD-security game such that

∆D(encΠ
AdecΠ

B [SKK, IC], simE
ASC ASC) ≤ Advae

Π (ρ′(D)).

Proof. Let D be a distinguisher for encΠAdecΠ
B[SKK, IC] and simE

ASCASC.
We define an adversary A = ρ′(D) for the AEAD-security game as follows.
The adversary A initially sets NA, NB , flag ← 0, initializes an empty

46 CHAPTER 3. AUTHENTICATED ENCRYPTION

FIFO queue S and two empty lists3 L and R, and then emulates an
execution of D by translating inputs of the distinguisher to oracle queries
as well as answers from the oracles to outputs of the resource for D. There
are four types of inputs D can make:

(send, E, I,m) at interface A: If R contains strictly less than NA + 1
elements, A asks the query (NA, (E, I),m) to the oracle Enc and
receives the answer c. It then stores (NA, E, I,m, c) in the list L,
emulates the output (E, c) at interface E for D, sets NA ← NA + 1,
and executes S.enqueue((E, c)).
IfR contains at least NA+1 elements, there is a pairR[NA] = (E, c).
A asks the query (NA, (E, I), c) to the oracle Dec to receive the
plaintextm. Ifm ̸= ⊥, A sets flag← 1, returns 1 as its decision and
halts. If m = ⊥, the tuple (NA, E, I,⊥, c) is stored in L and A asks
the query (NA, (E, I),m) to the oracle Enc, receives the answer c
and stores (NA, E, I,m, c) in the list L. Finally, A emulates the
output (E, c) at interface E for D, sets NA ← NA + 1, and executes
S.enqueue((E, c)).

deliver at interface E: If |S| > 0, A executes (E, c) ← S.dequeue()
followed by R ← R ∥ (E, c). If ⊥ has not been output at interface B,
A emulates the output (newMsg, E) at interface B.

(inject, (E, c)) at interface E: The adversaryA executesR ← R ∥ (E, c).
If ⊥ has not been output at interface B, A emulates the out-
put (newMsg, E) at interface B.

(fetch, I) at interface B: IfR is empty, the input is ignored. Otherwise,
A executes (E, c)← R[NB]. If (NB , E, I,⊥, c) is in L, A emulates
the output ⊥ at interface B and ignores subsequent inputs at inter-
face B. If (NB , E, I,m, c) is in L for some m ∈M, A emulates the
output m at interface B for D and sets NB ← NB + 1. Otherwise,
A asks the query (NB , (E, I), c) to the oracle Dec to receive the
plaintext m. The output m is emulated at interface B and the
counter NB is incremented. If m = ⊥, A ignores subsequent inputs
at interface B.

3For a list L, we denote by L ∥ x the list L with x appended. Furthermore, the ith
element of a list L with n elements is denoted by L[i] for i ∈ {0, . . . , n− 1}.

3.2. AUGMENTED SECURE CHANNELS 47

When D outputs a bit b and if flag = 0, A returns b and halts. Note
that A is a valid adversary since it asks at most one Enc and Dec query
for each nonce (and therefore does not repeat queries) and never asks
a query to the oracle Dec for a ciphertext that has been returned by a
query to Enc for the same parameters (because for such ciphertext, the
corresponding tuple is in the list L). To analyze the success probability
of A, let F be the random variable that takes on the value of flag at the
end of the random experiment between A and RealaeΠ .

We claim that the view of D when connected to simE
ASCASC is identi-

cal to the view emulated byA with access to the ideal oracles. Additionally,
the view of D when connected to encΠ

AdecΠ
B [SKK, IC] is identical to the

view emulated by A with access to the real oracles as long as flag = 0.
This implies the statement of the lemma:

Advae
Π (A) = Pr

[
ARealaeΠ = 1

]
− Pr

[
AIdealaeΠ = 1

]
= Pr[F = 1] + Pr[F = 0] · Pr

[
ARealaeΠ = 1 | F = 0

]  
= Pr[D(encΠAdecΠB [SKK,IC])=1]

− Pr
[
AIdealaeΠ = 1

]
≥ Pr

[
D

(
encΠ

AdecΠ
B [SKK, IC]

)
= 1

]
− Pr

[
D

(
simE

ASC ASC
)
= 1

]
= ∆D(encΠ

AdecΠ
B [SKK, IC], simE

ASC ASC).

To prove this claim, we distinguish the possible inputs by D and
compare the resulting outputs:

(send, E, I,m) at interface A: In system encΠ
AdecΠ

B [SKK, IC], the con-
verter encΠ evaluates c← E(k,N, (E, I),m), where N is the number
of sent messages before this input. The explicit part E of the header
is sent together with c over IC, which outputs the pair (E, c) at
interface E. The same output is emulated by A in the real game
since the oracle Enc in this case also evaluates the algorithm E .
In the system simE

ASC ASC, the triple (E, I,m) is inserted into
the senders queue of ASC and the pair (E, |m|) is output to the
simulator simASC, which in turn generates a uniformly random
ciphertext c of the same length as ciphertexts for m. Note that
by Definition 3.1.1, the length of ciphertexts only depend on the
length of the message, so the values of k̂, N̂ , and Â used by simASC

to determine this length are irrelevant. The simulator then stores
(E, c) in its own queue for later reference and outputs this pair at

48 CHAPTER 3. AUTHENTICATED ENCRYPTION

interface E. Note that Enc in IdealaeΠ generates ciphertexts with the
same distribution, so the view emulated by A is identical.

deliver at interface E: If the sender’s queue it non-empty, the next ele-
ment (E, c) is dequeued from it and D receives the output (newMsg, E)
from interface B if there has not been an output ⊥ in both systems
and in the emulated view.

(inject, (E, c)) at interface E: In encΠ
AdecΠ

B [SKK, IC], the injected
pair is inserted into the receiver’s queue of the converter decΠ and
the notification (newMsg, E) is output at interface B.

In simE
ASC ASC, the simulator checks whether the injected pair

is equal to the top-element (E′, c′) of its queue Q2. If this is
the case, the simulator outputs deliver with the effect that the
notification (newMsg, E) is output at interface B. If (E, c) ̸= (E′, c′),
simASC injects a stop element by (injectStop, E), which also yields
the output (newMsg, E) at interface B. Note that by definition
of ASC, this element is guaranteed to yield ⊥ when fetched at
interface B.

We see that in the emulation by A, D receives (newMsg, E) from
interface B if there has not been an output ⊥ before at inter-
face B. The same holds for both systems encΠ

AdecΠ
B [SKK, IC]

and simE
ASC ASC in an interaction with D.

(fetch, I) at interface B: Assume this is the ith input at interface B,
there have been at least i inputs deliver or inject at interface E,
and there has not been an output ⊥ so far (otherwise the input
is always ignored). In the system encΠ

AdecΠ
B [SKK, IC], the con-

verter decΠ retrieves the top element of its queue. This value is
equal to the ith delivered or injected pair (E, c) at interface E.
The converter decΠ then computes m ← D(k, i − 1, (E, I), c) and
outputs m.

In the view emulated by A in the real game, (E, c) also corresponds
to the ith delivered or injected pair. If the tuple (i− 1, E, I,m, c)
is found in L for some m ∈M, m is output at interface B. By the
correctness of the AEAD-scheme, m is then equal to the output of
the algorithm D for the corresponding parameters. If no such tuple
is in L, A decrypts c with the corresponding parameters using the

3.2. AUGMENTED SECURE CHANNELS 49

oracle Dec and also outputs the resulting message at interface B.
Since the real oracle Dec evaluates D, we conclude that the views
are identical in this case.

In simE
ASC ASC, the resource checks whether I = I ′, where (E′, I ′,m′)

is the next element in the queue R. If this is the case, it outputs m′
at interface B, otherwise it outputs ⊥. Furthermore, only those
elements can be successfully fetched that do not correspond to
stop-elements (⊥,⊥,⊥). By construction of the simulator, the ith
element of the sender’s queue is only delivered if the ith injected pair
(E, c) at interface E matches the simulated pair output at interface E
in reaction to the ith input (send, E′, I ′,m′) at interface A. In any
other case, a stop-element is injected into the receiver’s queue.

To determine whether the values of the ith injection match the
simulated values for the ith input at interface A, simASC maintains
the queue Q2 such that its top element, after i injections, stores
exactly these values. Note that the queue Q1 on the other hand is
only needed to simulate the queue of the insecure channel IC in the
real world and to figure out the next message in the simulation of a
deliver-request.

In the view emulated by A in the ideal game, the list L ensures
that the same message m′ is output at interface B if all the values
match as above. Furthermore, if there is not a match, the output is
⊥ because the ideal oracle Dec always returns ⊥. In particular, the
condition that the ith simulated pair correspond to the ith injected
pair is equivalent to requiring that the tuple (i− 1, E, I,m, c), for
some message m, is an element of L.

Hence, the views for D are also identical in this case.

This concludes the proof of the claim and thus of the lemma.

The results from Lemma 3.2.1 and Lemma 3.2.2 can be summarized
as follows:

Theorem 3.2.3. The protocol (encΠ, decΠ) constructs ASC from [SKK, IC].
More specifically, we have for the simulator simASC in Figure 3.4 and for

50 CHAPTER 3. AUTHENTICATED ENCRYPTION

all distinguishers D

∆D(encΠ
AdecΠ

BdlvE [SKK, IC], dlvEASC) ≤ Advae
Π (ρ(D))

and ∆D(encΠ
AdecΠ

B [SKK, IC], simE
ASC ASC) ≤ Advae

Π (ρ′(D)),

where ρ and ρ′ are the reductions defined in the proofs of Lemma 3.2.1
and Lemma 3.2.2, respectively.

3.2.4 Application: On TLS Security

A long line of work analyzes the security of TLS (mainly versions prior to
1.3) [GMP+08, HSD+05, JKSS12, KMO+15, KPW13, MSW08, PRS11,
WS96]. Several recent papers [JKSS12, KPW13] use a security notion
called Authenticated and Confidential Channel Establishment (ACCE),
a game-based definition that models both the handshake and the record
layer at once. Motivated by the adoption of AEAD as the core of the
record-layer sub-protocol in TLS 1.3, we give a novel interpretation for
the goal of (all drafts of) the TLS record layer: constructing a specific
instantiation of an ASC, from insecure communication and a shared secret
key. In fact, depending on the context, messages in the TLS record
protocol may consist of private and non-private parts, which are both
authenticated.

We show how a generic ASC construction directly leads to this specific
instantiation of an ASC. We thereby obtain a provably secure TLS record
protocol. As we will see, our analysis also covers slight variations of the core
protocol itself. Indeed, [BMM+15a] proposed small improvements over
the then-draft of TLS 1.3 (August 2015) and some of those improvements
are still found in the most recent draft.

The Structure of the TLS 1.3 Record Layer

Version 1.3 of TLS is about to be standardized at the time of writing
these lines. The standardization process has taken several years and has
gone through a sequence of developments. In comparison to TLS 1.2, the
new version of the record payload protection protocol mandates AEAD
ciphers4 and the format of the authenticated data has changed.

4Previous versions of TLS supported MAC-then-Encrypt modes.

3.2. AUGMENTED SECURE CHANNELS 51

The core question during the development process has always been:
What does it mean for the TLS record layer to be secure? We propose a
simple answer to this question in the form of a new channel abstraction.

Each draft of the TLS 1.3 record layer specifies a basic structure for
payload packets: each such packet contains a payload and has a type flag.
While in early drafts, this type flag characterized some of the context
of the payload (e.g., alert messages or application messages), it is now
merely a placeholder (i.e., fixed to the number 23) to harden traffic flow
analysis.5 Our analysis leaves the exact role of the type flag open to make
a more general statement and to allow for a unified proof for a range of
choices of how to use the type flag.

In any case, while the entire packet is authenticated, only the content of
the packet has to be private and hidden from the attacker. This resembles
a specific type of channel: a secure channel where messages are tagged with
a non-private type-flag from the set of types T := {0, . . . , 255}. The TLS
record payload protection can be considered secure if it provably constructs
this secure channel. We formalize this channel as the resource SECTLS

and provide a formal description thereof in Figure 3.5.6

Note that in contrast to ASC, the channel SECTLS does not contain
an implicit part of the header and messages are directly delivered to Bob
without the need to fetch them. Therefore, SECTLS does not allow the
authentication of data without sending it. One can thus view SECTLS as
an augmented secure channel that is more restricted than ASC but also
simpler to use.

The Record-Layer Construction

In this section, we present a construction of the channel SECTLS from
ASC. To this end, we introduce the protocol (tlsSnd, tlsRcv), which is
described in Figure 3.6 and manages the usage of the resource ASC. The

5We refer to the draft that is available for download at https://tools.ietf.org/
html/draft-ietf-tls-tls13-28.

6While applications usually provide data to TLS as a sequence of multi-byte strings,
TLS only guarantees that the same stream of bytes, as the concatenation of the
individual strings, is delivered. TLS does not guarantee that the boundaries between
the multi-byte strings are preserved as chosen by the application, cf. [FGMP15]. The
message m in Figure 3.5 is to be understood as the multi-byte string used within
the TLS protocol, which is not necessarily the same as chosen by the higher-level
application.

https://tools.ietf.org/html/draft-ietf-tls-tls13-28
https://tools.ietf.org/html/draft-ietf-tls-tls13-28

52 CHAPTER 3. AUTHENTICATED ENCRYPTION

Resource SECTLS

Initialization
S ← empty FIFO queue
halt← 0

Interface A

Input: (send, T,m) ∈ T ×M
S.enqueue((T,m))
output (T, |m|) at interface E

Interface E

Input: deliver

if |S| > 0 and halt = 0 then
(T,m)← S.dequeue()
output (T,m) at interface B

Input: terminate

if halt = 0 then
halt← 1
output ⊥ at interface B

Figure 3.5: Description of the channel SECTLS.

implicit part I of the header contains the protocol version field V of the
TLS record layer (in the current draft it is a legacy value consisting of two
bytes which we generically denote v.X) and the explicit part E consists
of the type flag T (one byte) which the caller can define for the sake of
generality of the statement. We denote the (generic) type space by T .

Theorem 3.2.4. The protocol (tlsSnd, tlsRcv) constructs SECTLS from
ASC. More specifically, we have for the simulator simTLS defined in
Figure 3.7 and for all distinguishers D

∆D(tlsSndAtlsRcvBdlvEASC, dlvESECTLS) = 0 (3.1)

and ∆D(tlsSndAtlsRcvBASC, simE
TLSSECTLS) = 0. (3.2)

Proof. The correctness condition (3.1) is easy to verify: On input (send, T,m)
at interface A, the system dlvESECTLS directly outputs (T,m) at in-
terface B. The same holds for system tlsSndAtlsRcvBdlvEASC: On in-
put (send, T,m), the converter tlsSnd inputs (send, T, V,m) to ASC. The
converter tlsRcv then obtains the notification (newMsg, T) and queries (fetch, V)
to ASC, which results in the output m from ASC, which in turn triggers
tlsRcv to output (T,m). Since the two systems behave identically, every
distinguisher has advantage 0 in distinguishing them, i.e., (3.1) follows.

To verify the security condition (3.2), we distinguish the possible
inputs to the system:

3.2. AUGMENTED SECURE CHANNELS 53

Converter tlsSnd

Initialization
V ← v.X

Interface out

Input: (send, T,m) ∈ T ×M
output (send, T, V,m) to ASC

Converter tlsRcv

Initialization
V ← v.X

Interface in

Input: (newMsg, T) ∈ T
if halt = 0 then

output (fetch, V) to ASC
letm be returned value from ASC
if m ̸= ⊥ then

output (T,m) at out
else

halt← 1
output ⊥ at out

Figure 3.6: The protocol converters for the sender (left) and the receiver
(right) that construct SECTLS from ASC.

Converter simTLS

Interface in

Input: (T, ℓ) ∈ T × N
output (T, ℓ) at out

Interface out

Input: deliver

output deliver at in

Input: (injectStop, T) ∈ T
output terminate at in

Figure 3.7: The simulator for the security condition of the construction
of SECTLS.

54 CHAPTER 3. AUTHENTICATED ENCRYPTION

Input (send, T,m) at interface A: In the system tlsSndAtlsRcvBASC,
this input results in the converter tlsSnd inputting (send, T, V,m)
to ASC, which yields the output (T, |m|) at interface E of ASC.
In simE

TLSSECTLS, the values (T, |m|) are given to the simulator,
which then outputs (T, |m|) at its outer interface.

Input deliver at interface E: In tlsSndAtlsRcvBASC, if the queue S
in ASC is empty, nothing happens. Otherwise, the converter tlsRcv
receives the notification (newMsg, T). Then, tlsRcv inputs (fetch, V)
to ASC if it has not already halted. In this case, there have been
only inputs deliver at interface E and therefore the verification
within ASC succeeds. Thus, tlsRcv obtains the message m and
outputs (T,m).

In simE
TLSSECTLS, the simulator inputs deliver to SECTLS. If

S in SECTLS is empty, nothing happens. Otherwise, the next
tuple (T,m) in S is output at interface B if the channel has not
halted before.

Input (injectStop, T) at interface E: In the system tlsSndAtlsRcvBASC,
the notification (newMsg, T) is output to tlsRcv. The converter tlsRcv
then outputs (fetch, V) to ASC and since the element is an in-
serted empty element, the verification within ASC fails and tlsRcv
outputs ⊥ and stops by setting halt← 1.

In simE
TLSSECTLS, simTLS terminates the session, which causes the

output ⊥ at interface B and results in no further messages being
processed by Bob.

To see that the two described systems behave identically, we only have
to observe that they both terminate the session if an empty message is
injected into the channel and that all inputs are delivered in order until
termination. We again conclude that every distinguisher has advantage 0
in distinguishing these systems, i.e., we obtain (3.2). This completes the
proof.

Putting Everything Together

We have shown that (tlsSnd, tlsRcv) constructs SECTLS from ASC. Since
by Theorem 3.2.3, the protocol (encΠ, decΠ) constructs the channel ASC

3.2. AUGMENTED SECURE CHANNELS 55

encΠtlsSnd

SKK

IC

A

E

tlsRcvdecΠ B

tlsA tlsB

Figure 3.8: Illustration of the composed protocol (tlsA, tlsB). For a secure
AEAD-scheme, the resource encΠ

AdecΠ
B [SKK, IC] inside the dashed box

in the center is indistinguishable from simE
ASCASC.

from a shared secret key and an insecure channel, we can invoke the com-
position theorem of constructive cryptography to conclude that the com-
position of both protocols constructs SECTLS from a shared key SKK and
an insecure channel IC. Note that the key resource SKK is constructed by
the handshake protocol if both parties are authenticated [KMO+15]. See
Figure 3.8 for a graphical illustration of the composed protocol (tlsA, tlsB).

The protocol for the sender tlsA works as follows: On input (send, T,m),
the message m is encrypted with a call to the AEAD-scheme as c ←
E(k,N,A,m), where k is the shared key retrieved from SKK, N is the
internal counter and A = (T, V) is the additional data. Finally, the
pair (T, c) is sent over the insecure channel.

The protocol for the receiver tlsB works analogously: On input a new
pair (T, c) from IC, the ciphertext is decrypted to m ← D(k,N,A, c),
where N is the internal counter, A is the additional data, and k is the
shared key as above. Note that the implicit part of the header is fixed and
provided by tlsRcv immediately after receiving the notification (newMsg, T)
from decΠ.

In summary, the protocol (tlsA, tlsB) provably achieves the goal of the
TLS record layer. This reveals some insights in how to get the details
right in defining the record layer. We mention three examples:

(A): The nonce of the AEAD scheme can be a simple counter value
left-padded with zeros to be of the appropriate length;

(B): The sequence number does not have to be included in the additional
data part;

(C): The version number does not need to be transmitted explicitly as

56 CHAPTER 3. AUTHENTICATED ENCRYPTION

part of the TLS record (after the handshake). It can be included
as part of the additional data for clarity and this would not harm
traffic-flow confidentiality since it is part of the implicit header.

While earlier drafts did not incorporate the above three properties, the
current draft explicitly supports property (A), where the simple counter
might start at an arbitrary offset, and property (B). However, it leaves
a version-number field explicit in the header of transmitted packets for
legacy reasons. Note that the proof for the case where the version number
field is moved to the explicit part of the header is essentially identical to
the one presented in this section.

Chapter 4

Robust Authenticated
Encryption

4.1 Introduction

We continue our study on practical cryptographic building blocks with a
closer look at robust authenticated encryption. We introduce an equivalent,
constructive security definition that allows us to study what exactly this
primitive achieves. Furthermore, we provide an idealization that provably
captures the best-possible guarantees that are achievable by any symmetric
scheme to protect communication.

4.1.1 Motivation

Since its introduction, several notions of authenticated encryption have
emerged in a series of works [BN00, BR00, GD02, Jut01, KY01, RBBK01],
including authenticated encryption with associated data [BRW04, Rog02],
which is the topic of Chapter 3, and more advanced notions such as
misuse-resistant authenticated encryption [RS06]. In this development,
robust authenticated encryption (RAE), introduced by Hoang, Krovetz,
and Rogaway [HKR15], is the latest and most ambitious notion. Robust
authenticated encryption allows to specify the ciphertext expansion λ
that determines how much longer ciphertexts are compared to the corre-

58 CHAPTER 4. ROBUST AUTHENTICATED ENCRYPTION

sponding plaintexts. Its self-declared goal in [HKR15] is to provide the
best-possible authenticity and confidentiality for every choice of λ. This
raises the question of what best-possible authenticity and confidentiality
is, and whether RAE actually achieves it. We provide a formal model
that allows us to investigate this question and answer it in the affirmative.
We further show how to use verifiable redundancy to improve security,
and we show what security guarantees remain if values intended as nonces
are reused. Both questions were addressed in [HKR15] but not proven
formally.

Robust Authenticated Encryption. An RAE scheme consists of
a key distribution K, a deterministic encryption algorithm E , and a
deterministic decryption algorithm D. The encryption algorithm takes as
input a key k, a nonce N , associated data A, the ciphertext expansion λ,
and a message m. It outputs a ciphertext c. The decryption algorithm
takes as input k, N , A, λ, and c, and returns the corresponding message m
(or ⊥ if c is an invalid ciphertext). In [HKR15], the security of an RAE
scheme is defined via a game in which an adversary has access to two
oracles and has to distinguish between two possible settings. In the
first setting, the oracles correspond to the encryption and decryption
algorithm of the RAE scheme, where the key is fixed in the beginning
and chosen according to K. In the second setting, the first oracle chooses
for each N , A, λ, and message length ℓ an injective function that maps
strings of length ℓ to strings of length ℓ+ λ. On input (N,A, λ,m), the
oracle answers by evaluating the corresponding function. The second
oracle corresponds to the partially defined inverse of that function that
answers ⊥ if the given value has no preimage. An RAE scheme is secure
if these two settings are indistinguishable for efficient adversaries. We
note that while this seems to be a strong guarantee, it is not clear which
security such a scheme actually provides in a specific application and
whether it is best-possible.

4.1.2 RAE: Standard Definition
We define the syntax of a robust authenticated encryption scheme following
[HKR15]. As in previous sections, Σ denotes an alphabet and for a
string x ∈ Σ∗, |x| denotes its length.

4.1. INTRODUCTION 59

RealraeΠ

Initialization
k � K

Oracle Enc

Input: (N,A, λ,m) ∈ N ×H×N×M
return EN,A,λ

k (m)

Oracle Dec

Input: (N,A, λ, c) ∈ N ×H× N× C
return DN,A,λ

k (c)

RAEΠ

Initialization
for (N,A, λ, ℓ) ∈ N ×H× N× N do

fN,A,λ,ℓ � Inj
(
Σℓ,Σℓ+λ

)
Oracle Enc

Input: (N,A, λ,m) ∈ N ×H×N×M
return fN,A,λ,|m|(m)

Oracle Dec

Input: (N,A, λ, c) ∈ N ×H× N× C
return

(
fN,A,λ,|C|−λ

)−1(c)

Figure 4.1: Security games for the RAE scheme Π = (K, E ,D) as defined
in [HKR15].

Definition 4.1.1. A robust authenticated encryption (RAE) scheme Π =
(K, E ,D) consists of a key distribution K, a deterministic encryption
algorithm E that maps a key k ∈ K, a nonce N ∈ N , associated data A ∈
H, ciphertext expansion λ ∈ N, and a message m ∈M to a ciphertext c ∈
C, and a deterministic decryption algorithm D that maps (K,N,A, λ, c) to
an element inM∪{⊥}. We assume the domainsN , H,M, and C are equal
to Σ∗. We write EN,A,λk and DN,A,λk for the functions E(k,N,A, λ, ·) and
D(k,N,A, λ, ·), respectively. We require that DN,A,λk

(
EN,A,λk (m)

)
= m

for all k,N,A, λ,m.

The security of an RAE scheme Π = (K, E ,D) is defined in [HKR15]
via the reference games RealraeΠ and RAEΠ depicted in Figure 4.1. The
game RealraeΠ provides oracle access to E and D, and RAEΠ provides
oracle access to ideal uniform random injections and their inverses.

Definition 4.1.2. The game-based RAE-advantage of an adversary A is
defined as

Advrae-game
Π (A) := Pr

[
ARealraeΠ = 1

]
− Pr

[
ARAEΠ = 1

]
.

60 CHAPTER 4. ROBUST AUTHENTICATED ENCRYPTION

4.1.3 The Constructive Cryptography Setting

Like in Chapter 3, we consider the Alice-Bob-Eve setting of constructive
cryptography as introduced in Sections 2.3.4 and 2.3.5.That is, resources
in this chapter have the interface set I = P ∪ {E}, where the set of
interfaces with honest behavior is P = {A, B}.

4.1.4 Specific Contributions

In the vein of Chapter 3 and accounting for the associated data RAE
schemes support, the obvious goal of RAE can be defined as constructing
a (possibly special type of) augmented secure channel (ASC) from a
shared secret key and an insecure channel. Recall that an ASC takes as
input from the sender a tuple (A,m), leaks A and the length of m to the
adversary, and allows the adversary to either deliver the pair (A,m) or to
terminate the channel. This channel provides authenticity for both A and
m, but confidentiality is only guaranteed for the message m. The value A
can for example be used to authenticate non-private header information.

Uniform random injection resource. Instead of directly construct-
ing channels from a shared secret key and an insecure channel, we introduce
an intermediate system URI (uniform random injection) that provides
the sender and receiver access to the same uniform random injections and
their inverses chosen as follows: For each combination of N , A, λ, and
message length ℓ, an injective function that maps strings of length ℓ to
strings of length ℓ+ λ is chosen uniformly at random.

As we shall see, this ideal resource can be constructed from a shared
secret key using an RAE scheme in a straightforward manner. We then
construct several channels from URI and an insecure channel. The advan-
tage of this approach is that all further constructions based on URI are
information-theoretic, i.e., we do not have to relate the security of each
construction step to the RAE security game. Instead, we can rely on the
composition theorem to guarantee the security of the overall constructions.

Random injection channel. We show that one can construct a chan-
nel we call RIC (random injection channel) from URI and an insecure
channel by fixing λ and using a counter as the nonce. RIC can be seen as

4.1. INTRODUCTION 61

a further intermediate step towards constructing ASC, that in addition
allows us to analyze best-possible security.

The channel RIC takes as input a pair (A,m) from the sender and
leaks A and the length of m to the adversary. The adversary can deliver
the pair (A,m), and further at any point in time try to inject a new
message of length ℓ and some value A. The probability with which such
an injection is successful depends on λ and ℓ. In case of a success, an
almost uniform message of length ℓ from the message space together with
A is delivered to the receiver. If an injection was successful and the
tuple (A,m) was received, and if the sender subsequently sends exactly
the pair (A,m), then the adversary is notified about this repetition.

Best possible authenticity and confidentiality. If ASC is consid-
ered as the ultimate goal of RAE and authenticated encryption in general,
the only shortcomings of RIC are that it is possible to inject messages
with positive probability and that, if an attempted message injection was
successful, the channel leaks a certain repetition to the adversary. While
the first shortcoming is a lack of authenticity, the second one is a lack of
confidentiality. While the type of leakage violating confidentiality might
seem artificial, we describe an application in which such leakage might be
problematic. Briefly, the leakage can reveal hidden information flow from
the receiver to the sender.

We then analyze whether RAE really achieves the best-possible au-
thenticity and confidentiality by bounding the probabilities of successful
message injections and of leaking this particular repetition pattern for
arbitrary schemes for achieving authenticity and confidentiality. While
it is straightforward to see that authenticity requires redundancy and
therefore a large ciphertext expansion, one might hope that the repetition
leakage can be avoided. We prove that this is not the case, i.e., we show
that the probability of an adversary being able to observe such a repetition
is at least as high as in RIC, no matter what scheme is used or which
setup assumptions are made.

To illustrate this lack of confidentiality for a concrete scheme, consider
the following scenario in which the one-time pad is used over an insecure
channel: Assume the attacker injects a ciphertext to Bob who decrypts it
using the shared secret key and outputs the resulting message. Further
assume Alice afterwards sends a message to Bob which results in the

62 CHAPTER 4. ROBUST AUTHENTICATED ENCRYPTION

attacker seeing the same ciphertext. In that case, the attacker learns
the fact that the message sent by Alice equals the message output by
Bob. This contradicts the understanding of confidentiality as revealing
nothing except the length of the transmitted message.1 Our results
generalize this observation to arbitrary schemes. We thereby refine the
understanding of what symmetric cryptography can and cannot achieve by
showing that confidentiality, quite surprisingly, also requires redundancy
in the ciphertexts when only insecure channels and an arbitrary setup are
assumed, even if the protocol can keep state.

Augmented secure channels and message redundancy. Since the
probability of successful message injections decreases exponentially with λ,
RIC is indistinguishable from (a particular type of) ASC for large λ. We
further provide a construction that incorporates an idea from [HKR15]
to exploit the redundancy in messages to achieve a better bound. Our
construction reveals the exact trade-off between ciphertext expansion and
redundancy to achieve a required security level.

Nonce-reuse resistance. It was claimed in [HKR15] that reusing
nonces only results in leaking the repetition pattern of messages, but
does not compromise security beyond that. However, the claim was
neither formalized nor proven. We fill this gap by introducing the chan-
nel resource RASC (Repetition ASC) that, aside of the length of each
message, leaks the repetition pattern of the transmitted messages to the
adversary. Furthermore, the adversary can deliver messages out-of-order
and arbitrarily replay messages. We show that RASC can be constructed
from URI and an insecure channel if the used nonce is always the same.
This confirms the informal claim from [HKR15] and makes explicit that
some authenticity is lost by allowing the adversary to reorder messages.

1This also contradicts a prior result in [MRT12] that claims that the one-time pad
constructs a certain (fully) confidential channel, a so-called XOR-malleable channel,
from an insecure channel and a shared key. The proof in that paper is flawed in that
the simulation fails if more ciphertexts are injected than messages sent.

4.2. SHARED UNIFORM RANDOM INJECTIONS 63

Resource URI

Initialization
for (N,A, λ, ℓ) ∈ N ×H× N× N do

fN,A,λ,ℓ � Inj
(
Σℓ,Σℓ+λ

)
Interface X ∈ {A, B}
Input: (fun, N,A, λ, x) ∈ N ×H× N×M

output fN,A,λ,|x|(x) at X

Input: (inv, N,A, λ, y) ∈ N ×H× N× C
output f−1

N,A,λ,|y|−λ
(y) at X

Figure 4.2: Uniform random injection resource. Interface E remains
inactive.

4.2 Shared Uniform Random Injections

In this section, we describe the resource URI that grants access to shared
uniform random injections and their inverses at interfaces A and B, and
no access at interface E. We then use URI to define the security of RAE
schemes and show that any RAE scheme that satisfies this definition can
be used to construct URI from a shared secret key. Though syntactically
different, it is easy to see that our definition is equivalent to the security
definition from [HKR15].

We first give a definition for the uniform random injection system URI.

Definition 4.2.1. The resource URI has interfaces A, B, and E and takes
inputs of the form (fun, N,A, λ, x) and (inv, N,A, λ, y) at interfaces A

and B for N ∈ N , A ∈ H, λ ∈ N, x ∈ M, and y ∈ C. Any input at
interface E is ignored. We assume the domains N , H,M, and C are equal
to Σ∗. On input (fun, N,A, λ, x) at interface A or B, it returns fN,A,λ,|x|(x)
at the same interface. On input (inv, N,A, λ, y), it returns f−1N,A,λ,|y|−λ(y)
if |y| > λ, and ⊥ otherwise. The function fN,A,λ,ℓ is chosen uniformly at
random from the set Inj

(
Σℓ,Σℓ+λ

)
when needed for the first time and

reused for later inputs. See Figure 4.2 for pseudocode.

64 CHAPTER 4. ROBUST AUTHENTICATED ENCRYPTION

4.2.1 Definition of RAE Security

We define a shared key resource SKK for some key distribution K. The
resource initially chooses a key according to K and outputs this key
to interfaces A and B while interface E remains inactive, see Figure 4.3.
Slightly abusing notation, we will also refer to the key space by K whenever
no confusion can arise. We further define the converter raeΠ that is based
on an RAE scheme Π = (K, E ,D). First, raeΠ requests the key from SKK.
For any input at the outer interface, it evaluates E or D using that key
(and the arguments provided in the input) and returns the result. The
code is given in Figure 4.3.

We consider an RAE scheme secure if all efficient distinguishers have
poor advantage with respect to the following definition.

Definition 4.2.2. The advantage of a distinguisher D for an RAE
scheme Π is quantified as

Advrae
Π (D) := ∆D(raeΠ

A raeΠ
B SKK,URI).

It is straightforward to see that the definition implies the following
construction statement according to Definition 2.3.3 in Section 2.3.4.
Recall from Section 2.3 that we denote by 0 the converter that blocks any
interaction at the interface to which it is attached.

Lemma 4.2.3. The protocol (raeΠ, raeΠ) constructs URI from SKK
within Advrae

Π with respect to simulator sim := 0 and the pair (0, 0) (i.e.,
in the Alice-Bob-Eve setting where Eve is inactive).

Proof. Since interface E of SKK and URI are inactive, the converter 0
has no effect when connected to that interface, i.e., 0E SKK = SKK and
0EURI = simEURI = URI. Thus, both the correctness and the security
condition of the construction are equivalent to

∆D(raeΠ
A raeΠ

B SKK,URI) ≤ Advrae
Π (D)

for all distinguishers D, which trivially holds by definition of Advrae
Π .

To conclude this section on the alternative definition, we show that Def-
inition 4.2.2 and Definition 4.1.2 are equivalent:

4.3. RANDOM INJECTION CHANNELS 65

Converter raeΠ

Initialization
output getKey at interface in
let k be the returned value from SKK

Interface out
Input: (fun, N,A, λ, x)

y ← EN,A,λ
k (x)

output y at out

Input: (inv, N,A, λ, y)

x← DN,A,λ
k (y)

output x at out

Figure 4.3: Protocol that constructs URI from a shared secret key.

Lemma 4.2.4. For every distinguisher D there is an adversary A (with
essentially the same efficiency) such that Advrae-game

Π (A) = Advrae
Π (D).

Conversely, for every adversary A there is a distinguisher D (with essen-
tially the same efficiency) such that Advrae

Π (D) = Advrae-game
Π (A).

Proof. Observe that the inputs (fun, ·, ·, ·, ·) and (inv, ·, ·, ·, ·) to system
raeΠ

A raeΠ
B SKK correspond to queries in RealraeΠ to the oracles Enc and

Dec, respectively: in both cases, the resulting outputs are generated by
the algorithms E and D for a uniformly random key. Similarly, the same
inputs to the resource URI correspond to the oracles Enc and Dec in the
game RAEΠ since the outputs are in both cases computed by a uniformly
random injection or its inverse. Hence, a distinguisher can be turned
into an adversary with the same advantage and vice versa by exchanging
inputs to the resources with the corresponding oracle queries.

4.3 Random Injection Channels

The goal of the current section is to examine the exact security achieved
by RAE schemes when used to protect communication. We present con-
structions of specific secure channels from insecure channels and resource
URI where each type of secure channel precisely captures the amount
of leakage to an eavesdropper and the possible influence of an adversary
interfering with the protocol execution. This new resource formalizes
security for any expansion. As an additional result, we are able to an-
swer what best-possible communication security is and observe that RAE

66 CHAPTER 4. ROBUST AUTHENTICATED ENCRYPTION

schemes achieve this level of security.

The constructed channel. The channel we construct in this section
is defined in Figure 4.4 and can be roughly described as follows: It allows
to repeatedly send pairs (Ai,mi) in an ordered fashion from a sender to a
receiver. Each pair consists of the associated data Ai and the message mi.
The attacker is limited to seeing the associated data Ai and the length
of the message |mi| of each transmitted pair. Additionally, the attacker
learns whether the ith injected pair equals the one that is currently sent.

The attacker can either deliver the next legitimate pair (Ai,mi) or try
to inject a pair (A,m) that is different from (Ai,mi). Such an injection is
only successful with a certain probability. The associated data A and the
length ℓ of the message are chosen by the attacker and m is a uniformly
random message of length ℓ if A ̸= Ai. Otherwise, m is a uniformly
random message m ̸= mi of length ℓ. If an injection attempt is not
successful, the resource does not deliver messages at interface B any more
and signals an error by outputting ⊥. If the adversary injects the ith
message, the legitimate ith message cannot be delivered anymore.2

The success probability of an injection attempt depends on the ex-
pansion λ and the specified message length ℓ and whether the sender’s
queue S is empty or not. The exact probabilities are quantified by the two
sampling functions Sample and SamplExcl. The function Sample first
samples a bit according to the probability that a fixed element from Σℓ+λ

has a preimage under a uniform random injection Σℓ → Σℓ+λ. If the bit
is 1, a uniform random preimage is returned. The function SampleExcl
essentially does the same, but the domain and codomain are both reduced
by one element.3

4.3.1 Constructing Random Injection Channels

We construct resource RICλ from [URI, IC] which denotes the resource
that provides at each interface access to the corresponding interface of

2This relates to the security of RAE schemes which ensures that the message cannot
be decrypted using a wrong nonce. In our construction, the nonce is implemented as
the sequence number.

3This ensures that the injected message is different from the one that the sender
provided.

4.3. RANDOM INJECTION CHANNELS 67

Resource RICλ

Initialization
S ← empty FIFO queue
i← 0
R ← []

Interface A

Input: (send, A,m) ∈ H×M
i← i+ 1
if i > |R| then
S.enqueue((A,m))

if i ≤ |R| and R[i] = (A,m) then
output repeat at interface E

else
output (A, |m|) at interface E

Interface E

Input: deliver

if |S| > 0 and halt = 0 then
(A,m)← S.dequeue()
R ← R ∥ (A,m)
output (A,m) at interface B

Input: (inject, A, ℓ) ∈ H× N>0

if halt = 0 then
if |S| > 0 then

(A′,m′)← S.dequeue()
if A = A′ and ℓ = |m′| then

m← SampleExcl(ℓ, λ,m′)
else

m← Sample(ℓ, λ)
else

m← Sample(ℓ, λ)
if m ̸= ⊥ then
R ← R ∥ (A,m)
output (A,m) at B

else
output ⊥ at B
halt← 1

function Sample(ℓ, λ)
B � Bernoulli

(
|Σ|−λ

)
if B = 1 then

m � Σℓ

return m
else

return ⊥

function SampleExcl(ℓ, λ,m)

B � Bernoulli

(
|Σ|ℓ−1

|Σ|ℓ+λ−1

)
if B = 1 then

m � Σℓ \ {m}
return m

else
return ⊥

Figure 4.4: Description of RICλ. In the description, Bernoulli(p) de-
notes the distribution over {0, 1}, where 1 has probability p and 0 has
probability 1− p.

68 CHAPTER 4. ROBUST AUTHENTICATED ENCRYPTION

Converter sndλ

Initialization
i← 0

Interface out

Input: (send, A,m) ∈ H×M
output (fun, i, A, λ,m) to URI
let c be the return value from URI
i← i+ 1
output (send, (A, c)) to IC

Converter rcvλ

Initialization
Q ← empty FIFO queue
i← 0
halt← 0

Interface in

Input: (A, c) ∈ H× C (from IC)
if halt = 0 then

output (inv, i, A, λ, c) to URI
let m be the return value from
URI
i← i+ 1
if m ̸= ⊥ then

output (A,m) at out
else

output ⊥ at out
halt← 1

Figure 4.5: The converters for the sender (left) and the receiver (right) to
construct RICλ.

both resources. Our protocol specifies a particular but very natural usage
of URI where the nonce is implemented as a counter value.4

Protocol

We present the protocol as pseudocode in Figure 4.5. The converter for
the sender, sndλ, accepts inputs of the form (send, A,m) at its outer
interface. It outputs (fun, i, A, λ,m) at the inner interface to URI. The
nonce is implemented as a counter and λ is the parameter of the protocol.
Once a ciphertext is received as a return value from URI, it is output
together with its associated data at the inner interface for the insecure
channel IC. The receiver converter rcvλ receives ciphertexts together with
the associated data at its inner interface from IC and decrypts c using
parameters A, i and λ. On success, the corresponding plaintext is output
at the outer interface. If decryption fails, the converter stops and signals
an error by outputting ⊥.

4Implementing the nonce as a counter allows to maintain the order of messages.

4.3. RANDOM INJECTION CHANNELS 69

Security Proof

In order to show that the protocol (sndλ, rcvλ) constructs RICλ from
[URI, IC], we prove again the correctness and security conditions as
outlined in Sections 2.3.4 and 2.3.5. For all channels, the converter that
formalizes the default honest behavior at interface E is the converter dlv
introduced in Section 2.3.5.

Theorem 4.3.1. Let λ ∈ N. The protocol (sndλ, rcvλ) constructs resource
RICλ from [URI, IC] with respect to (dlv, dlv) and simulator simRIC as
defined in Figure 4.6. More specifically, for all distinguishers D

∆D(sndAλrcv
B
λdlv

E[URI, IC], dlvERICλ) = 0 (4.1)

and ∆D(sndAλrcv
B
λ[URI, IC], simE

RICRICλ) = 0. (4.2)

Proof. We first prove the security condition (4.2) by analyzing the input-
output behavior of both systems involved. To this end, we consider the
possible inputs at each interface.

On the ith input (send, Ai,mi) at interface A: In sndAλrcv
B
λ[URI, IC],

converter sndλ evaluates URI on input (i, Ai, λ,mi), where the
counter i is the nonce and Ai is the associated data. The associ-
ated data is sent together with URI’s return value ci over IC. If
this is the first query to URI with parameters i and Ai, then the
output ci is distributed uniformly at random over Σ|mi|+λ. If there
has been a query (inv, i, Ai, c

′
i) before at interface B of URI, with

|c′i| = |mi| + λ that has generated the output m′i = mi, then ci
is determined to be equal to c′i. If mi ̸= m′i, the output is ci is
distributed uniformly at random over Σ|mi|+λ \ {c′i}.
In system simE

RICRICλ, (Ai,mi) is inserted into the senders queue
of RICλ. If there has already been an ith output (A′i,m

′
i) with

A′i = Ai and mi = m′i at interface B, then RICλ outputs repeat

at interface E and the simulator outputs the ciphertext and the
associated data that was input before at its outer interface as the
ith injection. Otherwise, RIC outputs the pair (Ai, |mi|) to simRIC.
The simulator checks whether there exists an ith injected associated
data-ciphertext pair (A′i, c

′
i) with A′i = Ai and |c′| = |mi| + λ. If

such a pair exists, which is the case if diff > 0, simRIC generates a

70 CHAPTER 4. ROBUST AUTHENTICATED ENCRYPTION

Converter simRIC

Initialization
Q1,Q2 ← empty FIFO queues
R ← []
i← 0
diff ← 0 ◃ invariant: diff = max{|R|− i, 0}

Interface out

Input: (inject, A, c) ∈ H× C
R ← R ∥ (A, c)
if |Q2| = 0 then

diff ← diff + 1
output (inject, A, |c| − λ) at in

else
(A′, c′)← Q2.dequeue()
if A = A and c = c′ then

output deliver at in
else

output (inject, A, |c| − λ) at in

Input: deliver

if |Q1| > 0 then
(A, c)← Q1.dequeue()
execute commands for (inject, A, c)

Interface in

Input: (A, ℓ) ∈ H× N>0

i← i+ 1
if diff > 0 then

diff ← diff − 1
(Ai, ci)← R[i]
if A = Ai then

c � Σℓ+λ \ {ci}
else

c � Σℓ+λ

else
c � Σℓ+λ

Q2.enqueue((A, c))
Q1.enqueue((A, c))
output (A, c) at out

Input: Repeat
i← i+ 1
(Ai, ci)← R[i]
if diff > 0 then

diff ← diff − 1
else
Q2.enqueue((Ai, ci))

Q1.enqueue((Ai, ci))
output (Ai, ci) at out

Figure 4.6: Simulator for the security condition of the construction of
RICλ.

uniformly random string ci ∈ Σ|mi|+λ \ {c′i} and outputs (Ai, ci) at
its outer interface. If there is no such pair, i.e., if diff = 0, simRIC

generates a uniformly random string ci ∈ Σ|mi|+λ and outputs
(Ai, ci) at its outer interface. In both cases, simRIC stores (Ai, ci)
in its own queues for later reference. Q1 simulates the queue of
the insecure channel in the real world (to correctly simulate deliver-
queries). Q2 stores the associated data-ciphertext pairs of the
corresponding entries in the queue S of RICλ. We observe that the
case distinctions made by simRIC correspond exactly to the cases
that happen in the real system. Hence, the output distribution at
interface E is identical to above.

On the ith input (inject, Ai, ci) at interface E: In the following, we

4.3. RANDOM INJECTION CHANNELS 71

assume that interface B has not output ⊥ already, as otherwise the
two systems behave identically anyway.
In sndAλrcv

B
λ[URI, IC], the converter rcvλ queries URI with input

(inv, i, Ai, λ, ci) to receive the preimage mi of ci under parameters
(i, Ai, λ). Let us first assume that there has been an ith input before
at interface A (A′i,m

′
i) and that URI generated the ciphertext c′i

on that input. There are three cases to consider to determine the
output distribution at interface B:

1. If Ai = A′i and ci = c′i, then mi = m′i holds with probability 1
and decΠ outputs m′i.

2. If Ai ̸= A′i or |ci| ≠ |c′i|, URI generates a fresh uniform injec-
tion Σ|ci|−λ → Σ|ci| and there is only an output at interface B

if ci has a preimage under the chosen injection. This is the
case with probability

|Σ|ci|−λ|
|Σ|ci||

= |Σ|−λ.

Given that ci has a preimage, then the output at interface B is
(Ai,mi), where mi is distributed uniformly over Σ|ci|−λ, since
all preimages are equally likely. If ci does not have a preimage,
decΠ sets halt← 1 and outputs ⊥.

3. If Ai = A′i, ci ̸= c′i, and |ci| = |c′i|, URI has already generated
an injection f : Σ|ci|−λ → Σ|ci| on the ith input (A′i,m

′
i) at

interface A such that f(m′i) = c′i, and there is only an output
at interface B if ci has a preimage under f . Since there are
|Σ|ci|−λ∩Mv|−1 possible preimages different from m′i and each
of them is mapped to one out of |Σ|ci|| − 1 possible ciphertexts
different from c′i, the probability that ci has a preimage is

|Σ|ci|−λ| − 1

|Σ|ci|| − 1
.

If ci has a preimage, then the output at interface B is (Ai,mi),
where mi is distributed uniformly over Σ|ci|−λ \ {m′i}, where
m′i is excluded due to injectivity and the remaining preimages
are equally likely. If ci does not have a preimage, decΠ sets
halt← 1 and outputs ⊥.

72 CHAPTER 4. ROBUST AUTHENTICATED ENCRYPTION

If there has not yet been an ith input (A′i,m
′
i) at interface A (i.e.,

there are more messages injected than sent), the behavior is the
same as in Item 2 above, because URI generates a fresh uniform
injection Σ|ci|−λ → Σ|ci| for each counter value i.

In simE
RICRICλ, let us again first assume that there are more mes-

sages sent than injected, i.e., diff = 0. In that case, simRIC retrieves
the front element of Q2 which contains the simulated pair (A′i, c′i) of
the front element of S, say (A′i,m

′
i) (where m′i is the next message

that can be delivered reliably). If Ai = A′i and ci = c′i then simRIC

delivers the next element in the sender queue of RICλ and hence
the ith message m′i is output. This corresponds to Item 1 above.
In the other two cases, simRIC outputs (inject, A, |ci| − λ). The
behavior of RICλ is then as follows: Let ℓ := |ci| − λ. If ℓ = |m′i|
and Ai = A′i, the output is ⊥ with probability 1 − |Σ|ℓ−1

|Σ|ℓ+λ−1 . If
the output is not ⊥, the message is chosen uniformly at random
from Σℓ \ {mi}. This behavior follows from the call to the function
SampleExcl(ℓ, λ,mi). If ℓ ≠ |mi| or Ai ̸= Ai, RICλ either out-
puts ⊥ and halts with probability 1− |Σ|−λ or, conditioned on not
being ⊥, the output at interface B is (Ai,mi), where mi is chosen
uniformly at random from Σℓ. This behavior follows from the call
to the function Sample(ℓ, λ).

Finally, if there is no element in the sender’s queue S, i.e., if there
are at least as many messages injected as sent, then the output
distribution is identical to the case ℓ ≠ |mi| or Ai ̸= Ai like in the
real world.

We conclude that in any case, the outputs are distributed identically
for the systems sndAλrcv

B
λ[URI, IC] and simE

RICRICλ.

On the ith input (deliver) at interface E: In sndAλrcv
B
λ[URI, IC], the

front element of the sender queue (within IC) is decrypted by rcvλ.
This behavior is perfectly simulated in simE

RICRICλ since the simula-
tor retrieves the front element (E, c) of its queue Q1 which simulates
the real-world sender queue. Next, the simulator executes the same
instructions as for (inject, E, c) which lets the two systems produce
identically distributed outputs.

This concludes the analysis of the security condition.

4.4. WHAT IS BEST-POSSIBLE SECURITY? 73

We now prove condition (4.1). First, in encΠ
AdecΠ

BdlvE[URI, IC], the
converter dlv is attached at interface E and answers any output produced
by IC with the input (deliver). This essentially converts IC into a
reliable transmission channel: whatever pair (A, c) is given to IC, it is
immediately delivered to decΠ. Therefore, if the ith input at interface A

is (send, Ai,mi) then the ith output at interface B is (Ai,mi), since URI
is queried with the exact same parameters. It is obvious that the same
holds for the input-output behavior of system dlvERICλ.

4.4 What is Best-Possible Security?

We observe that RICλ has two undesirable properties: messages can be
injected and the output at interface E leaks more than only the length of
the payload in that it reveals whether Alice sends the pair (A,m) that has
been output by Bob upon an adversarial injection. In contrast, a channel
that only leaks the message length is considered fully confidential.

We first illustrate an application in which this lack of full confiden-
tiality is problematic. The main purpose of our example is to show
that one cannot exclude the existence of an application where exactly
this (intuitively small) difference to full confidentiality yields a security
problem.

Second, we show that a successful injection followed by the undesired
information leakage about the repetition is possible for any scheme, even
if it is stateful and uses an arbitrary setup before starting communication,
and that the probability of this is minimized if RICλ is used.

Sample scenario: On the difference to full confidentiality. As-
sume a setting in which party A is allowed to send information to party
B via a fully confidential channel but not vice versa. Suppose now that
B finds a possibility to send information to A via a covert channel and
the two parties use the confidential channel for messages from A to B

and the covert channel for messages from B to A. Suppose now that the
confidential channel is in fact a channel that leaks the above repetition
event instead of only the message length. This gives an investigator E a
means to test for the existence of a covert channel from B to A as follows:
At some point, E injects a random message m to B. Assuming information
flow from B to A, party B might start a discussion about m with party A.

74 CHAPTER 4. ROBUST AUTHENTICATED ENCRYPTION

As part of this conversation, A might send m to B, which would signal a
repetition-event to E. For large message spaces, it is very unlikely that A
comes up with the exact same message that was randomly injected to B

before, unless there is a (hidden) flow of information. The occurrence of
the event is therefore a witness for the existence of a channel from B to A.
In contrast, a fully confidential channel would not reveal the existence of
the covert channel.

4.4.1 RIC Characterizes Best-Possible Security

In RICλ, an injection attempt is successful with probability at most
|M|
|C| = |Σ|−λ and given a successful injection and that Alice subsequently

sends the corresponding output of Bob, the above described leakage
occurs with probability 1. Overall, the total probability that an undesired
property can be observed is bounded by |Σ|−λ.

We show that this probability is optimal and that no protocol can
achieve a better bound. Hence, RICλ maximizes authenticity and confi-
dentiality. We first prove the following general lemma.

Lemma 4.4.1. Let M and C be finite nonempty sets and let E and D
be random variables over functions H×M→ C and H× C →M∪ {⊥},
respectively, such that

∀m ∈M, a ∈ H : Pr[D(a,E(a,m)) = m] ≥ p

for some p ∈ [0, 1]. We then have for all a ∈ H and any random variable
C that is distributed uniformly over C and independent from E and D,

Pr[D(a,C) ̸= ⊥ ∧ E(a,D(a,C)) = C] ≥ p · |M|
|C|

.

4.5. FURTHER APPLICATIONS OF THE NEW CONCEPT 75

Proof. We have for all a ∈ H

Pr[D(a,C) ̸= ⊥ ∧ E(a,D(a,C)) = C]

=
∑
m∈M

∑
c∈C

Pr[D(a, c) = m ∧ E(a,m) = c ∧ C = c]

=
1

|C|
∑
m∈M

∑
c∈C

Pr[D(a, c) = m ∧ E(a,m) = c]  
=Pr[D(a,E(a,m))=m] ≥ p

≥ p · |M|
|C|

,

where we used in the second step that C is distributed uniformly over C
and independent from E and D.

Lemma 4.4.1 can be applied to our usual setting encAλdec
B
λ[SKK, IC] for

a generic protocol (encλ, decλ) in a straightforward manner: we only have
to observe that for the ith input (send, Ai,mi), for all i ∈ N, converter
encλ is characterized by a probabilistic map H × M → C, that may
depend on previous inputs and outputs and on the key k. Similarly, the
converter decλ is characterized by a probabilistic map H×C →M∪{⊥}
for any i ∈ N.

Correctness of the protocol implies that if (send, Ai,mi) is input to
encλ as the ith query and yields ciphertext ci, then the probability that on
the ith input (Ai, ci) to decλ, and if decλ has not halted yet, the converter
decrypts the ciphertext to mi with probability p; note that p = 1 for RAE
schemes. Hence, Lemma 4.4.1 implies that the probability that any of the
two undesirable properties can be observed during protocol execution is
at least |Σ|−λ.

4.5 Further Applications of the New Concept
We conclude our study by completing two security claims stated in
[HKR15] without a proof. First, we show how concretely redundancy in
messages can amplify security and second, we show in what exact sense
RAE is nonce-reuse resistant. The reader might recall Section 3.2.4 and
in particular the definition of the channel resource SECTLS in Figure 3.5
before reading the rest of this chapter.

76 CHAPTER 4. ROBUST AUTHENTICATED ENCRYPTION

4.5.1 Security by Verifiable Redundancy

Looking at the specification of RICλ, we observe that for large values λ,
the probability of successful injections becomes exponentially small, and
so are the repetition events at interface E. It is now easy to derive the
description of a channel without the two shortcomings: it is exactly the
channel SECTLS we introduced in Figure 3.5 in Chapter 3, which is a
particular type of an ASC.

We formally show how to construct this channel and how redundancy
in messages can be exploited to improve authenticity, where redundancy
restricts the set of valid messages to a subset ofM = Σ∗. The following
theorem provides the exact security bound in terms of redundancy in
the message space and ciphertext expansion λ. We thereby confirm a
conjecture of [HKR15]. Let v :M ↦→ {true, false} be a predicate on
the message space. We define the subsetMv := {m | m ∈M ∧ v(m)}
which we call the set of valid messages. Following [HKR15], the density
of Mv is defined as

dv := max
ℓ∈N

|Σℓ ∩Mv|
|Σℓ|

.

The constructed channel. Formally, we consider the channel SECTLS

as in Figure 3.5 with special message space M :=Mv and special type
(or AD) domain T := H. Put differently, the channel is derived from
RICλ by requiring that m ∈Mv and by removing undesired capabilities
that vanish due to the exponentially small success probability for large λ.

Protocol. The protocol for the sender, sndChkv, accepts inputs of the
form (send, A,m) at its outer interface and forwards the pair to the
channel RICλ if and only if v(m) (and otherwise ignores the request).
The receiver converter rcvChkv, on receiving the pair (A,m) from RICλ,
outputs (A,m) at its outer interface if and only if v(m). If rcvChkv
receives ⊥ from RICλ or if ¬v(m), it outputs ⊥ at its outer interface and
halts.

Theorem 4.5.1. Let λ ∈ N. The protocol (sndChkv, rcvChkv) constructs
SECTLS (with message space Mv and type space H) from RICλ with re-
spect to (dlv, dlv) and simulator sim defined in Figure 4.7. More specifically,

4.5. FURTHER APPLICATIONS OF THE NEW CONCEPT 77

Converter sim

Interface in

Input: (A, ℓ) ∈ H× N>0

output (A, ℓ) at out

Interface out

Input: deliver

output deliver at in

Input: (inject, A, ℓ) ∈ H× N>0

output terminate at in

Figure 4.7: Simulator for the security condition of the construction of
SECTLS from RICλ.

for all distinguishers D

∆D(sndChkAvrcvChkv
BdlvERICλ, dlv

ESECTLS) = 0 (4.3)

and ∆D(sndChkAvrcvChkv
BRICλ, sim

ESECTLS) ≤ dv · |Σ|−λ. (4.4)

Proof. The correctness condition (4.3) is straightforward to verify. We
only prove the security condition (4.4). It is easy to see that the two
systems behave identically as long as no injection attempt is successful.
This is because successful injections are necessary for observing repeat:
as long as no injection is successful, for any send-query to RICλ, the
condition i ≤ |R| is not satisfied after incrementing i. We thus only
have to bound this probability. We hence consider the event that in an
interaction of a distinguisher with the real system sndChkAvrcvChkv

BRICλ

the first attempt to inject a random message is successful (since in case
of an unsuccessful attempt, both channels stop delivering messages). In
any interaction of D with the resource, the probability of the event is
determined by RICλ as one out of two possibilities, see Figure 4.4. For
any i ∈ N, if the ith query at interface E is the first attempt to inject a
message, then the probability depends on whether the specified associated
data and the length coincides with the length of the message and the
associated data of the ith input at interface A. Both probabilities are

78 CHAPTER 4. ROBUST AUTHENTICATED ENCRYPTION

upper bounded by

max

{
|Σ|ci|−λ ∩Mv| − 1

|Σ|ci|| − 1
,
|Σ|ci|−λ ∩Mv|
|Σ|ci||

}
≤ |Σ

|ci|−λ ∩Mv|
|Σ|ci||

=
|Σ|ci|−λ ∩Mv|
|Σ|ci|−λ|

· |Σ|−λ ≤ dv · |Σ|−λ,

where we used x−1
y−1 ≤

x
y for x ≤ y in the first step, and the definition of

dv in the last step.

4.5.2 Guarantees for Nonce-Reuse

One goal of robust authenticated encryption is to provide resilience to
the misuse when nonces are repeated. While the expected security loss
was only informally stated in [HKR15], we rigorously derive the exact
guarantees that can still be expected in such a scenario. To this end, we
consider the extreme case where the nonce is a constant value.

Secure Channel with Repetition Leakage. The channel that is
achieved if the nonce is repeating is denoted RSECTLS and its description
is given in Figure 4.8. There are two differences to SECTLS: First, not
only the length of the message is leaked at interface E but also the number
i of the first transmitted message that equals the current message. This
leaks the repetition pattern of transmitted values. Second, the adversary
can replay messages and induce arbitrary out-of-order delivery.

Protocol. The protocol, which we denote by (rsnd, rrcv), invokes URI
using the constant nonce 0. Furthermore, the protocol verifies that all
messages are from the set Mv. The protocol is specified in Figure 4.9.

Theorem 4.5.2. Let λ ∈ N. The protocol (rsndλ, rrcvλ) constructs
RSECTLS (with message space Mv and type space H) from [URI, IC]
with respect to (dlv, dlv) and simulator sim defined in Figure 4.10. More
specifically, we have for all distinguishers D

∆D(rsndAλrrcv
B
λdlv

E[URI, IC], dlvERSECTLS) ≤
2dv + q · (q − 1)

2
· |Σ|−λ

(4.5)

4.5. FURTHER APPLICATIONS OF THE NEW CONCEPT 79

Resource RSECTLS

Initialization
R ← empty FIFO queue
S ← []; halt← 0

Interface A

Input: (send, A,m) ∈ H×Mv

S ← S ∥ (A,m)
i← min{n ∈ N | S[n] = (A,m)}
output (A, |m|, i) at interface E

Interface E

Input: (deliver, i) ∈ N>0

if |S| ≥ i and halt = 0 then
(E,m)← S[i]
output (A,m) at interface B

Input: terminate

if halt = 0 then
halt← 1
output ⊥ at interface B

Figure 4.8: Description of RSECTLS.

and

∆D(rsndAλrrcv
B
λ[URI, IC], simERSECTLS) ≤

2dv + q · (q − 1)

2
· |Σ|−λ,

(4.6)
where q is the total number of inputs made by D.

Proof. We prove the security condition (4.6) in a similar way as in the
previous section.

On the ith input (send, Ai,mi) at interface A: In rsndAλrrcv
B
λ[URI, IC],

system URI is queried with (fun, 0, Ai, λ,mi) to produce cipher-
text ci. Next, the pair (Ai, ci) is sent over IC and thus output at
interface E. Clearly, if there exists some j < i s.t. Aj = Ai and
mj = mi then cj = ci (with probability 1). On the other hand, if
Aj = Ai but mj ̸= mi, then ci ̸= cj with probability 1. Otherwise,
the distribution of ciphertext ci is independent of the distribution
of any cj that is encrypted with different parameters Aj ≠ Ai or
|mj | ≠ |mi| (by definition of URI).

In system simERSECTLS, the simulator gets the pair (ℓ, k), where
ℓ = |mi| and k is the number of the first input that equals (Ai,mi).
This allows sim to consistently reflect repetitions of ciphertexts. If
k = i, i.e., if the message is new, a uniformly random ciphertext
ci of length ℓ + λ is output and stored for future reference. By

80 CHAPTER 4. ROBUST AUTHENTICATED ENCRYPTION

Converter rsnd

Interface out

Input: (send, A,m) ∈ H×Mv

if v(m) then
output (fun, 0, A, λ,m) to URI
let c be return value from URI
output (send, (A, c)) to IC

Converter rrcv

Initialization
halt← 0

Interface in

Input: (A, c) ∈ H× C (from IC)
if halt = 0 then

output (inv, 0, A, λ, c) to URI
let m be return value from URI
if m ̸= ⊥ and v(m) then

output (A,m) at out
else

output ⊥ at out
halt← 1

Figure 4.9: The converters for the sender (left) and the receiver (right).

comparing the behavior to rsndAλrrcv
B
λ[URI, IC], we observe that

the two systems have the same output distribution, as long as there
is no collision to a previous ciphertext cj that has been generated
on input (Aj ,mj) with Aj = Ai and |mi| = |mj | but mi ≠ mj . The
probability of such a collision is bounded by

q · (q − 1)

2
· |Σ|−λ. (4.7)

On the ith input (inject, Ai, ci) at interface E: In the following, we
assume that interface B has not output ⊥ already, as otherwise the
two systems behave identically anyway.

In rsndAλrrcv
B
λ[URI, IC], rsnd queries URI with input (inv, 0, Ai, λ, ci).

In the following analysis, Let ℓ := |ci| − λ and let denote qAi,ℓ
A the

total number of distinct queries (send, Ai,m) with ℓ = |m| at inter-
face A.

When rrcv decrypts ciphertext ci of length ℓ+λ using associated data
Ai, then there are two cases to consider: either URI has already
generated a function mapping messages of length ℓ to ciphertexts of
length ℓ+ λ or URI has not yet generated such a function yet.

1. If URI has generated an injective function already, then there

4.5. FURTHER APPLICATIONS OF THE NEW CONCEPT 81

Converter sim

Initialization
Q ← empty FIFO queue
S ← []

Interface in

Input: (A, ℓ, i) ∈ H× N>0 × N>0

if i = |S|+ 1 then
c � Σℓ+λ

else
c← S[i]

S ← S ∥ (A, c)
Q.enqueue((A, c))
output (A, c) at out

Interface out

Input: (inject, A, c) ∈ H× C
if ∃n ∈ N : S[n] = (A, c) then

i← min{n ∈ N | S[n] = (A, c)}
output (deliver, i) at in

else
output terminate at in

Input: deliver

if |Q| > 0 then
(A, c)← Q.dequeue()
execute instructions for
(Inject, A, c)

Figure 4.10: Simulator for the security condition of the construction of
RSECTLS from RICλ.

have been qAi,ℓ
A fixed message-ciphertext pairs (m′j , c

′
j) gen-

erated by URI. Clearly, if ci equals one of the c′j , then the
output at interface B is m′j . Otherwise, there is only an output
at interface B if ci has a preimage under the random injection
and since there are |Σℓ ∩Mv| − qAi,ℓ

A possible valid preimages
left and each one is assigned to one of |Σ|ℓ+λ−qAi,ℓ

A ciphertexts,
the probability that ci has a preimage (and consequently that
B produces an output) is at most

|Σℓ ∩Mv| − qAi,ℓ
A

|Σ|ℓ+λ − qAi,ℓ
A

≤ |Σ
ℓ ∩Mv|
|Σ|ℓ+λ

≤ dv · |Σ|−λ, (4.8)

where we used x−d
y−d ≤

x
y for x ≤ y and 0 ≤ d < y in the first

step and the definition of dv in the second step.
2. The second case follows trivially by observing that if URI has

not generated a function yet, then qAi,ℓ
A = 0.

In simERSECTLS, if the injected pair (Ai, ci) is equal to a previously
generated pair (Ej , cj), the simulator outputs (deliver, j) at the
inner interface to instruct the channel to replay the jth message,
which generates the output (Aj ,mj) at interface B.

82 CHAPTER 4. ROBUST AUTHENTICATED ENCRYPTION

On the other hand, if the pair (Ai, ci) is new, sim terminates the
channel. This element is guaranteed to decrypt to ⊥ on any decryp-
tion attempt at interface B.

System simERSECTLS reflects the behavior of encΠAdecΠ
B[URI, IC]

as long as the converter rrcvλ does not generate a valid output upon
its first attempt to decrypt an injected associated data-ciphertext
pair (A, c) that has not been generated in reaction to a send-query
at interface A. In such a case, sim would always insert an empty
element and provoke the output ⊥. However, the probability of
rrcvλ producing a valid output upon decryption of a new associated
data-ciphertext pair is bounded in (4.8).

On the ith input (deliver) at interface E: In rsndAλrrcv
B
λ[URI, IC], the

front element, say (A, c) of the sender queue (within IC) is output
to rrcv that tries to decrypt the associated data-ciphertext pair.
Furthermore, since the pair is a valid encryption, the message is
output at interface B.

In simERSECTLS, the simulator retrieves the front element (A, c)
of queue Q which simulates the sender queue of the real execution
of the protocol. The simulator executes the same instructions as
for (inject, A, c) which yields the same behavior for both systems,
since also in this case, the pair (A, c) is in the simulator’s list of
valid associated data-ciphertext pairs.

This concludes the analysis and we can bound the distinguishing
advantage by using inequalities (4.7) and (4.8). The analysis of the
correctness condition (4.5) is straightforward and omitted.

Chapter 5

Signcryption

5.1 Introduction
We conclude our study on cryptographic building blocks for secure commu-
nication with a critical look at signcryption and the corresponding basic
security notions. Unlike the previous studies, we take a fresh approach at
answering the question what signcryption schemes should ideally achieve.
This does not only lead to a better understanding through a constructive
definition — showing the idealization of protecting communication in a
public-key setting — but it also allows us to see which game-based security
definition should be considered the standard notion for signcryption.

5.1.1 Motivation
Signcryption is a public-key cryptographic primitive introduced by Zheng
[Zhe97] in 1997, which simultaneously provides two fundamental cryp-
tographic goals: confidentiality and authenticity. Intuitively, the first
property ensures that no one except the intended recipient should be able
to learn anything about a sent message, and this is typically achieved
by means of an encryption algorithm, and the second property ensures
that the receiver can verify that a message indeed originated from the
claimed sender, which is typically achieved by employing a digital sig-
nature scheme. Signcryption can be seen as the public-key analogue of
authenticated encryption and shares part of its motivation: by merging

84 CHAPTER 5. SIGNCRYPTION

the two security goals, one might gain practical efficiency and at the same
time offer better usability to applications, since there is only a single
scheme that needs to be employed. Since its introduction, several concrete
schemes have emerged in the literature based on different hardness as-
sumptions [Zhe97, ZI98, SZ00, LQ03, LQ04]. Also, new properties beyond
the basic security goals have been introduced recently, such as identity-
based [ML02, Boy03, LQ03, LBZ11, SSVPR10, SVVR12], hybrid [Den05],
KEM-DEM-based [BD06], certificateless [BF08], verifiable [SSVPR10],
attribute-based [PPB14, DDM15a], functional [DDM15b], or key invisible
[WMAS13] signcryption schemes.

Identifying the right definition. Finding the initial, basic security
definitions for signcryption proved to be a very subtle and challenging task.
In fact, the original signcryption scheme by Zheng was formally proven
secure only about ten years after its introduction by Baek, Steinfield, and
Zheng [BSZ07]. While (symmetric) authenticated encryption was put on
solid security definitions directly from the start, the basic security notions
for signcryption have had a more difficult path and converged to a set of
commonly agreed notions only recently [DZ10] and only thanks to the
merits of a sequence of foundational works [An01, ADR02, BSZ07] that
formally introduced what is now known as the outsider security model —
the model that captures network attackers or an adversarial entity that
registers public keys with a certificate authority — and the insider security
model — the model that captures attacks of corrupted users, for example
an a priori legitimate user whose private key got compromised.

Only little effort has subsequently been made to investigate what the
security notions precisely mean and whether they provide the expected
service to higher-level protocols. An initial approach to this question
was taken in [GK07] where a functionality is presented that idealizes
the process of using the signcryption algorithm to ensure unforgeability
and confidentiality (focusing on the outsider security model) along the
lines of the signature and public-key encryption functionality in the UC
framework.

We significantly advance this line of research and provide a detailed
application-centric analysis of the basic security notions of signcryption.
We further believe that our analysis provides sufficient evidence to call
insider security the standard notion for signcryption and we are able to

5.1. INTRODUCTION 85

pinpoint which proposed variants of insider security are mainly relevant.

5.1.2 Specific Contributions

Defining an application scenario for signcryption. For the first
time, we model a concrete and basic application scenario for signcryption
schemes. For a public-key setting with potentially several parties, we
make the following natural choice:

• An insecure network Net, where each user can register themselves
with a unique identity and send and receive messages, and where
a network attacker, say Eve, has full control over the network,
including message delivery.

• A certificate authority CA, where users and the attacker Eve can
register public keys in the name of the identity. The certificate
authority only guarantees that there is exactly one value registered
for an identity, but does not verify knowledge of, for example, a
secret key.

While a key-compromise at one communication endpoint always implies
security loss at the partner’s endpoint in the shared-key setting, this
need not be the case in the public-key setting where users are a-priori
independent in principle. In order to model fine-grained attacks, we
introduce an explicit memory resource Mem that models the storage of
the secret values of each user. The storage is possibly compromised by an
intruder, say Mallory, which models key compromise.

Defining the goal for signcryption. The security goal of signcryption
can be identified in a very natural way: due to the nature of public-key
cryptography, the security depends on which user gets compromised. In
the best case, if a user is compromised, we have to give up just his
respective security: this means that messages sent to this user can be
read by the attacker, and the attacker can act in the name of this user.
This directly gives rise to a notion of a secure network that gracefully
degrades depending on which users gets compromised as described below.
We denote this gracefully-degrading secure network by SecNT and its
main properties are as follows:

86 CHAPTER 5. SIGNCRYPTION

1. If two uncompromised legitimate users communicate, then the secure
network guarantees that the network attacker learns at most the
length of the messages and the attacker cannot inject any message
into this communication: the communication between them can be
called secure.

2. If, however, the legitimate sender is compromised, but not the
receiver, then the network allows the attacker to inject messages
in the name of this sender. Still, Eve does not learn the contents
of the messages to the receiver: the communication is thus only
confidential.

3. If, on the other hand, the legitimate receiver is compromised, but
not the sender, the secure network allows Eve to read the contents
of the messages sent to this compromised user. Still, no messages
can be injected into this communication: the communication is only
authentic.

4. If both, sender and receiver, are compromised, then the network
does not give any guarantee on their communication, Eve can read
every message and inject anything at will.

The preferred insider security notion. Our approach can be used
to formally identify those game-based notions that provable imply the
above construction. For example, the security games in Figure 5.3 and
Figure 5.2 are thus an adequate choice to model game-based insider
security. Any choice can be called suitable as long as the chosen set of
games implies the construction. The notions we use are in particular
implied by what is denoted in [DZ10] as “multi-user insider confidentiality
in the FSO/FUO-IND-CCA2 sense” and “multi-user insider unforgeable in
the FSO/FUO-sUF-CMA sense”, respectively. The presented games are,
however, weaker in some respect as we outline in section 5.2. In general,
finding weaker versions of the above mentioned insider security games
that still imply the construction statement might be a helpful step in
finding more efficient schemes that achieve the construction. In this vein,
an interesting open problem is which game-based notion would actually
be equivalent to our constructive formulation.

5.2. SIGNCRYPTION: GAME-BASED NOTIONS 87

Graceful degradation thanks to insider security. One crucial point
of our main result is that it is insider security that provably assures that
the secure network degrades gracefully as a function of compromised keys
and does not lose the security guarantees in a coarse-grained fashion (for
example per pair of parties instead of a single party). This novel view
underlines the importance of insider security as a distinctive feature that
indeed assigns signcryption a special significance in actual deployments
of network protocols. We note that its importance has been (and still is)
overlooked by a substantial fraction of works. In particular, we contrast
the line of previous works that propose, analyze and revisit signcryption
schemes and their security, including [GK07, TP14, BSZ07], recent devel-
opments in practical lattice-based schemes [GM18], and one of the main
references on the basic notions [DZ10, pages 29 and 46], that assign only
little credit to the relevance of insider security.

5.1.3 The Constructive Cryptography Setting

In this chapter, we consider the general setting of constructive cryptog-
raphy that allows to capture honest parties, a network attacker, and
intruders (that model key compromise). The resources have interface sets
I = {P1, . . . , Pn, M1, . . . , Mn, E}, where interface Pi can be thought of as
being the access point of the ith honest party to the system. Interface Mi
is the access point of an intruder (i.e., a hypothetical attacker entity like
Mallory), and E is the access point of the network attacker Eve (also a
hypothetical entity). We will recap the most important concepts from Sec-
tion 2.3, such as filtered resources, where we think this is needed to better
follow the results.

5.2 Signcryption: Game-Based Notions

We present the definition of Signcryption schemes and the relevant security
games from [BSZ07].1

1We make two simplifications: first, as usual, we do not make domain parameter
generation for the algorithms explicit, and second we simply call the key space K and
do not introduce separate domains for private and public keys.

88 CHAPTER 5. SIGNCRYPTION

Definition 5.2.1. A signcryption scheme Ψ = (GenS ,GenR,Signcrypt,
Unsigncrypt) for key space K, message space M, and signcryptext space
S, is a collection of four (efficient) algorithms:

• A sender key generation algorithm GenS , which outputs a sender key-
pair (skS , pkS), i.e., the sender private key skS ∈ K and the sender
public key pkS ∈ K, respectively. We write (skS , pkS)← GenS .

• A receiver key generation algorithm GenR, which outputs a receiver
key-pair (skR, pkR), i.e., the receiver private key skR ∈ K and the
receiver public key pkR ∈ K, respectively. We write (skR, pkR)←
GenR.

• A (possibly randomized) signcryption algorithm Signcrypt, which
takes as input a sender private key skS , a receiver public key pkR,
and a message m ∈M, and outputs a signcryptext s ∈ S. We write
c← Signcrypt(skS , pkR,m).

• A (usually deterministic) unsigncryption algorithm Unsigncrypt,
which takes as input a receiver private key skR, a sender pub-
lic key pkS , and a signcryptext (“the ciphertext”) s ∈ S, and
outputs a message m ∈ M, or a special symbol ⊥. We write
m← Unsigncrypt(skR, pkS , s).

The scheme is correct if for all sender key pairs (skS , pkS) in the support
of GenS , and for all receiver key pairs (skR, pkR) in the support of GenR,
and for all m ∈M it holds that

Unsigncrypt(skR, pkS , (Signcrypt(skS , pkR,m)) = m.

5.2.1 Multi-User Outsider Security
As explained before, the multi-user outsider security model (MOS) has
been introduced to capture network attackers trying to break the secure
communication between a sender and a receiver. Two legitimate sender
and receiver key-pairs are generated by the game and given to the ad-
versary. Similar to authenticated encryption, the oracles of the games
in Figure 5.1 allow the adversary to obtain signcryptexts of arbitrary
messages (i.e., an encryption oracle) generated by the sender for a ad-
versarially chosen receiver public key, and the messages corresponding to

5.2. SIGNCRYPTION: GAME-BASED NOTIONS 89

chosen signcryptexts (i.e., a decryption oracle) when decrypted by the
receiver w.r.t. an adversarially chosen sender public key. As for authenti-
cated encryption, the goal of the adversary is to distinguish the scheme
from an idealized version, i.e., an ideal game that only decrypts random
messages on behalf of the legitimate sender (perfect confidentiality), and
never allows a successful decryption w.r.t. to the legitimate sender public
key (perfect integrity).

For clarity, we apply the oracle-silencing technique to capture the set of
valid adversaries here: an adversary is not allowed to ask unsigncryption-
queries for answers obtained from the signcryption oracle and w.r.t. the
sender public-key. This is why upon such an invalid query, the adversary
obtains the special symbol ⊥. We note that the formalization used in this
work, i.e., the so-called all-in-one definition (capturing both integrity and
confidentiality) is introduced in [BBM18] and — just like the all-in-one
formulation for authenticated encryption introduced in [RS06] — is simply
equivalent to a definition where both notions are captured by separate
games. For a proof we refer to [BBM18].

Definition 5.2.2. Let Ψ = (GenS ,GenR,Signcrypt,Unsigncrypt) be a
signcryption scheme and A a probabilistic algorithm. Consider games
RealMOS

Ψ and IdealMOS
Ψ from Figure 5.1. We define the real-or-random

multi-user outsider security advantage of A as

AdvMOS
Ψ,A := Pr

[
ARealMOS

Ψ = 1
]
− Pr

[
AIdealMOS

Ψ = 1
]
.

5.2.2 Multi-User Insider Security

The multi-user insider security model (MIS) captures two basic require-
ments, namely that encryptions should look random even if the sender-
private key is known (but not the receiver private key) (MIS-Conf), and,
no forgeries should be possible even if the receiver private key is known
(but not the sender private key) (MIS-Auth). For both security goals,
we state the traditional definitions and we introduce a weaker version
thereof. As it turns out, for the basic application of signcryption schemes,
the weaker version is sufficient.

90 CHAPTER 5. SIGNCRYPTION

RealMOS
Ψ

Initialization
(sk⋆

S , pk
⋆
S)← GenS

(sk⋆
R, pk

⋆
R)← GenR

S ← ∅
return (pk⋆

S , pk
⋆
R)

Oracle Scr

Input: (pkR,m) ∈ K ×M
s← Signcrypt(sk⋆

S , pkR,m)
if pkR = pk⋆

R then
S ← S ∪ {s}

return s

Oracle Usc

Input: (pkS , s) ∈ K × S
if pkS = pk⋆

S ∧ s ∈ S then
m← ⊥

else
m← Unsigncrypt(sk⋆

R, pkS , s)
return m

IdealMOS
Ψ

Initialization
(sk⋆

S , pk
⋆
S)← GenS

(sk⋆
R, pk

⋆
R)← GenR

return (pk⋆
S , pk

⋆
R)

Oracle Scr

Input: (pkR,m) ∈ K ×M
if pkR = pk⋆

R then
m �M

s← Signcrypt(sk⋆
S , pkR,m)

return s

Oracle Usc

Input: (pkS , s) ∈ K × S
if pkS = pk⋆

S then
m← ⊥

else
m← Unsigncrypt(sk⋆

R, pkS , s)
return m

Figure 5.1: The games RealMOS
Ψ and IdealMOS

Ψ .

Confidentiality

The games capturing MIS-Conf are given in Figure 5.3 and are basically
a CCA-style definition (using the real-or-random version).

We specify two variants of different strengths: the games that include
the Gen oracle and the boxed statements constitute the weaker version
which we use in this work. Intuitively, the weaker game does not allow
the adversary to choose the randomness to generate keys. However, in
both variants whenever the adversary makes an oracle call, he has to
provide a valid key-pair. As commonly known, enforcing this is actually
indispensable in order to avoid trivial attacks. For example, an attacker
could specify a pair (skS , 0) in a signcryption query, which allows him
to unsigncrypt the respective result using the actual (correct) public key
pkS . We now state the formal definition:

Definition 5.2.3. Let Ψ = (GenS ,GenR,Signcrypt,Unsigncrypt) be a
signcryption scheme and A a probabilistic algorithm. We define the
advantage of A in distinguishing RealMIS-Conf

Ψ and IdealMIS-Conf
Ψ from

5.2. SIGNCRYPTION: GAME-BASED NOTIONS 91

AuthMIS
Ψ

Initialization
(sk⋆

S , pk
⋆
S)← GenS

S ← ∅
K ← ∅
win← 0
return pk⋆

S

Oracle Gen

(skR, pkR)← GenR
K ← K ∪ {(skR, pkR)}
return (skR, pkR)

Oracle Scr

Input: (pkR,m) ∈ K ×M
s← Signcrypt(sk⋆

S , pkR,m)
S ← S ∪ {(pkR, s)}
return s

Oracle Usc

Input: ((skR, pkR), pkS , s) ∈
supp(GenR)×K× S

if (skR, pkR) /∈ K then
return ⊥

m← Unsigncrypt(skR, pkS , s)
if pkS = pk⋆

S ∧ m ̸= ⊥ ∧ (pkR, s) /∈ S
then

win← 1
return m

Figure 5.2: The forgery game AuthMIS
Ψ . The game that includes the

boxed statements (and the oracle Gen) constitutes the weaker version.

Figure 5.3 as

AdvMIS-Conf
Ψ,A := Pr

[
ARealMIS-Conf

Ψ = 1
]
− Pr

[
AIdealMIS-Conf

Ψ = 1
]
.

We consider the weaker game including the boxed lines. The version which
excludes those lines, and also the Gen oracle, would yield the definition
traditionally found in the literature.

Authenticity

The forgery game AuthMIS
Ψ is given in Figure 5.2. We again give two

variants as for confidentiality before. We directly state the relevant
definition:

Definition 5.2.4. Let Ψ = (GenS ,GenR,Signcrypt,Unsigncrypt) be a
signcryption scheme and A a probabilistic algorithm. We define the
advantage of A when interacting with AuthMIS

Ψ from Figure 5.2 as

AdvMIS-Auth
Ψ,A := Pr

[
AAuthMIS

Ψ sets win
]
.

92 CHAPTER 5. SIGNCRYPTION

We consider the weaker game including the boxed lines. The version which
excludes those lines, and also the Gen oracle, would yield the definition
traditionally found in the literature.

RealMIS-Conf
Ψ

Initialization
(sk⋆

R, pk
⋆
R)← GenR

S ← ∅
K ← ∅
return pk⋆

R

Oracle Gen

(skS , pkS)← GenS
K ← K ∪ {(skS , pkS)}
return (skS , pkS)

Oracle Scr

Input: ((skS , pkS), pkR,m) ∈
supp(GenS)×K×M

if (skS , pkS) /∈ K then
return ⊥

s← Signcrypt(skS , pkR,m)
if pkR = pk⋆

R then
S ← S ∪ {(pkS , s)}

return s

Oracle Usc

Input: (pkS , s) ∈ K × S
if (pkS , s) ∈ S then

m← ⊥
else

m← Unsigncrypt(sk⋆
R, pkS , s)

return m

IdealMIS-Conf
Ψ

Initialization
(sk⋆

R, pk
⋆
R)← GenR

S ← ∅
K ← ∅
return pk⋆

R

Oracle Gen

(skS , pkS)← GenS
K ← K ∪ {(skS , pkS)}
return (skS , pkS)

Oracle Scr

Input: ((skS , pkS), pkR,m) ∈
supp(GenS)×K×M

if (skS , pkS) /∈ K then
return ⊥

if pkR = pk⋆
R then

m �M
s← Signcrypt(skS , pkR,m)
if pkR = pk⋆

R then
S ← S ∪ {(pkS , s)}

return s

Oracle Usc

Input: (pkS , s) ∈ K × S
if (pkS , s) ∈ S then

m← ⊥
else

m← Unsigncrypt(sk⋆
R, pkS , s)

return m

Figure 5.3: The games RealMIS-Conf
Ψ and IdealMIS-Conf

Ψ . The variant with
the boxed statements (and oracle Gen) constitutes the weaker notion.

5.3. GRACEFULLY-DEGRADING SECURE NETWORKS 93

5.3 Gracefully-Degrading Secure Networks

In this section, we first introduce the new notion of gracefully-degrading
secure networks as outlined in Section 5.1.2. We then formally introduce
the assumed resources and the protocol converters and proof that we can
construct a gracefully degrading secure network based on the security
guarantees provided by the definitions of Section 5.2.

5.3.1 Definition

The resource we want to achieve is a secure network that gracefully
degrades and is specified in Figure 5.4. This ideal network is basically
a secure network. To see this, imagine there was no interface Mi: then
parties can register to the network (using some unique identifier ID) and
can send and receive messages. In addition, the adversary learns the
length of the message (in addition to sender and receiver identities), and
cannot inject messages. Note that this behavior is enforced in Figure 5.4
by adding the associated identity after successful registration at interface
Pi to the special set S only if there was no input reveal at interface
Mi. Now observe that the condition under which the network attacker
can inject a message for some party identity ID includes that ID ̸∈ S. In
addition, the network attacker learns only the length of the messages
whenever a message is sent to an identity ID ∈ S. Thus, since all registered
identities of honest parties are in S, communication between any two of
them is secure. Now, the input reveal is potentially available at interface
Mi (this models the fact that the party is compromised). Whenever this
input happens, then the corresponding party identity is not included in S.
This means that the network attacker at interface E can inject messages
on behalf of the identity registered at interface Pi and obtains the content
of any message sent to Pi. We see that only the security of Pi is affected
as declared in Section 5.1.2.

To complete this description, note that the secure network outputs
shared randomness between the intruder of party Pi and the network
attacker. This models that in the ideal world, shared randomness is
potentially available to the parties. This is indeed the case, since the
network attacker learns signcryptexts that are created with the secret key
leaked at interface Mi. On a technical level, shared randomness is needed
to achieve a consistent simulation. Note that in constructive cryptography,

94 CHAPTER 5. SIGNCRYPTION

we have local simulators (cf. Section 2.3) for each of the interfaces with
potential dishonest behavior.

On using filters. In this chapter, we use a convenient tool of construc-
tive cryptography that we introduced in cf. Section 2.3. Note that an
intruder, as well as a network attacker, are hypothetical entities and we
want to model that these capabilities are only potentially available. For
example, at interface Mi, the capability to reveal is only potentially avail-
able but not guaranteed. This means that we actually have to consider
a filtered resource SecNTnφideal and specify the filter converters for the
interfaces.

As detailed in Section 2.3, this allows us in particular to give security
guarantees for each subset of dishonest behavior, and to eventually prove
that security degrades gracefully as a function of the interfaces that
are dishonest. Looking ahead, the potentially available capability to
compromise a party corresponds to the potentially available input reveal
in the ideal world. Figure 5.6 illustrates an example instantiation to
clarify the concepts.

Hence, at interfaces Mi, the filter is given by the converter 0 that blocks
all interaction (no “leakage”). At interface E, the filter is given by the
converter dlv that implements reliable message transfer2, and finally, the
filter of honest interfaces is given by the identity converter 1.

Overall, we can thus define the filter by φideal := (1, . . . , 1, 0, . . . , 0, dlv)
for interfaces P1, . . . , Pn, M1, . . . , Mn, E for the resource SecNTn.

5.3.2 Assumed Resources
We introduce standard resources to model our concrete setting.

Insecure network. We assume a network resource Netn that accepts,
at each interface Pi, i ∈ [n], a registration query that assigns an identifier
to that interface. Any bitstring ID ∈ {0, 1}∗ is valid, and uniqueness is
enforced (reflecting IP-addresses). Subsequently, messages can be sent at
this interface in the name of that identifier, by indicating the message

2More formally, upon any (·, IDs, IDr) at its inner interface from the network (at
interface E), the converter dlv responds with (inject, ·, IDs, IDr) to the network resource
(and does not give any output at its outer interface and it does not react on any other
input)

5.3. GRACEFULLY-DEGRADING SECURE NETWORKS 95

Resource SecNTn

Initialization
r1||r2|| . . . ||rn � ({0, 1}2κ)n

◃ Common randomness
I1, I2 ← empty tables
◃ Mapping interfaces and identities
J, S ← ∅ ◃ Registered identities
L← [] ◃ Inputs of parties
for i = 1 to n do

setupCompletedi ← false ◃ Init.
flag

Interface Mi

Input: reveal

Ic ← Ic ∪ {i}
if setupCompletedi then

output ri at Mi

Interface E
Input: (deliver, j) ∈ N

if j ≤ |L| then
Parse L[j] as (m, IDs, IDr)
P← I2[IDr]
output (m, IDs) at P

Input: (register, ID) ∈ {0, 1}∗
if ID ̸∈ J then

J ← J ∪ {ID}
output Success at E

else
output Fail at E

Input: (inject,m, IDs, IDr)
∈ M× {0, 1}∗ × {0, 1}∗

P← I2[IDr]
if IDs ∈ J and P ̸= ⊥ and IDs ̸∈ S
then

output (m, IDs) at P

Input: getCommonRand
output {(i, ri) | i ∈ Ic} at E

Input: getMapping
output (I1, I2, J) at E

Interface Pi

Input: (register, ID) ∈ {0, 1}∗
if ID ̸∈ J ∧ I1[Pi] = ⊥ then

J ← J ∪ {ID}
I1[Pi]← ID
I2[ID]← Pi
setupCompletedi ← true
if i ̸∈ Ic then

S ← S ∪ {ID}
output Success at Pi

else
output Fail at Pi

Input: (send,m, ID) ∈ M× {0, 1}∗
IDs ← I1[Pi]
if IDs ̸= ⊥ and ID ∈ J then

if ID ∈ S then
L← L||(m, IDs, ID)
output (|m|, IDs, IDr) at E

else
output (m, IDs, IDr) at E

Figure 5.4: The (unfiltered) behavior of the constructed resource.

96 CHAPTER 5. SIGNCRYPTION

content m and a destination identifier. Any request is leaked at interface
E of the network (to the network attacker). Eve can further inject any
message it wants to each destination address and indicate any source
address as sender. At interface E, these capabilities are only potentially
available and thus not guaranteed. We thus specify a filter converter for
this interface as before.

Memory. We model the local memory of each honest party by a memory
resource Memn. The memory can be thought of as being composed of n
local memory modules. For the ease of exposition, we summarize these
modules in one memory functionality that mimics this behavior (each
party can read and write to its (and only this) memory location). The
memory allows each party to store a value. In the construction, this
will be the key storage. We make the storage explicit to model key
compromises. To this end, we associate an intruder interface Mi to each
party interface Pi. At interface Mi, the key is only potentially available
to an intruder Mallory and thus not guaranteed. This means that we
consider a filtered memory as an assumed resource where the filter only
shields the capability at interfaces Mi. Therefore, key-compromise attacks
(or key leakage) is captured by removing the filter which allows us to
model each key compromise as a separate event.

Certificate authority. The resource CAn models a key registration
functionality, and we denote it by certificate authority to stick to the
common term in public-key infrastructures. The resource allows to register
at an interface with an identity-value pair. The resource stores this
assignment and does not accept any further registration with the same
identity. The certificate authority is weak in the sense that it does not
perform any further test and corresponds to typical formalizations of
key registration functionalities. Any party can query to (fetch, ID) to
retrieve the value registered for identity ID. Eve can register any value
with any identity, under the constraint that the identity is not already
registered. The capabilities at interface E are again not guaranteed and
will be filtered as in the case of the network.

Summary. Overall, the assumed resource is the parallel composition
of the resources introduced above, i.e., [Netn,CAn,Memn]φreal , where

5.3. GRACEFULLY-DEGRADING SECURE NETWORKS 97

φreal is the filter that shields the memory (interfaces Mi), the network, and
the certificate authority (interface E), and is exactly equal to the filter
φideal given in Section 5.3.1. The description using pseudo-code of all
resources appears in Figure 5.5.

5.3.3 Construction

In the final section of this chapter, we show that a gracefully degrading
secure network can be constructed based on the MOS-security and MIS-
Conf and MIS-Auth of signcryption security.

Protocol

Recall from Section 2.3 that a protocol in constructive cryptography is for-
malized by a tuple of converters, where each converter is to be attached at
its respective interface. We introduce a signcryption converter scrΨ, that is
defined for a signcryption scheme Ψ = (GenS ,GenR,Signcrypt,Unsigncrypt),
and which will be attached at the honest interfaces. The converter speci-
fies the actions that each party takes to secure the communication over
the insecure network at interface Pi. Upon a registration query, a party
generates the two key-pairs required by the signcryption scheme, i.e., a
sender key pair and a receiver key pair that it uses to send and receive
message, respectively. It then tries to register its identity at the insecure
network and tries to register the identity and the two public keys with
the certificate authority. If everything succeeded, the converter stores the
keys to its local memory. Otherwise, the initialization is not complete
and the party remains un-initialized.

Upon sending a message, an initialized party retrieves the receiver
public key of its intended communication partner, and signcrypts the
message according to the signcryption scheme (and retrieves the secret key
from the memory) and sends the signcryptext over the network (indicating
the destination address). Upon receiving a pair (s, ID) consisting of a
signcryptext and a candidate source address from the insecure network, it
tries to unsigncrypt the given value and outputs the resulting message.
The formal specification of this protocol converter appears in Figure 5.7.

The default behavior for potentially dishonest interfaces. Also
the interfaces with potentially dishonest behavior formally need a converter.

98 CHAPTER 5. SIGNCRYPTION

Resource CAn

Initialization
T ← empty table
J ← ∅

Interface Pi, i ∈ [n]

Input: (register, ID, val)
∈ {0, 1}∗×{0, 1}∗

if ID ̸∈ J then
J ← J ∪ {ID}
T [ID]← val
output Success at Pi

else
output Fail at Pi

Input: (fetch, ID) ∈ {0, 1}∗
if ID ∈ J then

output T [ID] at Pi
else

output ⊥ at Pi

Interface E

Input: (register, ID, val)
∈ {0, 1}∗×{0, 1}∗

if ID ̸∈ J then
T [ID]← val
J ← J ∪ {ID}
output Success at E

else
output Fail at E

Input: fetchAll

output (J, T) at E

Resource Netn

Initialization
I1, I2 ← empty tables
J ← ∅

Interface Pi, i ∈ [n]

Input: (register, ID) ∈ {0, 1}∗
if ID ̸∈ J ∧ I1[Pi] = ⊥ then

J ← J ∪ {ID}
I1[Pi]← ID
I2[ID]← Pi
output Success at Pi

else
output Fail at Pi

Input: (send,m, IDr) ∈ M× {0, 1}∗
IDs ← I1[Pi]
if IDs ̸= ⊥ then

output (m, IDs, IDr) at E

Interface E

Input: (inject,m, IDs, IDr)
∈ M× {0, 1}∗ × {0, 1}∗

if IDr ∈ J then
P← I2[IDr]
output (m, IDs) at P

Resource Memn

Initialization
val ← ⊥

Interface Pi, i ∈ [n]

Input: (store, x) ∈ {0, 1}∗
val ← x

Input: read

output val at Pi

Interface Mi, i ∈ [n]

Input: reveal

output val at Mi

Figure 5.5: The (unfiltered) behavior of the assumed resources.

5.3. GRACEFULLY-DEGRADING SECURE NETWORKS 99

scrΨ

scrΨ

scrΨ

Mem

CA

Net

P1

P2

P3

M1

M2

M3

E

≈

SecNT σM2

σE

Inject

Eaves.

Sec.

Conf.

Auth.

P1

P2

P3

M1

M2

M3

E

Figure 5.6: Illustration of the construction notion. Left (real world):
Three parties running the protocol and where the second party’s key got
compromised. Right (ideal world): The secure network resource (with
simulators) that guarantees secure communication between P1 and P3, but
for example only confidential communication from party P2 to party P1,
and only authentic communication from party P3 to party P2.

These are, however, quite simple: the intruder is assumed to perform no
additional operation (the filter is not removed and exports no capability)
and this converter is therefore simply the identity converter 1. The same
holds for the network attacker where no additional operation needs to be
specified.

Summary. The protocol for the assumed resource (with interface set
{P1, . . . , Pn, M1, . . . , Mn, E}) defined above can be succinctly defined by
πΨ := (scrΨ, . . . , scrΨ, 1, . . . , 1, 1). It remains to prove that this protocol
achieves the intended construction.

Security Proof

We are now ready to formally state the main theorem of this chapter.

Theorem 5.3.1. Let Ψ be a signcryption scheme, let n > 0 be an in-
teger, and let κ be an upper bound on the randomness used in one in-
vocation of the key-generation algorithm. Then, the associated protocol
πΨ := (scrΨ, . . . , scrΨ, 1, . . . , 1, 1) constructs the gracefully-degrading se-
cure network from an insecure network, a certificate authority, and a
memory resource within ε(·) and with respect to potentially dishonest

100 CHAPTER 5. SIGNCRYPTION

Converter scrΨ

Initialization
IDreg ← ⊥

Interface out

Input: (register, ID) ∈ {0, 1}∗
if IDreg = ⊥ then

(skS , pkS)← GenS
(skR, pkR)← GenR
val ← [skS , pkS , skR, pkR]
output (register, ID, (pkS , pkR))

at in to
CA
Let retca be the return value
if retca = Success then

output (register, ID) at in to
Net
Let retnet be the return value
if retnet = Success then

IDreg ← ID
output (store, val) at in to
Mem
output Success at out

else
output Fail at out

else
output Fail at out

Input: (send,m, ID) ∈ M× {0, 1}∗
if IDreg ̸= ⊥ then

output read at in to Mem
Let val = [skS , pkS , skR, pkR] be
the

return
value
output (fetch, ID) at in to CA
Let retca be the return value
Parse retca as pair (pk ′

S , pk
′
R)

if (pk ′
S , pk

′
R) ̸= (⊥,⊥) then

s← Signcrypt(skS , pk
′
R,m)

output (send, s, ID) at in to Net

Interface in

Input: (s, ID) ∈ S × {0, 1}∗ from Net
if IDreg ̸= ⊥ then

output read at in to Mem
Let val = [skS , pkS , skR, pkR] be the return value
output (fetch, ID) at in to CA
Let retca be the return value
Parse retca as pair (pk ′

S , pk
′
R)

if (pk ′
S , pk

′
R) ̸= (⊥,⊥) then

m← Unsigncrypt(skR, pk
′
S , s)

if m ̸= ⊥ then
output (m, ID) at out

Figure 5.7: The signcryption converter.

5.3. GRACEFULLY-DEGRADING SECURE NETWORKS 101

U := {M1, . . . , Mn, E}, i.e.,

[Netn,CAn,Memn]φreal

(πΨ, ε,U)
==⇒ SecNTnφideal ,

for ε(D) := n2 · AdvMOS
Ψ,ρ1(D) + n · AdvMIS-Auth

Ψ,ρ2(D) + n · AdvMIS-Conf
Ψ,ρ3(D) , where the

black-box reductions ρ1, ρ2, and ρ3 map a distinguisher to an adversary
(of essentially the same efficiency) and are defined below in the proofs for
Claim 1, Claim 2, and Claim 3, respectively.

Stated differently, if the signcryption scheme is secure in the respec-
tive multi-user, outsider-security and insider-security model, then the
construction is achieved.

Proof. To prove Theorem 5.3.1, we specify the two converters σnet and
σmem in Figures 5.8 and 5.9 and prove that equation (2.2) is fulfilled
for σ = (σM1 , . . . , σMn , σE), where σE := σnet and σMi := σmem and for the
above choice of ε(.). In particular, we show that for any subset C ⊆ U we
have that

∆D(πΨ
C φ

real
C [Netn,CAn,Memn], σC φ

ideal
C SecNTn) ≤ ε(D), (5.1)

for any distinguisher D. Fix any set C ⊆ {Mi, . . . , Mn, E}. We first observe
that if E ̸∈ C, then the real and the ideal world are perfectly indistin-
guishable (i.e., the distinguishing advantage is zero for any distinguisher):
both systems behave like a secure network, and for any interface Mi ∈ C,
two signcryption key pairs are leaked. Since the network attacker is not
present, this has no observable effect to the security properties, and since
the signcryption scheme is assumed to be correct, every messages sent
can be correctly received.

Without loss of generality we hence assume that E ∈ C. The set C
induces a special corruption set Z ⊆ {M1, . . . , Mn}, i.e., Mi ∈ Z ↔ Mi ∈ C.
The set Z intuitively describes the corruption set, i.e., the set of parties
whose keys are stolen.

Overview. We prove the statement by a “game-hopping” argument:
We start with the real world HZ0 which is equivalent to the real world
πΨ
C φ

real
C [Netn,CAn,Memn] with C := {E}∪Z, and end with system HZ6

which is equivalent to ideal world σC φ
ideal
C SecNTn with C := {E} ∪ Z.

102 CHAPTER 5. SIGNCRYPTION

Converter σnet

Initialization
T ← empty table; valPk ← ⊥ for all k ∈ [n]; j ← 0

Interface out

Input: (inject, s, IDs, IDr) (for Net)
UpdateKeyTable ◃ s ∈ S
Let valPi = [skS , pkS , skR, pkR]

Parse T [IDs] as (pk ′
S , pk

′
R)

if (pk ′
S , pk

′
R) ̸= (⊥,⊥) then

if ∃j : Lsim[c, IDs, IDr] = j} then
j ← Lsim[c, IDs, IDr]
output (deliver, j) to SecNT

else
m← Unsigncrypt(skR, pk

′
S , s)

if m ̸= ⊥ then
(inject,m, IDs, IDr)

Input: (register, ID, val) (for CA)
output (register, ID) at SecNT
Let v be the returned answer
if v = Success then

T [ID]← val
output Success at E

else
output Fail at E

Input: fetchAll (for CA)
UpdateKeyTable
output getMapping at in to SecNT
Let (I1, I2, J) be the returned value
output (J, T) at out

Interface in

Input: (v, IDs, IDr) (from Net)
UpdateKeyTable ◃ v ∈ M or v ∈ N
output getMapping at in to SecNT
Let (I1, I2, J) be the returned value
Let Pi ← I2[IDs]
Parse vali as [skS , pkS , skR, pkR]
Parse T [ID] as (pk ′

S , pk
′
R)

if (pk ′
S , pk

′
R) ̸= (⊥,⊥) then

if v ∈ N then
Let ℓ← v
m∗ � {0, 1}ℓ
s← Signcrypt(skS , pk

′
R,m

∗)
else

m∗ ← v
s← Signcrypt(skS , pk

′
R,m

∗)
Lsim[c, IDs, IDr]← j
j ← j + 1
output (s, IDs, IDr) at E

Helper procedure of this simulator:
procedure UpdateKeyTable

output getMapping at in to SecNT
Let (I1, I2, J) be the returned value
output getCommonRand to SecNT
Let Z := {(i, ri)} be the return value
for each ID ∈ J do

if I2[ID] ̸= ⊥ ∧ T [ID] = ⊥ then
Let Pk ← I2[ID]
if (k, ·) ̸∈ Z then (r1k, r

2
k) �

{0, 1}2κ
(skS , pkS)← GenS(r1k)

(skR, pkR)← GenR(r2k)
T [ID]← (pkS , pkR)
valPk ← [skS , pkS , skR, pkR]

Figure 5.8: The simulator converter for the network attacker at interface E.

5.3. GRACEFULLY-DEGRADING SECURE NETWORKS 103

Converter σmem

Initialization
val ← ⊥
output reveal at in to SecNT ◃ Compromise this party in the ideal world.

Interface out

Input: reveal

if val = ⊥ then
output reveal at in to SecNT
Let r be the returned value
if r equals r1||r2 ∈ {0, 1}2κ then

(skS , pkS)← GenS(r1)

(skR, pkR)← GenR(r2)
val ← [skS , pkS , skR, pkR]

output val at out

Figure 5.9: The simulator converter for the intruder, for each interface Mi.

Each hop in this sequence is justified by careful syntactic inspection of
the differences of the systems and their difference is either 0 (in case
of syntactic modifications that do not affect the behavior) or can be
bounded by the respective advantage of an attacker against the security
games of signcryption by means of a reduction. Note that we prove the
statement for a insider-security notion that is implied by the traditional
insider-security notion. By transitivity, Theorem 5.3.1 also holds with
respect to the traditional notion.

Sequence of hybrid worlds. Let Z be an arbitrary and fixed corrup-
tion set. We describe the systems below informally, indicating what is the
change from one hybrid to the next. The code is given later and includes
graphical indications what changes from one hybrid to the next. In total,
we do eight steps as follows:

1.) The first hybrid system HZ0 , depicted in Figure 5.10, describes the
behavior of the real world, where we plugged together the protocol
converters and the assumed system. We further introduce some new
variables such as bad1 and bad2 that do not have an impact on the
behavior.

104 CHAPTER 5. SIGNCRYPTION

2.) The second hybrid system HZ1 , first depicted in Figure 5.11, is a
slight modification of the first, where we replace encryptions of
messages by encryptions of random messages, in case the commu-
nication is between two honest parties whose keys were not stolen.
Furthermore, the adversary cannot inject messages for any such
pairs of parties. The variable bad1 is true, if and only if the adver-
sary succeeds in breaking the security between any such pair. Note
that the set S computed by the hybrids comprises all parties which
are not corrupted, that is, all parties not in Z.

For the difference between the first and second hybrid, we can prove
the following claim.

Claim 1. For any distinguisher D we have ∆D(HZ0 ,H
Z
1) ≤ n2·Adv

MOS
Ψ,ρZ(D),

that is, a (successful) distinguisher D for HZ0 and HZ1 can be transformed
into a (successful) distinguisher A = ρZ(D) (defined in the proof) for
RealMOS

Ψ and IdealMOS
Ψ .

Proof of claim. The idea is to use a standard hybrid argument on the set
of all pairs of users which (pairwise) do not leak their secret key in the
real world, that is, the set of all pairs of users which in the ideal world
can communicate in a secure (both confidential and authentic) fashion.
More precisely, we select one of those pairs of users uniformly at random,
and for their (mono-directional) communications and design a reduction
ρZ(D) that uses the oracles provided to the adversary by the security
experiment to emulate the correct view towards D.

Let the system D be a distinguisher for HZ0 and HZ1 , and for the set
H := {i ∈ [n] | Mi /∈ Z} of indexes of uncorrupted parties, let L := H×H
denote the set of all ℓ2 two-element3 tuples over the set H, with ℓ := |H|.
Let also fix an order over L, that is, fix some efficiently computable
bijection ω : [ℓ2] → L as well as its efficiently computable inverse map
ω−1 : L → [ℓ2]. We construct an adversary A for distinguishing RealMOS

Ψ

from IdealMOS
Ψ using distinguisher D via a reduction ρZ(·), denoted

A := ρZ(D) that will depend on the corruption set Z.
The reduction works by first choosing an index t uniformly at random

from [ℓ2], and then computing the pair of indexes of designated parties
(S,R) := ω(t) (thus S,R ∈ [n]), corresponding to the designated sender

3Note that same-element tuples, i.e. (ID, ID), for ID ∈ H, are also included in L.

5.3. GRACEFULLY-DEGRADING SECURE NETWORKS 105

PS and the designated receiver PR, respectively. In the following, let At
be the same as A but where the index t is fixed instead of uniformly
randomly selected. For a random variable T uniformly distributed over
[ℓ2], this implies A = AT . Recall that when At interacts with RealMOS

Ψ

or IdealMOS
Ψ , it receives a pair of public keys, a sender public key pk⋆S ,

which will be set as PS ’s sender public key, and receiver public key pk⋆R,
which will be set as PR’s receiver public key. Upon registration of an
identity via an honest interface, At generates and stores both sender and
receiver key-pairs for the respective user, except that for party PS only a
receiver key-pair is generated and stored and for party PR only a sender
key-pair is generated and stored (recall that for both those parties At uses
one of the public keys provided by either RealMOS

Ψ or IdealMOS
Ψ , whereas

the corresponding secret keys are “hard-coded” into the provided oracles).
Upon registration directly at interface E, At internally stores the mapping
of this identity to the registered public key. Whenever reveal is input
at interface Mi ∈ Z (i.e., i /∈ H), At returns the two generated key-pairs
to the distinguisher D (and ⊥ if Mi /∈ Z, i.e., i ∈ H). Similarly, it is easy
for At to generate the mapping of identities to public keys when asked
to reveal this information via a query fetchAll. We now describe the
behavior of At on the remaining inputs.

On input (send,m, ID) at interface Pi: The reductionAt retrieves IDPi

and Pj from ID (recall that i, j ∈ [n]), and if both parties have
previously successfully registered, At performs the following case
distinction:

• If (i, j) /∈ L, then the message m is signcrypted into s using Pi’s
sender private key and Pj ’s receiver public key, and (s, IDPi , ID)
is output at E.
• If (i, j) ∈ L, then the further case distinction is made:

– If ω−1(i, j) < t, then the message m is replaced by a uni-
form message m∗ of the same length which is signcrypted
into s using Pi’s sender private key and Pj ’s receiver public
key, and (s, IDPi , ID) is output at E. Note that if i = S
(that is, the sender is the designated sender PS), then At
uses the provided signcryption oracle. In any case, the
mapping ((s, IDPi , ID) ↦→ m) is stored into a table M for
later reference.

106 CHAPTER 5. SIGNCRYPTION

– If ω−1(i, j) > t, then the message m is signcrypted into s
using Pi’s sender private key and Pj ’s receiver public key,
and (s, IDPi , ID) is output at E. Note that if i = S (that is,
the sender is the designated sender PS), then At uses the
provided signcryption oracle.

– If ω−1(i, j) = t (that is, the parties are exactly the desig-
nated sender PS and receiver PR), then the message m is
signcrypted into s using the provided signcryption oracle,
and (s, IDPi , ID) is output at E. Moreover, in this case the
mapping ((s, IDPi , ID) ↦→ m) is stored into table M .

On input (inject, s, ID, ID′) at interface E: The reductionAt retrieves
IDPi from ID and Pj from ID′ (recall that i, j ∈ [n]), and if both
parties have previously successfully registered, At performs the
following case distinction:

• If (i, j) /∈ L, then the signcryptext s is unsigncrypted into m
using Pj ’s receiver private key and Pi’s sender public key, and
(m, ID) is output at Pj .

• If (i, j) ∈ L, then the further case distinction is made:

– If ω−1(i, j) < t, then, if possible, the corresponding value
m is retrieved from table M and (m, ID) is output at
Pj . In case no mapping exists, no output is produced for
interface Pj .

– If ω−1(i, j) > t, then the signcryptext s is unsigncrypted
into m using Pj ’s receiver private key and Pi’s sender public
key, and (m, ID) is output at Pj . Note that if j = R (that
is, the receiver is the designated receiver PR), then At uses
the provided unsigncryption oracle.

– If ω−1(i, j) = t (that is, the parties are exactly the des-
ignated sender PS and receiver PR), then if possible the
corresponding value m is retrieved from table M , other-
wise the signcryptext s is unsigncrypted into m using the
provided unsigncryption oracle. If a value m ≠ ⊥ can be
obtained this way, (m, ID) is output at Pj and otherwise,
no output is produced.

5.3. GRACEFULLY-DEGRADING SECURE NETWORKS 107

Towards a standard hybrid argument, note that:

• Pr
[
ARealMOS

Ψ
1 = 1

]
= Pr

[
DHZ0 = 1

]
, that is, if the reduction adver-

sary is connected to real oracles, and it sets (S,R) as the first pair
of indexes in L according to the ordering induced by ω, then for the
distinguisher D the view is the same as if it was connected to the
real world resource HZ0 , since all pairs of parties with indexes after
(S,R) as well as (PS , PR) act as real users.

• Pr
[
AIdealMOS

Ψ

ℓ2 = 1
]
= Pr

[
DHZ1 = 1

]
, that is, if the reduction adver-

sary is connected to ideal oracles, and it sets (S,R) as the last pair
of indexes in L according to the ordering induced by ω, then for
the distinguisher D the view is the same as if it was connected to
the ideal world resource HZ1 , since all pairs of parties with indexes
before (S,R) as well as (PS , PR) act as ideal users. In particular,
upon an input (inject, ·, ·, ·), if no corresponding input was given
to the system before, no message is output, i.e., in both systems,
even if the condition of bad1 would be satisfied, both system define
the resulting plaintext to be ⊥.

• Pr
[
AIdealMOS

Ψ
t = 1

]
= Pr

[
ARealMOS

Ψ
t+1 = 1

]
, that is, if the reduction

adversary At is connected to ideal oracles, then for the distinguisher
D the view is the same as if it was being used by the reduction
adversary At+1 when connected to real oracles.

108 CHAPTER 5. SIGNCRYPTION

We can now conclude the proof using a standard hybrid argument:

AdvMOS
Ψ,A =

ℓ2∑
t=1

AdvMOS
Ψ,At

· Pr[T = t] (5.2)

=
1

ℓ2

ℓ2∑
t=1

(
Pr

[
ARealMOS

Ψ
t = 1

]
− Pr

[
AIdealMOS

Ψ
t = 1

])
(5.3)

=
1

ℓ2

ℓ2∑
t=1

(
Pr

[
ARealMOS

Ψ
t = 1

]
− Pr

[
ARealMOS

Ψ
t+1 = 1

])
(5.4)

=
1

ℓ2

(
Pr

[
ARealMOS

Ψ
1 = 1

]
− Pr

[
ARealMOS

Ψ

ℓ2+1 = 1
])

(5.5)

=
1

ℓ2

(
Pr

[
ARealMOS

Ψ
1 = 1

]
− Pr

[
AIdealMOS

Ψ

ℓ2 = 1
])

(5.6)

=
1

ℓ2
(
Pr

[
DHZ0 = 1

]
− Pr

[
DHZ1 = 1

])
(5.7)

=
1

ℓ2
·∆D(HZ0 ,H

Z
1), (5.8)

where for (5.2) we used A = AT and the law of total probability, for (5.3)
we used Pr[T = t] = 1

ℓ2 (for any t ∈ [ℓ2]), for (5.4), (5.6), and (5.7) we
used the three equalities outlined above, for (5.5) we used the standard
hybrid argument, and for (5.8) we used the definition of the distinguishing
advantage. This proves that systems HZ0 and HZ1 are computationally
indistinguishable, that is, for any distinguisher D,

∆D(HZ0 ,H
Z
1) ≤ n2 · Adv

MOS
Ψ,ρZ(D),

since ℓ ≤ n. ♦

Finally, we get the reduction stated in Theorem 5.3.1 by formally
defining ρ1(D) := argmaxρZ(D):Z⊆U\{E}{AdvMOS

Ψ,ρZ(D)}, where we assume
that the return value is a single adversary (note that there will always
be a maximum in this finite set of possibilities and in case of multiple
maxima, we simple apply a tie-breaking rule like lexicographic ordering).

3.) The third hybrid system HZ2 is depicted in Figure 5.12 and is a
slight modification of the second: in this hybrid system, a message

5.3. GRACEFULLY-DEGRADING SECURE NETWORKS 109

cannot be injected for pairs of parties, where the source of a message
is a honest party whose key was not stolen (and the recipient is a
party about whom we do not make an assumption). The variable
bad2 is true, if and only if the adversary succeeds in breaking the
security between any such pair.

For the difference between the second and third hybrid, we can prove
the following claim.

Claim 2. For any distinguisher D we have ∆D(HZ1 ,H
Z
2) ≤ n·Adv

MIS-Auth
Ψ,ρZ(D),

that is, a (successful) distinguisher D for HZ1 and HZ2 can be transformed
into a (successful) forger A = ρZ(D) (defined in the proof) for AuthMIS

Ψ .

Proof of claim. The idea is again to use a standard hybrid argument, but
this time on the set of all senders which did not leak their secret key
in the real world, that is, the set of all users which in the ideal world
can send messages in an authentic fashion to other users. More precisely,
we select one of those users uniformly at random, and for his (outgoing)
communications we use the oracles provided to the adversary by the
security experiment. Note that for the very special case that Z = ∅ the
statement is trivial since there is no difference between HZ1 and HZ2 by
definition, hence, we assume Z ̸= ∅ in the sequel.

Let the system D be a distinguisher for HZ1 and HZ2 , and let H = {i ∈
[n] | Mi /∈ Z}, ℓ = |H|, be as defined in the proof of Claim 1. We again
assume an order over H, that is, we again fix some efficiently computable
bijection ω : [ℓ] → H as well as its efficiently computable inverse map
ω−1 : H → [ℓ]. We construct an adversary A for winning AuthMIS

Ψ using
distinguisher D via a reduction ρZ(·), denoted A = ρZ(D).

The reduction works similarly to the one in Claim 1, i.e., by first
choosing an index t uniformly at random from [ℓ], and then computing
the index S = ω(t), S ∈ [n], of a designated sender PS . Again, let At
be the same as A but where the index t is fixed instead of uniformly
randomly selected. For a random variable T uniformly distributed over
[ℓ], this implies A = AT . Recall that when At interacts with AuthMIS

Ψ ,
it receives a sender public key pk⋆S , which will be set as PS ’s receiver
public key. As before, upon honest registration of a new entity, At
stores a sender key-pair (generated using GenS) and a receiver key-pair
(generated using the oracle Gen provided by AuthMIS

Ψ), except that for
party PS only a receiver key-pair is generated (recall that for PS , At uses

110 CHAPTER 5. SIGNCRYPTION

the sender public key provided by AuthMIS
Ψ , whereas the corresponding

sender secret key is “hard-coded” into the provided signcryption oracle).
In any case, the mapping between identity and public keys is recorded.
Upon registration directly at interface E, the reduction remembers the
corresponding mapping between identity and public keys. Whenever
reveal is input at interface Mi ∈ Z (i.e., i /∈ H), At returns the two
generated key-pairs to the distinguisher D (and ⊥ if Mi /∈ Z, i.e., i ∈ H)
and on fetchAll the recorded mapping between identities and public
keys is returned. We now describe the behavior of At on the remaining
inputs.

On input (send,m, ID) at interface Pi: The reductionAt retrieves IDPi

and Pj from ID (recall that i, j ∈ [n]), and if both parties have
previously successfully registered, At performs the following case
distinction:

• If i /∈ H, then the message m is signcrypted into s using Pi’s
sender private key and Pj ’s receiver public key, and (s, IDPi , ID)
is output at E.
• If i ∈ H, then the further case distinction is made. First, if
(i, j) ∈ L then the message m is first replaced replaced by a
uniform message m∗ of the same length. Otherwise, m is left
untouched. Continue with the remaining two conditions:

– If ω−1(i) ̸= t, then the message m is signcrypted into
s using Pi’s sender private key and Pj ’s receiver pub-
lic key, and (s, IDPi , ID) is output at E. The mapping
((s, IDPi , ID) ↦→ m) is stored into a table M for later refer-
ence.

– If ω−1(i) = t (that is, the party Pi is exactly the designated
sender PS), then the message m is signcrypted into s using
the provided signcryption oracle, and (s, IDPi , ID) is then
output at E. The mapping ((s, IDPi , ID) ↦→ m) is stored
into a table M for later reference.

On input (inject, s, ID, ID′) at interface E: The reductionAt retrieves
IDPi from ID and Pj from ID′ (recall that i, j ∈ [n]), and if both
parties have previously successfully registered, At performs the
following case distinction:

5.3. GRACEFULLY-DEGRADING SECURE NETWORKS 111

• If i /∈ H, then the signcryptext s is unsigncrypted into m using
Pj ’s receiver private key and Pi’s sender public key, and (m, ID)
is output at Pj .

• If i ∈ H, then the further case distinction is made:

– If (i, j) ∈ L or ω−1(i) < t then, if possible, the corre-
sponding value m is retrieved from table M and (m, ID)
is output at Pj . In case no mapping exists, no output is
produced for interface Pj .

– If ω−1(i) > t and j ̸∈ H, then the signcryptext s is un-
signcrypted into m using Pj ’s receiver private key and Pi’s
sender public key, and (m, ID) is output at Pj .

– If ω−1(i) = t (that is, the party Pi is exactly the desig-
nated sender PS) and j ̸∈ H, then the signcryptext s is
unsigncrypted into m using the provided unsigncryption
oracle, and (m, ID) is output at Pj .

Note that we can naturally define more fine-grained hybrid systems HZ1,t
and HZ2,t, for t ∈ [ℓ], such that HZ2,t and HZ1,t+1 are exactly the system
that At emulates to D. In particular the flag win in AuthMIS

Ψ is set if and
only if the flag bad2 is set upon successfully injecting a forged signcryptext
on behalf of ω(t). For sake of clarity, we will refer to this new flag by badt2.
Moreover, systems HZ1,t and HZ2,t have an equivalent behavior unless this
flag is set. Since the behavior of the fine-grained hybrids is analogous to
the one described above for At, we refrain from formally describing HZ1,t
and HZ2,t. Towards a standard hybrid argument, note that:

• Pr
[
DHZ1,1 = 1

]
= Pr

[
DHZ1 = 1

]
, that is, the view of distinguisher

D when interacting with HZ1,1 or HZ1 is the same.

• Pr
[
DHZ2,ℓ = 1

]
= Pr

[
DHZ2 = 1

]
, that is, the view of distinguisher

D when interacting with HZ2,ℓ or HZ2 is the same.

• Pr
[
DHZ2,t = 1

]
= Pr

[
DHZ1,t+1 = 1

]
, that is, the view of distin-

guisher D when interacting with HZ2,t or HZ1,t+1 is the same.

112 CHAPTER 5. SIGNCRYPTION

We can now conclude the proof:

AdvMIS-Auth
Ψ,A =

1

ℓ

ℓ∑
t=1

Pr
[
AAuthMIS

Ψ
t sets win

]
(5.9)

=
1

ℓ

ℓ∑
t=1

Pr
[
DHZ2,t sets badt2

]
(5.10)

≥ 1

ℓ

ℓ∑
t=1

(
Pr

[
DHZ1,t = 1

]
− Pr

[
DHZ2,t = 1

])
(5.11)

=
1

ℓ

ℓ∑
t=1

(
Pr

[
DHZ1,t = 1

]
− Pr

[
DHZ1,t+1 = 1

])
=

1

ℓ

(
Pr

[
DHZ1,1 = 1

]
− Pr

[
DHZ1,ℓ+1 = 1

])
=

1

ℓ

(
Pr

[
DHZ1,1 = 1

]
− Pr

[
DHZ2,ℓ = 1

])
=

1

ℓ

(
Pr

[
DHZ1 = 1

]
− Pr

[
DHZ2 = 1

])
=

1

ℓ
·∆D(HZ1 ,H

Z
2).

For (5.9) we used Pr[T = t] = 1
ℓ (for any t ∈ [ℓ]) and the definition of the

advantage of At when interacting with AuthMIS
Ψ , for (5.10) we used the

fact that At perfectly simulates HZ2,t to D. For (5.11) we used [Mau02,
Theorem 1] (or equivalently, a concretization thereof for code-based games
in [BR06, Lemma 2 (“Fundameltal Lemma of Game-Playing”)]) that
relates game-winning and distinguishing. The remaining steps hold by the
standard hybrid argument and the by the equalities outlined above. This
proves that systems HZ1 and HZ2 are computationally indistinguishable,
that is, for any distinguisher D,

∆D(HZ1 ,H
Z
2) ≤ n · Adv

MIS-Auth
Ψ,ρZ(D),

since ℓ ≤ n. ♦

Finally, the reduction ρ2(·) stated in the theorem is defined analogously
to the reduction ρ1(·) above.

5.3. GRACEFULLY-DEGRADING SECURE NETWORKS 113

4.) The fourth hybrid system HZ3 , first depicted in Figure 5.13, is a
slight modification of the third, where we replace encryptions of
messages by encryptions of random messages in case the recipient
of a message is an honest party whose key is not compromised (and
the source is a party about whom we make no assumption).

For the difference between the third and the fourth hybrid, we can
prove the following claim.

Claim 3. For any distinguisher D we have ∆D(HZ2 ,H
Z
3) ≤ n·Adv

MIS-Conf
Ψ,ρZ(D),

that is, a (successful) distinguisher D for HZ2 and HZ3 can be transformed
into a (successful) distinguisher A = ρZ(D) (defined in the proof) for
RealMIS-Conf

Ψ and IdealMIS-Conf
Ψ .

Proof of claim. The idea is again to use a standard hybrid argument, but
this time on the set of all receivers which did not leak their secret key in
the real world, that is, the set of all users which in the ideal world can
receive messages in a confidential fashion. More precisely, we select one
of those users uniformly at random, and for his (ingoing) communications
we use the oracles provided to the adversary by the security experiment
(again, the reduction will depend on the corruption set Z). Note that for
the very special case that Z = ∅ the statement is trivial since there is no
difference between HZ2 and HZ3 by definition. So, we assume Z ̸= ∅ in
the sequel.

Similarly to above, let the system D be a distinguisher for HZ2 and
HZ3 , and let H = {i ∈ [n] | Mi /∈ Z} be the set of indexes of uncorrupted
parties, with ℓ = |H|. Let us also fix an order over H, that is, fix some
efficiently computable bijection ω : [ℓ] → H as well as its efficiently
computable inverse map ω−1 : H → [ℓ]. We construct an adversary A for
distinguishing RealMIS-Conf

Ψ from IdealMIS-Conf
Ψ using distinguisher D via

a reduction ρZ(·), denoted A = ρZ(D).
The reduction works by first choosing an index t uniformly at random

from [ℓ], and then computing the index R = ω(t), R ∈ [n], of a designated
receiver PR. In the following, let At be the same as A but where the
index t is fixed instead of uniformly randomly selected. For a random
variable T uniformly distributed over [ℓ], this implies A = AT . Recall
that when At interacts with RealMIS-Conf

Ψ or IdealMIS-Conf
Ψ , it receives a

receiver public key pk⋆R, which will be set as PR’s receiver public key.
Upon honest registration, At stores for each user both a receiver key-pair

114 CHAPTER 5. SIGNCRYPTION

(generated using GenR) and a sender key-pair (generated using the oracle
Gen provided by either RealMIS-Conf

Ψ or IdealMIS-Conf
Ψ), except that for

party PR only a sender key-pair is generated (recall that for PR, At uses
the receiver public key provided by either RealMIS-Conf

Ψ or IdealMIS-Conf
Ψ ,

whereas the corresponding receiver secret key is “hard-coded” into the
provided unsigncryption oracle). The reduction records the mapping of
identities to public keys. Dishonest registrations are handled as in the
proof of Claim 1, as well as answers to fetchAll queries. Whenever
reveal is input at interface Mi ∈ Z (i.e., i /∈ H), At returns the two
generated key-pairs to the distinguisher D (and ⊥ if Mi /∈ Z, i.e., i ∈ H).
We now describe the behavior of At on the remaining inputs.

On input (send,m, ID) at interface Pi: The reductionAt retrieves IDPi

and Pj from ID (recall that i, j ∈ [n]), and if both parties have
previously successfully registered, At performs the following case
distinction:

• If j /∈ H, then the message m is signcrypted into s using Pi’s
sender private key and Pj ’s receiver public key, and (s, IDPi , ID)
is output at E.

• If j ∈ H, then the further case distinction is made:

– If (i, j) ∈ L or ω−1(j) < t, then the message m is replaced
by a uniform message m∗ of the same length which is
signcrypted into s using Pi’s sender private key and Pj ’s
receiver public key, and (s, IDPi , ID) is output at E.

– Else if ω−1(j) > t, then the message m is signcrypted into
s using Pi’s sender private key and Pj ’s receiver public key,
and (s, IDPi , ID) is output at E.

– Else if ω−1(j) = t (that is, the party Pj is exactly the
designated receiver PR) (and i ̸∈ H), then the message
m is signcrypted into s using the provided signcryption
oracle, by providing as input the key-pair of the sender
Pi and the receiver public key pk⋆R. (s, IDPi , ID) is then
output at E.

In any of the above cases, the mapping ((s, IDPi , ID) ↦→ m) is
stored into a table M for later reference.

5.3. GRACEFULLY-DEGRADING SECURE NETWORKS 115

On input (inject, s, ID, ID′) at interface E: The reductionAt retrieves
IDPi from ID and Pj from ID′ (recall that i, j ∈ [n]), and if both
parties have previously successfully registered, At performs the
following case distinction:

• If i ∈ H then, if possible, the corresponding value m is retrieved
from table M and (m, ID) is output at Pj . In case no mapping
exists, no output is produced for interface Pj .

• If i ̸∈ H, then the further case distinction is made:

– If ω−1(j) < t then if possible the corresponding value m
is retrieved from table M , otherwise the signcryptext s is
unsigncrypted into m using Pj ’s receiver private key and
Pi’s sender public key. If a value m ̸= ⊥ can be obtained
this way, (m, ID) is output at Pj and otherwise, no output
is produced.

– If ω−1(j) > t and j ̸∈ H, then the signcryptext s is
unsigncrypted into m using Pj ’s receiver private key and
Pi’s sender public key, and (m, ID) is output at Pj .

– If ω−1(j) = t (that is, the party Pi is exactly the designated
sender PS) and j ̸∈ H, then if possible the corresponding
value m is retrieved from table M , otherwise the sign-
cryptext s is unsigncrypted into m using the provided
unsigncryption oracle. If a value m ≠ ⊥ can be obtained
this way, (m, ID) is output at Pj and otherwise, no output
is produced.

Towards a hybrid argument, note that:

• Pr
[
ARealMIS-Conf

Ψ
1 = 1

]
= Pr

[
DHZ2 = 1

]
, that is, if the reduction ad-

versary is connected to real oracles, and it sets R as the first index in
H according to the ordering induced by ω, then for the distinguisher
D the view is the same as if it was connected to the real world
resource HZ2 , since for all parties with index j ∈ H and greater t as
well as Pt confidentiality is only enforced for messages originating
form an honest sender. Note that injecting messages in the name of
corrupted senders is possible (as in a typical CCA-style game).

116 CHAPTER 5. SIGNCRYPTION

• Pr
[
AIdealMIS-Conf

Ψ

ℓ = 1
]
= Pr

[
DHZ3 = 1

]
, that is, if the reduction ad-

versary is connected to ideal oracles, and it sets R as the last index
in H according to the ordering induced by ω, then for the distin-
guisher D the view is the same as if it was connected to the ideal
world resource HZ3 , since now, for all uncorrupted parties with index
j ∈ H and before R as well as PR confidentiality of the message
is enforced, even for messages originating from dishonest senders.
However, injecting message in the name of corrupted users is still
possible.

• Pr
[
AIdealMIS-Conf

Ψ
t = 1

]
= Pr

[
ARealMIS-Conf

Ψ
t+1 = 1

]
, that is, if the reduc-

tion adversary At is connected to ideal oracles, then for the dis-
tinguisher D the view is the same as if it was being used by the
reduction adversary At+1 when connected to real oracles, since in
the former case, the ideal oracles enforce confidentiality (by encryp-
tion a random message) and in the latter, this happens by definition
of the reduction.

We can now conclude the proof using the hybrid argument:

AdvMIS-Conf
Ψ,A =

ℓ∑
t=1

AdvMIS-Conf
Ψ,At

· Pr[T = t]

=
1

ℓ

ℓ∑
t=1

(
Pr

[
ARealMIS-Conf

Ψ
t = 1

]
− Pr

[
AIdealMIS-Conf

Ψ
t = 1

])
=

1

ℓ

ℓ∑
t=1

(
Pr

[
ARealMIS-Conf

Ψ
t = 1

]
− Pr

[
ARealMIS-Conf

Ψ
t+1 = 1

])
=

1

ℓ

(
Pr

[
ARealMIS-Conf

Ψ
1 = 1

]
− Pr

[
ARealMIS-Conf

Ψ

ℓ+1 = 1
])

=
1

ℓ

(
Pr

[
ARealMIS-Conf

Ψ
1 = 1

]
− Pr

[
AIdealMIS-Conf

Ψ

ℓ = 1
])

=
1

ℓ

(
Pr

[
DHZ2 = 1

]
− Pr

[
DHZ3 = 1

])
=

1

ℓ
·∆D(HZ2 ,H

Z
3),

where the steps follow analogously to the proof of Claim 1. Hence,
systems HZ2 and HZ3 are computationally indistinguishable, that is, for

5.3. GRACEFULLY-DEGRADING SECURE NETWORKS 117

any distinguisher D,

∆D(HZ2 ,H
Z
3) ≤ n · Adv

MIS-Conf
Ψ,ρC(D),

since ℓ ≤ n. ♦

Finally, the reduction ρ3(·) stated in the theorem is defined analogously
to the reduction ρ1(·) above.

The final four steps are completed in the supplementary material. We
give a brief overview:

5.) The hybrid system HZ4 is a syntactic modification of the previous
one and detailed in Appendix A.1.1.

6.) The hybrid system HZ5 is a syntactic modification of the previous
one and detailed in Appendix A.1.2.

7.) The hybrid system HZ6 is a syntactic modification of the previous
one and detailed in Appendix A.1.3.

8.) We show how hybrid system HZ6 can be seen as the composition of
the secure network and the simulators and the details are given in
Appendix A.1.4.

Since HZ4 = HZ5 = HZ6 , the latter being equivalent to the ideal world,
this concludes the argument and the proof of Theorem 5.3.1.

A special case. An interesting corollary that we can directly observe by
looking at the game-hopping argument is that in the special case when the
set of interfaces with potential dishonest behavior is the set {E}, we get the
following statement: The outsider security model implies the construction
of a secure network if no honest parties’ keys are compromised.

Corollary 5.3.2. If there are no key compromises, i.e, U = {E}, then

[Netn,CAn,Memn]φreal

(πΨ, ε, {E})
==⇒ SecNTnφideal ,

for ε(D) := n2 ·AdvMOS
Ψ,ρ1(D), where the reduction ρ1 is defined in the proof

of Claim 1.

Proof. The proof follows by the above arguments for Z := ∅.

118 CHAPTER 5. SIGNCRYPTION

Specification of hybrids as pseudo-code. On the following pages,
we provide the formal specifications underlying our game-hopping ar-
gument for Claims 1 to 3. The remaining hybrids are found in the
supplementary material Appendix A.

In the title of each box that depicts two hybrids at once, there are
typically two names surrounded by solid or dashed boxes such as HC0 and

HC1 . This means that all code specifically surrounded by a dashed line is
executed in HC0 , but not HC1 . Similarly, all code specifically surrounded
by a solid line is executed in HC1 , but not in HC0 . All remaining code is
executed in both systems. In cases where the box represents just one
hybrid system, we might draw boxes to highlight certain parts of the code.
The descriptions of the hybrid systems are given on the following pages.

The specification of the hybrid systems concludes our study on sign-
cryption and closes the part on secure communication primitives.

5.3. GRACEFULLY-DEGRADING SECURE NETWORKS 119

Resource HZ0

Initialization
Jca, Jnet, S ← ∅
Ica1 , Ica2 , Inet

1 , Inet
2 , T, L← empty tables

Interface Pi
Input: (register, ID)

if IDPi
= ⊥ then

(skS , pkS)← GenS
(skR, pkR)← GenR
if ID ̸∈ Jca then

Jca ← Jca ∪ {ID}
Ica1 [Pi]← ID
Ica2 [ID]← Pi
T [ID]← (pkS , pkR)
if ID ̸∈ Jnet ∧ I1[Pi] = ⊥ then

Jnet ← Jnet ∪ {ID}
Inet
1 [Pi]← ID

Inet
2 [ID]← Pi

IDPi
← ID

valPi ← [skS , pkS , skR, pkR]

if Mi ̸∈ Z then
S ← S ∪ {ID}

output Success at Pi
else

output Fail at Pi
else

output Fail at Pi

Input: (send,m, ID)
if IDPi

̸= ⊥ then
Let valPi = [skS , pkS , skR, pkR]
if T [ID] ̸= ⊥ then

Parse T [ID] as (pk ′
S , pk

′
R)

if (pk ′
S , pk

′
R) ̸= (⊥,⊥) then

s← Signcrypt(skS , pk
′
R,m)

L[s, IDPi
, ID]← m

output (s, IDPi
, ID) at E

Interface E of Net

Input: (inject, s, IDs, IDr)
if IDr ∈ Jnet then

Pi ← Inet
2 [IDr]

Let valPi = [skS , pkS , skR, pkR]
if T [IDs] ̸= ⊥ then

Parse T [IDs] as (pk ′
S , pk

′
R)

if (pk ′
S , pk

′
R) ̸= (⊥,⊥) then

m← Unsigncrypt(skR, pk
′
S , s)

if (IDs, IDr) ∈ S × S then
bad1 ← (m ̸= ⊥ ∧

L[s, IDs, IDr] = ⊥)

if (IDs, IDr) ∈ S× (Jnet \S) then
bad2 ← (m ̸= ⊥ ∧

L[s, IDs, IDr] = ⊥)
if m ̸= ⊥ then

output (m, IDs) at Pi

Interface E of CA

Input: (register, ID, val)
if ID ̸∈ J then

T [ID]← val
Jca ← Jca ∪ {ID}
output Success at E

else
output Fail at E

Input: fetchAll

output (J, T) at E

Interface Mi ∈ Z
Input: reveal

output valPi at Mi

Interface Mi ̸∈ Z
Input: reveal

output ⊥ at Mi

Figure 5.10: A concise description of the real world.

120 CHAPTER 5. SIGNCRYPTION

Resource HZ0 and HZ1

Initialization
Jca, Jnet, S ← ∅
Ica1 , Ica2 , Inet

1 , Inet
2 , T, L← empty tables

Interface Pi
Input: (register, ID)

if IDPi
= ⊥ then

(skS , pkS)← GenS
(skR, pkR)← GenR
if ID ̸∈ Jca then

Jca ← Jca ∪ {ID}
Ica1 [Pi]← ID
Ica2 [ID]← Pi
T [ID]← (pkS , pkR)
if ID ̸∈ Jnet ∧ I1[Pi] = ⊥ then

Jnet ← Jnet ∪ {ID}
Inet
1 [Pi]← ID

Inet
2 [ID]← Pi

IDPi
← ID

valPi ← [skS , pkS , skR, pkR]
if Mi ̸∈ Z then

S ← S ∪ {ID}
output Success at Pi

else
output Fail at Pi

else
output Fail at Pi

Input: (send,m, ID)
if IDPi

̸= ⊥ then
Let valPi = [skS , pkS , skR, pkR]
if T [ID] ̸= ⊥ then

Parse T [ID] as (pk ′
S , pk

′
R)

if (pk ′
S , pk

′
R) ̸= (⊥,⊥) then

if (IDPi
, ID) ∈ S × S then

m∗ �M
s← Signcrypt(skS , pk

′
R,m

∗)
else

m∗ ← m
s← Signcrypt(skS , pk

′
R,m

∗)

s← Signcrypt(skS , pk
′
R,m)

L[s, IDPi
, ID]← m

output (s, IDPi
, ID) at E

Interface E of Net

Input: (inject, s, IDs, IDr)
if IDr ∈ Jnet then

Pi ← Inet
2 [IDr]

Let valPi = [skS , pkS , skR, pkR]
if T [IDs] ̸= ⊥ then

Parse T [IDs] as (pk ′
S , pk

′
R)

if (pk ′
S , pk

′
R) ̸= (⊥,⊥) then

m← Unsigncrypt(skR, pk
′
S , s)

if (IDs, IDr) ∈ S × S then
bad1 ← (m ̸= ⊥ ∧

L[s, IDs, IDr] = ⊥)
m← L[s, IDs, IDr]

if (IDs, IDr) ∈ S× (Jnet \S) then
bad2 ← (m ̸= ⊥ ∧

L[s, IDs, IDr] = ⊥)
if m ̸= ⊥ then

output (m, IDs) at Pi

Interface E of CA

Input: (register, ID, val)
if ID ̸∈ J then

T [ID]← val
J ← J ∪ {ID}
output Success at E

else
output Fail at E

Input: fetchAll

output (J, T) at E

Interface Mi ∈ Z
Input: reveal

output valPi at Mi

Interface Mi ̸∈ Z
Input: reveal

output ⊥ at Mi

Figure 5.11: The second hybrid system enforces perfect confidentiality
and authenticity for messages between honest parties.

5.3. GRACEFULLY-DEGRADING SECURE NETWORKS 121

Resource HZ1 and HZ2

Initialization
Jca, Jnet, S ← ∅
Ica1 , Ica2 , Inet

1 , Inet
2 , T, L← empty tables

Interface Pi
Input: (register, ID)

if IDPi
= ⊥ then

(skS , pkS)← GenS
(skR, pkR)← GenR
if ID ̸∈ Jca then

Jca ← Jca ∪ {ID}
Ica1 [Pi]← ID
Ica2 [ID]← Pi
T [ID]← (pkS , pkR)
if ID ̸∈ Jnet ∧ I1[Pi] = ⊥ then

Jnet ← Jnet ∪ {ID}
Inet
1 [Pi]← ID

Inet
2 [ID]← Pi

IDPi
← ID

valPi ← [skS , pkS , skR, pkR]
if Mi ̸∈ Z then

S ← S ∪ {ID}
output Success at Pi

else
output Fail at Pi

else
output Fail at Pi

Input: (send,m, ID)
if IDPi

̸= ⊥ then
Let valPi = [skS , pkS , skR, pkR]
if T [ID] ̸= ⊥ then

Parse T [ID] as (pk ′
S , pk

′
R)

if (pk ′
S , pk

′
R) ̸= (⊥,⊥) then

if (IDPi
, ID) ∈ S × S then

m∗ �M
s← Signcrypt(skS , pk

′
R,m

∗)
else

m∗ ← m
s← Signcrypt(skS , pk

′
R,m

∗)
L[s, IDPi

, ID]← m
output (s, IDPi

, ID) at E

Interface E of Net

Input: (inject, s, IDs, IDr)
if IDr ∈ Jnet then

Pi ← Inet
2 [IDr]

Let valPi = [skS , pkS , skR, pkR]
if T [IDs] ̸= ⊥ then

Parse T [IDs] as (pk ′
S , pk

′
R)

if (pk ′
S , pk

′
R) ̸= (⊥,⊥) then

m← Unsigncrypt(skR, pk
′
S , s)

if (IDs, IDr) ∈ S × S then
bad1 ← (m ̸= ⊥ ∧

L[s, IDs, IDr] = ⊥)
m← L[s, IDs, IDr]

if (IDs, IDr) ∈ S× (Jnet \S) then
bad2 ← (m ̸= ⊥ ∧

L[s, IDs, IDr] = ⊥)
m← L[s, IDs, IDr]

if m ̸= ⊥ then
output (m, IDs) at Pi

Interface E of CA

Input: (register, ID, val)
if ID ̸∈ J then

T [ID]← val
J ← J ∪ {ID}
output Success at E

else
output Fail at E

Input: fetchAll

output (J, T) at E

Interface Mi ∈ Z
Input: reveal

output valPi at Mi

Interface Mi ̸∈ Z
Input: reveal

output ⊥ at Mi

Figure 5.12: The third hybrid system enforces that no message of an
honest sender can be forged.

122 CHAPTER 5. SIGNCRYPTION

Resource HZ2 and HZ3

Initialization
Jca, Jnet, S ← ∅
Ica1 , Ica2 , Inet

1 , Inet
2 , T, L← empty tables

Interface Pi
Input: (register, ID)

if IDPi
= ⊥ then

(skS , pkS)← GenS
(skR, pkR)← GenR
if ID ̸∈ Jca then

Jca ← Jca ∪ {ID}
Ica1 [Pi]← ID
Ica2 [ID]← Pi
T [ID]← (pkS , pkR)
if ID ̸∈ Jnet ∧ I1[Pi] = ⊥ then

Jnet ← Jnet ∪ {ID}
Inet
1 [Pi]← ID

Inet
2 [ID]← Pi

IDPi
← ID

valPi ← [skS , pkS , skR, pkR]
if Mi ̸∈ Z then

S ← S ∪ {ID}
output Success at Pi

else
output Fail at Pi

else
output Fail at Pi

Input: (send,m, ID)
if IDPi

̸= ⊥ then
Let valPi = [skS , pkS , skR, pkR]
if T [ID] ̸= ⊥ then

Parse T [ID] as (pk ′
S , pk

′
R)

if (pk ′
S , pk

′
R) ̸= (⊥,⊥) then

if (IDPi
, ID) ∈ S × S then

m∗ �M
s← Signcrypt(skS , pk

′
R,m

∗)

else if (IDPi
, ID) ∈ (Jnet × S)

then
m∗ �M
s← Signcrypt(skS , pk

′
R,m

∗)

else
m∗ ← m
s← Signcrypt(skS , pk

′
R,m

∗)
L[s, IDPi

, ID]← m
output (s, IDPi

, ID) at E

Interface E of Net

Input: (inject, s, IDs, IDr)
if IDr ∈ Jnet then

Pi ← Inet
2 [IDr]

Let valPi = [skS , pkS , skR, pkR]
if T [IDs] ̸= ⊥ then

Parse T [IDs] as (pk ′
S , pk

′
R)

if (pk ′
S , pk

′
R) ̸= (⊥,⊥) then

m← Unsigncrypt(skR, pk
′
S , s)

if (IDs, IDr) ∈ S × S then
bad1 ← (m ̸= ⊥ ∧

L[s, IDs, IDr] = ⊥)
m← L[s, IDs, IDr]

if (IDs, IDr) ∈ S×(Jnet\S) then
bad2 ← (m ̸= ⊥ ∧

L[s, IDs, IDr] = ⊥)
m← L[s, IDs, IDr]

if m ̸= ⊥ then
output (m, IDs) at Pi

Interface E of CA

Input: (register, ID, val)
if ID ̸∈ J then

T [ID]← val
J ← J ∪ {ID}
output Success at E

else
output Fail at E

Input: fetchAll

output (J, T) at E

Interface Mi ∈ Z
Input: reveal

output valPi at Mi

Interface Mi ̸∈ Z
Input: reveal

output ⊥ at Mi

Figure 5.13: The fourth hybrid ensures that no information about a
message to an honest receiver is leaked to the adversary.

Part II

Secure Outsourced Storage

Chapter 6

A Model for Outsourced
Storage

6.1 Introduction

In this chapter, we focus on security guarantees when outsourcing data
on a remote storage. We initiate the study on which guarantees are
needed and desired by applications. Our systematic approach does not
only entail a new model for outsourced storage security, but also leads to
several important insights in this branch of research as already outlined
in Section 1.3.

6.1.1 Motivation

An integral and pervasive part of today’s IT infrastructures are large
amounts of outsourced data ranging from personal data to important
enterprise backups on third-party storage providers. Depending on the
various applications and sensitivity of the data, a user paying for remote
storage might not fully trust in the provider’s content management or
security. Client-side countermeasures have to be taken into account, a
prominent example of which are the protection of confidentiality and
integrity of the uploaded files, or hiding the access pattern to files. A
client further would like to audit the server storage to ensure that the

126 CHAPTER 6. A MODEL FOR OUTSOURCED STORAGE

provider maintains all his data consistently and is not saving space by
deleting a fraction of the content. That is generally known as proofs of
retrievability (PoR) or provable data possession (PDP) [JK07, ABC+07].
Complementary to protocols for clients to retain security against a possibly
malicious server, another line of research deals with mechanisms for
secure deduplication and proofs of ownership [BKR13, HHPSP11]. These
protocols allow an honest server to reduce its storage requirements while
protecting against malicious clients that try to fool the server by accessing
files they do not possess.

Here, our focus is on malicious server behavior. Reasons for such
dishonest behavior include ordinary failures that lead to data loss or data
leakage, an active break-in into the provider’s infrastructure or intentional
malicious server strategies. A client can employ protection mechanisms to
ensure integrity, confidentiality, hide its access pattern to the data, or run
regular audits to ensure that the server maintains the data reliably such
that the client is able to retrieve it. Although service providers advertise
availability as an important selling point, such audits are a key tool to
increase the confidence or trust in the service since it is often not realistic
to rely on the provider to inform reliably about an incident, either due to
ignorance or due to the fear of bad reputation.

Despite sharing a common setting, previous security analyses of these
tasks are often performed in different models and in a stand-alone fashion,
which makes it hard to assess the overall security of a protocol (e.g. a
cloud application) that involves several security schemes. We fill this gap
and provide a unified composable model for capturing the security of
outsourced storage. As part of this study, we justify the need for stronger
security requirements from protocols than what is typically assumed in the
literature. Our approach lets us develop an outsourcing scheme in modular
steps that provably achieves stronger security than existing protocols.

We again develop our model in the constructive cryptography frame-
work. Briefly, the resources we consider in this chapter are variations
of so-called server-memory resources and the typical statements will be
to construct a server-memory resource providing more from one that
provides less guarantees to the client. A constructed resource can then
again be used in a further construction step to achieve an even better
guarantee. Looking ahead, this allows for modular protocol design and to
conduct modular security analyses by dividing the a-priori complex task
into several less complex steps and the security follows from the general

6.1. INTRODUCTION 127

(read, i)

(write, x, i)

W

C1

Ck

SH

SI

getHist

(read, i)

(write, x, i)

startWriteMode
stopWriteMode

SMR

...

(write, x, i)

(read, i)

C0
init

S. . .
1 2 n

x

Figure 6.1: The basic server-memory resource.

composition theorem.

6.1.2 Specific Contributions

A model for untrusted storage. The basic functionality we consider
is an (insecure) server-memory resource which we denote by SMR and
formally specify in Section 6.2. One or several clients can write to and
read from this resource via interfaces. Clients write to the memory in
units of blocks, and the resource is parameterized by an alphabet Σ and
the size n of blocks. The server can access the entire history of read/write
requests made by the clients. To capture the active server influence on
the storage, including malicious intrusion, the resource can be adaptively
set into a special server write mode that lets the server overwrite existing
data. Within the scope of this treatment here, we understand this write
phase as being malicious and the server is not supposed to change any
data. However, we point out that this server write mode could be used to
capture intentional, honest server-side manipulations of the data storage
such as in de-duplication schemes.

The decision in which “mode” the resource resides, is given directly to
the environment (or distinguisher) and not to the adversary. The reason
for this is important for technical and motivational reasons. Assume that
the capability is provided at the malicious server interface both in the
“real world” and in the “ideal world,” then the simulator in the ideal world
can always make use of the capability of overwriting the memory content

128 CHAPTER 6. A MODEL FOR OUTSOURCED STORAGE

and nothing would prevent the simulator from doing so all the time and
hence trivial protocols could be simulated. However, we want to express
security guarantees in both cases, when the resource is “under attack” and
when it is not. To achieve this, the “attack mode” is under the control
of the environment and not the adversary. Furthermore, in certain cases
we only want to give explicit security guarantees that hold only until
the next attack happens (for example in the case of audits as explained
later). From a motivational point of view, assigning the capability to the
environment and not to attacker yields more general statements, as it
also allows us to capture scenarios where the server does indeed not have
the active choice to do so, but where any external event can provoke the
server memory to be corrupted.

We present more secure variants of the basic server memory. In
particular, in Section 6.3, we introduce the following resources:

• The authentic server-memory, providing authenticity of the memory
content (meaning that clients detect adversarial modifications).

• The confidential and authentic server memory, providing secrecy
(in addition to authenticity) of the memory content.

• The secure server memory. It provides full secrecy on the entire
structure of the memory. An attacker cannot learn anything beyond
the number of accesses and cannot tamper with specific logical
memory cells.

We show how to construct each of these resources in Section 6.4. We
then present in Section 6.5 the auditable versions of the above resources.
An auditable server memory additionally gives the client the capability
to check whether the memory has been modified or deleted, without the
need to read the entire memory. We again give protocols that achieve
auditable server memories in Section 6.6.

A novel notion for secure and robust outsourcing schemes. Our
definition of a secure server-memory resource can be seen as a novel
security goal: The specification demands secrecy of content and access
pattern, resilience to errors, and also that active attacks cannot be targeted
at specific locations. On a more technical level, our secure server-memory
resource is specified as a basic server-memory resource, but where roughly

6.1. INTRODUCTION 129

only the number of accesses leak to the server, and in particular not the
content. In addition, the active influence by an attacker is restricted to
being able to set a failure probability α. This parameter defines with
which probability a client’s read or write operation fails. This failure
probability is the same for all memory locations and each memory location
fails independently of other memory locations. This means that whatever
the attacker does to the memory of the server, any modification will result
in clients being more or less successful in reading or updating the data. In
case of a failure, the client cannot read or update the corresponding block
anymore. We further demand that the memory, and thus any protocol
achieving it, remains operational for the faultless part of the memory
and hence is robust in the presence of failures. As outlined above, this is
technically enforced by not giving the simulator the power to always block
operations and hence to abort. This makes the functionality stronger
than existing models such as [AKST14, CKW13]. We give a protocol
that realizes the secure server-memory resource and is an extension of the
well-known Path ORAM protocol [SDS+18].

We also show that the existing definitions for access-pattern hiding
and software protection are insufficient for realizing secure server-memory
resources. We exemplify this by two concrete examples that do not realize
a secure server memory either because the failure probability is not the
same for all locations (as in [GM11]), or failures among memory locations
are correlated (as in [SSS12]) and explain why this is problematic in
practice.

A novel notion for audit schemes. The auditable server memory
resources are server-memory resources with the additional client-side
capability of being able to ask whether the current memory content is
unchanged. This retrievability guarantee is valid if the resource is not in
“adversarial write mode”, as explained above, and holds up to the point
when the server writes or deletes a location of the memory. A new audit
has to reveal whether any change affected the client’s data. Our new
definition stipulates that a protocol implements a proof of retrievability if
it realizes an auditiable server-memory resource from an ordinary one by
possibly using additional resources like a random oracle.

To the best of our knowledge, this is the first composable security
definition for audit schemes. We thereby rectify two drawbacks of existing

130 CHAPTER 6. A MODEL FOR OUTSOURCED STORAGE

definitions. First, our definition and protocols guarantee that the client
can download the data, if (a) the audit succeeds and (b) the adversary
does not corrupt further locations after the audit. This guarantee is not
required by existing definitions and not fulfilled by certain schemes such
as [CKW13]. Second, existing definitions are based on the concept of
knowledge-extractors: The extractor needs the client secrets and the server
strategy to recover the data. As outlined in more detail in Section 6.1.5,
this is not a scenario which is suitable in practice, since the client and the
server would not reveal this information to each other or a third party.
Our formulation does not use extractors.

For each of our server-memory resources, we show how to implement
secure audits. In the particular case of secure server-memory resources,
the audit reduces to a statistical estimate of the failure parameter α in
combination with appropriate data replication. Our protocol resembles
the protocol by Cash et al.[CKW13], but is more robust against failures:
While their construction aborts when detecting an error, our scheme keeps
operating even in the presence of arbitrarily many errors. As we outline
in Section 6.1.3, this robustness is again needed to ensure that the data
can be retrieved after a successful audit. For example, encountering just
a small number of failures after an audit must not harm this guarantee.

A formal analysis of hash-based challenge-response audits. A
composable formalization of storage audits in the spirit of indifferentiability
and constructive cryptography [MR16, Section 7] has been envisioned
in [RSS11] but has not, to the best of our knowledge, been formalized.
With our formalization, we are now able to re-assess the security of the
main example in [RSS11], which is the standard challenge-response audit
mechanism in which the server computes a hash on the current memory
content concatenated with a uniformly random challenge chosen by the
client to convince the client that the data is available. We show that
this scheme is not secure even in the random oracle model, contradicting
the claimed security in [RSS11]. This further implies that replacing the
random oracle by any provably secure iterated hash-function construction
like NMAC [CDMP05, BCK96], does not have to yield secure audits. In
particular, there is no contradiction to the composition theorem as claimed
in [RSS11]. Note that Demay et al. [DGHM13] provide another way to

6.1. INTRODUCTION 131

resolve this contradictory situation of [RSS11].1 We further prove that
the additional assumption needed for the hash-based audit to be secure is
to restrict inputs to the random oracle to bitstrings stored in the server
memory itself. This condition is sufficient for a “monolithic” random
oracle with no particular underlying structure, and we show that it is in
general insufficient if the random oracle is replaced by a construction (like
NMAC) from ideal compression functions.

A provably secure and robust outsourcing scheme. We show how
to construct an authentic server-memory resource from a basic (and thus
insecure) server-memory resource in Section 6.4.1. We subsequently show
how to get a confidential and authentic server-memory resource from an
authentic one in Section 6.4.2, and finally achieve a secure server-memory
resource from a confidential and authentic one in Section 6.4.3. Finally,
in Section 6.6.2, we realize an audit mechanism as outlined above on top
of the secure server-memory resources. By combining all of the above
steps, the composition theorem guarantees us that the composed protocol
achieves an auditable, secure server-memory resource from a basic server-
memory resource (and local memory). The composed protocol is thus
an efficient outsourcing scheme that provably achieves strictly stronger
security than existing protocols in this realm. The protocol is resilient
against any number of errors, hides the content and access pattern, does
not allow targeted attacks under any circumstances, and provides an audit
function.

Development of more efficient, provably secure schemes. Be-
yond the fact that modular steps are often simpler to analyze than an
entire protocol, our modular approach has a further benefit: it allows to
identify sources of inefficiency and to improve single steps in isolation
without the need to re-prove the security of the overall construction: for
example, developing a more efficient ORAM scheme (that in addition
meets our stronger requirements) directly gives an improved overall con-
struction. As such, we put forward this approach to provide an interface

1They prove that any simulator in the construction of a random oracle from ideal
compression functions needs to maintain an internal state linear to the total size of all
queries. This implies that the server cannot save space due to the simulator’s memory
consumption.

132 CHAPTER 6. A MODEL FOR OUTSOURCED STORAGE

to specialized works focusing on the individual steps, such that they can
directly contribute to the development of outsourcing schemes.

6.1.3 On the Importance of Composition and Robust-
ness

Our setting has similarities with previous works that devise outsourcing
schemes secure against active tampering adversaries and which build upon
the foundational work by Goldreich and Ostrovsky [GO96] on software
protection. There is, however, a subtle and fundamental difference between
the context of outsourced storage and the context of software protection
of [GO96] that seems to have gone unnoticed. In this paragraph, we
show how this difference necessarily leads to strictly stronger security
requirements for outsourcing schemes and even gives rise to novel security-
relevant questions, which we answer in this work.

The context of [GO96] is software protection, where the goal is to
prevent that an experimenter can analyze the CPU-program and learn
something he could not deduce from the program specification alone.
Technically, a simulator must generate an indistinguishable transcript
of any experiment, solely based on the known program specification. If
such a simulator exists, this means that the program effectively defeats
experiments that try to figure out secret details on “how the program
internally works”. Following this motivation, as soon as the program
encounters an error when reading a memory location, it should abort, as
the error is a sign that the software is running in a tampering experiment.
In the corresponding simulation, the simulator also aborts. Overall, this
behavior makes perfectly sense to defeat experiments since in any honest
execution, no error is expected to occur.

The context we consider is outsourcing of data and several of the above
aspects do change in this realm. We present outsourcing schemes and the
idealization they can achieve, like the secure server-memory resource, as a
low-level primitive that exports the interface of a consistent storage with
certain additional guarantees. We do not allow our primitives to abort in
case an access to a location returns an error. It must stay operational for
the remaining part of the memory. The decision to abort is left to the
calling protocol or application that uses the memory abstraction. In our
context, we want and should react to errors and not stop when detecting
them. This is the first important point that makes the problem more

6.1. INTRODUCTION 133

difficult and gives rise to the question of what level of security we can
achieve in this setting. Our most secure abstraction, the secure server-
memory, answers this question in a strong way: a protocol that achieves
the secure server-memory not only remains operational (and efficient)
when tampering is detected (a simulator cannot “abort on error” in a
simulation in our model), it also makes sure that the subsequent behavior
does not reveal which logical locations the client accesses, and furthermore
prevents that tampering can be targeted at specific logical locations.

We illustrate two possible security issues which are overcome by using
a secure outsourcing scheme (as part of a larger system) that fulfills our
strongest notion.

Example 1: Information leakage due to errors. Assume that a
client application stores some control information on an outsourced storage
using a secure outsourcing scheme that achieves a secure server-memory.
Clearly, there is no attack by which the adversary could learn when the
client accesses the control information, even if the attacker knew at which
logical location the control information is stored. And since the attacker
can only introduce failures that are equally likely for all logical locations,
the occurrence of an error during an access does not allow to infer which
logical memory location was accessed. In contrast, several existing schemes
based on the notion of software protection, do not guarantee this level of
security and allow an attacker to obtain side-channel information about
the access pattern through the observed error-pattern. This holds for
example if one can approximately estimate which logical addresses are
targeted by tampering with the memory, or if errors are correlated. Turned
around, an observed error pattern can be a good indication on which
logical locations have been accessed as further discussed in Section 6.4.4.

Example 2: Implementing secure audits. Let us focus on a pro-
tocol by Cash et al. [CKW13] that implements a proof of retrievability
using a software protection scheme S that aborts on error. The following
argument is independent on what security notion S fulfills exactly, the
important thing is that if S aborts then the entire execution aborts. Their
protocol invokes S to store the encoded data redundantly on the server,
which should improve the resilience, i.e., not detecting a few errors on
the server should not let the protocol fail in retrieving the data. How-
ever, since S aborts when detecting even a single (e.g., physical) error,
this desired resilience practically becomes ineffective and leads to weak

134 CHAPTER 6. A MODEL FOR OUTSOURCED STORAGE

guarantees: consider a very weak tampering adversary that chooses just a
single, physical location on the server-memory and only tampers with this
single physical location. Then, the audit is passed with high probability
(the data is actually still there due to the encoding). However, the client
protocol will abort before the client can actually retrieve all his data,
since the error is detected beforehand, namely during a rebuild phase of
S, and the execution is aborted. And as shown above in the first example,
simply letting the protocol continue its actions can reveal information on
the access pattern. This indicates that such a patch is actually non-trivial.
In particular, if S was proven to realize a secure server-memory, then this
issue is avoided. The audit protocol in Section 6.6.2 is of this type.

6.1.4 The Constructive Cryptography Setting

We consider the special case of constructive cryptography introduced in
Sections 2.3.4 and 2.3.5 with one potentially dishonest interface S (the
server), one or several honest client interfaces Ci, and one free interface.
That is, we let I = P ∪ {S, W} where P := {C0, . . . , Ck}.

6.1.5 Specific Related Work

Models for outsourced storage. The security of services outsourced
to untrusted third-parties has received much attention in the literature
and is a prevalent topic in cloud computing. Regarding the special case
of untrusted outsourced storage, Mazieres and Shasha [MS02] and later
works by Androulaki et al. [ACDV14] and Cachin et al. [CSS07, CSS07,
CG09, CKS09, Cac11, CDV14] formalize untrusted storage as read-write
registers, where multiple clients can write to and read from the (shared)
register by issuing read and write requests. Each request and its answer
is considered an event and the view of the client is a sequence of such
invocation and response events. Integrity is then defined in a property-
based way as conditions on the view of the client. This model is appealing
as it is expressive and the interface is simple. Our model keeps this simple
structure. At each client interface a read or write request can be input.
The response by the server is defined as the current value of the location
(or register) which is susceptible to adversarial write operations which
means that the responses may be adaptively chosen by the attacker. Our
model can be seen as an universally composable variant of the above (and

6.1. INTRODUCTION 135

where a set of cooperating clients try to obtain strong security guarantees).
The benefits are stronger security guarantees and that our server-memory
functionalities make the adversarial influence explicit. This allows to
compare different functionalities according to their strength. It is also
desirable to have a composable security definition for outsourced storage
since they are naturally part of larger systems, such as distributed file
systems [SvDJO12] or storage systems [SCC+10, LKMS04].

Composable notions in the realm of secure outsourced storage are
unfortunately still rare. Recent examples include the works by Atteniese
et al. [ADDV16], Camenisch et al.[CEM16], Liu et al. [LW16], or Apon
et al.[AKST14] that illustrate the importance of filling these gaps. For
example, in [ADDV16] the authors formalize the security guarantees of
entangled storage in the UC framework. In order for their scheme to
be secure, they work in the Fmem-hybrid model, where the functionality
Fmem is a memory functionality that models a server storage, where clients
can upload and retrieve their values. Fmem is a quite strong assumption.
For example, the adversary does not see the values uploaded to the
storage. Hence, Fmem can be seen as a special case of our server memory
functionality where the adversarial access is limited. Such a functionality
could be obtained, for example, by defining a “wrapper” functionality
along the lines of [GMPY11] that wraps an ordinary memory resource
to restrict the adversarial access. This makes the assumptions on the
capabilities of the attacker again explicit in order to compare different
protocols.

In [CEM16], the authors investigate the security of protocols that
improve the leakage resilience of imperfectly erasable memory and use
the constructive cryptography framework. Imperfect erasures leak certain
information to a passive adversary even after the client instructed the
memory to delete the contents. This setting is fundamentally different
from ours in that we are interested in security guarantees against active
attacks on untrusted server storages and erasability of (local) memory
is not considered. The resources in [CEM16] also make use of a free
interface (also denoted world interface) to assign certain capabilities to
the environment instead of the adversary to achieve general and meaningful
security statements.

136 CHAPTER 6. A MODEL FOR OUTSOURCED STORAGE

ORAM. Oblivious RAM is a cryptographic primitive originally intro-
duced by Goldreich and Ostrovsky [GO96] and has become a standard
approach to hiding the access pattern when accessing a cloud storage.
A sequence of fundamental results have led to important security and
performance improvements such as [GM11, CKW13, KLO12, DvDF+16,
GGH+13, CP13, SDS+18, GHJR15, MMB15, WHC+14, FNR+15, SSS12].
Previous works define the security of ORAM schemes by requiring that
different sequences of client read and write operations lead to indistinguish-
able sequences of accesses to the server storage. Protection against active
adversaries is typically achieved by detecting malicious behavior, for exam-
ple by using Merkle-Trees or authenticators [SSS12, RFY+13, AKST14],
and aborting upon detection [GO96, CKW13].

PoR. The first formal security models for proofs of retrievability (PoR)
were given by Juels and Kaliski [JK07] and in a similar spirit also in
previous works, for example by Naor et al. [NR09] on sublinear authen-
tication. The definition in [JK07] is tailored to the problem of storing
static data on a server, i.e., a large file like a backup that is unlikely to
be changed frequently. Roughly, an important key idea of many PoR
schemes is that a redundant encoding of the file makes sure that any
too small data loss is tolerable and thus need not be detected. On the
other hand, by downloading some file locations at random and performing
some integrity checks, a client can detect a significant amount of data
loss. Subsequent publications [BJO09, DVW09, SSP13] present new and
more efficient schemes as well as generalized adversarial models. In these
works, the initial definition has been further carried over to the case of
dynamic data. One major obstacle in the case of dynamic data is to force
the server not to discard updates to (possibly a small number of) memory
locations. Cash et al. [CKW13] propose a scheme based on ORAM and
showed that hiding the access structure of reads and writes to the server
allows for efficient PoR for dynamic data. Another solution, proposed by
Chandra et al. [CKO14], shows that the problem of constructing locally
decodable and locally updatable codes is strongly related to the construc-
tion of PoR schemes. Roughly, being able to update an encoding of a file
F to an encoding of F ′ by only changing a small number of file blocks
allows to reduce the problem of dynamic PoR to static PoR. Using a re-
lated guiding idea, Shi et al. [SSP13] recently proposed an (efficient) PoR

6.1. INTRODUCTION 137

scheme for dynamic data as well. Another closely related research branch
deals with models and applications for provable data possession (PDP),
proposed by Ateniese et al. [ABC+07, ADPMT08, ABC+11]. PDP and
PoR are related in spirit, but PDP is essentially a weaker definition
than PoR. While the goal of proofs of retrievability is to guarantee that
a file remains retrievable in full, the goal of PDP is to test if most of
the file is still retrievable. Subsequent models have been proposed that
deal with dynamic data, for which several protocols have been designed
[ADPMT08, Kup10, EKPT09]. The security definitions of PoR (and
PDP) schemes are extractor-based and are usually formalized as a game
between a challenger and an adversary. A PoR scheme consists of four
interactive sub-protocols executed between a stateful client and a stateful
server: init(1κ,Σ, n), read(i), write(i, vi) carry their usual intended mean-
ing, where κ is the security parameter, Σ is the alphabet and n is the
size of the memory. The fourth protocol, audit, is executed to verify if
the server possesses all the client’s data, in which case the client returns
accept.

The PoR security definition is threefold and consists of correctness,
authenticity and retrievability. In this paragraph, we focus on the third
security property and on the dynamic PoR game ExtPoR as found in
[CKW13, CKO14] which we state in Figure 6.2 for completeness. For
more details and variations, we refer to [JK07, SW13, CKW13, CKO14].
A scheme is said to provide retrievability, if there exists an efficient
probabilistic extractor E , such that, for every efficient server S̄, every
polynomial p(κ) it holds that Pr

[
ExtPoRS̄,E(κ, p(κ)) = 1

]
is negligible

in the security parameter. Intuitively, the game formalizes that from
a cheating server strategy that successfully passes an audit with good
probability, it is possible to extract the correct storage content that
the client uploaded. In general, the extractor is provided with the client
private keys and the server strategy. The concept of a knowledge-extractor
emerged from proofs of knowledge: The reasoning in proofs of knowledge
is that if a dishonest prover passes the test with good probability using
some arbitrary strategy, then this strategy could be used by the prover
himself to effectively calculate the witness by virtue of the extractor
algorithm, which is an algorithm that extracts the witness by executing
and rewinding the prover’s strategy.

Although the extractor-based approach to PoR includes a meaningful
thought-experiment, it has a major drawback concerning client-side se-

138 CHAPTER 6. A MODEL FOR OUTSOURCED STORAGE

Retrievability Experiment ExtPoRS̄,E(κ; p)

1.) S̄ outputs a valid protocol sequence P := (op0, op1, . . . , opq), i.e., a se-
quence of invocations where op0 = init(1κ,Σ, n) and, for j > 0, opj ∈
{read(i),write(i, vi), audit} with i ∈ [n] and vi ∈ Σ. We denote by M the
correct memory content after an ideal execution of the sequence P .

2.) The challenger creates an instance of an honest client C and executes the whole
sequence P between C and S̄. After the execution, let Cfin and S̄fin denote the
state of the client and server (including its random coins), respectively. We
define the following probability over the random coins of the client during the
audit:

Succ
(
S̄fin

)
:= Pr

[
S̄fin

audit←→ Cfin V accept
]

3.) Run M ′ ← ES̄fin (Cfin, 1n, 1p), where the extractor gets black-box rewinding
access to the server strategy and in addition a description of the client strategy.

4.) If Succ
(
S̄fin

)
≥ 1

p but M ′ ̸= M , then output 1 (the server wins the game).
Otherwise, output 0.

Figure 6.2: The retrievability experiment between a (malicious) server S̄,
an extractor E , and the challenger.

curity guarantees: If an audit is successful, the availability of the data,
which is of major concern to the client, is only guaranteed through the
execution of the extractor, which needs to access the server strategy and
the secret state of the client. Both parties are unlikely to disclose this
sensitive information. No server would reveal its entire state and no client
would reveal its secret keys.

6.2 Basic Server-Memory Resource

Our basic server-memory resource allows clients to read and write data
blocks, where each block is encoded as an element v of some alphabet Σ
(a finite non-empty set). An element of Σ is considered a data block. At
the server interface, denoted S, the resource provides the entire history
of accesses made by the clients (modeling the information leakage via
a server log file in practice), and allows the server to overwrite existing

6.2. BASIC SERVER-MEMORY RESOURCE 139

data blocks. To syntactically separate the former capability (modeling
data leakage), from the latter, capability (modeling active influence), we
formally divide interface S into two sub-interfaces which we denote by
SH (for honest but curious) and SI (for intrusion). The server can only
overwrite data blocks if the resource is set into a special write mode. The
distinguisher (or environment) is given the capability to adaptively enable
and disable this write mode at the free interface W. The combination of
capabilities at interfaces W and SI allows our model to capture different
types of adversarial influence, including adaptively setting return values
of client read operations, or to model phases in which no server write
access is possible at all. We present the basic server-memory resource,
called SMRk

Σ,n, in detail in Figure 6.3.
Our formalization is more general than the simple client-server setting

in that it takes into account several clients that access the resource, each
via their interface Ci. The parameters of the resource are the number
of clients k, the alphabet Σ, and the number of blocks. The interface
C0 is the initialization interface and is used to set up the initial state of
the resource (for example as a first step in the protocol). Only after the
resource is initialized, indicated by the input initComplete at C0, the
client interfaces become active and can update the state. We assume that
(adversarial) server write operations only happen after the initialization
is complete. Interface C0 can be thought of as being assigned to a special
party or simply to a dedicated client whose first actions are to initialize
the resource. Also note that for the sake of simplicity we only specify
client requests that occur when the server-write mode is turned off. The
complementary case simply follows along the lines of [AKST14]: In case
of a currently active intrusion, we would just let the adversary define the
return value (i.e., define the cell content before the answer to the client is
generated). All our protocols are easily seen to be secure with respect to
this model: if a client access to a cell happened during an active intrusion,
then this can be mapped to our model by (1) inserting an additional
active intrusion step before the client access in which the distinguisher
can define all return values (via interface SI), (2) de-activating the server
write mode and execute the client access, (3) activate the server write
mode again.

The basic server-memory resource constitutes the core element of
our model and serves as the fundamental building block for numerous
applications in the realm of cloud storage as discussed in the previous

140 CHAPTER 6. A MODEL FOR OUTSOURCED STORAGE

sections. In this thesis, we elaborate along the lines of securing the
memory resource against a malicious server. Other possible directions
could include the formalization of distributed file-systems, access control
mechanisms, or entangled storage which we do not consider here.

6.3 More Secure Memories
In this section, we present server-memory resources that offer more security
guarantees for the clients in that they restrict the capabilities of the server.

Authentic server-memory resource. An authentic server-memory
resource enhances the basic server-memory resource by restricting the
capabilities at the active interface SI . Instead of being capable to modify
existing data blocks, the server can either delete data blocks, via input
(delete, i) at SI , or restore previously deleted data blocks, via input
(restore, i) at SI . A deleted data block is indicated by the special symbol
ϵ. A client accessing the location of a deleted data block simply receives ϵ
as an answer. We formally describe the authentic server-memory resource
aSMRk

Σ,n in Figure 6.4.

Confidential server-memory resource. The confidential and authen-
tic server-memory resource, denoted cSMRk

Σ,n, is formally specified in
Figure 6.5. It enhances the authentic server-memory resource by restrict-
ing the access at the server interface SH in that each server read operation
simply returns λ ∈ Σ. Furthermore, the history of client accesses only
reveal the location, but not the value that was read or written.

Secure (oblivious) server-memory resource. We present the secure
(and oblivious) server-memory resource in Figure 6.6. This resource
offers the strongest guarantees for the clients. First, the access pattern
does not leak to the server apart from the number of accesses made.
Second, the adversarial influence is now limited to setting a corruption or
“pollution” parameter α. On each client read or write operation (read, i)
or (write, i, x) the operation fails with probability α and the cell i is
considered deleted. This expresses the inability of an intruder to mount
a targeted attack on chosen blocks. His influence pollutes the entire
memory in the specific way of increasing (or decreasing) the probability

6.3. MORE SECURE MEMORIES 141

Resource SMRk
Σ,n

Initialization
init, active, intrusion← false
Hist← []

Interface C0

Input: init

if not init then
for i = 1 to n do

M[i]← λ
Hist← Hist||(0, init)
init← true

Input: (read, i) ∈ [n]
if init and not active then

Hist← Hist||(0, R, i)
return M[i]

Input: (write, i, x) ∈ [n]× Σ
if init and not active then

Hist← Hist||(0, W, i, x)
M[i]← x

Input: initComplete
active← true

Interface SH

Input: getHist
return Hist

Input: (read, i) ∈ [n]
return M[i]

Interface SI

Input: (write, i, x) ∈ [n]× Σ
if intrusion then

M[i]← x

Interface W

Input: startWriteMode

if active then
intrusion← true

Input: stopWriteMode
if active then

intrusion← false

Interfaces Ct, t ∈ {1, . . . , k}
Input: (read, i) ∈ [n]

if active and not intrusion then
Hist← Hist||(t, R, i)
return M[i]

Input: (write, i, x) ∈ [n]× Σ
if active and not intrusion then

Hist← Hist||(t, W, i, x)
M[i]← x

Figure 6.3: Description of the insecure server-memory resource.

142 CHAPTER 6. A MODEL FOR OUTSOURCED STORAGE

Resource aSMRk
Σ,n

The definition of aSMR is identical to SMR except for the adversarial influence at
interface SI and the reaction on writing to a corrupted memory location:

Interfaces Ct, t ∈ {1, . . . , k}
Input: (read, i) ∈ [n]

if active and not intrusion then
Hist← Hist||(t, R, i)
return M[i]

Input: (write, i, x) ∈ [n]× Σ
if active and not intrusion then

if M[i] ̸= ϵ then
Hist← Hist||(t, W, i, x)
M[i]← x

else
Hist← Hist||(t, Fail, i, x)
return ϵ

Interface SI
Input: (delete, i) ∈ [n]

if intrusion then
M[i]← ϵ

Input: (restore, i) ∈ [n]
if intrusion then

if ∃k, x, t : Hist[k] = (t, W, i, x) then
k0 ← max{k | ∃t, x : Hist[k]

= (t, W, i, x)}
Parse Hist[k0] as (t, W, i, x0)
M[i]← x0

else
M[i]← λ

Figure 6.4: The authentic server-memory resource (only differences to
SMR shown).

of a failure. In particular, our ideal functionality demands that each
cell or block fails independently and with the same probability (if it had
not failed before). Our formulation of this resource, which we denote by
sSMR

k,trep
Σ,n and describe in Figure 6.6, is slightly more general than just

described: it is parameterized as before by the number of clients k, the
alphabet Σ, the size n, and additionally by a tolerance trep (considered
as the replication factor) that formalizes the resilience against failures.
Intuitively, only after trep read or write operations for location i have
failed, i is considered as deleted, which of course includes the standard
case trep = 1. This guarantee, although quite strong, seems appealing in
practice and is realizable as we prove in the next section.2

2One could again complement the specification with the behavior upon a client
request during an active intrusion phase. As in [AKST14], one could let the adversary
decide on the success or failure of a client request in that case. More technically,

6.4. CONSTRUCTIONS 143

Resource cSMRk
Σ,n

The definition of cSMR is identical to SMR except for the information the server and
the adversary learn about the stored data:

Interface SH

Input: getHist
Hist′ ← []
for j = 1 to |Hist| do

q ← Hist[j]
if q = (t, W, i, x) for some t, x, i then

Hist′ ← Hist′||(t, W, i)
if q = (t, Fail, i, x) for some t, x, i then

Hist′ ← Hist′||(t, Fail, i)
if q = (t, R, i) for some t, i then

Hist′ ← Hist′||(t, R, i)
return Hist′

Input: (read, i) ∈ [n]
return λ

Interface SI

Input: (delete, i) ∈ [n]
if intrusion then

M[i]← ϵ

Input: (restore, i) ∈ [n]
if intrusion then

if ∃k, x, t : Hist[k] = (t, W, i, x) then
k0 ← max{k | ∃t, x : Hist[k]

= (t, W, i, x)}
Parse Hist[k0] as (t, W, i, x0)
M[i]← x0

else
M[i]← λ

Figure 6.5: The authentic and confidential server-memory resource (only
differences to SMR shown).

It further seems to be a desriable abstraction on its own, for example
in the context of data replication where the assumption that blocks fail
independently is crucial. It further allows for straightforward statistical
predictions of this error parameter. One could imagine to weaken this
resource by considering correlations among failures, or to allow different
cells to fail with different probabilities. We only consider the strongest
variant and show how to achieve it.

6.4 Constructions

In this section, we show how to construct stronger server-memory resources
from weaker ones. For each construction, we need to specify the protocol
for the clients by means of a converter which every client attaches to

following the general approach to map such cases into our model, we would simply
allow the adversary to adjust the corruption parameter α in Figure 6.6 during such a
request before calling the sampling function. The security of the protocols is not be
affected by such a change.

144 CHAPTER 6. A MODEL FOR OUTSOURCED STORAGE

Resource sSMR
k,trep
Σ,n

Initialization
init, active, intrusion← false
α← 0; Hist← []
ci ← 1 for all i ∈ [ℓ]

Interface C0

Input: init

if not init then
for i = 1 to n do

for j = 1 to trep do
M[i, j]← λ

Hist← Hist||(0, init)
init← true

Input: (read, i) ∈ [n]
if init and not active then

Hist← Hist||(0, R, i)
return M[i, 1]

Input: (write, i, x) ∈ [n]× Σ
if init and not active then

for j = 1 to trep do
Hist← Hist||(0, W, i, x)
M[i, j]← x

Input: initComplete
active← true

Interface SH

Input: getHist
Hist′ ← []
for j = 1 to |Hist| do

q ← Hist[j]
if q ∈ {(t, W, i, x), (t, R, i)} then

Hist′ ← Hist′||(t, Access)
else

Hist′ ← Hist′||q
return Hist′

Input: (read, i) ∈ [n]
return λ

Interface SI

Input: (pollute, ρ) ∈ [0, 1]
if intrusion then

α← ρ

Input: (reducePollution, δ) ∈ [0, α]
if intrusion then

α← α− δ

Interface W

Input: startWriteMode

if active then
intrusion← true

Input: stopWriteMode
if active then

intrusion← false

Interfaces Ct, t ∈ {1, . . . , k}
Input: (read, i) ∈ [n]

if active and not intrusion then
if M[i, ci] ̸= ϵ then

Z � Bernoulli(α)
if Z = 0 then

Hist← Hist||(t, R, i)
return M[i, ci]

else
Hist← Hist||(t, Failed)
M[i, ci]← ϵ
if ci < trep then

ci ← ci + 1
return ϵ

else
Z � Bernoulli(α)
if Z = 0 then

Hist← Hist||(t, Access)
else

Hist← Hist||(t, Failed)
if ci < trep then

ci ← ci + 1
return ϵ

Input: (write, i, x) ∈ [n]× Σ
if active and not intrusion then

retj ← ok for j = 1 . . . trep
for j = 1 to trep do

if M[i, j] ̸= ϵ then
Z � Bernoulli(α)
if Z = 0 then

Hist← Hist||(t, W, i, x)
M[i, j]← x

else
Hist← Hist||(t, Failed)
M[i, j]← ϵ
retj ← ϵ

else
retj ← ϵ
Z � Bernoulli(α)
if Z = 0 then

Hist← Hist||(t, Access)
else

Hist← Hist||(t, Failed)
return (ret1, . . . , rettrep)

Figure 6.6: Description of the secure server-memory resource.

6.4. CONSTRUCTIONS 145

W

SMR

init

prot

prot

...
≈

W

SMR sim
...

Weaker Stronger
C0

C1

Ck

S

C0

C1

Ck

S

L

Figure 6.7: Illustration of the security condition of constructions among
server-memory resources.

its interface. We further have to provide a converter that describes the
initialization step (generating cryptographic keys etc.) and which is
attached at interface C0. To show that a protocol achieves a construction,
we prove both conditions stated in Definition 2.3.3. More specifically
to this section, the default behavior of the potentially dishonest server
interface is specified by the dummy converter honSrv that does not answer
any query at its outer interface and does not give any input to the
server-memory resource.

The protocols we present make use of a local memory L shared among
all clients. At each interface Ci of L, the usual read and write capabilities
are available. The server does not have access to this resource. An
illustration is shown in Figure 6.7. Note that client accesses to the
resources are sequential in our model (which is trivially the case in a single
client setting or achievable via Dekker’s or Peterson’s mutual-exclusion
algorithms using the shared memory L).

6.4.1 Authentic Server-Memory from Basic Server-
Memory Resources

Following Blum et al. [BEG+94], we build a tree structure on top of
the outsourced data blocks to protect their authenticity (and freshness).
Assume the size of the memory is ℓ, then the tree is a binary search tree
with ℓ leaves, where each leaf corresponds to a data block. For simplicity,
and without loss of generality, we assume that ℓ is a power of 2. In
[BEG+94], each leaf is associated with a timestamp indicating the number
of times the block was updated. The timestamp of an internal node is

146 CHAPTER 6. A MODEL FOR OUTSOURCED STORAGE

defined as the sum of the timestamps of its two children. We refer to
this condition on the timestamps as the tree invariant. The timestamp
of the root of the tree corresponds to total number of times the client
has accessed the server-memory resource and is stored in a reliable local
memory.

Protocol and notation. We denote the full binary tree for a memory
of size ℓ as T (ℓ). The tree has 2ℓ − 1 nodes which are mapped to the
linear storage of SMR (of size 2ℓ− 1) and a local reliable memory L as
follows3: The leaf node at location ℓ+ i− 1 of SMR stores the value xi
of the (logical) memory. Internal nodes only contain a timestamp (and
an authentication tag) and are stored in SMR. We denote the node
at location r of SMR by Nr (for r > 0) and denote the root as N0.
For a node Nr, we denote by tr its timestamp, and for a leaf node we
additionally denote by xi ∈ Σ its associated data block (i = r − ℓ+ 1).
To bind the contents of a node to its actual location on the server, we
make use of a MAC function fsk(·). The root node N0 is not stored in
SMR but on a reliable, local memory L. In summary, the format of the
nodes are as follows:

Nr =

⎧⎪⎨⎪⎩
(xi, tr, fsk(r, xi, tr)) if r ≥ ℓ (i = r − ℓ+ 1)

(tr, fsk(r, tr)) if r < ℓ

t0 if r = 0.

To read a value xi of the (logical) memory, the client retrieves all
nodes on the path from the root to the leaf node Nℓ+i−1 and all their
children. This is sometimes denoted to as the siblings path from the
root to that leaf. We denote this sub-tree (consisting of 2 log ℓ) nodes
by Tℓ+i−1 to make the index i appear explicitly. On each access to the
logical data block i, the client verifies all authentication tags and checks
the invariant in Tℓ+i−1, i.e., that for each node Nr, the timestamp is
the sum of its children’s timestamps, i.e., that tr = t2r+1 + t2r+2. If all
checks succeed the tree Tℓ+i−1 is said to be valid. To write a new value
to a leaf node Nℓ+i−1, one first retrieves Tℓ+i−1 and verifies that it is

3Note that the number of storage locations of SMR is about two times as large
as the logical locations we want to protect. This, however, does not imply a storage
overhead of a factor of two in practice, since the information stored in internal nodes
is only a timestamp and not an entire data block.

6.4. CONSTRUCTIONS 147

Converter initauth

Interface out

Input: init :

sk � K; N0 ← 0;
output (write, 1, N0) at in to L
output (write, 2, sk) at in to L
output init at in to SMR
for i = 2 to ℓ− 1 do

Ni ← (0, fsk(i, 0))
output (write, i, Ni) at in to SMR

for i = ℓ to 2ℓ− 1 do
Ni ← (λ, 0, fsk(i, λ, 0))
output (write, i, Ni) at in to SMR

Input: (read, i) or (write, i, x):
Defined the same as for authRW in Figure 6.9

Input: initComplete :
output initComplete at in to SMR

Figure 6.8: The initialization protocol for the realization of an authentic
server memory.

valid. Then, one updates the value of the leaf, its timestamp and the
authentication tag and subsequently updates the timestamps and the
authentication tags of all nodes on the path to the root to restore the
invariant of tree Tℓ+i−1. Finally, all nodes are written back to their original
location. It is straightforward to cast this protocol as a converter for the
clients, denoted by authRW and specified in Figure 6.9. The generation of
cryptographic keys and the initial setup of the tree are formally specified
in the initialization converter initauth found in Figure 6.8.

Intuitively, this protocol is secure since no adversary can inject a new
value at any memory location, as each node is bound to a memory location
on the server. Additionally, replaying an older value is not possible as an
older value has a smaller timestamp and if the client verifies the tree’s
invariant, its reliably stored value N0 is too large. Formally, we prove the
following theorem.

Theorem 6.4.1. Let k, ℓ ∈ N and let Σ1 = Σ × Zq × T for some al-
phabet Σ. The protocol auth := (initauth, authRW, . . . , authRW) (with k
copies of authRW) described above based on a MAC function f with tag

148 CHAPTER 6. A MODEL FOR OUTSOURCED STORAGE

Converter authRW

Interface out

Input: (read, i)
T ← GetValidSubtree(ℓ+ i− 1)
if T ̸= ∅ then

Parse node Nℓ+i−1 (of tree T) as (x, t, fsk(ℓ+ i− 1, x, t))
return x

else
return ϵ

Input: (write, i, x)
T ← GetValidSubtree(ℓ+ i− 1)
if T ̸= ∅ then

Nℓ+i−1 ← (x, tℓ+i−1 + 1, fsk(ℓ+ i− 1, x, tℓ+i−1 + 1))
for each internal node Ni ∈ T do

Ni ← (ti + 1, fsk(i, ti + 1))
for each node Ni ∈ T with i > 0 do

output (write, i, Ni) at in to SMR
N0 ← N0 + 1
output (write, 1, N0) at in to L

else
return ϵ

function GetValidSubtree(i)
Retrieve Tℓ+i−1, i.e., all nodes Nr on the path from leaf node Nℓ+i−1

to the root N0 (and their siblings) in descending order of index via:
-output (read, 1) at in to L to read N0

-output (read, r) at in to SMR to read Nr

for each node Nr ∈ Tℓ+i−1 with r > 0 do
Case Nr = (tr, tag):

if fsk(r, tr) ̸= tag then
return ∅

Case Nr = (x, tr, tag):
if fsk(r, x, tr) ̸= tag then

return ∅
for each node Nr ∈ Tℓ+i−1 with r > 0 do

par←
⌈

i
2

⌉
− 1 ◃ index of parent

ch1 ← 2 · par + 1 ◃ index of 1st child
ch2 ← 2 · par + 2 ◃ index of 2nd child
if tpar ̸= tch1 + tch2 then

return ∅
return Tℓ+i−1

Figure 6.9: The converter for the clients to realize an authentic server
memory from a basic server memory.

6.4. CONSTRUCTIONS 149

space T constructs the authentic server memory aSMRk
Σ,ℓ from the basic

server memory SMRk
Σ1,2ℓ and a local memory L (of constant size), with

respect to the simulator simauth as defined in Figure 6.10 and the pair
(honSrv, honSrv). More specifically, we design a reduction ρ such that for
all distinguishers D and their associated adversaries A := ρ(D),

∆D(honSrvS authP [L,SMRk
Σ1,2ℓ], honSrv

SaSMRk
Σ,ℓ) = 0

and ∆D(authP [L,SMRk
Σ1,2ℓ], sim

S
authaSMRk

Σ,ℓ) ≤ Adveu-cma
f,A .

Proof. The correctness condition is obvious and we only give a proof of
the security condition. We analyze the input-output behavior of both
systems involved. To this end, we consider the possible inputs at each
interface.

On input init, initComplete at interface C0: Upon the init-query,
the protocol initauth of the real system authP [L,SMRk

Σ1,2ℓ] gen-
erates a secret MAC key sk and initializes the basic memory re-
source. Subsequently, the protocol writes the nodes of T (ℓ) to
the server memory, except for the root N0 which is stored in the
local memory. This initialization adds 2ℓ − 2 entries to the his-
tory Hist of SMR. After this initialization phase, Hist reads
(0, init)||(0, W, 1, N1)|| . . . ||(0, W, 2ℓ − 1, N2ℓ−1). Any subsequent
read query will return the fixed value λ ∈ Σ.

In the ideal system simS
authaSMRk

Σ,ℓ, the query initializes the mem-
ory to the fixed value λ ∈ Σ and adds the entry (0, init) to Hist.
Since this is the first entry of Hist, the simulator will replace this
entry by its locally simulated list Linit that consists of the 2ℓ− 2
entries as above (where the key MAC key sk is chosen locally by
the simulator).

Finally, on input initComplete, both systems deactivate interface
C0 and the other client interfaces are operational from this point
onwards.

On input (read, i) at interface Ck: On this query, both protocols, that
is initauth (in case k = 0) and authRW (in case k > 0), retrieve all
the nodes of the sub-tree Tℓ+i−1. This sub-tree contains the leaf
node Nℓ+i−1 = (xi, t, fsk((ℓ+ i− 1, t, xi))) of T (ℓ) which stores the

150 CHAPTER 6. A MODEL FOR OUTSOURCED STORAGE

Converter simauth

Initialization
sk � K
Initialize 2ℓ− 1 nodes Ni as in Figure 6.8
Linit ← (0, init)||(0, W, 1, N1)|| . . . ||(0, W, 2ℓ− 1, N2ℓ−1)
pos← 1

Interface SH

Input: getHist :
UpdateLog
return L

Input: (read, r) ∈ [2ℓ− 1] :
UpdateLog
return Nr

Interface SI (intrusion = true)
Input: (write, r, x) ∈ [2ℓ− 1]× (Σ× Zn × T)

UpdateLog
Determine the last entry in L that wrote value N in to location i
if N ̸= x then

Nr ← x
for each leaf node Nℓ+i−1 whose sub-tree Tℓ+i−1 is not valid do

output (delete, i) at in to aSMR
else

for each leaf node Nℓ+i−1 whose sub-tree Tℓ+i−1 is valid do
output (restore, i) at in to aSMR

Nr ← N

procedure UpdateLog
output getHist at in to aSMR
Let Hist be the returned value
for j = pos to |Hist| do

if Hist[j] = (0, init) then
L← Linit

else if Hist[j] = (k, R, i) then
Let Tℓ+i−1 be the sub-tree of simulated leaf node Nℓ+i−1

for each node Nr ∈ Tℓ+i−1 in decreasing order of index do
L← L||(k, R, r)

else if Hist[j] = (k, W, i, x) then ◃ Successful write operation
Let Tℓ+i−1 be the (valid) sub-tree of simulated leaf node Nℓ+i−1

for each node Nr ∈ Tℓ+i−1 in decreasing order of index do
L← L||(k, R, r)

for each node Nr ∈ Tℓ+i−1 in decreasing order of index do
Update Nr according to the protocol (Figure 6.9)
L← L||(k, W, r, Nr)

else if Hist[j] = (k, Fail, i, x) then ◃ Failed write operation
Let Tℓ+i−1 be the sub-tree of simulated leaf node Nℓ+i−1

for each node Nr ∈ Tℓ+i−1 in decreasing order of index do
L← L||(k, R, r)

pos← |Hist|+ 1

Figure 6.10: The simulator for the construction of an authenticated
memory.

6.4. CONSTRUCTIONS 151

value of memory location i. Furthermore, Tℓ+i−1 consists of all
nodes on the path from that leaf to the root together with their
children. To retrieve this sub-tree, the protocol issues 2 log ℓ − 1
read-queries. The history Hist hence is increased by the list of
2 log ℓ− 1 value (k, R, r1)||...||(k, R, r2ℓ−1), where the indices rj are
ordered in decreasing order according to their location in SMR.
Afterwards, the protocol checks the validity of each authentication
tag and checks the tree’s invariant (i.e., that the sum of the children’s
timestamps is equal to the parent’s timestamp). If all checks succeed,
xi is output (which is the last value written to this location), and
otherwise ϵ is output.

In system simS
authaSMRk

Σ,ℓ, system aSMR answers the query with
the current memory content of cell i. If the cell is not corrupted, the
last value written is output at interface Ck. If the cell is corrupted,
ϵ is output. In order for the simulator simauth to emulate this view,
it internally simulates the tree T ℓ and, after each adversarial query
at interfaces SI and SH keeps track of which sub-trees Tℓ+r−1 are
valid, and if not, corrupts the cell r of aSMR (cf. behavior at
interface SH and SI below). This enforces the consistency between
successful reads and valid subtrees exactly as in the real system.
Additionally, the next time the simulator is activated, it will update
its simulated history L accordingly: if this read-request (k, R, i) is the
qth entry in Hist of aSMR, then, in procedure UpdateLog, this
qth entry will lead to the increase of 2 log ℓ− 1 read-query entries
in L. Hence, the history L is increased by the list of 2 log ℓ − 1
value (k, R, r1)||...||(k, R, r2ℓ−1), where the indices rj are ordered
in decreasing order according to their location in the simulator’s
emulated tree. This perfectly mimics the real world behavior.

On input (write, i, x) at interface Ck: Each write request can be di-
vided into two two phases: (1) the retrieval of sub-tree Tℓ+i−1 and
its validity check and (2) writing the updated sub-tree Tℓ+i−1 back
to the server memory (except for the root N0) in case the validity
check was passed. Phase (1) is simulated as before by simauth and
thus we focus on the second phase.

In the real system authP [L,SMRk
Σ1,2ℓ], the tree Tℓ+i−1 is updated

locally and each node is subsequently written back to SMR. The

152 CHAPTER 6. A MODEL FOR OUTSOURCED STORAGE

history Hist of the resource is thus increased by the following list
of 2 log ℓ− 1 values, namely (k, W, r1, Nr1)||...||(k, W, r2ℓ−1, N2ℓ−1).

In the ideal system, the procedure UpdateLog will replace this
entry in the history by the appropriate sequence of write-requests
only if the write-request was successful. Note that the simulator
simauth is informed whether a client write resulted in a successful
update (in which case Hist[q] = (k, W, i, x)) or whether the update
failed (in which case Hist[q] = (k, Fail, i, x)).

On input getHist at interface SH : In the real system, the output is
the entire history of SMR. By the above analysis, a straightforward
inductive argument shows that in system simS

authaSMRk
Σ,ℓ, the

simulator’s simulated history L, which is output upon this query,
emulates the real-world view perfectly.

On input (write, r, x) at interface SI : An adversarial write request in
the real world is a simple replacement of the memory cell r of SMR.
If the value x corresponds to the last honest value written to this
cell, then this operation might provoke that now certain sub-trees
Tℓ+i−1 become valid again (and hence be involved in successful read
and write requests).

This is simulated in the ideal world in that simulator simauth checks,
for i = 0 to ℓ−1, whether any sub-tree Tℓ+i−1 in its simulated server
memory became valid again and issues (restore, i) to aSMR in
this case.

In the other case, if the value x is unequal to the value Nr being
replaced, this might lead to a couple of corrupted (logical) mem-
ory cells since certain sub-trees become invalid in the real system
authP [L,SMRk

Σ1,2ℓ].

In the ideal world simS
authaSMRk

Σ,ℓ, the simulator simauth first
updates its internal storage up to the current point by invoking
UpdateLog to get the actual value of Nr. If Nr ̸= x, simauth issues
a (delete, i)-query to aSMR for each location i whose tree Tℓ+i−1
got invalid due to this update.

This update, however, only simulates the real world perfectly if the
change Nr ← x led to an invalid sub-tree for the case Nr ̸= x. This is
the case, if the authentication of x is invalid or if timestamps do not

6.4. CONSTRUCTIONS 153

satisfy the invariant. The bad event, denoted by BAD occurs if the
adversary manages to write a value x, that has never been written
to location r and which nevertheless results in a valid sub-tree. We
different two cases:

1. If location r stores a leaf node, this implies that x has the
format (v′, t′r, tag

′) for which t′r > tr or (v′ ≠ v and t′r ≥ tr)
holds, since for t′r < t′r a valid sub-tree gets invalid since the
overall invariant cannot longer hold (since the root value N0

would be too large.) Hence, tag′ corresponds to a valid forgery
for the message (r, v′, tr) of fsk(.).

2. If location r stores an internal node, this implies that x has the
format (t′r, tag) with t′r > tr (as otherwise it would constitute
a reduction of the sum of the timestamps which will then
eventually be smaller than N0). In this case, tag corresponds
to a forgery for the message (r, t′r) of fsk(.).

Hence, we conclude that the real and ideal system are identical until
event BAD occurs.

On input (read, r) at interface SH : In the real system, this query re-
turns the current value at location r of SMR. This is either the
last value written by any client interface or the last value written
by the adversary. In the ideal system, the simulator updates its
internal simulation of the server memory on each activation and
hence, returns either the last value written to r according to its
simulated history L or the value that was written by an adversarial
write.

On inputs startWriteMode and stopWriteMode at interface W: First,
in the real system authP [L,SMRk

Σ1,2ℓ], the first input allows the
adversary to access and modify the server storage until the input
stopWriteMode is input. The same holds for the the ideal system
simS

authaSMRk
Σ,ℓ, since the simulator does not react on adversarial

queries at interface SI in case intrusion = false and is allowed to
access interface SI of resource aSMR if and only if intrusion is
set.

This concludes the analysis of the behavior. We see that the real system
system and the ideal system are identical until event BAD occurs. In

154 CHAPTER 6. A MODEL FOR OUTSOURCED STORAGE

particular, the occurrence of BAD implies a successful forgery against the
MAC function fsk(.). We now construct and adversary A := ρ(D) from
a distinguisher D. The reduction emulates the real system towards the
distinguisher D and uses the oracle provided by EU-CMAmac

f to evaluate
the MAC-function. If D issues a write-query at interface SI that provokes
event BAD, ρ(D) issues this value as a forgery to the game EU-CMAmac

f .
Hence, A := ρ(D) is an adversary for the MAC game and we observe that

∆D(authP [L,SMRk
Σ1,2ℓ],sim

S
authaSMRk

Σ,ℓ)

≤ PrD(authP [L,SMRk
Σ1,2ℓ])[BAD] ≤ Adveu-cma

f,A .

This concludes the proof.

6.4.2 Confidential from Authentic Server-Memory Re-
sources

The protocol. We again specify two converters, which we call initpriv
(for initialization) and privRW (for the clients). Let E = (Gen,Enc,Dec)
be a (CPA-secure) private-key encryption scheme with message space
Σ, ciphertext space C, and key space K: To initialize, initpriv executes
Gen to get a key sk and stores the key in the local memory L. To read
and write to the authentic server-memory resource, the converters behave
as follows: On input (write, i, x) at the outer interface, encrypt x and
output (write, i,Enc(sk , x)) to aSMR. If the write-operation returns ϵ
(indicating an error), output ϵ at the outer interface. On input (read, i) at
the outer interface, output (read, i) to aSMR. If the received ciphertext
is c ̸= ϵ, output Dec(sk , c) at the outer interface and ϵ otherwise. The
protocol is described in detail in Figure 6.11.

Theorem 6.4.2. Let k, ℓ ∈ N and let Σ be an alphabet. The described
protocol, i.e., the tuple of converters priv := (initpriv, privRW , . . . , privRW)
(with a private-key encryption scheme E with ciphertext space C) con-
structs the confidential (and authentic) server-memory resource cSMRk

Σ,ℓ

from the authentic server-memory resource aSMRk
C,ℓ and a local private

memory L (of constant size), with respect to the simulator simpriv as
defined in Figure 6.12 and the pair (honSrv, honSrv). More specifically,
we construct a reduction ρ(D) := DCI with a specific system CI de-
fined in the proof, such that for all distinguishers D and their associated

6.4. CONSTRUCTIONS 155

Converter initpriv

Interface out

Input: init :

sk ← Gen
output (write, 1, sk) at in to L
output init at in to aSMR
for i = 1 to ℓ do

(write, i, Enc(sk , λ))

Input: (read, i)
Defined the same as for privRW in
Figure 6.11

Input: (write, i, x) :
Defined the same as for privRW in
Figure 6.11

Input: initComplete :
output initComplete at in to aSMR

Converter privRW

Interface out

Input: (read, i)
output (read, 1) at in to L
Let sk be the returned value
output (read, i) at in to aSMR
Let c be the returned value
if c ̸= ϵ then

return Dec(sk , c)
else

return ϵ

Input: (write, i, x)
output (read, 1) at in to L
Let sk be the returned value
output (write, i, Enc(sk , x)) at in to
aSMR
if the write operation returns ϵ then

return ϵ at out

Figure 6.11: The initialization protocol (left) and the converter for the
clients (right) to realize a confidential server memory from an authentic
server memory.

CPA-adversaries A := ρ(D),

∆D(honSrvS privP [L,aSMRk
C,ℓ], honSrv

ScSMRk
Σ,ℓ) = 0

and ∆D(privP [L,aSMRk
C,ℓ], sim

S
privcSMRk

Σ,ℓ) = q · Advind-cpa
E,A ,

where q is the total number of write operations at the client interfaces.

Proof Sketch. The correctness condition is again easy to verify. For the
security condition, consider the simulator simpriv in Figure 6.12 that
generates an encryption key by its own and simulates the content for each
write operation to be the encryption of the fixed value λ ∈ Σ. Furthermore,
simpriv simply forwards deletion-operations to aSMR. To argue about
the security, a simple hybrid argument follows.

Let q be an upper bound on the number of write-queries at the client
interfaces. For i ∈ {0, . . . , q}, we define the system Hi that behaves as

156 CHAPTER 6. A MODEL FOR OUTSOURCED STORAGE

Converter simpriv

Initialization
sk � Gen
Linit ← (0, W, 1, Enc(skλ))|| . . . ||(0, W, ℓ, Enc(sk , λ))
pos← 1

Interface SH

Input: getHist :
UpdateLog
return L

Input: (read, i), i ∈ [ℓ] :
UpdateLog
if S[i] = ϵ then

return S[i]
else

Determine the last entry in L that wrote a value ci at location i
return ci

Interface SI (intrusion = true)
Input: (delete, i) ∈ [ℓ]

UpdateLog
S[i]← ϵ
output (delete, i) at in to cSMR

Input: (restore, i) :
S[i]← ⊥
output (restore, i) at in to cSMR

procedure UpdateLog
output getHist at in to cSMR
Let Hist be the returned value
for j = pos to |Hist| do

if Hist[j] = (0, init) then
L← Linit

else if Hist[j] = (k, R, i) then
L← L||(k, R, i)

else if Hist[j] = (k, W, i) then
L← L||(k, W, i, Enc(sk , λ))

else if Hist[j] = (k, Fail, i) then
L← L||(k, Fail, i, Enc(sk , λ))

pos← |Hist|+ 1

Figure 6.12: The simulator for the construction of a confidential memory.

6.4. CONSTRUCTIONS 157

privP [L,aSMRk
Σ,ℓ] for the first i write-queries. However, for subsequent

write-queries, not the real encrypted value is written to aSMR, but
the encryption of λ. Hence, Hq is equivalent to privP [L,aSMRk

Σ,ℓ] and
H0 is equivalent to simS

privcSMRk
Σ,ℓ. Intuitively, since two adjacent

hybrid systems Hi−1 and Hi only differ in the way the ith write-query is
encrypted (either the real value or λ), the overall security follows from
the indistinguishability of ciphertexts.

To complete this last step, we define the reduction system Ci that
behaves like Hi, but instead of computing the encryptions and decryp-
tions by itself, it queries the encryption and decryption oracles of game
IND-CPAbE . In particular, on the jth write-query input (write, i, x), ask
IND-CPAbE for the encryption of x if j < i, ask IND-CPAbE for the encryp-
tion of λ if j > i, and, in case j = i, challenge game IND-CPAbE with
input (x, λ) to receive the ciphertext. We immediately see that for all
i ∈ {0, . . . , q − 1},

Hi = C
IND-CPA0

E
i = C

IND-CPA1
E

i+1 . (6.1)

Let CI be the system that first chooses i ∈ {1, . . . , q} uniformly at
random and then behaves as Ci and let us define A := DCI . A is a valid
adversary4 for the CPA-Game and we observe that

Pr
[
AIND-CPA0

E = 1
]
=

1

q
·
q∑
i=1

Pr
[
DC

IND-CPA0
E

i = 1
]

and

Pr
[
AIND-CPA1

E = 1
]
=

1

q
·
q∑
i=1

Pr
[
DC

IND-CPA1
E

i = 1
]

=
1

q
·
q−1∑
i=0

Pr
[
DC

IND-CPA0
E

i = 1
]
,

where the last equality follows from equation (6.1).

4Note that the composition of the two systems D and CI , i.e., DCI , defines the
behavior of the adversary and the way the oracles of the game are invoked.

158 CHAPTER 6. A MODEL FOR OUTSOURCED STORAGE

Finally, we compute the distinguishing advantage by

∆D(privP [L,aSMRk
Σ,ℓ]  

Hq=C
IND-CPA0

E
q

, simS
privcSMRk

Σ,ℓ  
H0=C

IND-CPA0
E

0

)

= Pr
[
DC

IND-CPA0
E

q = 1
]
− Pr

[
DC

IND-CPA0
E

0 = 1
]

=

q∑
i=1

Pr
[
DC

IND-CPA0
E

i = 1
]
−
q−1∑
i=0

Pr
[
DC

IND-CPA0
E

i = 1
]

= q ·
(
Pr

[
AIND-CPA0

E = 1
]
− Pr

[
AIND-CPA1

E = 1
])

= q · Advind-cpa
E,A .

This concludes the proof.

6.4.3 Secure from Confidential Server-Memory Re-
sources

We present an enhanced version of the Path ORAM protocol. The original
Path ORAM protocol is due to Stefanov et al. [SDS+18]. In particular, we
complement the original protocol with a proper error handling such that
the protocol realizes the secure server-memory resource from an authentic
and confidential server-memory resource.

Overview and notation. The protocol maintains a tree structure
on the server-memory resource. For a logical memory with ℓ positions
(assume ℓ is a power of two), the binary tree has height L = log(ℓ) (and
thus ℓ leaves). Each node Nr of the tree can hold Z memory blocks (where
Z is a small constant greater or equal to 4 [SDS+18]). As usual, the tree
is stored in the server memory in linear ordering from 1 to 2ℓ− 1, where
in location 1 the root node N1 is stored and where the leaves are located
at addresses ℓ to 2ℓ− 1. We refer to the leaf node at address ℓ+ i− 1 as
the ith leaf node. For such a leaf node, the unique path to the root of the
tree is denoted P(i) and by P(i, lv) we denote the node at level lv on this
path. The total number of blocks stored on the server is thus Z · (2ℓ− 1).

The client stores a position map position, which is a table of size L · ℓ
bits and maps all logical addresses to the index of its associated leaf node.
At any time during protocol execution, the invariant holds that for any
logical address i ∈ [ℓ], if position[i] = x, then the correct data block (i, v)

6.4. CONSTRUCTIONS 159

Converter initsec

Interface out

Input: init :

Prepare 2ℓ− 1 nodes Nr ← (0, λ)Z

S ← ∅
position← empty list with a capacity of ℓ items
for i = 1 to ℓ do

S ← S ∪ {(i, λ)}
position[i] � {1, . . . ℓ}

for x = 1 to ℓ do
for lv = L,L− 1, . . . , 0 do

Let r be the memory address of node P(x, lv)
Let d be the number of dummy blocks in node Nr

S′ ← {(i′, v′) ∈ S | P(x, lv) = P(position[i′], lv)}
m← min{|S′|, Z, d}
Truncate S′ to m blocks
S ← S \ S′

Denote the blocks in S′ by bi, i = 1 . . .m
for k = 1 to Z do

if Nr[k] = (0, λ) then
Nr[k]← bk

for all nodes Nr in decreasing order of index do
output (write, r, Nr) at in to cSMR

Input: (read, i) or (write, i, x):
Defined the same as for secRW in Figure 6.14

Input: initComplete :
output initComplete at in to cSMR

Figure 6.13: The initialization protocol for the construction of a secure
server memory.

is contained in a node on the path P(x) or in the stash S. The stash is a
local buffer maintained by the client that stores data blocks that overflow
during the protocol execution. A data block overflows if all suitable nodes
in the tree are already occupied by real memory blocks. The number of
overflowing blocks is proven to be small in [SDS+18].

Protocol. Initially, the tree is initialized to contain ℓ empty blocks of
the form (i, λ) for each address i ∈ [ℓ]. Upon initialization, the tree is
built to contain these empty blocks. In addition, the position table and
the stash are stored in the shared memory L and to each address i, a

160 CHAPTER 6. A MODEL FOR OUTSOURCED STORAGE

uniformly random leaf node is assigned, i.e., position[i] � {1, . . . ℓ}. Since
each node of the tree should be a list of exactly Z elements, each node
is complemented with the necessary amount of dummy elements which
we encode as (0, λ) (as opposed to real elements that contain the normal
addresses and the associated data block). The entire tree is then written
to the server storage. We give the formal description of converter initsec
in Figure 6.13. To access a logical address i to either read or update the
corresponding value v, the client reads the associated index of the leaf
node x← position[i] and reassigns position[i] to a new uniformly random
leaf. Next, the client retrieves all nodes on the path P(x) from the server
memory (from leaf to root) and all found real elements (j, v) (j > 0) are
added to the stash. In case the value at position i is to be updated, it is
assigned a new value at this point. Finally, the nodes of P(x) are newly
built and written back to the server. In this write-back phase, as many
blocks as possible from the local stash are “pushed” onto this path. To deal
with failures on a read or write-access to a logical address i, the protocol
behaves as follows: if during the above execution, a read request to the
server is answered by ϵ, indicating that a node is deleted, then the logical
address i is marked as invalid in the local position table position[i]← ϵ.
To remain oblivious in this case, the protocol subsequently writes back all
previously retrieved nodes without any modifications (yielding a sequence
of dummy accesses). In a subsequent request to retrieve logical block i,
the protocol will detect the invalid entry in the position table and just
return ϵ. To remain oblivious, the protocol additionally reads a uniformly
random path from the outsourced binary tree and subsequently re-writes
the very same elements without modifications (again yielding a sequence
of dummy accesses). If during these dummy accesses an error occurs,
i.e., the server-memory resource returns ϵ upon a request, this is simply
ignored. This concludes the description of the protocol. A more precise
specification can be found Figure 6.14. We denote this client converter by
secRW. The security of the protocol is assured by the following theorem.
It implies that the above error-handling for Path ORAM is sufficient to
realize the secure server-memory resource and to ensure strong security
guarantees.

Theorem 6.4.3. Let k, ℓ, Z ∈ N and Σ1 := (({0} ∪ [ℓ]) × Σ)Z for
some finite non-empty set Σ. The above described protocol sec :=
(initsec, secRW, . . . , secRW) (with k copies of secRW) constructs the secure

6.4. CONSTRUCTIONS 161

Converter secRW

Interface out
Input: (read, i)
v ← UpdatePath(R, i,⊥) (see Fig-
ure 6.15)
return v

Input: (write, i, v)
v′ ← UpdatePath(W, i, v) (see Fig-
ure 6.15)
if v′ = ⊥ then

return ϵ
else

return ok

Figure 6.14: The converter for the clients to realize a secure server memory
from a confidential and authentic server memory.

server-memory resource sSMRk,1
Σ,ℓ from the confidential (and authentic)

server-memory resource cSMRk
Σ1,2ℓ and a local memory, with respect to

the simulator simsec described in Figure 6.16 and the pair (honSrv, honSrv).
More specifically, for all distinguishers D

∆D(honSrvS secP [L, cSMRk
Σ1,2ℓ], honSrv

SsSMRk,1
Σ,ℓ) = 0

and ∆D(secP [L, cSMRk
Σ1,2ℓ], sim

S
secsSMRk,1

Σ,ℓ) = 0.

Proof. We prove the security condition and again analyze the input-output
behavior of both systems involved. To this end, we consider the possible
inputs at each interface.

On input init, initComplete at interface C0: On input init to the
real system, i.e., to secP [L, cSMRk

Σ1,2ℓ], the converter initsec first
initializes the position map position by assigning to each logical
address i the corresponding leaf number uniformly at random. Then,
the converter stores all initial blocks (i, λ) for i = 1 . . . ℓ in the stash
S. Subsequently, the binary tree T consisting of nodes N0 to N2ℓ−1
(in the usual linear ordering) is locally built: each path from any leaf
to the root is examined and as many blocks as possible are pushed
from the stash S to a node in the tree. After this step, a block (i, λ)
is either found in the stash S (stored in the local memory) or within
the tree in any of the nodes of the path P(i). Finally, the whole tree
is written to the server-memory resource (in decreasing order of the

162 CHAPTER 6. A MODEL FOR OUTSOURCED STORAGE

Function UpdatePath

1: function UpdatePath(op, i, v′)
2: Res← ⊥
3: Retrieve the stash S and the position table position from L
4: x← position[i]
5: if x ̸= ϵ then
6: position[i] � {1, . . . , ℓ}
7: for lv = L,L− 1, . . . , 0 do
8: Let r be the memory address of node P(x, lv)
9: output (read, r) at in to cSMR

10: Store the returned value as Nr

11: if all fetched nodes Nr ̸= ϵ and P(x) is not marked as invalid then
12: for each node Nr do
13: Parse Nr as a list of Z blocks bi ∈ {(i, v) | i ∈ N} ∪ {λ}
14: for i = 1 to Z do
15: if bi ̸= (0, λ) then
16: S ← S ∪ {bi}
17: Retrieve block b from S such that b = (i, v) for some v ∈ Σ
18: Res← v
19: if op = W then
20: Replace (i, v) in S by (i, v′)
21: for lv = L,L− 1, . . . , 0 do
22: Let r be the memory address of node P(x, lv)
23: N ← []
24: S′ ← {(i′, v′) ∈ S | P(x, lv) = P(position[i′], lv)}
25: m← min{|S′|, Z}
26: Truncate S′ to m blocks
27: S ← S \ S′

28: Denote the blocks in S′ by bi, i = 1 . . .m
29: for k = 1 to Z do
30: if k ≤ m then
31: N ← N ||bk
32: else
33: N ← N ||(0, λ)
34: output (write, N, r) at in to cSMR
35: if the write query returns ϵ then
36: Mark all paths containing P(x, lv) as invalid in position table.
37: else
38: position[i]← ϵ
39: for lv = L,L− 1, . . . , 0 do
40: Let r be the memory address of node P(x, lv)
41: output (write, r, Nr) at in to cSMR
42: else ◃ Simulate dummy accesses if logical address i is marked invalid.
43: x � {1, . . . , ℓ}
44: for lv = L,L− 1, . . . , 0 do
45: Let r be the memory address of node P(x, lv)
46: output (read, r) at in to cSMR
47: Store the returned value as Nr

48: for lv = L,L− 1, . . . , 0 do
49: Let r be the memory address of node P(x, lv)
50: output (write, r, Nr) at in to cSMR
51: Store the stash S and the position table position in L
52: return Res

Figure 6.15: Definition of the path update function.

6.4. CONSTRUCTIONS 163

Converter simsec

Initialization
for i = 1 to 2ℓ− 1 do

Ni ← valid
Let T be the binary tree consisting of nodes N0, . . . , N2ℓ−1 in linear ordering
Linit ← (0, init)||(0, W, 2ℓ− 1)|| . . . ||(0, W, 1)
pos← 1
L← []

Interface SH
Input: getHist :

UpdateLog
return L

Input: (read, r), r ∈ [2ℓ− 1] :
UpdateLog
return λ

Interface SI (intrusion = true)
Input: (delete, r) ∈ [2ℓ− 1]

UpdateLog
Nr ← invalid
I ← {i ∈ [ℓ] | Path PT (i) contains at least one invalid node}
α← |I|

ℓ
output (pollute, α) at in to sSMR

Input: (restore, r) :
UpdateLog
Iold ← {i ∈ [ℓ] | Path PT (i) contains at least one invalid node}
Ni ← valid
Inew ← {i ∈ [ℓ] | Path PT (i) contains at least one invalid node}
δ ← |Iold|−|Inew|

ℓ ◃ Inew ⊆ Iold
output (reducePollution, δ) at in to sSMR

procedure UpdateLog
output getHist at in to sSMR
Let Hist be the returned value
for j = pos to |Hist| do

if Hist[j] = (0, init) then
L← Linit

I ← ∅
else if Hist[j] = (k, Access) then

I ← {i ∈ [ℓ] | Path PT (i) contains only valid nodes}
else if Hist[j] = (k, Failed) then

I ← {i ∈ [ℓ] | Path PT (i) contains at least one invalid node}
if I ̸= ∅ then

x � I
for lv = L,L− 1, . . . , 0 do ◃ Simulate read access.

Let r be the address of simulated node Nr = PT (x, lv)
L← L||(k, R, r)

for lv = L,L− 1, . . . , 0 do ◃ Simulate write access.
Let r be the address of simulated node Nr = PT (x, lv)
if Nr = valid then

L← L||(k, W, r)
else

L← L||(k, Fail, r)
pos← |Hist|+ 1

Figure 6.16: The simulator for the construction of a secure memory.

164 CHAPTER 6. A MODEL FOR OUTSOURCED STORAGE

linear index), which adds 2ℓ− 1 entries (0, W, r) for r = 2ℓ− 1 . . . 1
to the history.
In the ideal system simS

secsSMRk,1
Σ,ℓ, the command sets the value of

any storage location to λ and adds the initial entry (0, init) to the
history. The simulator will replace this first entry by the list Linit
that contains the simulated accesses that would happen in the real
world. This perfectly emulates the real-world view.
Finally, on input initComplete, both systems deactivate interface
C0 and the other client interfaces are operational from this point
onwards.

On input (read, i) at interface Ck: Upon this input at a client inter-
face of the real system secP [L, cSMRk

Σ1,2ℓ], the protocol executes a
write access to the memory resource. Inspecting the program code
in Figure 6.14, the function updatePath is executed in read-mode,
i.e., where the operation op = R (and hence no other arguments
need to be specified). First, the current leaf node of address i is read
from the position table (line 2). The program now branches into
two tracks: if a valid leaf index x is returned, then the instructions
on lines 5 to 41 are executed. The other case corresponds to the
event that a previous access to logical address i was invalid and lines
42 to 50 are executed instead. Let us focus on the successful branch
first: the client downloads all nodes corresponding to the path from
the xth leaf node to the root. The accessed path is determined in a
uniformly random way, since each time a path for logical address i
is successfully accessed, a new uniformly random value is written
to the position and determines to be accessed the next time when
address i is to be read (line 6). If all retrieved nodes are valid,
i.e., if the test on line 11 is passed, all the blocks contained in the
nodes are added to the local stash S (lines 12 to 16) and finally the
retrieved value is read from the stash (lines 17 and 18). To conclude
this operation, the updated path is written back to the confidential
server memory (lines 21 to 34). The update step tries to push as
many blocks as possible from the stash into the tree nodes. Only
the blocks (j, v) can be inserted into a node in the intersection of
P(x) and P(j) (condition on line 24). However, if the test on line 11
is not passed, i.e., if an invalid node is retrieved, then the currently
read logical block is declared as invalid by setting the position table

6.4. CONSTRUCTIONS 165

position[i] ← ϵ on line 38. Furthermore, the client simply writes
back the nodes it just retrieved without modification. Some of these
writes might not be successful but this can safely be ignored (as
nothing is changed). Overall, we conclude that this branch adds in
any case log(ℓ) read-requests and log(ℓ) write-requests to the history
of cSMR.
The second branch is taken if the position i is known to have failed
in the past (lines 42 to 50). Then, the protocol simply sends log(ℓ)
read-requests to the server to retrieve a randomly chosen path
and then rewrites the path unaltered. This adds another log(ℓ)
write-request to the history.
Overall, the probability that an access to logical address i is success-
ful given there has not been an invalid access5 since initialization,
is exactly the ratio of the number of valid paths and all ℓ paths.
Similarly, the probability that an access to logical address i is invalid
given there has not been an invalid access since initialization, is
exactly the ratio of the number of invalid paths and all ℓ paths.
In any other case, an access to logical address i will return ϵ with
probability one. Finally, we observe that on input (read, i) each of
the ℓ paths of the tree has equal probability to be accessed.
Let us now consider the ideal system simS

secsSMRk,1
Σ,ℓ. Upon a

read-query, we again have two possible branches. This is seen by
inspecting the program code of sSMR on a client-read request at
interface Ck for k > 0.6 Given that there has never been an invalid
access to address i, the probability of a successful access is exactly
1 − α, and that of an invalid access is exactly α, where α is the
pollution factor that can be set by the simulator. In each step of the
execution, the simulator simsec maintains the invariant that α equals
the ratio of invalid paths and all ℓ possible paths. In particular, as
explained below, on each deletion-query by the distinguisher, the
simulator updates the parameter α accordingly.
We now look at how the simulator simulates the real-world memory
access and maintains the simulated history. The simulator is in-
formed, whether an operation was evaluated to be successful (entry

5We mean an access that returned ϵ.
6Recall that for the sake of simplicity (and without loss of generality), we do not

assume any failure during the initialization phase.

166 CHAPTER 6. A MODEL FOR OUTSOURCED STORAGE

(k, Access) in the history), or whether it was evaluated to be a fail
(entry (k, Failed) in the history). In the first case, the simulator
chooses a random path from all the paths that only contain valid
nodes. (The statistics which nodes are valid and which are not is
maintained as explained below for input (delete, r) to interface SI).
In the second case, the simulator simulates the accesses to a random
path from the set of all paths that contain at least one invalid node.
Overall, this means that on input (read, i) to resource sSMR, the
probability for any fixed path to be added to the history is 1

ℓ . This
is easily seen by a case distinction: the probability that a particu-
lar valid path is added to the history is (1 − α) · #valid paths

ℓ . For
α = #invalid paths

ℓ this gives us a probability of 1
ℓ for all valid paths.

The other case is analogous and we see that on each read-request, a
uniformly random path is added to the history.

We can conclude that the behavior of the simulator mimics the
real world behavior. In particular, the simulated history is updated
accordingly such that the failure probabilities are identical, as well
as the distribution of the access pattern in the simulated history.

On input (write, i, x) at interface Ck: On a write-instruction to the
systems, the same function updatePath is executed, but with
arguments op = W, i and v′, where v′ is the new value for address i.
The code for this case is identical to the read case except for the
instructions on lines 19 and 20. Since these two lines do not affect
the observable behavior, the analysis of this case follows from the
analysis of the previous analysis of the read-instructions.

On input getHist at interface SH : In the real system, the output is
the history of cSMR. By the above analysis, a straightforward
inductive argument shows that in case of system simS

secsSMRk,1
Σ,ℓ,

the simulator’s internally maintained history L, which is output
upon this query, emulates the real-world view perfectly.

On input (restore, r) at interface SI : In the real system, the restore
operation makes a node, which was invalid before, become valid
again. This means that the number of valid paths might increase.
In fact, for all logical address i, that have not failed on any access
so far, the probability thus increases that the next read or write

6.4. CONSTRUCTIONS 167

request is successful. The already failed addresses are not affected
by this change since the local position table is not affected by a
restore command.

In the ideal system, the simulator updates the pollution factor α
of the server memory sSMR accordingly by recomputing the ratio
of invalid paths after the node Nr becomes valid again (note that
this ratio will not increase). Hence, in both worlds, the effects of a
restore command are identical.

On input (delete, r) at interface SI : In the real system, the delete
operation makes a node, which was valid before, become invalid.
This means that the number of invalid paths increases. In fact, for
all logical address i, that have not failed on any access so far, the
probability thus increases that the next read or write request fails.
The already failed addresses are not affected by this change since
the local position table is not affected by a deletion command.

In the ideal system, the simulator updates the pollution factor α of
the server memory sSMR by recomputing the ratio of invalid paths
after the node Nr becomes invalid again. Hence, in both worlds,
the effects of a deletion command are identical.

On input (read, r) at interface SH : On any command (read, r) both
systems simply return the dummy symbol λ. This holds by definition
of system cSMR in the real world and by definition of the simulator
simsec in the ideal world.

On inputs startWriteMode and stopWriteMode at interface W: In case
of the real system secP [L, cSMRk

Σ1,2ℓ], the first input allows the
adversary to access and modify the server storage until the input
stopWriteMode is input. The same holds for the the ideal system
simS

secsSMRk,1
Σ,ℓ, since the simulator does not react on adversarial

queries at interface SI in case intrusion = false and is allowed to
access interface SI of resource sSMR if and only if intrusion is
set.

This ends our analysis of the behavior. We conclude that on each input,
the observable effects are identical for the real system and the ideal system.
The statement follows.

168 CHAPTER 6. A MODEL FOR OUTSOURCED STORAGE

Client-side storage reduction. At first sight, the client storage over-
head seems unpractical since the size of the position map is ℓ log(ℓ) bits,
which corresponds roughly to ℓ data blocks if we assume that each data
block has a size B of (at least) log(ℓ) bits. There are a couple of techniques
suggested to reduce this storage overhead. Stefanov et al. [SSS12] describe
that under realistic workloads such as mostly sequential accesses in file
systems, the position table might consume only 0.13ℓ bytes, achieved
for example by just maintaining a counter per block instead of its ran-
dom position and to infer the block’s position via a PRF applied to the
current counter and the block number. This suggests that even for an
an outsourced storage in the order of a couple of terabytes, the position
table would not exceed one gigabyte. A second technique to reduce the
client storage overhead is by outsourcing the position itself in a clever
way. However, not all schemes are equally suitable as will be discussed in
the next section.

Improving the resilience by replication. There is a simple protocol
that improves the resilience to losing data blocks. The protocol stores
each data block t times within the secure server memory. Formally, this
protocol constructs resource sSMRk,t

Σ,ℓ from sSMRk,1
Σ,t·ℓ. Recall that in

the former resource, only failing to read (or write) a logical memory cell
more than t times implies that the data block is not accessible any more.
We sketch the converter for initialization, denoted initrep,t and the client
converter rept.

On input init at the outer interface of initrep,t, output init to
sSMRk,1

Σ,t·ℓ and additionally store for each i ∈ ℓ the value ci (initially
zero) in the local storage L. The value ci denotes the number of failed
accesses to logical address i. On input (read, i) to converter initrep,t or
rept, output (read, i+min{ci, t− 1}) and return whatever is returned by
resource sSMRk,1

Σ,t·ℓ. In case ϵ is returned, the converter sets ci ← ci + 1.
On input (write, i, x) to converter initrep,t or rept output (write, i+ r, x)

to sSMRk,1
Σ,t·ℓ for all r = 0 . . . t− 1 and output ϵ at the outer interface for

each failed write access to the resource (and ok for the others). For this
protocol, one can show the following lemma:

Lemma 6.4.4. Let k, ℓ, t ∈ N. be a secure server-memory resource
with the usual parameters. The above described replication protocol
rep := (initrep,t, rept, . . . , rept) (with k copies of rept) constructs the

6.4. CONSTRUCTIONS 169

secure server-memory resource sSMRk,t
Σ,ℓ from the secure server-memory

resource sSMRk,1
Σ,t·ℓ. More specifically, there is a simulator simrep such

that for all distinguishers D,

∆D(honSrvS repP [L, sSMRk,1
Σ,t·ℓ], honSrv

SsSMRk,t
Σ,ℓ) = 0

and ∆D(repP [L, sSMRk,1
Σ,t·ℓ], sim

S
repsSMRk,t

Σ,ℓ) = 0.

6.4.4 Do all ORAM Schemes realize a Secure Server-
Memory Resource?

Our formalization provides strong security guarantees. Especially, the
failure probabilities are required to be independent and the same for each
memory location. However, not all existing ORAM schemes satisfy this
level of security. We elaborate on two popular ORAM schemes. We show
that in the recursive Path ORAM scheme by Stefanov et al. [SSS12],
failures among memory locations are correlated. In the case of the
Goodrich-Mitzenmacher ORAM scheme [GM11], we show that the failure
probabilities are not the same for all (logical) memory locations. As we
explain, the latter property is structural and therefore applies also to
stronger notions, for example ORAM schemes that satisfy the NRPH-
property of [CKW13].

The recursive Path ORAM scheme. A beautiful technique to re-
duce the client storage overhead is by using the Path ORAM scheme
recursively as suggested by Stefanov et al. [SSS12]. In recursive Path
ORAM, the position table itself is outsourced using another (and smaller)
instance of a Path ORAM scheme. This smaller instance could itself
outsource its position table to an even smaller ORAM scheme etc. The
final instance (i.e., the base case), stores its position table in the local
memory. Assuming a constant block size B > log(n), each recursive
instance reduces the number of positions by a factor f := B

log(n) > 1,
where each block is used to store (roughly) f entries of the position table.
Hence, after recursion depth in the order of O(log(ℓ)), the position table
stored in the client storage is of size roughly log(ℓ) data blocks. A formal
proof of this is given in [SSS12].

Let us first describe one (recursion) step of this procedure in our
formalism: We consider the similar scenario as before, but we replace

170 CHAPTER 6. A MODEL FOR OUTSOURCED STORAGE

the local memory L by an instance of a secure server-memory resource
sSMR. This additional secure server storage memory has ℓ′ < ℓ storage
locations, each of which holds a tuple of f values of the position table
position. The protocols need to be adapted only slightly: let the converter
init′sec be defined as initsec except that the position table is written to
secure server-memory resource instead of the private memory L. Let
further sec′RW be defined as converter secRW but instead of the instruction
x ← position[i], the converter computes q ← (i − 1) div f and sends a
read instruction (read, q + 1) to the secure memory to obtain the tuple
(position[fq + 1], . . . , position[f(q + 1)− 1]), where the desired value x is
at position i − qf in the tuple. Similarly, the subsequent update step
position[i]← x now consists of first updating the tuple at the respective
location and then sending a write instruction to the secure memory
resource to write the entire tuple back to location q + 1.

The question now is: does the protocol still realize a secure server-
memory resource? Unfortunately, the answer to this question is negative.
On an intuitive level, the reason is that logical memory addresses are
grouped in blocks. For example, the logical memory locations i = 1 . . . f ,
i.e., their mappings position[1] . . . position[f], are an atomic block in the
recursive Path ORAM scheme. This, however, implies that if the lookup
fails for one logical address in sec′RW, then it fails for all the others in
that block as well. For the overall scheme, this means that failing to
access the value at location i = 1 is not independent of failing to access
the value at location i = 2 etc. In contrast, failing to access the value at
location f +1 is again independent, as it resides in a different block of the
smaller ORAM scheme. It is easy to exploit this observation to design a
distinguisher that distinguishes the system7 sec′P [sSMR, cSMR] and its
ideal goal, the desired secure memory resource, with noticeable advantage.
This scheme thus only constructs a weaker variant of the resource, where
failures among data blocks are correlated.

ORAM schemes based on a hierarchical structure of hash-tables.
A prominent ORAM scheme in this category is due to Goodrich and
Mitzenmacher [GM11] which is based on cuckoo-hashing and follows the
hierarchical approach envisioned by Goldreich and Ostrovsky [GO96].
The hierarchical approach organizes the data in levels, where each level is

7We omit here the parameters of the systems for brevity.

6.4. CONSTRUCTIONS 171

capable of storing two times as many elements as the level above. The
first level can be thought of as an array of small size. The lowest level
is capable of storing ℓ elements (and hence the number of levels is in
O(log(ℓ)). Each level except the first is either a standard hash-table or
a cuckoo hash-table8 An element is encoded in the familiar form (i, v),
where v denotes the value at logical address i. On a given level lv, if
the pair resides in the table of that level, then it is found at location
H lv(i), where H is a hash function.9 To perform a search for an address
i, each level lv is accessed (starting from the top level) and the location
H lv(i) is read until a pair (i, v) is found. After the element has been
found, the remaining tables are accessed at uniformly random locations.
After all accesses have been performed, the pair is inserted into the top
level array. We denote this random walk through the tables succinctly
by RW (i) and understand the above procedure. Inserting the element
into the top level is a crucial step: intuitively, the access pattern does
not reveal any information, since after each successful search (to random
locations from the servers point of view), the element will be found in the
top level in a subsequent search and the accesses to lower tables still look
random. Overall, no lookup for an address i (accessing position H lv(i) on
level lv) is performed twice for the same table. To maintain this invariant,
and to prevent tables from overflowing, periodic rebuild phases occur.
Such a rebuild phase servers two purposes: first, it moves data from one
level to the next lower level in an oblivious way. This has the effect that
infrequently accessed items are more likely to be found in lower tables.
Second, new hash functions H lv(.) are chosen for the levels to keep the
access pattern random looking. Both of these steps (regular re-hashing
and moving elements downwards in the hierarchy) are crucial to prove its
security in a passive setting [KLO12, GM11] or in an active setting where
the protocol aborts upon detecting an error.

Similar to the construction presented in Section 6.4.3, it seems that
each access is essentially a random walk from the top-level to the bottom
level and one would probably expect that we have equal failure probability
on any search for the item with logical address i. More precisely, we say
that an access to address i is successful if it has never failed in the past and
the current random walk RW (i) does not access any deleted cell. Thus,

8Usually the smaller levels are implemented using standard hash tables and larger
levels are implemented using cuckoo hash-tables.

9H is usually modeled as a uniform random function.

172 CHAPTER 6. A MODEL FOR OUTSOURCED STORAGE

one could suspect that a similar adaption of the GM scheme would realize
sSMR from a confidential and authentic memory. However, this is not
the case as one can see using the following thought experiment which lets
us conclude that there is a strategy that makes elements of tables higher
in the hierarchy fail with significantly smaller probability than elements
residing towards the bottom of the hierarchy. Imagine a hierarchy of
tables and assume that the address-value pair (1, v) is currently stored
at some level lv and that no failure has occurred so far. We assume v
to be a uniform random value of some alphabet. Consider an attacker
that now deletes a uniform random location of the hash-table at level lv:
with noticeable probability, this will hit exactly the pair (1, v) and thus
delete the information which value is associated to logical address 1. If
this event happens, no search will ever be able to output v (except with
negligible probability). Now, imagine that (roughly) 2lv read operations
for a different logical address, say 2, are performed. This number of
accesses is sufficient to provoke a rebuild phase that moves all elements
contained in level lv to the table at the lower lever. However, if the pair
(1, v) was deleted before, the lower level tables cannot contain the correct
value for address 1 and hence any subsequent access to this address cannot
return a consistent value. We can thus conclude: the probability that at
this point in time, accessing logical address 1 returns the correct (and
valid) value v is equal to the sum of the two probabilities that the actual
random walk through the tables is valid and the probability that it has
not been deleted before this last rebuild phase.

Pr[Access to address 1 returns correct result] (6.2)
= Pr[RW(1) is valid] + Pr[Pair (1, v) was not deleted before at level lv].

Hence, the probability is not uniform for all data blocks: in fact, items
stored at levels lower than lv have a significant lower probability of failing
than items stored at levels greater than lv, since they do not have this
additional error term on the right hand side. For example, the probability
of a read operation returning an invalid value is not the same for locations
1 and 2 for the above attacker strategy.

The above observation is likely to have an impact in practical settings,
where the ORAM scheme is used as part of a larger application. Assume
that the application stores some control information in the memory at
a known locations (e.g., address 1) and does not frequently update this

6.5. AUDITABLE SERVER-MEMORY RESOURCES 173

location such that the above considerations apply. Then, an attacker
following the above strategy can conclude, that if the application signals
an error (or any other special behavior) on any future access, then it is
more likely that this access pattern corresponds to an access to logical
location 1 than to any other location.

In comparison, this error signaling is not problematic if the underlying
protocol fulfills our stronger security goal. The reason is that the attacker
can then only introduce failures that are equally likely for all logical
locations and thus there is no bias in the correlation of the error signal
and the access pattern.

Remark. It is important to note on what core property the above argument
builds in order to develop schemes that are not susceptible to the same
issue. The core property of the attack, which for example also explains why
stronger ORAM notions, such as the next-read-pattern-hiding (NRPH)
requirement in [CKW13], do not rule out the attack is the following:
consider again equation (6.2). The problem here is that the expected level
at which the newest version of a location resides is quite predictable and
hence this element can be somewhat accurately deleted. Under the above
attack, the access to this location has to throw an error, since the data is
simply not available after deletion (it was chosen uniformly at random
and is not redundantly stored, so the system would have to guess it which
is not possible with very high probability). While enhancing the ORAM
scheme to achieve NRPH improves resilience against rewinding attacks (in
particular, rewinding twice has to yield the same pseudo-random walk), it
does not improve on hiding where a logical element is stored approximately.
In particular, the NRPH scheme of [CKW13] is also susceptible to the
above attack.

6.5 Auditable Server-Memory Resources

In this section, we introduce the ideal abstraction of auditing mechanisms.

174 CHAPTER 6. A MODEL FOR OUTSOURCED STORAGE

6.5.1 Basic, authenticated, and confidential auditable
server memory

The ideal audit is described in Figure 6.17. It provides security guarantees
only in a phase where an intruder is not active.10 In this case, the check
reveals whether the current memory blocks are indeed the newest version
that the client wrote to the storage. If a single data block has changed, the
ideal audit will detect this and output an error to the client. It is obvious
that in case of a successful audit, this guarantee only holds up to the
point where the server gains write-access to the storage again, in which
case a new audit has to reveal whether modifications have been made.
The goal of a scheme providing a proof of storage is to realize SMRk,audit

Σ,n ,
aSMRk,audit

Σ,n , or cSMRk,audit
Σ,n from an ordinary server-memory resource.

6.5.2 Secure and auditable server memory

We present the ideal audit for secure memory resources in Figure 6.18.
Due to the probabilistic nature of resource sSMR, the ideal retrievability
guarantee for secure memory resources is a probabilistic one. Based on an
additional parameter τ , the ideal audit of resource sSMR

k,trep,τ,audit
Σ,n is

successful if the probability that the entire memory cannot be retrieved is
smaller than τ . The smaller τ , the stronger the retrievability guarantee.

6.6 Constructing Auditable Server-Memories

In this section, we provide constructions of auditable server-memory
resources from ordinary server-memory resources. In order to show that a
protocol achieves a construction, we again prove the conditions required
by Definition 2.3.3. In this section, the default behavior at interface
S is possibly more complicated, especially if interaction between the
server and the client is required, for example if the client requests the
server to compute a hash during an audit. Still, in the simpler case, the
default behavior at interface S can be described by the usual dummy
converter honSrv with the addition that it always inputs “allow” to the

10In fact, this is the only interesting case to consider, since if an intruder is active at
the time of an audit, he can freely decide on the success or failure of the audit. We
omit this second case in our specifications for simplicity.

6.6. CONSTRUCTING AUDITABLE SERVER-MEMORIES 175

Resource {a, c}SMRk,audit
Σ,n

Server-memory resources are augmented with a new client capability as follows:

Interfaces Cr, r ∈ {1, . . . , k}
Input: (read, i) ∈ [n]

Defined as in the respective resources SMR, aSMR, cSMR

Input: (write, i, x) ∈ [n]× Σ
Defined as in the respective resources SMR, aSMR, cSMR

Input: audit :

if active and not intrusion then
output auditReq at SH
Let d ∈ {allow, abort} be the returned value from SH
if d = allow then

M′ ← empty table
for i = 1 to n do

if ∃k, x, t : Hist[k] = (t, W, i, x) then
k0 ← max{k | ∃t, x : Hist[k] = (t, W, i, x)}
Parse Hist[k0] as (t, W, i, x0)
M′[i]← x0

else
M′[i]← λ

if M′ = M then
return accept

else
return reject

else
return reject

Figure 6.17: Description of the auditable server-memory resources (only
difference to ordinary server memory shown).

176 CHAPTER 6. A MODEL FOR OUTSOURCED STORAGE

Resource sSMR
k,trep,τ,audit
Σ,n

Secure server-memory resources are augmented with a new client capability as follows:

Interfaces Cr, r ∈ {1, . . . , k}
Input: (read, i) ∈ [n]

Defined as for sSMR

Input: (write, i, x) ∈ [n]× Σ
Defined as for sSMR

Input: audit :

if active and not intrusion then
output auditReq at SH
Let d ∈ {allow, abort} be the returned value from SH
if d = allow then

p← 1−
∏n

i=1(1−α
trep−Ei), where Ei := |{j | j ∈ [trep] and M[i, j] = ϵ}|

(p is the probability that the value of at least one cell cannot be
obtained based on the current state of the resource.)
if p ≤ τ then

return accept
else

return reject
else

return reject

Figure 6.18: Description of the auditable secure server-memory resources
(only the difference to the secure server memory is shown).

resource upon an audit request. We do not assign it a new name as it is
clear from the context.

6.6.1 Making Authentic Server-Memory Resources
Auditable

We now describe a straightforward way to achieve an auditable and
authentic (or confidential) server-memory resource from an authentic
(or confidential) server-memory resource. We again denote the storage
content as F = (F1, . . . , Fℓ), with Fi ∈ Σ. The main idea is to encode the
entire storage F (for example an entire backup file) using an erasure code
to tolerate a certain fraction of deleted symbols Fi. The audit consists

6.6. CONSTRUCTING AUDITABLE SERVER-MEMORIES 177

sampling a sufficient number of random positions of the encoded version
of F and to correctly decide whether the information on the server is
sufficient to decode the file. This straightforward idea has been studied
before, for example in [SW13, JK07], and we briefly show how this idea
is implemented in our model.

Assumed and constructed resource. The assumed resource is an
authenticated server-memory resource of size ℓ′ (which is used to store a
single file consisting of ℓ blocks) and alphabet Σ. The system achieved is
an auditable and authenticated server-memory resource with alphabet Σ
and ℓ locations.

The protocol. We now describe the protocol in more detail by speci-
fying the two client converters ecInit (for initialization) and ecAudit (to
implement the audits). We note that the default server behavior for this
section equals the dummy one which never deletes anything and allows
all audit requests.

In the sequel, let (E,D) be an (ℓ′, ℓ, d) erasure code as in Definition 2.2.5.
On input init to ecInit, the converter calls init of its connected resource
and computes the encoding F ′ ← E(λℓ) ∈ Σℓ

′
, sets the counter ctr to 0.

ctr can be seen as the version number or identifier of the currently stored
memory content. Finally, the converter stores at each location i ∈ [ℓ′] of
aSMRk

Σ,ℓ′ the pair (F ′i , 0).
On (read, i) to either ecInit or ecAudit, the converter retrieves the

whole memory content via (read, i) requests and obtains for each cell
either a pair (vi, ctr

′) or the error symbol ϵ. If ctr′ ̸= ctr (version
mismatch) or if ϵ was returned, set F̄i ← ⊥. Otherwise set F̄i ← vi. If
|{i ∈ [ℓ′] | F̄ ′i = ⊥}| ≥ d, then output ϵ at the outer interface, otherwise,
compute F ← D(F̄ ′), where F̄ ′ = (F̄ ′1, . . . , F̄

′
ℓ′), and output Fi.

On (write, i, F ′i), where F ′i ∈ Σ, to either ecInit or ecAudit, the con-
verter first executes the same instructions as on input (read, i) to retrieve
the currently (outsourced) storage content F . If and only if the F is
successfully retrieved, the converter increments ctr, updates the single lo-
cation Fi ← F ′i and re-encodes the new memory content F ′ as F̄ ′ ← E(F ′)
and finally outputs (write, i, (F̄ ′i, ctr)) for all i = 1 . . . ℓ′.11

11If the code would additionally support local updates and local decoding then
reading and writing could be implemented more efficiently.

178 CHAPTER 6. A MODEL FOR OUTSOURCED STORAGE

Finally, on a query (audit) to converter ecAudit, the converter chooses
a random subset S ⊆ [ℓ′] of size t and outputs (read, i) to aSMR for
each i ∈ S to retrieve the memory content at that location. If and only if
all read instructions for i ∈ S returned a pair (and not ϵ) and the counter
of all pairs are equal to the locally stored value ctr, then output success.

The security of this scheme follows from the following theorem.

Theorem 6.6.1. Let ℓ, ℓ′, d ∈ N. Let (E,D) be an (ℓ′, ℓ, d)-erasure-coding
scheme for alphabet Σ and error symbol ⊥ and let ρ be the minimum
fraction of blocks needed to recover the file, i.e., let ρ = 1 − d−1

ℓ′ . 12

Then the above protocol ecCheck := (ecInit, ecAudit, . . . , ecAudit) (with k
copies of ecAudit) that chooses a random subset of size t during the audit,
constructs the auditable server-memory resource aSMRk,audit

Σℓ,1
from the

authentic server-memory resource aSMRk
Σ,ℓ′ , with respect to the simulator

simec (described in the proof of the theorem) and the pair (honSrv, honSrv).
More specifically, for all distinguishers D performing at most q audits,

∆D(honSrvS ecCheckP aSMRk
Σ,ℓ′ , honSrv

SaSMRk,audit
Σ,ℓ) = 0

and ∆D(ecCheckP aSMRk
Σ,ℓ′ , sim

S
ecaSMRk,audit

Σ,ℓ) ≤ q · ρt.

Proof Sketch. Assume that a fraction α of cells of the real world authentic
server memory have been deleted such that a β := 1− α fraction is still
available. A standard bound for binomial coefficients assures that the
probability of selecting a subset of only good cells during an audit is
(β·m

|S|)
(m
|S|)

≤ β|S|. In the bad case where decoding would not be possible, i.e.,

if β < ρ, we see that for an arbitrary distinguisher D in the real setting,
the probability that the audit succeeds is no larger than ρ|S|.

We only prove the security condition and describe the simulator simec.
It internally maintains a simulated real-world view on the most recent
memory content of size ℓ′ by setting the memory content of simulated loca-
tion i to ϵ on a (delete, i) instruction from the distinguisher (and updating
the memory content to the last value written in case of a (restore, i)
command. The simulator further maintains a simulated history, which is
built based on the history of the ideal resource aSMR as follows: upon an
audit request, the appropriate number of read-instructions are added to

12For example, for ℓ′ > ℓ and alphabet Σ = Fq>ℓ′ the systematic Reed-Solomon
code over Σ has d = ℓ′ − ℓ+ 1 and thus ρ = ℓ

ℓ′ .

6.6. CONSTRUCTING AUDITABLE SERVER-MEMORIES 179

the simulated history (for each read request to deleted location the entry
(t, Fail, i) is added). For each entry (t, R, i) or (t, Fail, i, Fi) in the ideal
world history, the simulator replaces this entry by ℓ′ read instructions in its
own simulated history (for each read request to deleted location the entry
(t, Fail, i) is added). An entry (t, W, i, Fi) (indicating a successful write
operation) is replaced by ℓ′ read-instructions (to all simulated locations)
and ℓ′ write instructions where each write instructions writes the pair
(F̄i, ctr) consisting of one symbol of the encoded and updated version of
the memory content F together with the current counter ctr which is
increased on each successful write operation.

If, after a deletion command, the number of simulated memory loca-
tions, that are equal to ϵ or associated with a too small counter, exceeds
d − 1, the simulator deletes all memory locations of the ideal resource.
Similarly, after a restore-command (which restores the last valid value
stored by the client at that location), if the number of invalid memory
locations (including wrong counter values) drops below d−1, the simulator
restores the entire memory content of the ideal resource.

On an audit request, the simulator simulates the random locations
that are probed and evaluates if the test succeeds. If so, it allows the
resource to output the right result to the client, and otherwise it instructs
the resource to output reject. The simulation is perfect up to the point
where the following event BAD happens: An audit succeeds when more
than d − 1 locations are invalid. The probability of distinguishing can
hence be upper bounded by the probability that event BAD happens in an
execution. To see this, in case ¬BAD, the whole (logical) memory content
is intact as long as there are no more than d − 1 deletions (or invalid
counter values) to the real or simulated memory content. When the client
initiates an audit, the simulator simulates the execution on its simulated
memory which has the same distribution as in the real world and hence
the probability to succeed is the same. In case of an unsuccessful (real or
simulated) audit both, the ideal and the real system output reject. In
case the check succeeds, both resources output success and the whole
memory can be retrieved: either the simulator has not deleted the memory
contents in this case, or, in the real system, less than d− 1 locations are
invalid such that decoding is successful. The statement follows.

180 CHAPTER 6. A MODEL FOR OUTSOURCED STORAGE

6.6.2 Making Secure Server-Memory Resources Au-
ditable

We reduce the problem of auditing secure server-memory resources to the
problem of estimating the corruption factor α. Each protocol chooses a
tolerated threshold ρ and stores the data with replication factor trep that
compensates data loss up to the corruption threshold ρ. To make sure
that all values can be retrieved with a certain probability, the protocol
tests taudit fixed locations to estimate whether the parameter α has
already reached the tolerated threshold ρ. In a first variant, the audit is
successful if none of the probed locations return an error. In a second
variant, we obtain similar results if the taudit trials are used to obtain a
sufficiently accurate estimate of α. The constructions are parameterized
by the tolerated threshold ρ and by the desired retrievablity guarantee
τ . The values of taudit and trep depend on both of these parameters. The
dependency is roughly as follows: The stronger the desired retrievability
guarantee should be, the higher the value of trep needs to be. However,
the smaller the value of the tolerated threshold ρ is, the smaller the value
of trep can be. On the other hand, a smaller value of the threshold ρ
implies a higher value of taudit.

Assumed and constructed resource. The desired resource is an
auditable secure server-memory resource of size ℓ and with retrievability
guarantee τ . Recall that if an audit is successful, it means that the
probability that any memory location is not accessible any more is smaller
than τ . The assumed resource is a secure server-memory resource with
replication trep and size ℓ+ taudit/trep whose values are determined below.

The protocol. As before, the protocol consists of the converters statInit
(initialization), statAudit (client), and honest server behavior statSrvAudit.
The server behavior is equal to the dummy behavior of the last section. So
we only describe the protocol for the client. The protocol is parameterized
by taudit. For the sake of presentation, we do not explicitly write it as it is
clear from the context. On input init to statInit, the converter calls init
and sets flag← 0. The variable Flag records whether the protocol has
ever detected an error when writing or reading to the server. If equal
to one, it signals that misbehavior has been detected and will provoke
subsequent audits to reject. The flag does not influence ordinary client

6.6. CONSTRUCTING AUDITABLE SERVER-MEMORIES 181

read and write requests. On (read, i) to either statInit or statAudit, the
converter outputs (read, i) to retrieve the value at memory location i or
the error symbol ϵ, and outputs this returned value at its outer interface.
In the case of an error, set flag← 1. 13 On (write, i, v) to either statInit
or statAudit, the converter outputs (write, i, v) to write the value v at
location i of the server. Again, if an error is observed, it sets flag← 1.
Finally, on input audit to converter statAudit, the converter immediately
returns reject if flag = 1. If Flag = 0 the audit is executed as
follows:14, the converter issues trep read requests to each logical memory
location r = ℓ+1, . . . , ℓ+ taudit

trep
. If and only if no read instruction returned

the error symbol ϵ, then output success. Otherwise, the output is reject
and the flag is updated to flag ← 1. 15 The security of this scheme
follows from the following theorem.

Theorem 6.6.2. Let Σ be an alphabet, let ℓ, κ, trep, taudit, d ∈ N such that
d = taudit

trep
, and let ρ, τ ∈ (0, 1) such that

trep >
log(τ)− log(ℓ)

log(ρ)
, taudit >

−κ
log(1− ρ)

. (6.3)

The above described protocol statCheck := (statInit, statAudit, . . . , statAudit)
(with k copies of statAudit) parameterized by taudit, constructs the au-
ditable secure server-memory resource sSMR

k,trep,τ,audit
Σ,ℓ from the secure

server-memory resource sSMR
k,trep
Σ,ℓ+d

and a local memory (which stores
the variable flag), with respect to the simulator simstat (described in the
proof) and the pair (honSrv, honSrv). More specifically, for all distinguish-

13One could relax this by introducing a tolerance tol and requiring that flag ← 1
only if more than tol of the trep copies of a memory location failed. Our results
formalize zero tolerance and where trep is the minimal number required to obtain the
desired retrievability guarantee.

14From a statistical point of view, if flag = 0, we have taudit independent samples
to estimate the parameter α.

15One could again introduce a tolerance tol and require that flag← 1 only if more
than tol samples returned an error. Our results formalize zero tolerance and taudit is
the minimal number of samples required to get a sufficiently accurate estimate of α.

182 CHAPTER 6. A MODEL FOR OUTSOURCED STORAGE

ers D performing at most q audits,

∆D(honSrvS statCheckP [L, sSMR
k,trep
Σ,ℓ+d

], honSrvSsSMR
k,trep,τ,audit
Σ,ℓ) = 0

and

∆D(statCheckP [L, sSMR
k,trep
Σ,ℓ+d

], simS
statsSMR

k,trep,τ,audit
Σ,ℓ) ≤ q · 2−κ.

p As a numerical example, let us assume we are given a secure memory that
can store one tebibyte of data, with a certain replication factor trep, and where
each element of Σ represents a block of size 16 kibibytes. This yields ℓ = 226.
For a security level κ = 128, τ = 2−32, and ρ = 2−9 we would need a replication
factor of trep ≈ 6 and the total size of retrieved data during an audit is roughly
700 mebibytes. Different applications can adjust these parameters according to
their preference in order to trade security, storage overhead, and access time. y

Proof. We start by describing the simulator. simstat internally maintains
a simulated history, which is identical to the history of the ideal resource
but where for each audit request, the appropriate number of read-requests
are added. It further maintains a value flag which is initially 0.

On input (pollute, α) and (reducePollution, δ) it forwards this
query to the ideal resource sSMRk,t,τ,audit

Σ,ℓ . On input getHist the sim-
ulator reads the history of the ideal resource and updates its simulated
history appropriately and returns it to D. If at any time, the simulated
history contains an entry (k, Failed for some k, then flag is set to 1.

On an audit-request, the simulator first updates its simulated history.
Then, it replies abort to sSMRk,t,τ,audit

Σ,ℓ in case flag = 1. In case
flag = 0, simstat simulates taudit read accesses, such that each access
fails with probability α. In case there are failures, simstat outputs abort
to the ideal resource to provoke a reject and internally sets flag ← 1.
It further adds the appropriate entries (k, Failed) and (k, Access) to its
simulated history.

The remainder of the proof proceeds in two steps. First, we bound
the probability that a simulated audit succeeds (if flag = 0), although
α is larger than the threshold ρ, by 2−κ. A straightforward statistical
argument shows that as long as α < ρ (and flag = 0), the probability
that after the audit (and before the next intrusion phase) retrieving any
cell would result in a failure is smaller than τ . Hence, the probability of
an imperfect simulation is negligible in κ.

6.6. CONSTRUCTING AUDITABLE SERVER-MEMORIES 183

We first compute the probability that an audit is passed in case
α > ρ and flag = 0. let X =

∑taudit
i=1 Xi, where Xi are independently

distributed according to Xi ∼ Bernoulli(α).

Pr[X = 0] = (1− α)taudit ≤ (1− ρ)taudit ≤ 2−κ,

where we used the assumption that taudit >
−κ

log(1−ρ) . We conclude that
except with negligible probability, the audit only succeeds if α < ρ.

Assuming α < ρ, we prove that the probability that any value is not
recoverable (given that flag = 0) is smaller than τ for the choices in
equation (6.3). Again, each read request would fail independently with
probability α. Using Bernoulli’s inequality, we get

1− (1− αtrep)ℓ ≤ 1− (1− ρtrep)ℓ ≤ 1− (1− ℓρtrep) = ℓ · ρtrep ,

and by the theorem assumption trep >
log(τ)−log(ℓ)

log(ρ) , we immediately have

ℓ · ρtrep ≤ ℓ · ρ
log(τ)−log(ℓ)

log(ρ) = ℓ · ρ
log(τ)
log(ρ) · ρ

log(−ℓ)
log(ρ) = ℓ · τ · ℓ−1 = τ.

This concludes the proof.

Auditing via a direct estimate of α. We can replace the audit of
protocol statCheck by a direct estimation of the parameter α. In case
that the estimation ᾱ is sufficiently accurate, say up to ρ

2 with very
high probability, verifying that ᾱ < ρ

2 is sufficient to obtain the desired
retrievability guarantee and the audit returns success. The audit itself
consists of obtaining taudit independent samples via read-requests to the
d extra locations of the secure server-memory resource. In case it is
not possible to obtain that many samples, for example because certain
locations failed during the last audit and would therefore output ϵ with
probability 1 instead of α, the audit returns reject. If taudit samples
can be obtained, let ne be the number of errors that occurred and define
the estimate ᾱ← ne

taudit
. From the Chernoff-Hoeffding bound, we get that

for arbitrary θ, δ ∈ (0, 1), if taudit >
2+θ
θ2 · log(

2
δ) independent samples of

a Bernoulli distribution with parameter α are obtained, the probability
that ᾱ ∈ [α− θ, α+ θ] is at least 1− δ. Hence, setting θ < ρ

2 and δ ≤ 2−κ,
we get an analogous result to the one above, but in general with higher
values for taudit.

184 CHAPTER 6. A MODEL FOR OUTSOURCED STORAGE

On composing the previous modular steps. It is instructive to
wrap up the results until this point: We have shown how to construct
an auditable secure server-memory resource from a secure server-memory
resource by estimating the failure probability α. In Section 6.4.3, we
have shown how to construct a secure server-memory resource from an
authentic and confidential server-memory resource, which itself can be
constructed from an insecure server-memory as shown in Section 6.4.1
and Section 6.4.2. We can invoke the composition theorem of constructive
cryptography to conclude that the composition of all protocols constructs
an auditable secure server-memory resource from an insecure one (and
local storage). The composed protocol has strong security guarantees and
is robust against an arbitrary number of failures and is comparable to
existing schemes in terms of access times to read and write single data
blocks. However, the gained security comes at the price of a theoretically
larger server-side memory consumption due to replication, and higher
audit times.

6.6.3 Revisiting the Hash-Based Challenge-Response
Approach

Our model allows to formalize the security guarantees of a very simple hash-
based challenge-response protocol that is often given as an introductory
example to proofs of retrievability, but, to the best of our knowledge,
lacks a formal security statement in other models. In a nutshell, the
retrievability test asks the server to deliver the correct hash value of the
(current) storage content concatenated with a uniform random challenge
provided (and precomputed) by the client. The intuitive security claim
is that the server cannot have modified or deleted the content before
answering the challenge. For the sake of concreteness, we consider the
setting where one client stores a single file F (modeled as a sequence
of bits in this paragraph) on an insecure server memory and would like
to audit this file at a later point in time. We assume an (ideal) hash
function, i.e., a random oracle, H : {0, 1}∗ ↦→ {0, 1}r following the notation
of [BF11] and denote by x||y the concatenation of bitstrings x and y.

Assumed and constructed resource. We assume a random oracle,
H : {0, 1}∗ ↦→ {0, 1}r, which is made available to the parties by means of

6.6. CONSTRUCTING AUDITABLE SERVER-MEMORIES 185

a resource H that has an interface for the client and one for the server:
On input (eval, x) at any of its interfaces H returns H(x) at the same
interface. We further assume a small local storage and a communication
channel between client and server, which we denote by Ch. Formally, we
define system Ch here as a resource with the two interfaces C1 and S, such
that whatever is input at one interface is output at the other interface.
Other formalizations of a point-to-point channel are of course possible but
immaterial to the findings in this section. Last but not least, we assume
an ordinary insecure memory resource SMR1

Σ,ℓ+κ, where Σ = {0, 1} and
κ being the size of the challenge c. The desired functionality we want to
achieve is the auditable insecure memory resource SMR1,audit

Σ,ℓ .

The protocol. We now describe the protocol in more detail: As usual,
we specify an initialization converter hashInit, a client converter hashAudit,
and the protocol for the honest server behavior srvHash. On input init
to hashInit, the converter simply calls init of its connected resource. On
(write, 1, F) to either hashInit or hashAudit, where F is an ℓ-bitstring,
the converter writes F to the server storage. It then chooses a uniform
random challenge c ∈ {0, 1}κ and computes y ← H(F ||c) and stores c
and y in the local storage. On (read, 1) to either hashInit or hashAudit,
the converter retrieves the content of the memory and outputs the first
ℓ bits of the received content. Finally, on a query (audit) to converter
hashAudit, if there is a challenge stored in local memory, the protocol
writes c to the server memory at locations ℓ + 1 . . . ℓ + κ and sends a
notification auditReq to the server via the bidirectional channel. On
receiving a response y′ on that channel from the server, the client protocol
outputs success if and only if y = y′. In any case, the challenge c is
deleted from the local storage. The next audit is only possible after
executing a new write-query.16 Finally, the server protocol srvHash, upon
receiving an audit-request, simply evaluates H on the current memory
contents and sends the result to the client via the bidirectional channel.

Insecurity of the approach. Unfortunately, the security of the hash-
based challenge-response protocol above does not follow solely based on the
random oracle assumption. The proof of this follows closely the intuition

16We assume that the client protocol rejects an audit if no challenge is stored in
local memory. Note that one could of course prepare more challenges.

186 CHAPTER 6. A MODEL FOR OUTSOURCED STORAGE

W

SMR

H

W

SMR

H
...

. . .
i j

(eval, xi...xj)

xi xj

H(xi...xj)

(eval, s)

(eval, s)

(eval, s) (eval, i, j)

H(s)

(eval, s)

(eval, s)

W

SMR

h1

. . .
i j

xi xj

h1(xi...xj)

(eval1, i, j)(eval1, s)

(eval2, s)

h2
(eval2, i, j)

h2(xi...xj)

enhanced SMR enhanced SMR

S

S

S

S

S

S

C0

C1

C0

C1

C0

C1

C0

C1

C0

C1

C0

C1

(eval2, s)

(eval1, s)

Figure 6.19: Left: Real system with unrestricted server access to the
random oracle. The challenge-response protocol, executed in this setting,
is not secure. Center: Real system with restricted server access. Under
this stronger assumption, the challenge-response protocol is secure. Right:
Real system with restricted access to two ideal compression functions. In
this setting, the challenge-response protocol, where the hash is computed
using a secure iterated construction like NMAC, is not secure in general.

that in a composable security framework, the environment “knows” the
content of the server-memory resource. Hence, if the random oracle can be
queried by the distinguisher on an arbitrary input, i.e., not restricted to
the actual value stored in the server memory, it can always be queried on
the correct input, irrespective of the actual content of the server-memory
resource. This is formalized in the following lemma.

Lemma 6.6.3. Let ℓ, ℓ′, κ, r ∈ N, with ℓ′ = ℓ + κ, let Σ := {0, 1}, and
let H be a random oracle (with one interface for the client and one
for the server). Then, the protocol above (specified by the converters
hashInit, hashAudit, srvHash) does not provide a secure proof of storage.
More specifically, there is a distinguishing strategy such that for any
simulator sim it holds that

∆D(hashInitC0hashAuditC1 [L,Ch,SMR1
Σ,ℓ′ ,H], simSSMR1,audit

Σℓ,1
) = 1.

Proof. To prove the statement, we describe the random experiment
between a particular distinguisher D and the system T, which either
corresponds to the real system with the protocols attached, which is
hashInitC0hashAuditC1 [L,Ch,SMR1

Σ,ℓ′ ,H] or to the ideal system with the
simulator attached, i.e., simSSMR1,audit

Σℓ,1
. First, D inputs init at in-

terface C0 and queries, for some arbitrary file F ̸= 0ℓ, (write, 1, F)

6.6. CONSTRUCTING AUDITABLE SERVER-MEMORIES 187

and inputs initComplete at interface C0. As the next step, D inputs
startWriteMode at interface W and subsequently instructs the resource
to delete the file by storing the all-zero string via queries (write, i, 0) for
all locations i ∈ [ℓ] at interface SI and finally inputs stopWriteMode at
interface W. D then inputs audit at interface C1 to receive a challenge
c.17 D then queries H on input F ||c to receive the value y0 and sends
y0 back to the client. As the last step the client retrieves the actual
storage content by querying (read, 1) at interface C1. Let the returned
file be F ′. Finally, the distinguisher outputs 1 if and only if the audit
is successful and F ′ is the all-zero bitstring. It is obvious that if D is
querying the real system (with the protocol), then its output is 1 with
certainty. However, in the ideal system, if the server memory content
when the audit start is F ′ ̸= F , then the ideal audit, by definition cannot
be successful, irrespective of the simulator’s actions. The distinguisher
outputs 1 with probability zero in that case. The statement follows.

Security under stronger assumptions. In this paragraph, we show
that the additional assumption we have to make in order for the scheme to
be secure, is to restrict adversarial random oracle evaluations by allowing
inputs from the server storage only. In particular, the server is only
allowed to query the random oracle via calls (eval, i, j), i ≤ j, and to
obtain the hash value H(M[i]|| . . . ||M[j]) as opposed to receiving hash
values for arbitrary bitstrings. See also Figure 6.19.

To turn this intuition into a formal statement, we consider the following
functionality SMRk

H,Σ,ℓ which basically behaves like SMRk
Σ,ℓ, but with

two additional capabilities: Each client interface can, aside of ordinary
read- and write-request, query (eval, x) upon which the resource provides
H(x) as output. Second, the server gets access to the random oracle via
its interface, and is restricted to submit queries of the form (eval, i, j)
with i ≤ j, and the resource returns the result of H(M[i]|| . . . ||M[j]) to
the server. We prove the following theorem.

Theorem 6.6.4. Let ℓ, ℓ′, κ, n ∈ N, with ℓ′ = ℓ+ κ, let Σ := {0, 1}, and
let H denote a hash function modeled as a random oracle. The above
described protocol (hashInit, hashAudit) constructs the auditable server-
memory resource SMR1,audit

Σℓ,1
from the server-memory resource SMR1

H,Σ,ℓ′ ,

17We assume that in both worlds a challenge is output as otherwise distinguishing is
trivial.

188 CHAPTER 6. A MODEL FOR OUTSOURCED STORAGE

a local memory (of constant size), and a channel, with respect to the
simulator simhash (described in the proof) and the pair (srvHash, honSrv).
More specifically, for all distinguishers D asking at most q queries

∆D(hashInitC0hashAuditC1srvHashS[L,Ch,SMR1
H,Σ,ℓ′], honSrv

SSMR1,audit
Σℓ,1

)

= 0

and

∆D(hashInitC0hashAuditC1 [L,Ch,SMR1
H,Σ,ℓ′], sim

S
hashSMR1,audit

Σℓ,1
)

≤ q · 2−κ + 2−r.

Proof Sketch. Since it is obvious that when the server is honest, the audit
succeeds, we directly proceed to prove the security of the construction.
We first describe the straightforward simulation. On any query by the
distinguisher to read or write directly into the storage via server interface
SI , the simulator simply forwards this request to SMR1,audit

Σℓ,1
. If the

distinguisher inputs the query (eval, i, j) for 1 ≤ i ≤ j ≤ ℓ + κ, the
simulator computes the string s ← M′[i]|| . . . ||M′[j], and if there is no
internally stored pair (s, y) for this string, choose y � {0, 1}r and store
(s, y) internally for future reference. Finally, output y as the (simulated)
random oracle output to the distinguisher.

Last but not least, when the client starts the first audit for the most
recent uploaded file (note that by definition such a requests occurs only
in a phase where no intruder is active), the simulator internally chooses
a challenge c� {0, 1}κ. Then, the simulator retrieves the history of the
resource to check which file F was written to the storage and defines
s← F ||c1|| . . . ||cκ and checks whether there is a recorded pair (s, y). Only
if none is recorded, chooses y0 � {0, 1}r and store the pair (s, y0). Finally,
simhash stores c at locations M′[ℓ+1] to M′[ℓ+κ] of its simulated memory.
After this, it outputs the notification auditReq to the distingusiher (as
coming from the bidirectional channel). If the distinguisher’s response
to this audit request equals y0, then the simulator outputs allow and
otherwise output abort to SMR1,audit

Σℓ,1
.

We now consider the an execution of a distinguisher with either the
real system or the ideal system. On an audit-request by the client, which
happens only in a phase where the distinguisher is not allowed to write to
the server-memory resource, the client reveals the challenge c by writing
it into the server storage. Let us denote the current server storage at this

6.6. CONSTRUCTING AUDITABLE SERVER-MEMORIES 189

point as R. We observe that the server is only capable of evaluating the
random oracle on R||c or on F ||c by restoring the original memory cell.
Hence, assume that the distinguisher does not restore and the memory
content is R ≠ F . Hence, in both worlds, the distinguisher does not learn
receive the value y0 = H(F ||c) at this point. In particular, the probability
of guessing the correct hash output given that D has never evaluated the
random oracle on s = F ||c is 2−r. Furthermore, the probability that the
distinguisher has ever evaluated the random oracle on F ||c before the
audit was initiated, is no larger than q · 2−κ. We observe that if none of
these two events occur, then the real and ideal systems behave identically.
Indeed, a retrievability check is passed in both worlds if and only if the
memory content is the original file F and the distinguisher sends the
correct hash value y0 = H(F ||c) to the client. The statement follows.

On replacing the monolithic random oracle. We consider iterated
constructions of random oracles H : {0, 1}∗ ↦→ {0, 1}r from ideal compres-
sion functions h1 : {0, 1}κ × {0, 1}n ↦→ {0, 1}n and h2 : {0, 1}n ↦→ {0, 1}r
(n, r, κ > 0) from [CDMP05]. We formally show that in our setting,
the fact that an iterated construction realizes a random oracle does not
imply that the iterated construction realizes resource SMR1

H,Σ,ℓ′ from
resource SMR1

h1,h2,Σ,ℓ. In other words, even if the server access to the
functions is restricted as required above by Theorem 6.6.4 and illustrated
in Figure 6.19, their applicability is not generally safe in the context of au-
dits. This observation meets our intuition and has already been observed
in [RSS11]. The intuitive reason why it fails is that certain constructions
(like NMAC) allow the server to compute a result in multiple stages, such
that he can store an intermediate result, ignore the original memory, and
still compute the correct hash value.

For simplicity, we focus on the NMAC construction that was shown to
securely realize a random oracle H from two ideal compression functions
h1 and h2 [CDMP05]. The input is a file F = (F1||F2|| . . . ||Fℓ) of ℓ = κ · l
bits, let us denote the ith block (having κ bits) as F i. Let y0 ← 0n be the
initial block.18. Compute for each block i from 1 to l, yi ← h1(F

i, yi−1).
Finally, compute and return Y ← h2(yl) as H(F). Let nmaccli be the
client converter that simply relays all queries and responses not concerning

18We assume this initial value to be prepended to F such that the computation
formally gets F ′ = 0n||F as the only input. This is only a syntactic simplification

190 CHAPTER 6. A MODEL FOR OUTSOURCED STORAGE

the random oracle evaluations and on input (eval, x) at its outer interface,
computes the hash value according to the NMAC construction above.
Similarly, the honest server converter nmacsrv simply relays all queries
and responses not concerning the random oracle evaluations and on input
(eval, i, j) at the outer interface evaluates the NMAC construction using
the appropriate instructions to the resource.

Lemma 6.6.5. Let ℓ, n, r, κ > 0 be integers such that ℓ > n + κ, and
let Σ := {0, 1}. Let H denote a random oracle and h1 and h2 be ideal
compression functions as introduced above. Then, the client protocol
(nmaccli, nmaccli) described above does not construct the system SMR1

H,Σ,ℓ

from system SMR1
h1,h2,Σ,ℓ if the server is possibly dishonest. In particular,

there is a distinguishing strategy such that for any simulator sim, making
at most q random oracle queries, it holds that

∆D(nmacC0nmacC1SMR1
h1,h2,Σ,ℓ, sim

SSMR1
H,Σ,ℓ) ≥ 1− q · 2−κ − 2−r.

Proof Sketch. We describe a distinguisher D that interacts either with
the ideal world simSSMRH or with the real world SMR1

h1,h2,Σ,ℓ. The
distinguisher first chooses a uniform random bitstring s of length ℓ − 1
and stores F := s||1 in the memory and pre-computes y := H(F, c) for
a uniformly random challenge c (of length κ) via an input (eval, F ||c)
at interface C1. A a second step, D performs the “first stage” of the
NMAC computation using the interface S: having obtained yi−1, D writes
this value back to an appropriate location, say j, of the server storage
and queries (eval1, j, j + κ + n) to receive the intermediate value yi
and proceeds to until obtaining yℓ. Finally, D sets the server memory
to yl||0ℓ−n via a write-command at the server interface and then issues
stopWriteMode at interface W which disallows adversarial write-access at
interface S. Next, D writes the challenge c to the server storage via the
client interface C1 and completes the evaluation of NMAC by computing
y′ ← h2(h1(1, . . . , n||c)) by appropriate evaluation queries at the server
interface. To decide on its output bit, D reads the current content R of
the memory at interface C and decides on 1 if and only if R = yl||c||0ℓ−n−κ
and y = y′.

If D is connected to the real system then, by design of the experiment,
the probability that y = y′ and R ̸= F is 1. The reason is that the
memory content yl||c||0ℓ−n−κ, is sufficient to compute the correct hash
value H(F ||c).

6.6. CONSTRUCTING AUDITABLE SERVER-MEMORIES 191

If D is connected to the ideal system, the probability that y = y′ and
R ≠ F is significantly smaller and is based on the observation that the
simulator can only compute H(F ||c) with non-negligible probability if it
can evaluate the storage its random oracle on input F ||c which has to
reside in memory. By the time the simulator learns c, he has already lost
his write-access to the resource. Hence, the probability of y = y′ given
that the storage content in the end of the experiment is R ̸= F ||c is upper
bounded by q · 2−κ + ·2−r.

Part III

Digital Signatures

Chapter 7

A Constructive Model for
Signatures

7.1 Introduction

Digital signature schemes are a fundamental building block in numerous
applications. This makes it particularly difficult to define an idealization
that satisfies both, capturing the unique properties of the scheme and
nevertheless achieving a good level of abstraction. This chapter is devoted
to a proposal of such a model. The methodology we put forward here is
not restricted to digital signature schemes and can in principle be applied
to any low-level primitive if desired.

7.1.1 Motivation

A digital signature scheme (DSS) allows a signer to authenticate a message
such that everyone can verify the authenticity. The signer initially gener-
ates an asymmetric key pair consisting of a signing key and a verification
key. The signing key, which is kept secret by the signer, allows to generate
signatures for messages. The verification key is made public and allows to
verify that a message was indeed signed using the corresponding signing
key. DSSs are a crucial component in many of today’s widely-used crypto-
graphic protocols. They underlie the public-key infrastructure (PKI) that

196 CHAPTER 7. A CONSTRUCTIVE MODEL FOR SIGNATURES

Rπ π S

σ

Figure 7.1: Recalling the construction notion for the discussion: Left:
Execution of protocol π in the real-world model. Right: Ideal-world
model described by S with simulator σ. In both figures, the dotted lines
are “free” interfaces explained below.

is used to provide authentication in most Internet protocols, and they
are used to authenticate e-mails as well as to provide non-repudiation for
electronic documents. They are also used as a building block in numerous
cryptographic protocols.

7.1.2 Methodology and Outline of the Model

We outline the most important aspects of the model which appears
in [BMT18].

7.1.3 Formalizing Message Authentication

The core idea of our approach is that digitally signing a message can
be understood as the signer’s declaration that the message belongs to a
certain context, which is described by the verification key. This context
may be the signer’s commitment to be legally liable for the content of
the message (e.g., a contract), or simply that the message is meant to
originate from the signer. Abstractly, this can be understood as writing
the message to a certain type of repository that allows other parties to
verify for given messages whether they have been written to the repository,
i.e., assigned to the context.

Signature schemes as constructions. We formalize the security of
a DSS in the real-world/ideal-world paradigm and based on different

7.1. INTRODUCTION 197

types of repositories to which messages can be written and from which
messages can be read, by different parties with potentially different access
permissions. As described above, the goal of using the signature scheme in
the described way can be seen as constructing an authenticated repository,
where only the signer can write messages and all verifiers can check the
validity. This repository takes the role of the ideal system that should be
achieved.

Using a signature scheme requires an authenticated repository that
can hold one message. This repository is used to transmit the signature
verification key. We also assume one repository that can hold multiple
messages, but this repository can be insecure, meaning that write access
to the repository is not exclusive to the signer. This repository is used to
transmit the signature strings. We also make the storage of the signing
key explicit as a secure repository where both write and read access is
exclusive to the signer. These three assumed repositories correspond to R
in Figure 7.1.

A signature scheme then uses the described repositories in the obvious
way: the signer begins by generating a key pair, writes the signing key to
the secure repository and the verification key to the authenticated one.
Upon a request to sign a message m, the signer retrieves the signing key
from the secure repository, computes the signature, and stores it in the
insecure repository. For checking the validity of a message m, a verifier
reads the verification key from the authenticated repository and the signa-
ture from the insecure one, and runs the signature verification algorithm.
Our security statement is, then, that this use of the signature scheme
constructs the desired authenticated repository for multiple messages from
the three described assumed repositories.

The advantage of such a composable security statement is that appli-
cations and higher-level protocols can be designed and analyzed using
the abstraction of such a repository; in particular, no reduction proof
is required since the composition theorem immediately guarantees the
soundness of this approach. More technically, if a protocol π constructs
S from R and protocol π′ constructs T from S, then composing the two
protocols leads to a construction of T from R.

Abstract communication semantics. The purpose of a repository
is to model the fact that a certain message written by one party can be

198 CHAPTER 7. A CONSTRUCTIVE MODEL FOR SIGNATURES

made accessible to a different party in an abstract manner. Indeed, a DSS
is a generic security mechanism and can be used by various applications;
the definition of a DSS should abstract from the particular way in which
the verification key and the signature are delivered to the verifier. For
instance, a communication network used for transmission may guarantee
messages to be delivered within a certain time, or an attacker may be
able to eavesdrop on messages. Using a DSS—intuitively—preserves such
properties of the communication network. The repositories used in this
work are general enough to model various different such concrete types of
transferring the values.

This generality is, more technically, achieved through a free interface
that appears in both the real-world and the ideal-world model. In the
random experiment, this interface is accessed directly by the distinguisher.
The free interface is reminiscent of the environment access to the global
setup functionality in the GUC model [CDPW07a], but in our model each
resource/functionality can have such a free interface.1

A free interface allows the distinguisher to interact with both the
assumed resource R and the constructed resource S directly, indicated by
the dotted lines in Figure 7.1 This results in a stronger and more general
condition compared to considering the capabilities at that interface as
part of the attacker’s interface and, therefore, in the ideal-world model
providing them to the simulator. More intuitively, the free interface can
be seen as a way for the distinguisher to enforce that certain aspects in
the real and the ideal world are the same. We will use the free interface
to let the distinguisher control the transmission semantics; this leaves our
statements general and independent of any concrete such semantics.

In more detail, the write and read interfaces of the repository are
defined to write to or read from buffers associated to the interface. The
repository also has free interfaces that control the transfer of messages
from write buffers to read buffers. In other words, capabilities such as
writing messages to a buffer in the repository or reading messages from
one are separated from the mechanisms for making messages written
to the repository visible at a specific reader interface. Control over the
operations governing the visibility is granted to the environment—this
makes the security statements independent of specific network models.

1The direct communication between the environment and the functionality requires a
modification of the control function in UC, but does not affect the composition theorem.
In most formal frameworks [PW01, KT08, MR11], no modification is necessary.

7.1. INTRODUCTION 199

In particular, the statements imply those in which these capabilities are
granted to an attacker controlling the network.

Interfaces and partitioning of capabilities. In our proposed model,
we take the viewpoint that interfaces of a resource represent capabilities.
Often, each interface can be seen as corresponding to one particular party
in a given application scenario, which can then attach a protocol machine
to this interface, as in Figure 7.1. Yet, for a general security definition
such as that of a DSS we do not want to fix the number of possible verifiers
in advance, or even prohibit that the signing key may be transmitted
securely between and used by different parties. As one can always merge
several interfaces and provide them to the same party, it is beneficial
here to target a fine-grained partitioning of capabilities into interfaces,
and therefore a fine-grained partitioning of the protocol into individual
protocol machines.

For our repositories, this means that if each interface gives access to
one basic operation (such as writing or reading one value), one can always
subsume a certain subset of these capabilities into one interface and assign
it to a single party. We achieve the most fine-grained partitioning by
modeling each invocation of an algorithm of the signature scheme as a
single protocol machine, and capture passing values between the machines
explicitly via repositories.

Specifications. For generality or conciseness of description, it is often
desirable to not fully specify a resource or functionality. For instance, a
complete description of the construction would entail the behavior of the
signature scheme in the case where a signature shall be verified before the
verification key is delivered to the verifier. The approach generally used
in the literature on UC in such cases is to delegate such details to the
adversary, to model the worst possible behavior. In this work, we follow a
more direct approach, and explicitly leave the behavior undefined in such
cases.

Our formalization follows the concept of specifications by Maurer and
Renner [MR16] and introduced in Section 2.3.6, which are sets of resources
that, for example, fulfill a certain property. As such they are suitable to
express an incomplete description of a resource, namely by considering the
set of all resources that adhere to such a (partially defined) description.

200 CHAPTER 7. A CONSTRUCTIVE MODEL FOR SIGNATURES

Maurer and Renner describe concrete types of specifications such as all
resources that can be distinguished from a specific one by at most a
certain advantage, or all resources that are obtained from a specific one
by applying certain transformations.

As explained in Section 2.3.6, we use specifications in this chapter to
describe the behavior of a resource in environments that use the resource
in a restricted way, in the sense that the inputs given to the resource
satisfy certain conditions, such as that the verification key must have been
delivered before messages can be verified. This alleviates the requirement
of specifying the behavior of the resource for input patterns that do not
occur in applications, and simplifies the description. Needless to say, this
also means that for each application one has to show that the use of the
resource indeed adheres to the specified conditions.

The repositories of our model. In summary, we consider specifica-
tions of repositories as described above. Repositories provide multiple
interfaces, each of which allows exactly one write or read operation. A
repository that allows for k write operations has k writer interfaces, and
for n read operations it has n reader interfaces, and each operation can
be understood as writing to or reading from one specific buffer. A write
interface may allow the writer to input an arbitrary value from the mes-
sage space, or, in a weaker form, it may allow the writer to only copy
values from buffers at some read interfaces. A read interface may either
allow to retrieve the contents of the corresponding buffer, or to input a
value and check for equality with the one in the buffer.

The resource additionally provides free interfaces for transferring the
contents of write buffers to read buffers. As discussed above, the access
to these interfaces for managing the visibility of messages is given to the
distinguisher, not the attacker, to abstract from specific communication
semantics.

All repositories in this chapter can be viewed as specific instances of the
one described above, where different types of capabilities are provided at
different parties’ interfaces. It is this assignment of capabilities to parties
that decide on the type of the repository. For instance, a repository
in which the attacker has only read-interfaces, but cannot write chosen
messages, can be called authenticated, since all messages must originate
from the intended writers. A repository where the attacker can also write

7.1. INTRODUCTION 201

can be considered as insecure, since messages obtained by honest readers
could originate either from honest writers or the attacker.

7.1.4 Relation to Previous Work

The concept of a DSS was first envisioned by Diffie and Hellman and
referred to as one-way authentication [DH76]. Early instantiations of
this concept were given by Rivest, Shamir, and Adleman [RSA78] and by
Lamport [Lam79]. The provable-security treatment of DSS was initiated
by Goldwasser, Micali, and Rivest [GMR88], who also introduced the first
and still widely-used security definition called existential unforgeability
under chosen-message attack. In this definition, a hypothetical attacker
that has access to honestly computed signatures on messages of his own
choice aims at creating a signature for some new message. A scheme is
deemed secure if no efficient attacker can provide such a forgery with
non-negligible probability.

Canetti [Can01a] and independently Pfitzmann and Waidner [PW01]
developed security frameworks that allow for security-preserving com-
position of cryptographic schemes. In these frameworks, the security
of a cryptographic scheme, such as a DSS, is modeled by idealizing the
algorithms and their security properties, and a concrete scheme is then
proved to satisfy the idealization under certain computational assump-
tions. Higher-level schemes and protocols that make use of a DSS can be
analyzed using the idealized version of the scheme. One main advantage
of composable frameworks is that they guarantee the soundness of this
approach; a higher-level protocol proven secure with respect to an ideal-
ized signature scheme will retain its security even if the idealized scheme
is replaced by any concrete scheme that is proven secure. In contrast
to standard reductionist proofs, this method does not require to prove
an explicit reduction from breaking the signature scheme to breaking
the higher-level protocol; this follows generically from the composition
theorem. Still, even in protocol analyses within composable frameworks,
existential unforgeability remains widely used, despite the existence of
composable models within these formal frameworks.

The first composable notion for digital signatures has been proposed
by Canetti [Can01a, Can04] via an ideal signing functionality Fsig. The
functionality idealizes the process of binding a message m to a public
key vk via an ideal signature string s. In a nutshell, when the honest

202 CHAPTER 7. A CONSTRUCTIVE MODEL FOR SIGNATURES

sender signs a message, he receives an idealized signature string. This
signature string allows any party to verify that the message has indeed
been signed by the signer. Fsig enforces consistency and unforgeability
in an ideal manner: if the honest signer has never signed a message m,
no signature string leads to successful verification. Likewise, verification
with a legitimately generated signature string for a message m always
succeeds. Special care has to be taken in case the signer is dishonest, in
which case the above guarantees for unforgeability are generally lost. The
formalization given by Backes, Pfitzmann, and Waidner [BPW03] in their
framework follows a by and large similar approach.

Several approaches to defining signature idealizations have been pro-
posed and different versions of the signature functionality have been sug-
gested in previous work [Can01a, CR03, BH03, Can04, CSV16a, Pat05,
GKZ10]. All these versions, however, require interaction with the ideal-
model adversary for operations that correspond to local computations in
any real-world scheme, such as the initial creation of the key pair (includ-
ing [Pat05]) or the generation of a signature string (including [Can04]).

Camenisch et al. [CEK+16] point out that this unnatural weakness, al-
lowing the adversary to delay operations in the idealized security guarantee,
has often gone unnoticed and even lead to flaws in proofs of higher-level
schemes based on signatures. As a further example, consider a signer
S that has never signed a message m. If an honest party P verifies m
with respect to some signature string s, the verification should fail. Yet,
the adversary gets activated during any local verification request and can
corrupt the signer just before providing the response. The adversary thus
has complete freedom on whether to let P accept or reject the signature
string s on message m. This behavior is arguably counter-intuitive and
it is a property that signature schemes do not possess. The solution of
Camenisch et al. [CEK+16] requires to modify the universal composability
framework by introducing the concept of responsive environments and
adversaries that are mandated to answer specific requests immediately
to model local tasks. While Camenisch et al.do re-prove the composi-
tion theorem for their modified framework, such a modification of the
framework has the downside of further increasing its complexity and, at
least in principle, making security analyses in the original and modified
frameworks incompatible.

Besides the technical difficulties in defining the signature functionality
Fsig consistently, it is less abstract than what one would expect, since

7.1. INTRODUCTION 203

the signature string and the verification key are an explicit part of the
interface. Indeed, Canetti [Can04, page 5] writes:

The present formalization of Fsig and Fcert is attractive in that it allows
a very modular approach where each instance of the ideal functionality
handles only a single instance of a signature scheme (i.e., a single pair of
signature and verification keys). This has several advantages as described
in this work. However, the interface of the signature scheme is somewhat
less abstract than we may have wanted. Specifically, the interface contains
an idealized “signature string” that is passed around among parties [. . .].

Indeed, Canetti [Can04, page 7] starts by describing a “first attempt”
functionality F1 that is a “depository of signed messages,” where the
signer can input a message and the verifiers can check. This functionality
can be seen as a simplified version of the authenticated repository we
described above. He then argues, however, that including the technical
details in the functionality’s interface is inevitable, see [Can04, page 7]:

The lack of explicit signature strings also causes some other modeling
problems. For instance, modeling natural operations such as sending an
“encrypted signature” that is usable only by the holders of the decryption
key cannot be done in a modular way [. . .] We conclude that in order
to capture our intuitive notion of signature schemes, an ideal signature
functionality should make the “signature string” part of its interface. [. . .]

We want to argue here that, despite the similarity, the arguments given
in [Can04] do not apply to our definition. The first argument is that
the formulation binds the messages to the signer’s identity instead of
the verification key, which requires prior communication to transmit the
verification key. While this argument is correct, and our definition makes
the repository for transmitting the verification key explicit, we stress
that the repositories abstract from concrete types of communication and
merely specify that the correct verification key generated by the signer
is accessible, in some way, to the verifier. The means of how it became
accessible do not have to be specified.

The second argument is that (beyond requiring the communication of
the signature string, which is analogous to the verification key), protocols
that communicate a signature over a different connection than specified,
such as an encrypted one, is a modeling challenge. One such protocol is
SAML [HCH+15], where a signed assertion on the identity of a party is
sent through a TLS connection. Despite the fact that this assertion is
indeed encrypted, and SAML would therefore appear to be in the class of

204 CHAPTER 7. A CONSTRUCTIVE MODEL FOR SIGNATURES

protocols referred to by Canetti, it is shown in [BMT18] that our model,
which does not explicitly expose the signature string, indeed allows to
analyze the security of protocols like SAML. The reason is again that
our model abstracts from the concrete communication semantics and in
particular also allows to model the case where a signature is transferred
securely.

There are protocols that make explicit use of the verification key or
signature as a bit string and for which our model in its current form does
not support a modular analysis. One example is the transformation from
CPA-secure public-key encryption (PKE) to non-malleable PKE by Choi
et al. [CDSMW08], where each ciphertext is protected via an instance of
a one-time signature scheme, and the bits of the verification key are used
to select a certain subset of instances of the CPA-secure PKE. For the
security reduction to succeed, however, it is necessary that the verification
key be not only a bit string, but that it also be different for each instance,
with high probability. While this property is clearly satisfied by every
secure DSS, and therefore also each DSS that realizes Fsig, it is not
captured in the functionality alone, where the adversary can freely choose
the verification key. Hence, a composable analysis of the Choi et al.scheme
in the Fsig-hybrid model is inherently impossible. In summary, this shows
that the property of outputting some string as the verification key is not
sufficient at least for the application of [CDSMW08]. Another example are
protocols that require parties to provide proofs (e.g., of knowledge) over
inputs and outputs of the DSS algorithms. Yet, also here, the same issues
appear with the formalization Fsig that is independent of any concrete
scheme. In summary, it remains open whether there is a natural scheme
that can be modularly proved based on Fsig, but not using the more
abstract definition we put forth in this paper.

Finally, our work can be seen as orthogonal to the work of Canetti
et al. [CSV16a], which extends the model of Canetti [Can01a, Can04] to
the case where verification keys are available globally. While our model
does not restrict the use of the constructed resource, the central aspect
of our work is the different paradigm underlying the specification of the
functionalities.

7.1. INTRODUCTION 205

7.1.5 Specific Contribution

The main contribution of [BMT18] on which this chapter is based is the
formal model sketched in Section 7.1.3 above, which we formally specify in
Section 7.2. We additionally prove several statements about DSSs using
this model.

Capturing the security of a DSS. We define, in Section 7.3.1, the
security of a DSS as constructing an authenticated repository, shown
on the right-hand side of Figure 7.2, from an insecure repository, called
“insecure Rep” on the left-hand side of Figure 7.2, an “authenticated Rep”
to which one message can be written, and a “secure Rep” that allows
to write a single message, but to which the adversary has neither read-
nor write-interfaces. As shown in Figure 7.2, using the signature scheme,
which consists of the systems labeled setup, write, and check, requires the
two single-message repositories for distributing the signing and verification
keys. In more detail, in write each message is signed and the signature
input into the insecure repository. Checking whether a given message
m has been written to the repository is done by verifying the received
signature for m within check.

We then prove that this construction statement is equivalent to the
existential unforgeability of secure digital signature schemes in the sense
of [GMR88]:

Theorem (informal). A DSS constructs an authenticated multi-message
repository from an insecure multi-message repository, an authenticated
single-message repository and a secure single-message repository if and
only if it is existentially unforgeable.

Following the discussion in [Can04], we have to argue that our abstract
formalization of a signature scheme indeed models the intuitively expected
properties of such a scheme. In particular, in Section 7.3.5, we show that
the formalization directly models the transferability property of signature
schemes in the sense that a receiver of a signature can forward it to
another party, who can also verify it. For further applications we refer to
[BMT18].

206 CHAPTER 7. A CONSTRUCTIVE MODEL FOR SIGNATURES

Rep...
...

setup

write

write

check

check

W

E.r

s

s′

E.w

s′
m?

0/1

setup

m

s′

pk

sk

Rep

sk

secure

insecure

pk

Rep
authentic

Rep
...

E.r

m

m

E.w

m

W

...

m

m m?

setup

authentic

Figure 7.2: Illustration of the main construction that characterizes a digital
signature scheme. The assumed resources with the protocol (left) and the
constructed resource (right). The adversarial interfaces are denoted by
E.w (write) and E.r (read) and the free interface is denoted by W. The
protocol is applied at the honest users’ interfaces of the assumed resources.

7.1.6 The Constructive Cryptography Setting

Our construction statements are phrased again for the special case of
constructive cryptography with one dishonest interface called E, one free
interface W. See Sections 2.3.4 and 2.3.5 for the basic definitions. In
contrast to the previous chapters, we consider specifications [MR16] of
reactive discrete systems, meaning systems that are not fully specified.
For better accessibility, we repeat here the basic concepts of specifications
from [MR16] and continue the discussion from Section 2.3.6 to show how
we use the concept here.

Specifications and relaxed specifications. Our specifications can
be understood in the sense of game equivalence: we define an event on the
inputs (and outputs) of the discrete system, and the specification states
that a system must show a certain specified behavior until the condition
is fulfilled, but may deviate arbitrarily afterward.

The constructive security statements can then be understood as follows.
A protocol constructs from a specification S another specification T if for
each system S that satisfies S there exists a system T that satisfies T

7.2. MESSAGE REPOSITORIES 207

such that the protocol constructs T from S.
While game equivalence in general is defined based on an arbitrary

MBO of the system, the MBOs considered in this paper will be of a
specific and simple form: they only depend on the order in which specific
inputs are given to the systems. This formalizes the guarantee that the
resource behaves according to the specification if the inputs have been
given in that order. A stronger condition therefore corresponds to a
weaker specification, and it is easy to see that if a protocol constructs T
from S, and the same additional condition is specified to obtain weakened
specifications S− from S and T − from T , then the same protocol also
constructs T − from S−. (This assumes that S− and T − are weakened in
the same way. The statement can equivalently be seen as requiring the
distinguishing advantage to be small only for a subset of distinguishers.)

As the specifications in this work, as described above, can be seen as
partially defined discrete systems, we use the same notation, i.e., boldface
fonts. In particular, we can understand equation (2.1) as extending to such
partially defined discrete systems, by changing the system to respond with
a constant output to the distinguisher once the MBO has been provoked.

7.2 Message Repositories

We formalize the message repositories described above. Due to the simi-
larity to abstract data types, we identify each exported capability by an
explicit function (that can change the state of the system as a side-effect).
We stick to this description format for the remainder of this chapter.

7.2.1 Description of Message Repositories

We consider general message repositories that export a certain capability,
such as reading or writing a single message, at each of its interfaces. There
are four types of ways in which one can access the repository to read
or write its content: each interface A ∈ W allows to insert one message
into the repository. Interface B ∈ R allows to read a message that has
been written to the repository and made visible for B. Each interface
C ∈ C allows to write values into the repository by specifying from which
(reader) interfaces the values should be copied; no new values can be
inserted at interface C. For each copy-interface, there is a set of associated

208 CHAPTER 7. A CONSTRUCTIVE MODEL FOR SIGNATURES

read-interfaces from which they can copy. Each interface V ∈ V allows
to verify whether a certain value m is visible at the interface; this can
be seen as a restricted type of read access. Finally, the free interface W

allows to manage the visibility of messages. On a call transfer(A, B),
the message written at A becomes visible at reader interface B. We often
call the receiving interfaces the receivers. A precise specification of the
repository appears in Figure 7.3. As indicated by the keyword Assume,
the behavior of the repository may be undefined if this assumption is
not fulfilled as discussed in Section 6.1. In contrast, “◃ m ∈M” is to be
understood as a reminder or comment for the reader; the input m given
to the system is necessarily in the alphabetM by definition of the system.
(More technically, while the condition in Assume may be violated by an
input, which may provoke an MBO, m ∈M will always be satisfied.)

Note that one can easily generalize this basic specification to other
types of read- or write-interfaces, for example to model output of partial
information about a message, such as the length, but which we do not
consider here and consider it as part of future work. Following the
motivation of Section 6.1, for generality, we consider each described
operation as associated with a separate interface.2

Definition 7.2.1. For finite and pairwise disjoint sets W,R, C,V, and
a family {RC}C∈C of sets RC ⊂ R for all C ∈ C, we define the repos-
itory RepC,WR,V,{RC}C∈C

as in Figure 7.3. For later reference, we define
for n,m, ℓ, k ∈ N, the standard sets W = {Ai}i∈[n], R = {Bi}i∈[ℓ],
C = {Ci}i∈[m] and V = {Vi}i∈[k]. If nothing else is specified, these
standard interface names are used. We define the shorthand notation
Repm,nℓ,k := RepC,WR,V,{RC}C∈C

for these standard sets and RC = R for all
C ∈ C. For C = ∅ we use the simplified notation RepWR,V .

Different security guarantees can be expressed using this repository by
considering different allocations of read-, write-, or transfer-interfaces to
different parties as discussed in the introduction. For instance, an attacker
could have access to both read- and write-interfaces, to model traditional
insecure communication. If the attacker only has access to read-interfaces
(but not to write-interfaces beyond potentially copy-interfaces to forward

2Recall that it is always possible to merge several existing interfaces into one
interface to model that a party or the attacker, in a certain application scenario, has
the capability to write and read many messages.

7.2. MESSAGE REPOSITORIES 209

Resource RepC,WR,V,{RC}C∈C

Initialization
S, φ← empty tables

Interfaces A ∈ W
Input: (write,m) ∈ M

Assume: Only called once for A ∈ W.
function write(m)

S[A]← m

Interfaces B ∈ R
Input: read

Assume: transfer(X, B) has been
called for some X ∈ W ∪ C.
function read

return S[φ[B]]

Interfaces C ∈ C
Input: (copy,B),B ⊆ RC

Assume: For all B ∈ B, transfer(X, B)
must have been called for some X ∈
W ∪ C, and B ∈ RC.
function copy(B)

S[C]←
⋃

B∈B S[φ[B]]

Interfaces V ∈ V
Input: (verify,m) ∈ M

Assume: transfer(X, V) has been
called for some X ∈ W ∪ C.
function verify(m)

if m ∈ S[φ[V]] then
return true

else
return false

Interface W

Input: (transfer, X, Y) ∈ (W∪C)×(R∪V)
Assume: write(m) has been called at
X ∈ W for m ∈ M, or copy(Y′) at X ∈ C
for some Y′ ∈ RX, and transfer(X′, Y)
has not been called for any X′ ∈ W ∪ C.
function transfer(X, Y)

φ[Y]← X ◃ Interface Y can now
see the value
written at X

Figure 7.3: Specification of a repository resource. For ease of notation, we
treat values m ∈M and singular sets {m} for m ∈M interchangeably.

210 CHAPTER 7. A CONSTRUCTIVE MODEL FOR SIGNATURES

received messages), the repository corresponds to authenticated message
transmission from a honest write-interface.

7.2.2 Modeling Security Guarantees by Access to the
Repository

For security statements we need to associate each (non-free) interface
to either an honest party or a possible attacker. As additional notation,
we define the adversarial interfaces sets Er := {E1.r, . . . , Ek.r} (for some
k > 0), Ew := {E1.w, . . . Ek.w}, and Ec := {E1.c, . . . , Ek.c} where the size
k of this set is typically defined by the context. We can then specify
repositories with different security guarantees.

• Insecure repositories allow adversarial write and read access. They
can be described by Rep∅,W∪EwR∪Er,∅ , which means that all interfaces
are either read- or write-interfaces.

• An authenticated repository disallows adversarial write-operations
of arbitrary messages. Only (the honest) interface W can input
content into the repository. This situation is described by the
resource RepEc,WR∪Er,∅,{Er}C∈Ec

, which indicates that the attacker may
still be able to copy values from interfaces Er at each interface Ec.

• A repository without adversarial read-access, but with write access,
models perfect confidentiality, and is described by Rep∅,W∪EwR,∅ .

While the (natural) variants described above will be the only ones
used in this work, the formalism allows to flexibly define various further
combinations of honest-user and adversarial capabilities.

7.3 The Constructive Perspective

7.3.1 The Basic Definitions

Our security definition for DSSs is based on the repositories introduced in
Section 7.2. Intuitively, the honest parties execute a protocol to construct
from an insecure repository, in which the attacker has full write access,
one repository that allows the writer to authenticate a single message

7.3. THE CONSTRUCTIVE PERSPECTIVE 211

(this will be used for the verification key), and one repository that allows
to store a single message securely (this will be used for the signing key),
an authenticated repository that can be used for multiple messages. We
generally use the notation introduced in Section 7.2. We first introduce
the specifications that capture authenticated repositories since they are of
primary interest in this section. The first type considers repositories where
the role of the receiver interfaces is to verify values in the repository:

Definition 7.3.1. Let W,R, Ew, Er denote the standard interface names.
A specification aRepEw,WEr,R , in the sense of a partially defined discrete
system, is an authenticated repository for verification if the following
conditions are fulfilled. (1) It has at least the interfaces I = W ∪R ∪
Ew ∪ Er, where all inputs at I /∈ I are ignored (i.e., the resource has
the default behavior of directly returning back to the caller). (2) For
all inputs at some interface I ∈ I, the behavior is identical to the one
specified in RepEw,WEr,R,{Er}C∈Ew

for I, wherever the behavior of aRepEw,WEr,R
is defined. More formally, this means that for a given sequence of inputs,
the conditional distribution of aRepEw,WEr,R , where the outputs for inputs
at interfaces not in I are marginalized, is the same as the conditional
distribution of RepEw,WEr,R,{Er}C∈Ew

without those inputs.

The second definition is analogous and considers repositories where
the role of the receiver interfaces is to authentically receive values:

Definition 7.3.2. Let W,R, Ew, Er denote the standard interface names.
The specification aRepEw,WEr∪R, in the sense of a partially defined discrete
system, is an authenticated repository for receiving if it has at least the
interfaces I =W ∪R∪ Ew ∪ Er, all inputs at I /∈ I are ignored, and for
all inputs at some interface I ∈ I the behavior is identical to the one
specified in RepEw,WEr∪R,∅,{Er}C∈Ew

for I, wherever the behavior of aRepEw,WEr∪R
is defined. We omit Ew in the notation if it is equal to ∅.

In the following, whenever referring to the sets W,R, Ew, and Er, we
implicitly refer to the standard names introduced in the previous section.

Assumed resources. As outlined in Section 6.1, to construct an authen-
ticated repository, we require (beyond an insecure repository to transmit
the signatures) an additional resource that allows to distribute one value
authentically to all verifiers and one value securely to all signers. This

212 CHAPTER 7. A CONSTRUCTIVE MODEL FOR SIGNATURES

assumed communication is described by the specification aRepS
W , which

specifies resources with one writer interface S and no active adversarial
interface. Information can only be transferred from S to the interfaces of
W.

To model the authenticated (but not confidential) transmission of
a value, we assume another resource as specified by aRepEc,SEr∪R where
information can only be transferred from S to the interfaces in R, but
is not limited to those as also adversarial interfaces may read this value
or copy it via the interfaces in Ec. We define the assumed system as
consisting of the two above-described resources, i.e., two authenticated
repositories where the first in particular models confidentiality according
toSection 7.2.2, and an insecure repository Rep∅,W∪EwR∪Er,∅ . This can be
succinctly summarized by the formula

Rn,ℓ := [aRepS
W ,aRepEc,SEr∪R,Rep∅,W∪EwR∪Er,∅] . (7.1)

For clarity, whenever we explicitly refer to the assumed mechanism to
distribute the keys, we use the shorthand notation

Dist := [aRepS
W ,aRepEc,SEr∪R.

Protocol converters. We assign one converter to each of the three roles:
a converter write for the (honest) writer interfaces, a converter check for the
(honest) reader interfaces and a setup-converter setup at interface C. We de-
fine the vector of converters DSS := (setup,write, . . . ,write, check, . . . , check)
with n copies of write, ℓ copies of converter check and one converter setup.
The set of honest interfaces in this section is defined as P := {S}∪W ∪R.
See Figure 7.4 for a formal description. Note that in the style of this
chapter, we associate to each input a function that is executed upon
respective input.

Goal of construction: an authenticated repository. Intuitively,
the use of a DSS should allow us to construct from a repository RepW∪EwR∪Er
that allows both the honest users and the attacker to write multiple
messages, and a repository that exclusively allows one honest user to write
the verification key authentically, a repository in which the attacker has
no write access. The reason is that writing a message that will be accepted
by honest readers requires to present a valid signature relative to the

7.3. THE CONSTRUCTIVE PERSPECTIVE 213

verification key, thus the attacker would be required to forge signatures.
This intuition does, however, not quite hold.

Indeed, when using the insecure repository, the attacker can still copy
valid signatures generated by the honest writer to which he has read access
via any of his write interfaces. Since honest readers may later gain read
access to those copied signatures, the attacker can indeed control which
of the messages originating from the honest writer will be visible at those
interfaces. The repository that is actually constructed is a specification
aRepEw,WEr,R as in Definition 7.3.1. The goal of a digital signature scheme
can thus be understood as amplifying the capabilities of authenticated
repositories as defined using the specifications above.

To give a more concrete intuition, a particular constructed resource still
has an interface S and accepts queries transfer(S, Ai) and transfer(S, Bj),
in addition to those provided by aRepEw,WEr,R . Providing input at these
interfaces has no effect, but may influence whether further outputs of the
system are still defined (because, e.g., inputs to the system may have been
provided in an order such that the behavior of the DSS is not defined).

In the remainder of the section, we prove an equivalence between the
validity of the described construction and the definition of existential
unforgeability. As the protocol converters described above do not exactly
match the algorithms in the traditional definition of a DSS, we also explain
how to convert between the two representations of a signature scheme.

7.3.2 Unforgeability of Signatures implies Validity of
Construction

The constructed specification aRepEw,WEr,R has further (inactive) interfaces
beyond those in I = W ∪ R ∪ Ew ∪ Er, and behaves equivalently to
RepEw,WEr,R,{Er}C∈Ew

, as long as the assumed order of inputs is respected. The
following theorem states that any existentially unforgeable digital signature
scheme can be used to construct such an authentic repository from the
assumed resources (see also Figure 7.2 for a depiction of this statement).
Constructing a specification aRepEw,WEr,R according to Definition 7.3.1 can
be a vacuous statement: the specification can be undefined for all possible
orders of inputs. The statement we prove in this section, therefore,
explicitly specifies for which orders aRepEw,WEr,R is defined. In particular,
the specification is defined for all orders of inputs for which the underlying

214 CHAPTER 7. A CONSTRUCTIVE MODEL FOR SIGNATURES

Converter setup

Outer Interface
Input: setup :

function setup
(vk , sk) � Gen

call write(sk) at Rep
{S}
W,∅

call write(vk) at Rep
{S}
R∪Er,∅

Converter write

Outer Interface
Input: (write,m) ∈ M :

function write(m)
call sk ← read at Rep

{S}
W,∅

if sk ̸= ⊥ then
s← Sign(sk ,m)
call write(s) at Rep

Converter check

Outer Interface
Input: (verify,m) ∈ M :

function verify(m)
call vk ← read at Rep

{S}
R∪Er,∅

call s′ ← read at Rep
if vk ̸= ⊥ and s′ ̸= ⊥ then

if Ver(vk ,m, s′) = 1 then
return Success

return Fail

Figure 7.4: The three protocol converters derived from a signature scheme
DS = (Gen,Sign,Ver).

specifications aRepS
W and aRepEc,SEr∪R are defined, plus the following

natural conditions of a DSS: the keys are generated first and are distributed
before anything is signed or verified at a writer or reader interface. As
long as these conditions are satisfied, the specification defines the output
of the resource. We now state the theorem.

Theorem 7.3.3. Let n, ℓ ∈ N. For any given digital signature scheme
DS = (Gen,Sign,Ver), let the converters write, check, and setup be de-
fined as in Figure 7.4. Then, for the simulator sim defined in Figure 7.5,
we design a reduction ρ(D) := DC with a specific system C defined in
the proof, such that for all distinguishers D and their associated adver-
saries A := ρ(D) (against the forgery game for signatures) it holds
that

∆D(DSSPRn,ℓ, simE aRepn,ℓ) ≤ Adveu-cma
DS,A

7.3. THE CONSTRUCTIVE PERSPECTIVE 215

and where aRepn,ℓ is defined as long as the assumed specification is
defined and the following conditions hold:

• Command setup is issued at the S-interface before any other com-
mand;

• Command transfer(S, Ai) is issued at the W-interface corresponding
to the first setup repository before write is issued at the Ai-interface;

• Command transfer(S, Bi) is issued at the W-interface correspond-
ing to the second setup repository before read is issued at the
Bi-interface.

• There are no transfer(X, Y) queries with X ∈ Ew and Y ∈ Er,
that is, we exclude communication from the adversarial writer to
adversarial reader-interfaces.

In other words, the signature scheme constructs the specification
aRepEw,WEr,R from the assumed specification Rn,ℓ.

Proof. Consider the simulator given in Figure 7.5. We introduce the
shorthand notation Sn,ℓ := simE aRepn,ℓ. The simulator sim accesses
all the capabilities provided at the adversarial interfaces (by merging
them into the single interface E) and provides at its outer interface the
simulated capabilities (accessible at the appropriate interfaces) of the real
system. We now argue that all queries of a distinguisher D are answered
consistently by the systems Sn,ℓ and DSSPRn,ℓ, we observe that in random
experiments D(DSSPRn,ℓ) and D(Sn,ℓ), the behavior is identical, unless a
query write(s′) is made at interface E for some signature s′ that satisfies
Ver(vk ,m′, s′) = 1 for some message m′ that is subsequently part of a call
verify(m′) at the interface where s′ was transferred to. Let us denote
this event in the real-world random experiment by BAD . If we prove that
the systems behave equivalently until event BAD occurs, then we can
bound the distinguishing advantage of DSSPRn,ℓ and Sn,ℓ by bounding
the probability of event BAD . As discussed above, this probability can
be bounded by the success probability of an (efficient) adversary A in
breaking the security of the DSS.

We now elaborate on the other queries being handled consistently by
the two systems and argue for each invoked function individually.

216 CHAPTER 7. A CONSTRUCTIVE MODEL FOR SIGNATURES

Converter sim

Initialization
L,R← empty tables
(sk , vk) � Gen

Interface Et.w

Input: (write, s) ∈ S:
function write(s)

if R[t] = ⊥ then
R[t]← s
B ← ∅
for i = 1 to n do

call m← read at inter-
face

Ei.r of Repn,ℓ

if Ver(vk ,m, s) = 1 then
B ← B ∪ {i}

call copy(B) at
interface Et.w of aRepn,ℓ

Interface Et.r

Input: read (authentic repository):
function read ◃ for aRep

{S}
W

return vk

Input: read (insecure repository):
function read ◃ for Repn,ℓ

if L[t] ̸= ⊥ then
return L[t]

call m← read at interface Et.r
of aRepn,ℓ

if m ̸= ⊥ then
s← Sign(sk ,m)
L[t]← s

return L[t]

Figure 7.5: Simulator for the proof of Theorem 7.3.3.

S.setup: This query has no effect in the ideal system, but in the real
system it makes the key sk available in aRep

{S}
W and the key vk

available in aRep
Ec,{S}
Er∪R . No output to D.

W.transfer(S, A) for A ∈ W: Requires that S.setup has been called.
No effect in the ideal system, but in the real system it makes the
key sk accessible to writer A. No output to D.

W.transfer(S, X) for X ∈ Er at aRep
Ec,{S}
Er∪R : Requires that S.setup has

been called. No effect in the ideal system, but in the real system it
makes the key vk accessible to adversarial reader X. No immediate
output to D.

Y.copy(X) for X ∈ Er and Y ∈ Ec at aRep
Ec,{S}
Er∪R : Requires that before

query W.transfer(S, X) has been made. No effect in the ideal
system, but in the real system it copies the key vk to interface Y.
No immediate output to D.

7.3. THE CONSTRUCTIVE PERSPECTIVE 217

W.transfer(X, B) for B ∈ R at aRep
Ec,{S}
Er∪R : Requires that either S.setup

resp. X.copy has been called. No effect in the ideal system, but
in the real system it makes the key vk accessible to reader B. No
output to D.

A.write(m) for A ∈ W: Requires that W.transfer(S, A) has been called.
Enters m into the resource in the ideal system, obtains vk , computes
the signature, and enters it into RepW∪EwR∪Er in the real system. No
immediate output to D.

X.read for X ∈ Er at aRep
Ec,{S}
Er∪R : Requires that W.transfer(S, X) has

been called. In the real system, returns the verification key vk . In
the ideal system, sim returns the simulated verification key. This
has the same distribution.

W.transfer(A, X) for X ∈ R ∪ Er: Requires that A.write(m) has been
called. In the real system, makes the generated signature available
to X. In the ideal system, makes m available to X. No immediate
output to D.

X.read for X ∈ Er at RepW∪EwR∪Er : Requires that W.transfer(A, X) has
been queried for A ∈ W. (Adversarial writers in Ew are explicitly
excluded.) In the real system, outputs the signature that has
been made available in the repository. In the ideal system, the
simulator sim checks whether the query has been made before,
answers consistently in that case, and otherwise generates a new
signature using the internal key. This computation is done exactly
in the same way, and therefore the returned signature also has the
same distribution.

X.write(s) for X ∈ Ew: In the real system, this enters the value s into
the repository RepW∪EwR∪Er and has no immediate output. In the ideal
system, the simulator sim processes the message, and checks for
which messages that it has already received, the signature verifies. In
case no message can be verified, the simulator inserts ⊥ at its copier
interface. In the other case, for each message, received at reader-
subinterface i that verifies successfully with the given signature
string, the simulator calls copy(i) at X to insert this message into
the copier buffer (since all these messages can be verified w.r.t. the
signature string s.)

218 CHAPTER 7. A CONSTRUCTIVE MODEL FOR SIGNATURES

W.transfer(X, B): This is only valid if X.write(s) was called before,
has the same effect in both cases.

We introduce the reduction system C that emulates the real world
view towards any distinguisher D by accessing the oracles of EU-CMAsig

DS ,
i.e., such that CEU-CMAsig

DS and DSSPRn,ℓ have the same input-output
behavior. During that emulation, C tries to extract a forgery from the
interaction with the distinguisher. The main challenge for the reduction is
to make sure that it does only query the signing oracle on messages that
definitely cannot be forgery candidates. Formally, the reduction system C
emulates one setup interface, n writer-interfaces At, ℓ receiver-interfaces
Bt, and n + ℓ adversarial read and write interfaces Et.r/w and one free
interface W towards D. C first initializes two empty tables R and L. Then,
C receives the verification key vk from EU-CMAsig

DS and stores it internally.
Furthermore, it answers all queries by D accordingly to the description of
the real system, with the only difference that signatures are computed
through the game. When C detects a signature forgery, it outputs this
forgery to the game.

For any distinguisher D, we define the the adversary A := DC against
the game EU-CMAsig

DS and conclude that

∆D(DSSPRn,ℓ,Sn,ℓ) ≤ PrD(DSSPRn,ℓ)[BAD] = PrDCEU-CMAsig
DS

[BAD]

= Pr
[
DCEU-CMAsig

DS sets win
]
= Adveu-cma

DS,A .

7.3.3 Chaining Multiple Construction Steps

The construction proved in Theorem 7.3.3 assumes (amongst others)
an authenticated repository aRepEc,SEr∪R and constructs an authenticated
repository aRepEw,WEr,R . A natural question is in which sense multiple
such construction steps can be chained, corresponding to signing the
verification key of one instance with a different instance of the scheme.
For this to work out, we have to “upgrade” the resource aRepEw,WEr,R to
a resource aRepEw,WEr∪R as needed by Theorem 7.3.3, where we can then
use any interface X ∈ W as the interface S to transmit the secret key. Of

7.3. THE CONSTRUCTIVE PERSPECTIVE 219

course, we additionally require resources aRep
{X}
W′ for distributing the

secret keys and Rep
∅,W′∪E′w
R∪Er,∅ for transmitting the signatures.

The chaining is then achieved by the protocol that consists of con-
verters send and receive, sends the messages over an (additional) insecure
repository Rep∅,W∪EwR∪Er,∅ and authenticates them via aRepEw,WEr,R . Protocol
converter send simply inputs the same message to both resources, whereas
receive verifies the messages obtained through the insecure repository
at the authenticated repository. This protocol perfectly constructs an
authenticated repository with delivery from the two assumed resources.

Theorem 7.3.4. Let n, ℓ ∈ N, and consider a protocol SND with convert-
ers send for all interfaces in W and converters receive for all interfaces
in R, defined as described above. Then, for the simulator sim described
below we have for any distinguisher D,

∆D(SNDP [Rep∅,W∪EwR∪Er,∅ ,aRepEw,WEr,R], simEaRepEw,WEr∪R),

wherever both resources are defined. The constructed resource aRepEw,WEr∪R
accepts transfer commands at sub-interfaces corresponding to both as-
sumed resources, and requires, for a given message to be transferred, both
those commands to be issued.

Proof Sketch. The simulator sim responds to read queries at the Er-
interfaces corresponding to Rep∅,W∪EwR∪Er,∅ or aRepEw,WEr,R by obtaining the
transmitted messages from aRepEw,WEr∪R. Once copy has been called at
an Ew-interface at aRepEw,WEr,R and the corresponding message has been
input at the same Ew-interface of Rep∅,W∪EwR∪Er,∅ , sim issues the same copy

command at aRepEw,WEr∪R.

Together with Theorem 7.3.3, this means that sending a message along
with a signature constructs an authenticated repository from which the
authenticated messages can be read. Several such constructions can then
be chained in the expected way.

7.3.4 Validity of Construction implies Unforgeability
of Signatures

In this section, we show that any converters achieving the construction
of aRep from Rep and Dist contain a digital signature scheme that is

220 CHAPTER 7. A CONSTRUCTIVE MODEL FOR SIGNATURES

existentially unforgeable under chosen-message attacks. More precisely:

Theorem 7.3.5. Let n, ℓ ∈ N. Consider arbitrary converters setup, write,
and check and define DSS := (setup,write, . . . ,write, check, . . . , check) (for
the honest interfaces) with n copies of write, ℓ copies of converter check
and one converter setup. We derive a digital signature scheme DS =
(Gen,Sign,Ver) below in Figure 7.6 with the following property: given
any adversary against the signature scheme that asks at most n signing
queries and makes at most ℓ forgery queries to the oracles of EU-CMAsig

DS ,
we construct (efficient) distinguishers Di, i = 1 . . . 5, such that for the
systems DSSPRn,ℓ and simEaRepn,ℓ, with aRepn,ℓ = aRepEw,WEr,R , for all
simulators sim,

Adveu-cma
DS,A ≤

5∑
i=1

∆Di(DSSPRn,ℓ, simE aRepn,ℓ),

and where aRepn,ℓ is defined as long as the assumed specification is
defined and under the same additional conditions as in Theorem 7.3.3.

Obtaining the signature scheme from the converters. The key
generation, signing, and verification functions are derived from the con-
verters setup, write, and check that construct aRep from [Dist,Rep]
as follows: The key generation Gen consists of evaluating the function
setup.setup, the two values written to the resource Dist are considered as
the corresponding key pair. The secret key is the value that is written to
the first sub-system of Dist. The signing algorithm Sign(sk ,m) consists
of evaluating the function write.write(m). The signature for message m
is defined as the value that is written to the repository. Any request to
obtain a value from resource Dist is answered by providing the signing
key sk . The verification algorithm Ver(vk ,m, s) consists of evaluating the
function check.verify(m) and the candidate signature s is provided as
the actual value in the repository and the verification key vk is given as
the value in Dist. The formal description of the algorithms appear in
Figure 7.6.

Proof. The theorem directly follows from the following two observations:
Lemma 7.3.6 states that if the output of the key generation algorithm
Gen as defined in Section 7.3.4 is not (⊥,⊥), then any adversary against

7.3. THE CONSTRUCTIVE PERSPECTIVE 221

Figure 7.6: Signature scheme (Gen,Sign,Ver) extracted from converters
setup,write, and check.

the derived signature scheme can be transformed into a distinguisher for
the real and ideal systems (for any simulator).

Lemma 7.3.6. Let n, ℓ ∈ N, let DSS be as defined in Theorem 7.3.5 for
arbitrary converters setup, write, and check, and let the digital signature
scheme DS = (Gen,Sign,Ver) be defined as in Section 7.3.4. We present
an (efficient) reduction that transforms any adversary A for EU-CMAsig

DS ,
that asks at most n signing queries and ℓ forgery queries to the oracles of
the forgery game, into a distinguisher D(A), such that for all simulators
sim,

Adveu-cma
DS,A ≤ Pr[(⊥,⊥)← Gen] + ∆D(A)(DSSPRn,ℓ, simE aRepn,ℓ).

Proof. We define the shorthand notation Sn,ℓ := simE aRepn,ℓ. We define
a reduction system C that is given access to the interfaces of either system

222 CHAPTER 7. A CONSTRUCTIVE MODEL FOR SIGNATURES

DSSPRn,ℓ or Sn,ℓ, and provides one additional outside interface. At that
outside interface, C simulates the signing and forgery oracles of game
EU-CMAsig

DS . First, the system C initializes an internal variable won to 0.
Then, it activates all interfaces of its connected system and queries setup
at interface C. Subsequently, C calls transfer(C, E1.r), transfer(C, Bi),
and transfer(C, Aj) for i = 1 . . . ℓ, j = 1 . . . n. Then, C queries read to
(the possibly simulated) resource Dist at interface E1.r and outputs at
the outside interface whatever is output by E1.r.

It further answers the following queries by an adversary A:

On the ith signing query m: Upon this query, C queries write(m)
at interface Ai and subsequently transfer(Ai, Ei.r). Then, retrieve
the value s by querying read at interface Ei.r. Finally, C outputs
the pair (m, s) at its outer interface. If no value is output at interface
Ei.r, then C outputs (m,m).

On the ith forgery query (m, s): On input a possible forgery, C queries
write(s) at interface Ei.w of its connected system. Then, C queries
transfer(Ei.w, Bi) to give Bi access to the signature string s. Next,
C queries verify(m) at interface Bi to receive either the the indica-
tion Success or Fail. If the message m is successfully verified and
has not been queried to Sign before, then won is set to 1. In any
case won is output at the outside interface.

We first note that in the key generation process of EU-CMAsig
DS for DS

defined above, the function setup.setup defines the signing and verification
key. It is this function that defines the values that converter setup writes
to the distribution resource in the real world upon setup at interfaces
C. So the probability distribution of the pair (vk , sk) output by Gen
is identical to the distribution of the values written to Dist in system
C(DSSPRn,ℓ).

In the random experiment of any adversary that asks at most n queries
to its signature oracle and ℓ queries to its forgery oracle, the input-output
behavior of C(DSSPRn,ℓ) and EU-CMAsig

DS are identical given that vk ̸= ⊥
and sk ̸= ⊥ during the key generation process. This follows from the
definition of the algorithms of DS: The signing algorithm Sign and the
verification algorithm Ver execute the same converter functions as are
executed in the system C(DSSPRn,ℓ) on an input by the adversary. And
in both cases, if no signature is generated for some message m it is set to

7.3. THE CONSTRUCTIVE PERSPECTIVE 223

the default value m. This is sufficient to build a distinguisher based on
an adversary A.

Claim 1. Let n, ℓ ∈ N. From any game winner A for EU-CMAsig
DS , that

asks at most n signing queries and ℓ forgery queries, we construct a
distinguisher D such that for any simulator sim,

Adveu-cma
DS,A ≤ ∆D(DSSPRn,ℓ, simE aRep) + Pr[(⊥,⊥)← Gen].

Proof of claim. Consider the random experiment in which an adversary
A interacts with system C(T), where T ∈ {DSSPRn,ℓ,Sn,ℓ}. Let further
be F the binary random variable that takes on the value 1 if at least one
component of the key-pair is undefined at the point of answering the first
oracle query (and F = 0 otherwise).

The actual distinguisher D connected to a system T ∈ {DSSPRn,ℓ,Sn,ℓ}
works as follows: it lets A interact with system C(T) and, after A has
finished, outputs the value of won as its decision bit3

We can therefore conclude that

Pr[D(DSSPRn,ℓ) = 1] = Pr
[
AC(DSSPRn,ℓ) sets won

]
= PrA

C(DSSPRn,ℓ)

[F = 0] · Pr
[
AC(DSSPRn,ℓ) sets won |F = 0

]
+ PrA

C(DSSPRn,ℓ)

[F = 1] · Pr
[
AC(DSSPRn,ℓ) sets won |F = 1

]
≤ PrA

EU-CMAsig
DS

[F = 0] · Pr
[
AEU-CMAsig

DS sets win |F = 0
]

+ PrA
′EU-CMAsig

DS
[F = 1] · Pr

[
A′EU-CMAsig

DS sets win |F = 1
]

  
=1

≤ Pr
[
AEU-CMAsig

DS sets win
]
+ Pr[(⊥,⊥)← Gen], (7.2)

where A′ is the adversary that wins the game with probability 1 by a
single query (m,m) to oracle Forge in case F = 1. Note that by definition,
the scheme does not provide any security whenever this condition occurs.
On the other hand, Pr

[
D(simEaRepn,ℓ) = 1

]
= 0, since no new message

can be written at any interface Ei.w of aRepn,ℓ. This yields the claim. ♦

3This means that the output bit 1 indicates that the connected system is the real
system.

224 CHAPTER 7. A CONSTRUCTIVE MODEL FOR SIGNATURES

This concludes the proof.

The second lemma states that for the key generation algorithm Gen
defined in Section 7.3.4, the probability that (⊥,⊥) is returned is a lower
bound for the advantage in distinguishing the real and ideal systems.

Lemma 7.3.7. Let n, ℓ ∈ N, let Rn,ℓ be as defined above for convert-
ers setup, write, and check and let the digital signature scheme DS =
(Gen,Sign,Ver) be defined as in Section 7.3.4. We construct (efficient)
distinguishers Di, i = 1 . . . 5, such that for all simulators sim,

Pr[(⊥,⊥)← Gen] ≤
4∑
i=1

∆Di(DSSPRn,ℓ, sim
EaRepn,ℓ)

In particular, if there exists a simulator sim such that DSSPRn,ℓ and
simEaRepn,ℓ are indistinguishable, then the output of the key generation
algorithm of Figure 7.6 is defined with overwhelming probability.

Proof. Let us consider an execution of algorithm Gen and let us define
the events E1 := sk = ⊥ and E2 := vk = ⊥ and let E := E1 ∪ E2. By
definition of algorithm Gen, we immediately observe that Pr[Ei] is equal to
the probability that, in the real system DSSPRn,ℓ upon calling setup at
C, converter setup does not define the respective values by an appropriate
write-query to Dist. We now show that the occurrence of either event
leads to lower bounds on the security condition.

To achieve this, let us consider the following real-world random ex-
periment (with system DSSPRn,ℓ). For further reference, we denote the
experiment by Exp. First, we call setup at interface C. Subsequently,
we call transfer(C, E1.r), transfer(C, Bi), and transfer(C, Aj) for
i = 1 . . . ℓ, j = 1 . . . n to distribute the setup values (,i.e., keys). Then, we
choose a uniformly random message m and input it at interface A1. Let us
denote by S the random variable that takes on the value of the output of
write on this write-query. Afterward, we call transfer(A1, B1).4 Finally,
we call verify(m) at interface B1. Let R be the random variable that
takes on the value output by check. We decompose the probability of

4Note that this input bypasses any adversarial influence, as the output by the
honest writer is directly given to the honest reader.

7.3. THE CONSTRUCTIVE PERSPECTIVE 225

event E in Exp as follows:

PrExp [E] = PrExp [E] · PrExp [S = ⊥ | E]  
α

(7.3)

+ PrExp [E] · PrExp [S ̸= ⊥ | E] · PrExp [R = Fail | E , S ̸= ⊥]  
β

(7.4)

+

2∑
i=1

PrExp [Ei] · PrExp [S ̸= ⊥ | Ei] · PrExp [R = Success | Ei, S ̸= ⊥]  
γi

.

(7.5)

Let D1 be the distinguisher that implements the strategy of Exp with
the following exception: instead of calling verify(m) in the last step, D1

flips a uniform bit b and only if b = 0 it calls verify(m); if b = 1 D1

calls verify(m′) for with m′ chosen uniformly at random fromM\{m}.
D1 outputs 1 as its decision bit if either R = Success and b = 1 or if
R = Fail and b = 0. In any other case, D1 outputs 0.

We see that the random variable S in the experiment between D1

and DSSPRn,ℓ is identically distributed as in experiment Exp. Hence, in
the real world, with probability α, converter check attached at interface
B1 does not learn any information about m, because m was chosen after
the setup query and no information is transmitted within the repository
since S = ⊥. In this case, the probability that D1 outputs 1 is 1

2 . We
observe that in the ideal world, i.e., in D1(sim

EaRepn,ℓ), the output
R = Success is observed whenever b = 0 and the output R = Fail is
observed whenever b = 1. Hence,

∆D1(DSSPRn,ℓ, sim
E aRepn,ℓ) ≥

α

2
.

Let D2 be the distinguisher that implements the strategy in experiment
Exp and which outputs 1 if and only if R = Fail. We directly see that in
the experiment between D2 and DSSPRn,ℓ, converter check outputs Fail
with probability β, whereas in the random experiment D1(sim

EaRepn,ℓ)
with any simulator, the probability of an output Fail at interface B1 is 0
by definition:

∆D1(DSSPRn,ℓ, sim
E aRepn,ℓ) ≥ β.

226 CHAPTER 7. A CONSTRUCTIVE MODEL FOR SIGNATURES

We now show that the third term constitutes a security issue in both
cases:

Event E1 : We define a third distinguisher D3 as follows: it first chooses
a uniformly random message m, activates all interfaces, and then calls
write(m) at interface A1, subsequently retrieves the value of S by calling
transfer(A1, E1.r) and after that calls read at interface E1.r. Only then,
D3 calls setup and distributes the setup values as in Exp. Then, D3

calls write(S) at interface E1.w and calls transfer(E1.w, B1) to give
the receiver interface access to the value S.

Finally, D3 queries verify(m) at interface B1.r. D2 outputs 1 if the
output is Success and outputs 0 otherwise. We have in particular

PrD3(DSSPRn,ℓ)[E1 | S ̸= ⊥] = PrExp [E1]

PrD3(DSSPRn,ℓ)[S ̸= ⊥] = PrExp [S ̸= ⊥ | E1] ,

since in both experiments, converter write is invoked when the value vals
stored in Dist for converter write is ⊥. Note that this in particular means,
this behavior has to be in the specification, since the behavior of Exp
obeys all the conditions. We conclude that the probability of an output
other than Fail at interface B1 in the real world is exactly γ1. On the
other hand, in the ideal world, i.e., in D2(sim

EaRepn,ℓ), there cannot be
any output other than Fail for this distinguishing strategy. We get

∆D3(DSSPRn,ℓ, sim
E aRepn,ℓ) ≥ γ1.

Event E2 : We define a fourth distinguisher D4 as follows: instead of
querying setup, D4 internally runs setup.setup to simulate the public
and the private values. Let the private value be denoted as sk . Then, D4

chooses a message m uniformly at random and simulates the output S of
converter write by evaluating write.write(m) using sk as the emulated
value stored in Dist. D4 then activates all interfaces of its connected
system and queries write(S) at interface E1.w and transfer(E1.w, B1).
Finally, D4 queries verify(m) at interface B1 and outputs 1 as its decision
bit if and only if the output R is Success. We observe that in particular,

PrD4(DSSPRn,ℓ)[E2] = PrExp [E2]

7.3. THE CONSTRUCTIVE PERSPECTIVE 227

and

PrD4(DSSPRn,ℓ)[R = Success | E2, S ̸= ⊥]
= PrExp [R = Success | E2, S ̸= ⊥] .

The first equation follows from the fact that D4 internally imitates the
setup-process and hence the probability that the (public) value is equal
to ⊥ is the same as in Exp. The second equality follows since the value
that converter check retrieves from Dist is ⊥ in both systems and hence
the views are identical (and again this shows that the behavior for this
resource has to be in the specification). We conclude that the probability
of an output Success at interface B1.r in the real world is exactly γ2. On
the other hand, in the ideal world, i.e., in D4(sim

EaRep), there cannot be
any output other than Fail, since the message m has never been written
to the repository. We get

∆D4(DSSPRn,ℓ, sim
E aRepn,ℓ) ≥ γ2.

This concludes the proof of the second lemma.

The above two lemmata establish the theorem statement.

7.3.5 On the Transferability of Verification Rights
Universal verification is arguably an important property of signatures.
Anybody possessing the public key and a valid signature string s for
some message m can verify the signature. This implies furthermore that
signatures are naturally transferable, which is essential for their key role in
public-key infrastructures or signing electronic documents. In this section,
we demonstrate that our definition directly implies transferability by
constructing a message repository in which information can be forwarded
among readers. The high-level idea is to apply a converter to the free
interface that instead copies the desired message from the sender buffer,
where it was input originally, to the targeted reader buffer.

The role of the free interface. Recall that the role of the free interface
in the repository resources is to transfer the contents from certain write-
buffers to certain read-buffers. The transferability of signatures then
simply means that values can also be transferred from read-buffers to

228 CHAPTER 7. A CONSTRUCTIVE MODEL FOR SIGNATURES

Resource aTRep

Interface W

Assume: write(m) has been called
at X ∈ W for m ∈ M, or copy(Y′)
at X ∈ C for some Y′ ∈ RX, and
transfer(X′, Y) has not been called
for any X′ ∈ W ∪ C.
function transfer(X, Y)

◃ (X, Y) ∈ (W ∪ C)× (R∪ V)
φ[Y]← X

Assume: The calls to the re-
source imply that φ(X) ̸= ⊥ and
transfer(X′, Y) has not been called
for any X′ ∈ W ∪ R ∪ V with
φ(X′) ̸= ⊥.
function transfer(X, Y)

◃ (X, Y) ∈ (R∪ V)2
φ[Y]← X

Figure 7.7: Specification of a repository resource with transferable rights.
Only the modifications with respect to Figure 7.3 are shown; the other
interfaces are identical.

other read-buffers; this can easily be achieved by translating the transfer-
requests appropriately.

The core idea, then, is to observe that the new repository and the
old repository only differ by attaching a converter at interface W. We
assign a new name to this resource and define aTRep = relayWaRep
(and analogously āTRep := relayWāRep) with a converter relay that
always remembers the existing assignments of reader to writer interfaces
and on a transfer-query for two reader interfaces, it simply connects
the corresponding writer-interface. The resource aTRep is additionally
formally described in Figure 7.7.

The converter. Converter relay distinguishes two types of inputs: trans-
fer commands from a writer to a reader transfer(X, Y) are forwarded
to the connected repository. Transfer commands between two readers,
transfer(R1, R2) are translated to transfer commands transfer(X, R2),
where X denotes the writer interface where the value readable at R1 was
first input.

A simple black-box construction. Any protocol that constructs
aRep from Rep (and Dist) also constructs relayWaRep from relayWRep
(and Dist), where the assumed resource relayWRep is an insecure repos-
itory that also allows information transfer between two receivers, i.e.,

7.3. THE CONSTRUCTIVE PERSPECTIVE 229

sending a signature from one receiver to another. This is easy to see:
assume there was a distinguisher D for systems simErelayWaRep and
[relayWRep,Dist], and we are going to construct a distinguisher D′ for
the underlying two resources without the converter relay attached. (Note
that sim is the same simulator as in Theorem 7.3.3.) Distinguisher D′

simply behaves as D but additionally emulates relay for queries at the
free interface.

This concludes the study of our new model for digital signature
schemes.

Part IV

Blockchain Protocols

Chapter 8

A Composable Model for
Bitcoin

8.1 Introduction
Since Nakamoto first proposed Bitcoin as a decentralized cryptocur-
rency [Nak08], several works have focused on analyzing and/or predicting
its behavior under different attack scenarios [BDOZ11, ES18, Eya15,
Zoh15, SZ15, KKKT16, PS17]. However, a core question remained:

What security goal does Bitcoin achieve under what assump-
tions?

An intuitive answer to this question was already given in Nakamoto’s
original white paper [Nak08]: Bitcoin aims to achieve some form of
consensus on a set of valid transactions. The core difference of this
consensus mechanism with traditional consensus [LSP82, Lam98, Lam02,
Rab83] is that it does not rely on having a known (permissioned) set
of participants, but everyone can join and leave at any point in time.
This is often referred to as the permissionless model. Consensus in this
model is achieved by shifting from the traditional assumptions on the
fraction of cheating versus honest participants, to assumptions on the
collective computing power of the cheating participants compared to
the total computing power of the parties that support the consensus

234 CHAPTER 8. A COMPOSABLE MODEL FOR BITCOIN

mechanism. The core idea is that in order for a party’s action to affect
the system’s behavior, it needs to prove that it is investing sufficient
computing resources. In Bitcoin, these resources are measured by means
of solutions to a presumably computation-intensive problem.

Although the above idea is implicit in [Nak08], a formal description
of Bitcoin’s goal had not been proposed or known to be achieved (and
under what assumptions) until the recent works of Garay, Kiayias, and
Leonardos [GKL15] and Pass, Seeman, and shelat [PSS17]. In a nutshell,
these works set forth models of computation and, in these models, an
abstraction of Bitcoin as a distributed protocol, and proved that the
output of this protocol satisfies certain security properties, for example the
common prefix [GKL15] or consistency [PSS17] property. This property
confirms—under the assumption that not too much of the total computing
power of the system is invested in breaking it—a heuristic argument used
by the Bitcoin specification: if some block makes it deep enough into the
blockchain of an honest party, then it will eventually make it into the
blockchain of every honest party and will never be reversed.1 In addition
to the common prefix property, other quality properties of the output of
the abstracted blockchain protocol were also defined and proved. A more
detailed description of the security properties and a comparison of the
assumptions in [GKL15] and [PSS17] is included in Section 8.7.1.

8.1.1 Bitcoin: A Service for Cryptographic Protocols

Evidently, the main use of the Bitcoin protocol is as a decentralized
monetary system with a payment mechanism, which is what it was
designed for. And although the exact economic forces that guide its
sustainability are still being researched, and certain rational models
predict it is not a stable solution, it is a fact that Bitcoin has not met any
of these pessimistic predictions for several years and it is not clear it ever
will do. And even if it does, the research community has produced and is
testing several alternative decentralized cryptocurrencies, e.g., [MGGR13,
SCG+14, But13], that are more functional and/or resilient to theoretic
attacks than Bitcoin. Thus, it is reasonable to assume that decentralized
cryptocurrencies are here to stay.

1In the original Bitcoin heuristic “deep enough” is defined as six blocks, whereas in
these works it is defined as linear in an appropriate security parameter.

8.1. INTRODUCTION 235

This leads to the natural questions of how one can use this new
reality to improve the security and/or efficiency of cryptographic protocols.
First answers to this question were given in [ADMM14, ADMM16, BK14,
KVV16, KB16, KMB15, KB14, AD15] where it was shown how Bitcoin
can be used as a punishment mechanism to incentivize honest behavior
in higher level cryptographic protocols such as fair lotteries, poker, and
general multi-party computation.

But in order to formally define and prove the security of the above
constructions in a widely accepted cryptographic framework for multi-
party protocols, one needs to define what it means for these protocols
to be run in a world that gives them access to the Bitcoin network as
a resource to improve their security. In other words, the question now
becomes:

What functionality can Bitcoin provide to cryptographic pro-
tocols?

To address this question, Bentov and Kumaresan [BK14] introduced a
model of computation in which protocols can use a punishment mechanism
to incentivize adversaries to adhere to their protocol instructions. As a
basis, they use the universal composition framework of Canetti [Can01b],
but the proposed modifications do not support composition and it is not
clear how standard UC cryptographic protocols can be cast as protocols
in that model.

In a different direction, Kiayias, Zhou, and Zikas [KZZ16] connected
the above question with the original question of Bitcoin’s security goal.
More concretely, they proposed identifying the resource that Bitcoin (or
other decentralized cryptocurrencies) offers to cryptographic protocols
as its security goal, and expressing it in a standard language compatible
with the existing literature on cryptographic mulit-party protocols. More
specifically, they modeled the ideal guarantees as a transaction-ledger
functionality in the universal composition framework. To be more precise,
the ledger of [KZZ16] is formally a global setup in the (extended) GUC
framework of Canetti et al. [CDPW07b].

In a nutshell, the ledger proposed by [KZZ16] corresponds to a trusted
third party which keeps a state of blocks of transactions and makes
it available, upon request, to any party. Furthermore, it accepts mes-
sages/transactions from any party and records them as long as they pass

236 CHAPTER 8. A COMPOSABLE MODEL FOR BITCOIN

an appropriate validation procedure that depends on the above publicly
available state as well as other registered messages. Periodically, this
ledger puts the transactions that were recently registered into a block and
adds them into the state. The state is available to everyone. As proved
in [KZZ16], giving multi-party protocols access to such a transaction-
ledger functionality allows for formally capturing, within the composable
(G)UC framework, the mechanism of leveraging security loss with coins.
The proposed ledger functionality guarantees in an ideal manner all prop-
erties that one could expect from Bitcoin and encompasses the properties
in [GKL15, PSS17]. Therefore, it is natural to postulate that it is a
candidate for defining the security goal of Bitcoin (and potentially other
decentralized cryptocurrencies). However, the ledger functionality pro-
posed by [KZZ16] was not accompanied by a security proof that any of
the known cryptocurrencies implements it.

However, as we show, despite being a step in the right direction, the
ledger proposed in [KZZ16] cannot be realized under standard assump-
tions about the Bitcoin network. On the positive side, we specify a
new transaction ledger functionality which still guarantees all properties
postulated in [GKL15, PSS17], and prove that a reasonable abstraction
of the Bitcoin protocol implements this ledger. In our construction, we
describe Bitcoin as a UC protocol which generalizes both the protocols
proposed in [GKL15, PSS17]. Along the way we identify the assumptions
in each of [GKL15, PSS17] by devising a compound way of capturing such
assumptions in UC, which enables us to compare their strengths.

8.1.2 Our Contributions

We put forth the first universally composable (simulation-based) proof of
security of Bitcoin in the (G)UC model of Canetti et al. [CDPW07b]. We
observe that the ledger functionality proposed by Kiayias et al. [KZZ16]
is too strong to be implemented by the Bitcoin protocol—in fact, by any
protocol in the permissionless setting, which uses network assumptions
similar to Bitcoin. Intuitively, the reason is that the functionality allows
too little interference of the simulator with its state, making it impossible
to emulate adversarial attacks that result, e.g., in the adversary inserting
only transactions coming from parties it wants or that result in parties
holding chains of different length.

Therefore, we propose an alternative ledger functionality which shares

8.1. INTRODUCTION 237

certain design properties with the proposal in [KZZ16] but which can be
provably implemented by the Bitcoin protocol. The ledger is parametrized
by a set of parameters, for example by a generic transaction validation
predicate which enables it to capture decentralized blockchain protocols
beyond Bitcoin. Our functionality allows for parties/miners to join and
leave the computation and allows for adaptive corruption.

We formally prove for which choice of parameters the proposed ledger
functionality is implemented by Bitcoin under the assumption that miners
which deviate from the Bitcoin protocol do not control a majority of the
total hashing power at any point. To this end, we describe an abstraction
of the Bitcoin protocol as a UC protocol. Casting Bitcoin in UC allows
to precisely model the protocol assumptions, for example knowledge of
the network delay or number of hash-function calls per round. We model
Bitcoin to work over a network which basically consists of bounded-delay
channels. We explain how such a network could be implemented by
running the message-diffusion mechanism of the Bitcoin network (which
is run over a lower level network of unicast channels). Intuitively, this
network is built by every miner, upon joining the system, choosing some
existing miners of its choice to use them as relay-nodes. Similar to the
protocol in [PSS17], the miners are not aware of (an upper bound on)
the actual delay that the network induces. As we argue, this is a strictly
weaker model assumption than assuming that the network delay is publicly
known such as in [GKL15] (cf. Section 8.2.2).

Our security proof proposes a useful modularization of the Bitcoin
protocol. Concretely, we first identify the part of the Bitcoin code which
intuitively corresponds to the lottery aspect, provide an ideal UC func-
tionality that reflects this lottery aspect, and prove that this part of
the Bitcoin code realizes the proposed functionality. We then analyze
the remainder of the protocol in the simpler world where the respective
code that implements the lottery aspect is replaced by invocations of the
corresponding functionality. Using the UC composition theorem, we can
then immediately combine the two parts into a proof of the full protocol.

As is the case with the so-called backbone protocol from [GKL15] our
above UC protocol description of Bitcoin relies only on proofs of work and
not on digital signatures. As a result, it implements a somewhat weaker
ledger, which does not guarantee that transactions submitted by honest

238 CHAPTER 8. A COMPOSABLE MODEL FOR BITCOIN

parties will eventually make it into the blockchain.2 As a last result, we
show that (similarly to [GKL15]) by incorporating public-key cryptogra-
phy, i.e., taking signatures into account in the validation predicate, we
can implement a stronger ledger that ensures that transactions issued
by honest users—i.e., users who do not sign contradicting transactions
and who keep their signing keys for themselves—are guaranteed to be
eventually included into the blockchain. The fact that our protocol is
described in UC makes this a straight-forward, modular construction
using the proposed transaction ledger as a hybrid. In particular, we do
not need to consider the specifics of the Bitcoin protocol in the proof of
this step. This also allows us to identify the maximum (worst-case) delay
a user needs to wait before being guaranteed to see its transaction on the
blockchain and be assured that it will not be inverted.

8.1.3 Overview of Bitcoin and Related Work

High-level introduction. At a high level, the Bitcoin protocol works
as follows: The parties (also referred to as miners) collect and circulate
messages (transactions) from users of the network, check that they satisfy
some commonly agreed validity property, put the valid transactions into
a block, and then try to find appropriate metadata such that the hash
of the block-contents and this metadata is of a specific form—concretely
that, parsed as a binary string, it has a sufficient number of leading zeros.
This is often referred to as a solving a mining puzzle and the intuition
behind it is that the best strategy for finding such metadata is supposedly
by trial-and-error. Thus, informally, the probability that some party
finds appropriate metadata increases proportional to the number of times
some party attempts a hash computation. And the more leading zeros we
require from a correct puzzle solution the harder it is to find one, since
the solution space of the puzzle is smaller.

Intuitively, a successful solution can be seen as a proof-of-work (POW)
that testifies to the fact that the miner presenting has in fact tried a large
number of hash queries. Once a miner finds such a solution, he puts it
into a block and sends it to the other miners. The miners who receive it
check that it satisfies some validity property (see below) and if so create
new metadata using the hash of this (newly minted) block and put this

2We formulate a weakened guarantee, which we then amplify using digital signatures.

8.1. INTRODUCTION 239

metadata together with transactions that are still valid into a new block
and start working on solving the puzzle induced by this block. Since a
block is rendered valid by a miner only if it includes a hash-pointer to a
previous valid block in the view of this miner, the view consists of a set of
linked lists, namely a sequence of valid blocks each with a hash-pointer to
its predecessor in the list. Each such list is called a blockchain or simply
chain. All lists have a common starting point which is the so-called genesis
block of Bitcoin. Hence, the entire view of a miner could be modeled as a
tree, where the root is the genesis block, the nodes are valid blocks, and
the hash-pointers correspond to (directed) edges.

The works of Garay, Kiayias, and Leonardos [GKL15] and that of
Pass, Seeman, and shelat [PSS17] contain the first formal specifications
and security proofs of the Bitcoin protocol. The proved security in these
works is property-based. They prove that conditioned on the largest part
of the network following the Bitcoin protocol (in fact an abstraction and
generalization thereof), the output of this so-called backbone protocol
satisfies three properties with overwhelming probability. We only infor-
mally describe these properties here. We will meet their formalization
when analyzing the Bitcoin protocol in UC. In the following, let t1 ≤ t2
be two points in time during the protocol execution.

• Common prefix: Any two valid chains Ct1 , Ct2 adopted by some
honest parties at times t1 and t2, respectively, share a large common
prefix. This is typically quantified by specifying a value k (the
common-prefix parameter) and the size of the common prefix is
required to be at least |Ct1 | − k.

• Chain growth: For time-intervals [t1, t2] of reasonable extent, the
increase in number of blocks —measured as the difference between
any two valid chains Ct1 and Ct2 adopted by some honest parties
at times t1 and t2, respectively — is guaranteed to be substantial.
The relationship between time and chain-length is typically referred
to as the chain-growth coefficient.

• Chain quality: For any honest party and its adopted valid chain
Ct at time t, it holds that any consecutive sequence of blocks of
reasonable extent in Ct is guaranteed to contain blocks contributed
by honest parties. The proportion of honestly mined blocks is
typically refereed to as the chain-quality coefficient.

240 CHAPTER 8. A COMPOSABLE MODEL FOR BITCOIN

Chain quality and chain growth are often expressed with respect to the
common-prefix parameter k. That is, as the fraction of honestly mined
blocks in a consecutive sequence of k blocks, and as the time interval
within which an increase of k blocks is guaranteed (except with negligible
probability in k).

Network assumptions and random oracle. The models put forth
in [GKL15] and [PSS17] assume a multicast network—i.e., a network
where a party sends messages to arbitrary other parties3—and abstract
the hash function as a random oracle. Furthermore, they both have an
explicit round-based model of execution where parties proceed in rounds.
There are some slight differences between the two models. For example,
in [GKL15] every party makes q hash-queries (i.e., q RO calls) in each
round as opposed to [PSS17] where every party makes one hash-query per
round. Second, in [PSS17], the adversary might choose to delay message
delivery but the statements are proved assuming no message is delayed
by more than ∆ rounds — also known as the partial-synchronous setting
— while the initial model put forth in by [GKL15] was more synchronous
(and was lifted to the partial synchronous model later). We note that
since the number of hash-queries is fixed in both models, this implies that
parties know exactly in which round they are, as they could simply count
the number of queries made to the random oracle (and by definition of
their models no party goes to round r + 1 before all parties have finished
round r). Note that the partial-synchronous protocol execution model
in [PSS17] is a strictly weaker setting than a synchronous execution model
with a fixed delay of one round.

Property-based vs simulation-based security. Proving that Bit-
coin satisfies the above properties has been an essential step into the
direction of understanding the security goals of Bitcoin. But as argued
above, this does not offer the tool to be able to argue security of cryp-
tographic protocols that use Bitcoin—e.g., to achieve an improved fair-
ness notion [ADMM14, ADMM16, BK14, KVV16, KB16, KMB15, KB14,
AD15]—without the need to always look at the Bitcoin specifics. In other

3Unlike [GKL15] where this operation is referred to as broadcast, we choose to
call it multicast here to avoid confusion with the standard broadcast primitive in the
Byzantine agreement literature that offers stronger consistency guarantees.

8.2. PRINCIPLES OF OUR MODEL 241

words, such property based security definitions do not support compo-
sition. The standard way to allow for such a generic use of blockchain
protocols as a cryptographic resource, is to prove that it implements
an ideal functionality in a composable framework. Intuitively, in such
frameworks, a composition theorem states that we can replace calls to
a functionality with invocation of a protocol implementing it without
worrying about the protocol’s internals.

8.2 Principles of our Model

In this section we describe our (G)UC-based model of execution for the
Bitcoin protocol. We remark that providing such a formal model of
execution forces us to make explicit all the implicit assumptions from
previous works. As we lay down the theoretical framework, we will also
discuss these assumptions along with their strengths and differences.

Bitcoin miners are represented as players—formally Interactive Turing
Machine instances (ITIs)—in a multi-party computation. For notational
convenience, we denote the identities of these machines by Pi, i.e, Pi =
(pidi, sidi) and call Pi a party for short. The index i is used to distinguish
two identifiers, i.e., Pi ̸= Pj and otherwise carries no meaning. Parties
interact which each other by exchanging messages over an unauthenticated
multicast network with eventual delivery (see below) and might make
queries to a common random oracle. We will assume a central adversary
A who gets to corrupt miners and might use them to attempt to break
the protocol’s security. As is common in (G)UC, the resources available
to the parties are described as hybrid functionalities. Before we provide
the formal specification of such functionalities, we first discuss a delicate
issue that relates to the set of parties (ITIs) that might interact with an
ideal functionality.

8.2.1 Functionalities with Dynamic Party Sets

In many UC functionalities, the set of parties is defined upon initiation of
the functionality and is not subject to change throughout the lifecycle of
the execution. Nonetheless, UC does provide support for functionalities
in which the set of parties that might interact with the functionality
is dynamic. In fact, this dynamic nature is an inherent feature of the

242 CHAPTER 8. A COMPOSABLE MODEL FOR BITCOIN

Bitcoin protocol—where miners come and go at will. In this work we make
this explicit by means of the following mechanism: All the functionalities
considered here include the following instructions that allow honest parties
to join or leave the set P of players that the functionality interacts with,
and inform the adversary about the current set of registered parties:4

• Upon receiving (register, sid) from some party Pi (or fromA on be-
half of a corrupted Pi), set P = P∪{Pi}. Return (register, sid, Pi)
to the caller.

• Upon receiving (de-register, sid) from some party Pi ∈ P, the
functionality updates P := P\{Pi} and returns (de-register, sid, Pi)
to Pi.

• Upon receiving (is-registered, sid) from some party Pi, return
(register, sid, b) to the caller, where the bit b is 1 if and only if
Pi ∈ P.5

• Upon receiving (get-registered, sid) from A, the functionality
returns the response (get-registered, sid,P) to A.

In addition to the above registration instructions, global setups, i.e.,
shared functionalities that are available both in the real and in the ideal
world and allow parties connected to them to share state [CDPW07b],
allow also UC functionalities to register with them. Concretely, global
setups include, in addition to the above party registration instructions,
two registration/de-registration instructions for functionalities:6

• Upon receiving (register, sidG) from a functionality F (with session-
id sid), update F := F ∪ {(F, sid)}.

4Note that making the set of parties dynamic means that the adversary needs to be
informed about which parties are currently in the computation so that he can chose
how many (and which) parties to corrupt.

5Note that typically a party knows whether it is registered at a functionality or not
(and in which session). However, it might be useful for another functionality to access
this information via the dummy party corresponding to Pi. The exact dynamics of
such an information exchange can be found in [CSV16b, Section 2]. This is not to be
confused with the fact that functionalities can always communicate with global setups
by the standard message exchange mechanism.

6Recall that a shared functionality knows the identity of each ITM that calls it,
which by definition includes the session identifier.

8.2. PRINCIPLES OF OUR MODEL 243

• Upon receiving (de-register, sidG) from a functionality F (with
session-id sid), update F := F \ {(F, sid)}.

• Upon receiving (get-registered-f, sidG) from A, reply to A with
(get-registered-f, sidG, F).

We use the expression sidG to refer to the encoding of the session
identifier of global setups. By default (and if not otherwise stated), the
above four (or seven in case of global setups) instructions will be part
of the code of all ideal functionalities considered in this work. However,
to keep the description simpler we will omit these instructions from the
formal descriptions unless deviations are defined.

8.2.2 Modeling Network Assumptions

In many situations, one cannot tolerate a complete asynchronous network
such as the standard UC communication mechanism. For example, we
want to argue about liveness properties of blockchains, which requires
communication with eventual delivery guarantees as time goes by (see
below how we model time). We describe such a network based on ideas
from from [KMTZ13, BHMQU05, CGHZ16]. In particular, we capture
such communication by a network functionality F∆

N-MC that provides each
party or miner Ps ∈ P the capability to multicast a message. For every
newly sent message, say m, the network functionality creates a unique
identifier mid for each triple (Pj , Pj ,m), where Pj ∈ P is a potential
receiver. This handle is needed to succinctly refer to a message circulating
in the network in a fine-grained manner. The network does not provide
any information to any receiver about who else is using it or where a
message originates from. More precisely, messages are buffered but the
information of who is the sender is not provided to any recipient.

The adversary—who is informed about both the content of the mes-
sages and about the handles—is allowed to delay messages by any finite
amount, and allowed to deliver them in an arbitrary out-of-order manner.
To ensure that the adversary cannot arbitrarily delay the delivery of
messages submitted by honest parties, we use the following idea: The
network works in a “fetch message” mode, which means that parties need
to actively query for the message (for example, a party can query for
messages once in a round). If the adversary wishes to delay the delivery of

244 CHAPTER 8. A COMPOSABLE MODEL FOR BITCOIN

some message with message ID mid, he needs to submit an integer value
Tmid—the delay for the message-in-transmission with identifier mid. For
example, if mid refers to the triple (Ps, Pj ,m), this will have the effect
that only after the next Tmid fetch attempts by Pj , Pj will be able to
report the receipt of this particular message m. Importantly, the network
does not accept more than ∆ accumulative delay for any mid. To allow
the adversary freedom in scheduling the delivery of messages, we allow
him to input delays more than once, which are added to the current
delay amount. If the adversary wants to deliver the message in the next
activation, all he needs to do is submit a negative delay. Furthermore, we
allow the adversary to schedule more than one messages to be delivered
in the same “fetch” command. Finally, to ensure that the adversary is
able to re-order such batches of messages arbitrarily, we allow A to send
special (swap,mid,mid′) commands that have as an effect to change the
order of the corresponding messages. Last but not least, the adversary
is further allowed to do partial and inconsistent multicasts, i.e., where
different messages are sent to different parties. This is the main difference
of such a multicast network from a broadcast network. The description
appears in Figure 8.1.

From unicast to multicast. A natural question is how to get the
above multicast network from simpler channels. Note that in Bitcoin,
parties/miners communicate over an incomplete network and a standard
diffusion mechanism is employed: The sender sends the message it wishes
to multicast to all its neighbors who check that a message with the same
content was not received before, and if this is the case forward it to their
neighbors, who then do the same check, and so on.

In fact, a multicast network can be built from unicast channels. That
is, one essentially assumes for each miner PR ∈ P a channel function-
ality F∆,PR

U-CH — which is parameterized by a receiver PR and an upper
bound on the delay ∆ — to which any other party Pi ∈ P can connect and
input messages to be delivered to PR. A miner connecting to the unicast
channel with receiver PR models the real-world process of looking up PR
(e.g., a public node in the network) and using this party to disseminate
future messages. The unicast channel should have some similar properties
as the above network, namely:

• They guarantee (reliable) delivery of messages within a delay pa-

8.2. PRINCIPLES OF OUR MODEL 245

Functionality F∆
N-MC

The functionality manages the set possible senders and receivers denoted by P. Any
newly registered (resp. deregistered) party is added to (resp. deleted from) P. The
functionality manages a list M⃗ , initially the empty list.

• Honest sender multicast:
Upon receiving (multicast, sid,m) from some Ps ∈ P, where P =
{P1, . . . , Pn} denotes the current party set, do:

1. Choose n new unique message-IDs mid1, . . . ,midn,
2. Define 2n new variables Dmid1

:= DMAX
mid1

. . . := Dmidn := DMAX
midn

:= 1,

3. Set M⃗ := M⃗ ||(m,mid1, Dmid1
, P1)|| . . . ||(m,midn, Dmidn , Pn),

4. Send (multicast, sid,m, Ps, (P1,mid1), . . . , (Pn,midn)) to the adver-
sary.

• Adversarial sender (partial) multicast:
Upon receiving (multicast, sid, (mi1

, Pi1
), . . . , (miℓ

, Piℓ
) from the adversary

with {Pi1
, . . . , Piℓ

} ⊆ P, do:
1. Choose ℓ new unique message-IDs midi1 , . . . ,midiℓ

,
2. initialize ℓ new variables Dmidi1

:= DMAX
midi1

:= . . . := Dmidiℓ
:=

DMAX
midiℓ

:= 1,

3. set M⃗ := M⃗ ||(mi1
,midi1

, Dmidi1
, Pi1

)|| . . . ||(miℓ
,midiℓ

, Dmidiℓ
, Piℓ

),
4. send (multicast, sid, (mi1

, Pi1
,midi1

), . . . , (miℓ
, Piℓ

,midiℓ
) to the ad-

versary.

• Honest party fetching:
Upon receiving (fetch, sid) from Pi ∈ P (or from A on behalf of Pi if Pi is
corrupted):

1. For all tuples (m,mid, Dmid, Pi) ∈ M⃗ , set Dmid := Dmid − 1.
2. Let M⃗

Pi
0 denote the subvector M⃗ including all tuples of the form

(m,mid, Dmid, Pi) with Dmid = 0 (in the same order as they appear
in M⃗). Delete all entries in M⃗Pi

0 from M⃗ , and send M⃗Pi
0 to Pi.

• Adding adversarial delays:
Upon receiving (delays, sid, (Tmidi1

,midi1
), . . . , (Tmidiℓ

,midiℓ
)) from the ad-

versary do the following for each pair (Tmidij
,midij

):

If DMAX
midij

+ Tmidij
≤ ∆ and mid is a message-ID registered in the current M⃗ ,

set Dmidij
:= Dmidij

+Tmidij
and set DMAX

midij
:= DMAX

midij
+Tmidij

; otherwise,

ignore this pair.

• Adversarially reordering messages:
Upon receiving (swap, sid,mid,mid′) from the adversary, if mid and mid′

are message-IDs registered in the current M⃗ , then swap the triples
(m,mid, Dmid, ·) and (m,mid′, Dmid′ , ·) in M⃗ . Return (swap, sid) to the ad-
versary.

Figure 8.1: The network functionality with eventual delivery guarantees.
Note that for a list M⃗ we denote by the symbol || the operation which
appends a new element to M⃗ .

246 CHAPTER 8. A COMPOSABLE MODEL FOR BITCOIN

rameter but are otherwise specified to be of asynchronous nature
(see below) and hence no protocol can rely on timings regarding
the delivery of messages. The adversary might delay any message
sent through such a channel, but at most by ∆. In particular,
the adversary cannot block messages. However, he can induce an
arbitrary order on the messages sent to some party.

• The receiver gets no information other than the messages themselves.
In particular, a receiver cannot link a message to its sender nor can
he observe whether or not two messages were sent from the same
sender.

• The channel offers no privacy guarantees. The adversary is given
read access to all messages sent on the network.

In Appendix B.1, we provide this channel functionality for completeness
and explain how a simple round-based diffusion mechanism can be used
to implement a multicast mechanism from unicast channels as long as the
corresponding network among honest parties stays strongly connected.
(A network graph is strongly connected if there is a directed path between
any two nodes in the network, where the unicast channels are seen as the
directed edges from sender to receiver.)

On functionally black-box use of the network. A key difference
between the initial model of [GKL15] and [PSS17] was that in the latter the
parties do not know any bound on the delay of the network. In particular,
although both models are in the synchronous setting, in [PSS17] and in
the extended model provided in [GKL15], a party in the protocol does
not know when to expect a message which was sent to it in the previous
round. Using terminology from [Ros12], the protocol uses the channel in a
functionally black-box manner. Restricting to such protocols—a restriction
which we also adopt in this work—is in fact implying a weaker assumption
on the protocol than standard (known) bounded-delay channel. Intuitively
the reason is that no such protocol can realize a bounded-delay network
with a known upper bound (unless it sacrifices termination) since the
protocol cannot decide whether or not the bound has been reached.

8.2. PRINCIPLES OF OUR MODEL 247

8.2.3 Modeling Time and Clock-dependent Protocol
Execution

Katz et al. [KMTZ13], proposed a methodology for casting synchronous
protocols in UC by assuming they have access to an ideal functional-
ity Gclock, the clock, that allows parties to ensure that they proceed in
synchronized rounds. Informally, the idea is that the clock keeps track
of a round variable whose value the parties can request by sending it
(clock-read, sidC). This value is updated only once all honest parties
sent the clock a (clock-update, sidC) command. We lift their idea to
a shared setup. The global clock functionality Gclock is a shared clock
that may interact with more than one protocol session. The global clock
provides a means for parties to synchronize each of their sessions.7 The
clock can also be used as a local (not shared) hybrid functionality, in
which case the number of sessions it will synchronize is simply one. The
description is given in Figure 8.2.

Given a clock, the authors of [KMTZ13] describe how synchronous
protocols can maintain their necessary round structure in UC: For every
round ρ each party first executes all its round-ρ instructions and then sends
the clock a clock-update command. Subsequently, whenever activated,
it sends the clock a clock-read command and does not advance to
round ρ+ 1 before it sees the clocks variable being updated. This ensures
that no honest party will start round ρ+ 1 before every honest party has
completed round ρ. In [KZZ16], this idea was transfered to the (G)UC
setting, by assuming that the clock is a global setup. This allows for
different protocols to use the same clock and is the model we will also use
here.

As argued in [KMTZ13], in order for an eventual-delivery (aka guaran-
teed termination) functionality to be UC implementable by a synchronous
protocol it needs to keep track of the number of activations that an
honest party gets—so that it knows when to generate output for honest
parties. This requires that the protocol itself, when described as a UC
interactive Turing-machine instance (ITI), has a predictable behavior
when it comes to the pattern of activations that it needs before it sends
the clock an update command. We capture this property in a generic

7The functionality presented here is different from shared clock functionalities used
in prior work. We believe that this version here is closer to the spirit of the GUC/EUC
version of UC.

248 CHAPTER 8. A COMPOSABLE MODEL FOR BITCOIN

Functionality Gclock

The functionality manages the set P of registered identities, i.e., parties P = (pid, sid).
It also manages the set F of functionalities (together with their session identifier).
Initially, P := ∅ and F := ∅.
For each session sid the clock maintains a variable τsid. For each identity P :=
(pid, sid) ∈ P it manages variable dP . For each pair (F, sid) ∈ F it manages vari-
able d(F,sid) (all integer variables are initially 0).

Synchronization:

• Upon receiving (clock-update, sidC) from some party P ∈ P set dP := 1;
execute Round-Update and forward (clock-update, sidC , P) to A.

• Upon receiving (clock-update, sidC) from some functionality F in a session
sid such that (F, sid) ∈ F set d(F,sid) := 1, execute Round-Update and return
(clock-update, sidC ,F) to this instance of F.

• Upon receiving (clock-read, sidC) from any participant (including the envi-
ronment on behalf of a party, the adversary, or any ideal—shared or local—
functionality) return (clock-read, sidC , τ) to the requestor.

Procedure Round-Update: For each session sid do: If d(F,sid) := 1 for all F ∈ F and
dP = 1 for all honest parties P = (·, sid) ∈ P, then set τsid := τsid + 1 and reset
d(F,sid) := 0 and dP := 0 for all parties P = (·, sid) ∈ P.

Figure 8.2: The shared/global clock functionality. We assume lazy creation
of variables, i.e., a variable is only created once it is needed.

manner in Definition 8.2.1.
To follow the definition recall the mechanics of activations in UC. In

a UC protocol execution, an honest party (ITI) gets activated either by
receiving an input from the environment, or by receiving a message from
one of its hybrid-functionalities (or from the adversary). Any activation
results in the activated ITI performing some computation on its view of
the protocol and its local state and ends with either the party sending a
message to some of its hybrid functionalities or sending an output to the
environment, or not sending any message. In either of these cases, the
party loses the activation.8

For any given protocol execution, we define the honest-input sequence
I⃗H to consist of all inputs that the environment gives to honest parties in

8In the latter case the activation goes to the environment by default.

8.2. PRINCIPLES OF OUR MODEL 249

the given execution (in the order that they were given) along with the
identity of the party who received the input. For an execution in which
the environment has given m inputs to the honest parties in session sid in
total, I⃗H is a vector of the form ((x1, id1), . . . , (xm, idm)), where xi is the
i-th input that was given in this execution, and idi is the corresponding
identity (i.e., idi = (pidi, sid) for some bitstring pid) that received this
input in this session. We further define the timed honest-input sequence,
denoted as I⃗TH , to be the honest-input sequence augmented with the
respective clock time when an input was given. If the timed honest-
input sequence of an execution is I⃗TH = ((x1, id1, τ1), . . . , (xm, idm, τm)),
this means that ((x1, id1), . . . , (xm, idm)) is the honest-input sequence
corresponding to this execution, and for each i ∈ [n], τi is the time of the
global clock when input xi was handed to idi.

Definition 8.2.1. A Gclock-hybrid protocol Π has a predictable synchro-
nization pattern iff there exist an algorithm predict-timeΠ(·) such that for
any possible execution of Π in a session sid (i.e., for any adversary and
environment, and any choice of random coins) the following holds: If
I⃗TH = ((x1, id1, τ1), . . . , (xm, idm, τm)) is the corresponding timed honest-
input sequence for this session, then for any i ∈ [m− 1] :

predict-timeΠ((x1, id1, τ1), . . . , (xi, idi, τi)) = τi+1,

where τi+1 is the clock time for this session (cf. Figure 8.2).

As we argue, all synchronous protocol described in this work are
designed to have a predictable synchronization pattern.

8.2.4 Modeling Hash Queries

As usual in cryptographic proofs, the queries to the hash function are
modeled by assuming access to a random oracle (functionality) FRO. This
functionality is specified as follows: upon receiving a query (eval, sid, x)
from a registered party, if x has not been queried before, a value y is
chosen uniformly at random from {0, 1}κ (for security parameter κ) and
returned to the party (and the mapping (x, y) is internally stored). If x
has been queried before, the corresponding y is returned. The description
appears in Figure 8.3.

250 CHAPTER 8. A COMPOSABLE MODEL FOR BITCOIN

Functionality FRO

The functionality is parametrized by the security parameter κ. It maintains the set of
registered parties/miners P (initially set to ∅) and a (dynamically updatable) function
table T (initially T = ∅). For simplicity we write T [x] =⊥ to denote the fact that no
pair of the form (x,)̇ is in T .

• Upon receiving (eval, sid, x) from some party P ∈ P (or from A on behalf of
a corrupted P), do the following:

1. If H[x] = ⊥ sample a value y uniformly at random from {0, 1}κ, set
H[x]← y and add (x, T [x]) to T .

2. Return (eval, sid, x,H[x]) to the requestor.

Figure 8.3: The random oracle functionality.

A note on global random oracles and PoW. In our model, the
random oracle is a local setup. In fact, abstracting hash-queries as calls
to a global random oracle (GRO) runs into intrinsic problems in the PoW-
setting because of two reasons: (1) at an intuitive level this would imply
that the environment could make queries to the GRO and then provide
them to the adversary. As such, no real restriction on the adversary exists;
(2) at the more technical level, the non-programmability of the GRO forces
the simulator to create blocks that indeed carry sufficient work. Since
the simulator needs to also simulate the hash queries of honest parties,
this would only be feasible if he had a much larger query budget than
the real-world adversary has, which is not possible as the GRO needs to
behave identically in the real and ideal world.

8.2.5 Assumptions as UC-Functionality Wrappers

In order to prove statements about cryptographic protocols one often
makes assumptions about what the environment (or the adversary) can or
cannot do. For example, a standard assumption in [GKL15, PSS17] is that
in each round the adversary cannot do more calls to the random oracle
than what the honest parties (collectively) can do. This can be captured
by assuming a restricted environment and adversary which balances the
amount of times that the adversary queries the random oracle. In a
property-based treatment such as [GKL15, PSS17] this assumptions is

8.3. THE BASIC TRANSACTION-LEDGER FUNCTIONALITY 251

typically acceptable. Also in a composable model such restrictions can be
formulated. However, restricting the environment is not compliant with a
general composition theorem.

Therefore, instead of restricting the class of environments/adversaries,
we present an alternative approach to capture the fact that the adversary’s
access to real-world resource is restricted. The general methodology is to
capture restrictions by means of a functionality wrapper that wraps the
hybrid resources and enforces the restrictions on the adversary by limiting
its access to the resource. Such restrictions can become quite complex
and we show concrete examples in Section 8.7 to cast the assumptions
and derive the equivalent composable statements.

A toy example. To illustrate the general methodology here with an
easy example, consider we want to capture a restriction of the adversary’s
access to the RO. We can easily capture this assumption by means of
a functionality wrapper that wraps the RO functionality and enforces
a bound on the adversary, for example by assigning to each corrupted
party at most q activations per round for some parameter q. To keep
track of rounds the functionality registers with the global clock Gclock.
For completeness the wrapped random oracle functionality Wq(FRO) is
found in Figure 8.4.

8.3 The Basic Transaction-Ledger Function-
ality

The purpose of this section is to describe the basic structure of a ledger
functionality Gledger. The presented functionality is very generic in the
sense that it is parameterizable by several elements. The idea is that
concrete blockchain protocols yield concrete instances of these parameters,
while the basic structure, as presented here, remains the same and can
be seen as the greatest common divisor of any such blockchain protocol
proposal. The formal description of the functionality is given at the end
of this section and the remainder of this section outlines its properties.

252 CHAPTER 8. A COMPOSABLE MODEL FOR BITCOIN

Wrapped Functionality Wq(FRO)

The wrapper functionality is parametrized by an upper bound q which restricts the
F-evaluations of each corrupted party per round. The functionality manages the
variable counter and the current set of corrupted miners P′. For each party P ∈ P′

it manages variables countP .

Initially, P′ = ∅ and counter = 0.

General:

• The wrapper does not interact with the adversary as soon as the adversary tries
to exceed its budget of q queries per corrupted party. Registration-queries and
their replies are simply relayed without modifications.

Relaying inputs to the random oracle:

• Upon receiving (eval, sid, x) from A on behalf of a corrupted party P ∈ P′,
then first execute Round Reset. Then, set countP ← countP + 1 and only
if countP ≤ q forward the request to FRO and return to A whatever FRO
returns.

• Any other request from any participant or the adversary is simply relayed to
the underlying functionality without any further action and the output is given
to the destination specified by the hybrid functionality.

Standard UC Corruption Handling:

• Upon receiving (corrupt, sid, P) from the adversary, set P′ ← P′ ∪{P}. If P
has already issued t > 0 random oracle queries in this round, set countP ← t.
Otherwise set countP ← 0.

Procedure Round-Reset:
Send (clock-read, sidC) to Gclock and receive (clock-read, sidC , τ) from Gclock. If
|τ − counter| > 0 and the new time τ is even (i.e., a new round started), then set
countP := 0 for each participant P ∈ P′ and set counter← τ .

Figure 8.4: The wrapped random oracle.

8.3. THE BASIC TRANSACTION-LEDGER FUNCTIONALITY 253

8.3.1 Introduction and Overview

Our ledger is parametrized by certain algorithms/predicates that allow us
to capture a more general version of a ledger which can be instantiated by
various cryptocurrencies. Since our abstraction of the Bitcoin protocol is
in the synchronous model of computation (this is consistent with known
approaches in the cryptographic literature), our ledger is also designed
for this synchronous model. Nonetheless, several of our modeling choices
are made with the foresight of removing or limiting the use of the clock
and leaving room for less synchrony.

At a high level, our ledger Gledger has a similar structure as the ledger
proposed in [KZZ16]. Concretely, anyone (whether an honest miner or
the adversary) might submit a transaction which is validated by means
of a predicate Validate, and if it is found valid it is added to a buffer
buffer. The adversary A is informed that the transaction was received
and is given its contents.9 Informally, this buffer also contains transactions
that, although validated, are not yet deep enough in the blockchain to be
considered out-of-reach for an adversary.10 Periodically, Gledger fetches
some of the transactions in the buffer, and using an algorithm Blockify
creates a block including these transactions and adds this block to its
permanent state state, which is a data structure that includes the part
of the blockchain the adversary can no longer change. This corresponds
to the common prefix in [GKL15, PSS17]. Any miner or the adversary is
allowed to request a read of the contents of the state.

This sketched specification is simple, but in order to have a ledger that
can be implemented by existing blockchain protocols, we need to relax
this functionality by giving the adversary more power to interfere with
it and influence its behavior. Before sketching the necessary relaxations
we discuss the need for a new ledger definition and its potential use as a
global setup.

Impossibility to realize the ledger of [KZZ16]. The main reasons
why the ledger functionality in [KZZ16] is not realizable by known pro-
tocols under reasonable assumptions are as follows: first, their ledger
guarantees that parties always obtain the same common state. Even with

9This is inevitable since we assume non-private communication, where the adversary
sees any message as soon as it is sent, even if the sender and receiver are honest.

10E.g., in [KZZ16] the adversary is allowed to permute the contents of the buffer.

254 CHAPTER 8. A COMPOSABLE MODEL FOR BITCOIN

strong synchrony assumptions, this is not realizable since an adversary,
who just mined a new block, is not forced to inform each party instan-
taneously (or at all) and thus could for example make parties observe
different lengths of the same prefix. Second, the adversarial influence
is restricted to permuting the buffer. This is too optimistic, as in re-
ality the adversary can try to mine a new block and possibly exclude
certain transactions. Also, this excludes any possibility to quantify quality.
Third, letting the update rate be fixed does not adequately reflect the
probabilistic nature of Nakamoto-style blockchain protocols.

On the sound usage of a ledger as a global setup. As presented
in [KZZ16], a UC ledger functionality Gledger can be cast as a global
setup [CDPW07b] which allows different protocols to share state. This fact
holds true for any UC functionality as stated in [CDPW07b] and [CSV16b].
Nonetheless, as pointed out in the recent work of Canetti, Shahaf, and
Vald [CSV16b], one needs to be extra careful when replacing a global
setup by its implementation, e.g., in the case of Gledger by the UC Bitcoin
protocol. Indeed, such a replacement does not, in general, preserve a
realization proof of some ideal functionality F that is conducted in a
ledger-hybrid world, because the simulator in that proof might rely on
specific capabilities that are not available any more after replacement
(as the global setup is also replaced in the ideal world). The authors
of [CSV16b] provide a sufficient condition for such a replacement to be
sound. This condition is generally too strong to be satisfied by any
natural ledger implementation, which opens the question of devising
relaxed sufficient conditions for sound replacements in an MPC context.11
As this work focuses on the realization of ledger functionalities per se, we
can treat Gledger as a standard UC functionality.

8.3.2 Specific Defining Features

We explain several of the features of the ledger functionality. For an
overview of the the parameters and functions we refer to Figure 8.5.

11To give an example, a natural condition would be to require that the ideal-world
adversary (or simulator) for F does only use the ledger to submit queries or reading
the state, and plays the “dummy adversary” for queries that request the additional
adversarial capabilities (i.e., the weaknesses of the ledger). For example, the simulator
in [KZZ16] is of this kind.

8.3. THE BASIC TRANSACTION-LEDGER FUNCTIONALITY 255

State-buffer validation

The first relaxation is with respect to the invariant that is enforced by
the validation predicate Validate. Concretely, in [KZZ16] it is assumed
that the validation predicate enforces that the buffer does not include
conflicting transactions, i.e., upon receipt of a transaction, Validate checks
that it is not in conflict with the state and the buffer, and if so the
transaction is added to the buffer. However, in reality we do not know
how to implement such a strong filter, as different miners might be working
on different, potentially conflicting sets of transactions.12 The only time
when it becomes clear which of these conflicting transactions will make it
into the state is once one of them has been inserted into a block which has
made it deep enough into the blockchain (i.e., has become part of state).
Hence, given that the buffer includes all transactions that might end up
in the state, it might at some point include both conflicting transactions.

To enable us for a provably implementable ledger, in this work we take
a different approach. The validate predicate will be less restrictive as to
which transactions make it into the buffer. Concretely, at the very least,
Validate will enforce the invariant that no single transaction in the buffer
contradicts the state state, while different transactions in buffer might
contradict each other. Looking ahead, a stronger version that is achievable
by employing digital signatures (presented in Section 8.8) could enforce
that no submitted transaction contradicts other submitted transactions.
As in [KZZ16], whenever a new transaction x is submitted to Gledger, it
is passed to Validate which takes as input a transaction and the current
state and decides if x should be added to the buffer. Additionally, as
buffer might include conflicts, whenever a new block is added to the state,
the buffer (i.e., every single transaction in buffer) is re-validated using
Validate and invalid transactions in buffer are removed. To allow for this
re-validation to be generic, transactions that are added to the buffer are
accompanied by certain metadata, i.e., the identity of the submitter, a
unique transaction ID txid13, or the time τ when x was received.

12This will be the case for transactions submitted by the adversary even when
signatures are used to authenticate transactions.

13In Bitcoin, the value txid would be the hash-pointer corresponding to this transac-
tion. Note that the generic ledger can capture explicit guarantees on the ability or
disability to link transactions, as this crucially depends on the concrete choice of an
ID mechanism.

256 CHAPTER 8. A COMPOSABLE MODEL FOR BITCOIN

State update policy and security guarantees

The second relaxation is with respect to the rate and the form and/or
origin of transactions that make it into a block. Concretely, instead of
assuming that the state is extended in fixed time intervals, we allow the
adversary to define when this update occurs. This is done by allowing
the adversary, at any point, to propose what we refer to as the next-block
candidate NxtBC. This is a data structure containing the contents of the
next block that A wants to have inserted into the state. Leaving NxtBC
empty can be interpreted as the adversary signaling that it does not want
the state to be updated in the current clock tick.

Of course allowing the adversary to always decide what makes it into
the ledger-state (variable state), or if anything ever does, yields a very
weak ledger. Intuitively, this would be a ledger that only guarantees
the common prefix property [GKL15] but no liveness or chain quality.
Therefore, to enable us to capture also stronger properties of blockchain
protocols we parameterize the ledger by an algorithm ExtendPolicy that,
informally, enforces a state-update policy restricting the freedom of the
adversary to choose the next block and implementing an appropriate
compliance-enforcing mechanism in case the adversary does not follow
the policy. This enforcing mechanism simply returns a default policy-
complying block using the current contents of the buffer. We point out
that a good simulator for realizing the ledger will avoid triggering this
compliance-enforcing mechanism, as this could result in an uncontrolled
update of the state which would yield a potential distinguishing advantage.
In other words, a good simulator, i.e., ideal-world adversary, always
complies with the policy.

In a nutshell, ExtendPolicy takes the current contents of the buffer
buffer, along with the adversary’s recommendation NxtBC, and the block-
insertion times vector τ⃗state. The latter is a vector listing the times when
each block was inserted into state. The output of ExtendPolicy is a vector
including the blocks to be appended to the state during the next state-
extend time-slot (where again, ExtendPolicy outputting an empty vector
is a signal to not extend). To ensure that ExtendPolicy can also enforce
properties that depend on who inserted how many (or which) blocks into
the state—e.g. the so-called chain quality property from [GKL15]—we
also pass to it the timed honest-input sequence I⃗TH (cf. Section 8.2).

Some examples of how ExtendPolicy allows us to define ways that the

8.3. THE BASIC TRANSACTION-LEDGER FUNCTIONALITY 257

protocol might restrict the adversary’s interference in the state-update
include the following properties from [GKL15]:

• Liveness corresponds to ExtendPolicy enforcing the following policy:
If the state has not been extended for more that a certain number
of rounds and the simulator keeps recommending an empty NxtBC,
ExtendPolicy can choose some of the transactions in the buffer (e.g.,
those that have been in the buffer for a long time) and add them to
the next block. Note that a good simulator or ideal-world adversary
will never allow for this automatic update to happen and will make
sure that he keeps the state extend rate within the right amount.

• Chain quality corresponds to ExtendPolicy enforcing the following
policy: Every block proposal made by the simulator has to be
associated with a special flag hFlag, where intuitively hFlag = 1
indicates that the proposal is generated using the process that an
honest miner would follow. ExtendPolicy enforces two things: first,
that block proposal indicating hFlag = 1 are frequent enough, and
second that such proposals fulfill some specific quality properties
(such as including all recent transactions). If these properties are
not met, the ledger will define and add a default block to the state.
14 We point out that unlike the original chain-quality property from
[GKL15], this policy does not enforce which miner should receive
the reward for honest blocks and it is up to the simulator to do so
(via the so-called coinbased transaction).15

We note that ExtendPolicy is a general concept capable of formulating
various properties of blockchain protocols. For example, we can capture
that honest (and non-conflicting) transactions eventually make it into
the state. Another property could be to formalize that transactions with

14More technically, ExtendPolicy looks into the proposed-block sequence and identifies
the blocks of state that where proposed by the simulator with hFlag set to 1 to deduce
how long ago (in time or block-number) the last proposed block that made it into the
chain had hFlag = 1.

15The actual Bitcoin protocol ensures that at the time when the block was created
and circulated in the network the originator of the block was honest. Note that this
does not mean that he is still honest when the block makes it into the state unless one
considers static corruptions only (in which case one can indeed directly argue about
the fraction of honest originators in the state). To make this difference is crucial to
explicitly see the impact due to adaptive corruptions and was not made explicit in
earlier versions of this work.

258 CHAPTER 8. A COMPOSABLE MODEL FOR BITCOIN

higher rewards make it into a block faster than others (which we do not
consider in this work).

In Section 8.5 we provide the concrete specification of Validate and
ExtendPolicy that can be guaranteed for the UC Bitcoin protocol.

Output Slackness and Sliding Window of State Blocks

The common prefix property guarantees that blocks which are sufficiently
deep in the blockchain of an honest miner will eventually be included
in the blockchain of every honest miner. Stated differently, if an honest
miner receives as output from the ledger a state state, every honest miner
will eventually receive state as its output. However, in reality we cannot
guarantee that at any given point in time all honest miners see exactly the
same blockchain length; this is especially the case when network delays
are incorporated into the model, but it is also true in the zero-delay model
of [GKL15]. Thus it is unclear how state can be defined so that at any
point all parties have the same view on it.

Therefore, to have a ledger implementable by standard assumptions we
make the following relaxation: We interpret state as the view of the state
of the miner with the longest blockchain. And we allow the adversary
to define for every honest miner Pi a subchain statei of state of length
|statei| = pti that corresponds to what Pi gets as a response when he
reads the state of the ledger (formally, the adversary can fix a pointer
pti). For convenience, we denote by state|pti the subchain of state
that finishes in the pti-th block. Once again, to avoid over-relaxing the
functionality to an unuseful setup, our ledger allows the adversary to only
move the pointers forward and it forbids the adversary to define pointers
for honest miners that are too far apart, i.e., more than windowSize state
blocks. The parameter windowSize ∈ N denotes a core parameter of the
ledger. In particular, the parameter windowSize reflects the similarity of
the blockchain to the dynamics of a so-called sliding window, where the
window of size windowSize contains the possible views of honest miners
onto state and where the head of the window advances with the head of
the state. In addition, it is convenient to express security properties of
concrete blockchain protocols, including the properties discussed above,
as assertions that hold within such a sliding window.

8.3. THE BASIC TRANSACTION-LEDGER FUNCTIONALITY 259

Ledger Element Description
P,H,PDS The party sets and categories: Registered, honest, and honest-

but-desynchronized, respectively.
I⃗TH The timed honest-input sequence.
predict-time The function to predict the real-world time advancement.
state The ledger state, i.e., a sequence of blocks containing the

content.
buffer The buffer of submitted input values.
pti, statei The pointer of party Pi into state state. This prefix is denoted

statei for brevity.
τ⃗state A vector containing for each state block the time when the

block added to the ledger state.
τL The current time as reported by the clock.
NxtBC Stores the current adversarial suggestion for extending the

ledger state.
Validate Decides on the validity of a transaction with respect to the

current state. Used to clean the buffer of transactions.
ExtendPolicy The function that specifies the ledger’s guarantees in extending

the ledger state (e.g., speed, content etc.).
Blockify The function to format the ledger state output.
windowSize The window size (number of blocks) of the sliding window.
Delay A general delay parameter for the time it takes for a newly

joining (after the onset of the computation) miner to become
synchronized.

Figure 8.5: Overview of main ledger elements such as parameters and
state variables.

Synchrony Aspects and De-Synchronized Parties

In order to keep the ideal execution indistinguishable from the real execu-
tion, the adversary should be unable to use the clock for distinguishing.
Since in the ideal world when a dummy party receives a clock-update-
message for Gclock it will forward it, the ledger needs to be responsible
that the clock counter does not advance before all honest parties have
received sufficiently many activations. This is achieved by the use of the
function predict-time(I⃗TH) (see Definition 8.2.1), which, as we show, is
defined for our ledger protocol. This function allows Gledger to predict
when the protocol would update the round and ensure that it only allows
the clock to advance if and only if the protocol would. Observe that the
ledger can infer all protocol-relevant inputs/activations to honest parties

260 CHAPTER 8. A COMPOSABLE MODEL FOR BITCOIN

and can therefore easily keep track of the honest inputs sequence I⃗TH .
In particular, in global UC communication between the ledger and the
(shared) clock functionality is allowed to access the relevant information
(namely via a dummy party as defined in [CSV16b]).16 As the other
functions explained above, the function predict-time is a parameter of the
(general) ledger functionality and hence needs to be instantiated when
realizing a specific ledger such as the Bitcoin ledger (which is the topic of
the next section).

A final observation is with respect to guarantees that the protocol (and
therefore also the ledger) can give to recently registered honest parties, or
to registered parties that get de-registered from the clock (temporarily,
for instance). We will call miners de-synchronized if one of the above
properties are fulfilled for this miner. We denote the set of such miners
by PDS .

To provide more intuition, consider the following scenario: An honest
party registers as miner in round r and waits to receive from honest parties
the transactions to mine and the current longest blockchain. In Bitcoin,
upon joining, the miner sends out a special request on the network—we
denote this here as a special new-miner-message—and as soon as any
party receives it, it responds with the set of transactions and longest
blockchain it knows. Due to the network delay ∆, the parties might
take up to ∆ rounds to receive the new-miner notification, and their
response might also take up to ∆ rounds before it arrives to the new
miner. However, because we do not make any assumption on honest
parties knowing ∆ they need to start mining as soon as a message arrives
(otherwise they might wait indefinitely). But now the adversary, in the
worst case, can make these parties mine on any block he wants and have
them accept any valid chain he wants as the current state while they wait
for the network’s response: simply delay everything sent to these parties
by honest miners by the maximum delay ∆, and instead, immediately
deliver what he wants them to work on. Thus, for the first 2∆ rounds17

16In order to keep the description below simple, we omit how the ledger exactly
infers I⃗TH , but this is quite straightforward. In particular, the mechanism of [CSV16b]
allows to assume that the ledger knows whether a party is registered with the clock or
not to deduce whether it is synchronized or de-synchronized.

17For technical reasons described in Section 8.4, ∆ rounds in the protocol correspond
to 2∆ clock-ticks and hence the ledger parameter will concretely be defined as Delay =
4∆.

8.3. THE BASIC TRANSACTION-LEDGER FUNCTIONALITY 261

these parties are practically in the control of the adversary and their
computing power is contributed to his. The ledger parameter Delay
describes the time it takes for a newly joining party, which joins later
than in the very first round, to become officially synchronized.

Functionality Gledger

General: The functionality is parametrized by four algorithms Validate, ExtendPolicy,
Blockify, and predict-time, along with two parameters windowSize, Delay ∈ N. The func-
tionality manages variables state, NxtBC, buffer, τL, and τ⃗state, as described above.
Initially, state := τ⃗state := NxtBC := ε, buffer := ∅, τL = 0.
For each party Pi ∈ P the functionality maintains a pointer pti (initially set to 1)
and a current-state view statei := ε (initially set to empty). The functionality also
keeps track of the timed honest-input sequence in a vector I⃗TH (initially I⃗TH := ε).

Party management: The functionality maintains the set of registered parties P, the
(sub-)set of honest parties H ⊆ P, and the (sub-set) of de-synchronized honest parties
PDS ⊂ H (following the definition in the previous paragraph). The sets P,H,PDS

are all initially set to ∅. When a new honest party is registered at the ledger, if it
is registered with the clock already then it is added to the party sets H and P and
the current time of registration is also recorded; if the current time is τL > 0, it is
also added to PDS . Similarly, when a party is deregistered, it is removed from both
P (and therefore also from PDS or H). The ledger maintains the invariant that it is
registered (as a functionality) to the clock whenever H ≠ ∅. A party is considered
fully registered if it is registered with the ledger and the clock.

Upon receiving any input I from any party or from the adversary, send
(clock-read, sidC) to Gclock and upon receiving response (clock-read, sidC , τ) set
τL := τ and do the following:

1. Let P̂ ⊆ PDS denote the set of desynchronized honest parties that have been
registered (continuously) since time τ ′ < τL−Delay (to both ledger and clock).
Set PDS := PDS \ P̂.

2. If I was received from an honest party Pi ∈ P:

(a) Set I⃗TH := I⃗TH ||(I, Pi, τL);

(b) Set N⃗ = (N⃗1, . . . , N⃗ℓ) := ExtendPolicy(I⃗TH , state, NxtBC, buffer, τ⃗state)
and if N⃗ ̸= ε set state := state||Blockify(N⃗1)|| . . . ||Blockify(N⃗ℓ) and
τ⃗state := τ⃗state||τℓ

L, where τℓ
L = τL|| . . . , ||τL.

(c) For each BTX ∈ buffer: if Validate(BTX, state, buffer) = 0 then delete BTX
from buffer. Also, reset NxtBC := ε.

(d) If there exists Pj ∈ H \ PDS such that |state| − ptj > windowSize or
ptj < |statej |, then set ptk := |state| for all Pk ∈ H \ PDS .

3. Depending on the input I and the ID of the sender, execute the respective
code:

262 CHAPTER 8. A COMPOSABLE MODEL FOR BITCOIN

– Submiting a transaction:
If I = (submit, sid, tx) and is received from a party Pi ∈ P or from A
(on behalf of a corrupted party Pi) do the following

(a) Choose a unique transaction ID txid and set BTX :=
(tx, txid, τL, Pi)

(b) If Validate(BTX, state, buffer) = 1, then buffer := buffer ∪ {BTX}.
(c) Send (submit, BTX) to A.

– Reading the state:
If I = (read, sid) is received from a fully registered party Pi ∈ P then
set statei := state|min{pti,|state|} and return (read, sid, statei) to the
requestor. If the requestor is A then send (state, buffer, I⃗TH) to A.

– Maintaining the ledger state:
If I = (maintain-ledger, sid,minerID) is received by an honest party
Pi ∈ P and (after updating I⃗TH as above) predict-time(I⃗TH) = τ̂ > τL
then send (clock-update, sidC) to Gclock. Else send I to A.

– The adversary proposing the next block:
If I = (next-block, hFlag, (txid1, . . . , txidℓ)) is sent from the adversary,
update NxtBC as follows:

(a) Set listOfTxid← ϵ

(b) For i = 1, . . . , ℓ do: if there exists BTX :=
(x, txid,minerID, τL, Pi) ∈ buffer with ID txid = txidi

then set listOfTxid := listOfTxid||txidi.
(c) Finally, set NxtBC := NxtBC||(hFlag, listOfTxid) and output

(next-block, ok) to A.

– The adversary setting state-slackness:
If I = (set-slack, (Pi1

, p̂ti1), . . . , (Piℓ
, p̂tiℓ)), with {Pi1

, . . . , Piℓ
} ⊆

H \ PDS is received from the adversary A do the following:

(a) If for all j ∈ [ℓ] : |state| − p̂tij ≤ windowSize and p̂tij ≥ |stateij |,
set pti1 := p̂ti1 for every j ∈ [ℓ] and return (set-slack, ok) to A.

(b) Otherwise set ptij := |state| for all j ∈ [ℓ].

– The adversary setting the state for desychronized parties:
If I = (desync-state, (Pi1

, state′i1), . . . , (Piℓ
, state′iℓ)), with

{Pi1 , . . . , Piℓ
} ⊆ PDS is received from the adversary A, set

stateij := state′ij for each j ∈ [ℓ] and return (desync-state, ok) to A.

This concludes the description of the basic ledger functionality.

8.4. BITCOIN AS A UC PROTOCOL 263

8.4 Bitcoin as a UC Protocol

8.4.1 Basics of Bitcoin

For the sake of self-containment, this section introduces the core algorithms
of the Bitcoin protocol.

Notation

A blockchain C = B1, . . . ,Bn is a (finite) sequence of blocks where each
block Bi = ⟨si, sti, ni⟩ is a triple consisting of the pointer si, the state block
sti, and the nonce ni. The head of chain C is the block head(C) := Bn

and the length length(C) of the chain is the number of blocks, i.e.,
length(C) = n. The chain C⌈k is the (potentially empty) sequence of
the first length(C)− k blocks of C. A special block is the genesis block
G = ⟨⊥, gen,⊥⟩ which contains the genesis state gen := ε and, as we will
see later, is required to be the first block in the sequence.

The state s⃗t encoded in C is defined as a sequence of the corresponding
state blocks, i.e., s⃗t := st1|| . . . ||stn. In other words, one should think
of the blockchain C as an encoding of its underlying state s⃗t; such an
encoding might, e.g., organize C is an efficient searchable data structure
as is the case in the Bitcoin protocol where a blockchain is a linked
list implemented with hash-pointers. In the protocol, the blockchain
is the data structure storing a sequence of entries, often referred to as
transactions. Furthermore, as in [KZZ16], in order to capture blockchains
with syntactically different state encoding, we use an algorithm blockifyB
to map a vector of transactions into a state block. Thus, each block
st ∈ s⃗t (except the genesis state) of the state encoded in the blockchain
has the form st = blockifyB(N⃗) where N⃗ is a vector of transactions.

Validity and Longest Valid Chains

For a blockchain C to be considered a valid blockchain, it needs to satisfy
certain conditions. Concretely, the validity of a blockchain C = B1, . . . ,Bn

where Bi = ⟨si, sti, ni⟩ depends on two aspects: chain-level validity, also
referred to as syntactic validity, and a state-level validity also referred to
as semantic validity.

264 CHAPTER 8. A COMPOSABLE MODEL FOR BITCOIN

Algorithm validStructDB(C)

res← true
if (length(C) = 0) or (H[head(C)] ≥ D) then

res← false
else if length(C) = 1 then

res← (C = G)
else ◃ In this case, the chain is non-trivial and the most recent block is a valid
proof-of-work.
C′ ← C
⟨s′, ·, ·⟩ ← head(C′)
repeat
C′ ← C′⌈1 ◃ Chop off the head of C′.
B := ⟨s, st, n⟩ ← head(C′)
if (H[B] ̸= s′) or (length(C′) > 1 and H[head(C)] ≥ D) or (length(C′) = 1
and B ̸= G) then

res← false
else

s′ ← s
until res = false or length(C′) = 1

return res

Figure 8.6: The syntactic validity check.

Syntactic validity. This is defined with respect to a difficulty parame-
ter D ∈ [2κ], where κ is the security parameter, and a given hash function
H(·) : {0, 1}∗ → {0, 1}κ; at its core, it requires that, for each i > 1, the
value si contained in Bi satisfies si = H[Bi−1] and that additionally
H[Bi] < D holds (for non-genesis blocks), where we interpret the output
of the hash-function as an integer in this comparison. The algorithm
is given in Figure 8.6. Note that for notational simplicity, we omit the
hash-function as an explicit superscript.

Semantic validity. This is defined on the state s⃗t encoded in the
blockchain C and specifies whether this content is valid (which might
depend on a particular application). Recall that the validation predicate
Validate defined in the ledger functionality plays a similar role. For
example, a natural and generic semantic validity of the blockchain can
be defined algorithm that we denote isvalidstateB which builds upon a
validation predicate for transactions, such as Validate. Recall that in
the general ledger description, Validate might depend on some associated

8.4. BITCOIN AS A UC PROTOCOL 265

metadata; although this might be useful to capture alternative blockchains,
it is not the case for Bitcoin and to avoid confusion, throughout this section
we use ValidTxB to refer to a generic validation predicate which ignores
all information other than the state and the transaction that is being
validated. The pseudo-code of the algorithm isvalidstateB which builds
upon ValidTxB is provided below. In a nutshell, the algorithm checks that
a given blockchain state can be built in an iterative manner, such that
each contained transaction is considered valid according to ValidTxB upon
insertion. It further ensures that the state starts with the genesis state
and that state blocks contain a special coin-base transaction txcoin-base

minerID
which assigns them to a miner.

Algorithm isvalidstateB(s⃗t)

Let s⃗t := st1|| . . . ||stn
for each sti do

Extract the transaction sequence t⃗xi ← txi,1, . . . , txi,ni
contained in sti

s⃗t′ ← gen ◃ Initialize the genesis state
for i = 1 to n do

if the first transaction in t⃗xi is not a coin-base transaction return false
N⃗i ← txi,1
for j = 2 to |t⃗xi| do

st← blockifyB(N⃗i)

if ValidTxB(txi,j , s⃗t
′||st) = 0 return false

N⃗i ← N⃗i||txi,j
s⃗t′ ← s⃗t′||sti

return true

Definition 8.4.1. A chain C is valid if it satisfies syntactic and semantic
validity, i.e., if, for the chain and its encoded state s⃗t, the predicate

isvalidchainDB(C) := validStructDB(C) ∧ isvalidstateB(s⃗t)

evaluates to true.

Longest valid chain. In the Bitcoin protocol, the notion of the longest
valid chain is very crucial. The reason is that the party defines the ledger
state at a certain time as a prefix of the state encoded in the longest valid
chain it knows at that time. We stick to the nomenclature of [GKL15]
and call the function maxvalidB(C1, . . . , Ck).

266 CHAPTER 8. A COMPOSABLE MODEL FOR BITCOIN

Algorithm maxvalidDB(C1, . . . , Ck)

Ctemp ← ε
for i = 1 to k do

if isvalidchainD
B(Ci) and (length(Ci) > length(Ctemp)) then

Ctemp ← Ci
return Ctemp

Extending Chains and Proofs-of-Work

A core step in Bitcoin is to extend a given chain C by a new block B
(with certain state content) to yield a longer chain C||B. As presented in
[GKL15] this can be captured by an algorithm extendchainD(·) that takes
a chain C, a state block st and the number of attempts q as inputs. It
tries to find a proof-of-work which allows to extend the C by a block which
encodes st.

Algorithm extendchainD(C, st, q)

Input: Chain C is valid with state s⃗t. The state s⃗t||st is valid.
Set B← ⊥
s← H[head(C)] ◃ Compute the pointer s of the new block
for i ∈ {1, . . . , q} do

Choose nonce n uniformly at random from {0, 1}κ and set B← ⟨s, st, n⟩.
if H[B] < D then

break
if B ̸= ⊥ then
C ← C||B

return C

8.4.2 Overview and Modeling Decisions

In Bitcoin, each party maintains a local blockchain which initially consists
of the genesis block. The chains of honest parties might differ (but as we
will prove, it will have a common prefix which will define the ledger state).
New transactions are added in a ‘mining process’. First, a party collects
valid transactions (according to ValidTxB) and creates a new state block
st using blockifyB. Next, the party attempts to mine a new block by
solving a puzzle (and hence finding a proof-of-work) which upon success
could then be validly added to their local blockchain. After each mining

8.4. BITCOIN AS A UC PROTOCOL 267

attempt parties will multicast their current chain. A party will replace
its local chain if it obtains or receives a longer valid chain. When queried
to output the state of the ledger, a party reports a prefix of the state
encoded in its longest valid chain — obtained by ignoring (or chopping-off)
the most recent T blocks (a party outputs ε if the state has less than
T blocks). This behavior will ensure that all honest parties output a
consistent ledger state. T is a crucial parameter of the Bitcoin protocol
and typically, the guarantees of the security statements depend on T (and
in addition on the usual security parameter κ).

The Round Structure

As already mentioned in the introduction, we model Bitcoin as a semi-
synchronous protocol: The protocol can proceed in rounds — enabled
by having access to a global synchronization clock Gclock— but is not
aware of the actual delay of the network. In each round, two logical tasks
have to be executed: an updating or information-fetching step (where new
messages from the network are processed) and a working or mining-step,
where each party tries to extend its local chain.

To simplify the UC activation handling in the analysis, we divide each
logical round into two sub-rounds (where each sub-round corresponds to
a logical task; see below for more details). This means that each logical
round correspond to two actual clock-ticks (also known as mini-rounds in
the MPC literature). We say that a protocol is in round r if the current
time of the clock is τ ∈ {2r, 2r + 1}.

Having two clock-ticks per round is a standard way to model in
synchronous UC that messages (e.g., a block) sent within a round are
delivered at the beginning of the next round. In our case, each round is
divided into two mini-rounds, where each mini-round corresponds to a
clock tick. We treat the first mini-round as the updating mini-round (fetch
messages from the network to obtain messages sent previous rounds) and
the second mini-round as the working mini-round (solving the puzzle and
multicasting solutions).

Handling Interrupts

A protocol command might consists of a sequence of operations. However,
certain operations, such as sending a message to another party, result in

268 CHAPTER 8. A COMPOSABLE MODEL FOR BITCOIN

the protocol machine losing the activation token. We briefly describe a
standard way to formalize that a party that loses an activation in the
middle of a multi-step command is able to resume and complete the
command following the implicit proposal of [KMTZ13]. Their mechanism
can be made explicit by introducing an anchor a that stores a pointer to
the current operation; the protocol associates each anchor with such a
multiple command and an input I, so that when such an input is received
it directly jumps to the stored anchor, executes the next operation(s) and
updates (increases) the anchor before releasing the activation. We refer
to such an execution as being I-interruptible.

As an example, consider a protocol that requires that upon receiving
input I, the party should run a command that consists of m steps Step
1, Step 2, . . . , Step m, but some of these steps might result in the party
losing its activation. Running this command in an I-interruptible manner
means executing the following code: Upon receiving input I if a < m
go to Step a and increase a = a+ 1 before executing the first operation
that releases the activation; otherwise go to Step 1 and set a = 2 before
executing any operation that releases the activation.

8.4.3 The Formal Protocol Description
We can now formally define our blockchain protocol Ledger-Protocolq,D,T
(we usually omit the parameters when clear from the context). The
protocol allows an arbitrary number of parties/miners to communicate
by means of a multicast network F∆

N-MC. Note that this means that
the adversary can send different messages to different parties. New
miners might dynamically join or leave the protocol by means of the
registration/de-registration commands: when they join they register with
all associated functionalities and when they leave they deregister.18 The
pseudo-code of this UC blockchain protocol is given in the remainder
of this section. The general structure of our UC blockchain protocol
Ledger-Protocolq,D,T (P) is given below.

The Bitcoin ledger protocol assumes as hybrids a random oracle FRO,
a network Fbc

N-MC for blockchains, a network F tx
N-MC for transcations, and

clock Gclock. Note that the two networks are simply (named) instances of
18Note that when a party registers to a local functionality such as the network or

the random oracle it does not lose its activation token. This is a subtle point to ensure
that the real and ideal worlds are in-sync regarding activations.

8.4. BITCOIN AS A UC PROTOCOL 269

F∆
N-MC and can be realized from a single network F∆

N-MC using different
message-IDs. The protocol is parametrized by q, D, T where q is the
number of mining attempts per round, D is the difficulty of the proof-
of-work, and T is the number of blocks chopped off to obtain the ledger
state.

We provide the description below and discuss each part in more detail
in the following paragraph.

Protocol Ledger-Protocolq,D,T (P)

Variables and Initial Values:

• The protocol stores a local (working) chain Cloc which initially contains the
genesis block, i.e., Cloc ← (G).

• It additionally manages a separate chain Cexp to store the current chain whose
encoded state s⃗t is exported as the ledger state (initially this chain contains
the genesis block).

• Variable isInit stores the initialization status. Initially this variable is false.

• buffer contains the list of transactions obtained from the network. Initially,
this buffer is empty.

• A time stamp t to remember when this party was last active (initially, t = 0)
and a flag welcome to indicate whether a indication was received that a new
party joined the network (initially welcome = 0).

• The party stores its registration status to the hybrid functionalities internally.
We do not introduce an explicit name for this variable.

Registration/De-Registration:

• Upon receiving (register, sid) do the following: if this party is registered with
the clock, then send (register, sid) to Fbc

N-MC, F tx
N-MC, and FRO and output

(register, sid, P); otherwise, ignore the input.

• Upon receiving (de-register, sid), send (de-register, sid) to Fbc
N-MC, F tx

N-MC,
and FRO. Set all variables back to their initial values and return
(de-register, sid, P).

• Upon receiving (is-registered, sid), return (register, sid, 1) if this party
is registered with the network and the random oracle. Otherwise, return
(register, sid, 0).

• Upon receiving (register, sidC) (for the global clock), send (register, sidC)
to Gclock and return whatever Gclock returns.

• Upon receiving (de-register, sidC) (for the global clock), send
(de-register, sidC) to Gclock and return whatever Gclock returns.

270 CHAPTER 8. A COMPOSABLE MODEL FOR BITCOIN

Ledger-Queries:
Ledger queries are only answered once registered.

• Upon receiving (submit, sid, tx), set buffer ← buffer||tx, and send
(multicast, sid, tx) to F tx

N-MC.

• Upon receiving (read, sid) send (clock-read, sidC) to Gclock, receive as an-
swer (clock-read, sidC , τ) and proceed as follows:

if τ corresponds to an update mini-round and t < τ and isInit then
Execute sub-protocol FetchInformation and set t← τ .

Let s⃗t be the encoded state in Cexp
Return (read, sid, s⃗t⌈T).

• Upon receiving (maintain-ledger, sid,minerID) execute in a
(maintain-ledger, sid,minerID)-interruptible manner the following:

1. If isInit = false, then set all variables to their initial values, set
isInit← true and output (multicast, sid, new-party) to F tx

N-MC.

2. Execute sub-protocol Ledger-Maintenance

Handling other external calls:

• Upon receiving (clock-read, sidC) forward the query to Gclock and return
whatever is received as answer from Gclock

• Upon receiving (clock-update, sidC), remember that a clock-update was re-
ceived in the current mini-round for later reference. If this protocol instance
is currently only registered to the clock (and no other functionality), then
forward (clock-update, sidC) to Gclock.

Registration, De-Registration and Initialization

The registration process in the protocol works as follows. If a party
receives (register, sid) from the environment it registers at the random
oracle and the network. Since the clock is a shared functionality, the
registrations are fully controlled by the environment and thus the protocol
relays such registration queries to the clock. Only if a party is registered
to the clock already, it reacts to such register queries and otherwise
stays idle. Once registration has succeeded the party returns activation
to the environment. Upon the next activation to maintain the ledger
(maintain-ledger), the party initializes its local variables, multicasts
a special new-party message over the network, and executes the main
maintenance sub-protocol (in an interruptible manner as further explained
below).

8.4. BITCOIN AS A UC PROTOCOL 271

De-registering from the ledger (via a query (de-register, sid)) from
the environment) works analogously, upon which the party erases all its
state and becomes idle until its is freshly invoked with a register-query.

Recall that the notion of de-synchronized parties is strongly connected
to its registration: if an active honest party is not registered with the
clock or not registered to all hybrids for long enough after joining the
protocol execution at some time τ > 0, it is considered de-synchronized
(and otherwise the party is synchronized). In particular, honest parties
that register at the onset of the protocol execution are synchronized (until
they get corrupted or de-registered from the clock).

Ledger-Specific Queries

Ledger specific queries are the specific features that one wishes to imple-
ment. Our very basic ledger supports three operations (after registration):

Submitting a transaction. This one is very simple: when given a
transaction a party multicasts the transaction.

Ledger maintenance. Ledger maintenance refers to activating the
main mining procedure of Bitcoin and is given in Figure 8.7. Since
ledger maintenance consists of several complex steps that in particular
lose activations, the execution proceeds in an interruptible manner as
explained in Section 8.4.2. The main structure of maintenance enforces
the mini-round structure: in a working mini-round, the protocol tries to
obtain the solution to a proof-of-work puzzle for a newly generated state
block. The core sub-protocol thereby is:

Sub-Protocol ExtendState(st)

Cnew ← extendchainD(Cloc, st, q)
if Cnew ̸= Cloc then

Update the local chain, i.e., Cloc ← Cnew.
Send (multicast, sid, Cloc) to Fbc

N-MC ◃ Multicast current chain

It then enters an idle mode for maintenance queries until the clock advances
and enters an update mini-round where new information is fetched from
the network.

272 CHAPTER 8. A COMPOSABLE MODEL FOR BITCOIN

Sub-Protocol FetchInformation

Send (fetch, sid) to Fbc
N-MC; denote the response from Fbc

N-MC by (fetch, sid, b).
Extract chains C1, . . . , Ck from b.
Cloc, Cexp ← maxvalidD

B(Cloc, Cexp, C1, . . . , Ck)
Send (fetch, sid) to F tx

N-MC; denote the response from F tx
N-MC by (fetch, sid, b).

Extract received transactions (tx1, . . . , txk) from b.
Set buffer← buffer||(tx1, . . . , txk).
If a new-party message was received, set welcome← 1. Otherwise, set
welcome← 0.
Remove all transactions from buffer which are invalid with respect to s⃗t⌈T

Again the protocol is idle for maintenance queries until the clock advances.

Reading the state. When asked to report the current ledger state,
the protocol outputs the prefix of the exported state, i.e., a prefix of the
state encoded in Cexp. By the mini-round structure, the exported state is
updated exactly once in every update mini-rounds (after initialization is
complete).

Predictable Synchronization Pattern

We now show that the ledger protocol has a predictable synchronization
pattern according to Definition 8.2.1.

Lemma 8.4.2. The protocol Ledger-Protocolq,D,T satisfies Definition 8.2.1.
More specifically, there is a predicate predict-timeBC that predicts the
synchronization pattern of the UC Bitcoin protocol as required by Defini-
tion 8.2.1.

Proof Sketch. This is straightforward to see for our ledger protocol (and
all protocols that share the same structure) in all the respective hybrid
worlds they are executed. The predicate predict-time can be implemented
as follows: browse through the entire sequence I⃗TH and determine how
many times the clock advances. The clock advances for the first time,
when all miners got sufficient maintain commands to complete their mini-
round operation, followed by a clock-update command. By definition of
Ledger-Protocol, this implies that each party has sent a clock-update to the
clock and hence the clock advances. By an inductive argument, whenever
the clock has ticked, the check when the clock advances the next time is

8.4. BITCOIN AS A UC PROTOCOL 273

Sub-Protocol Ledger-Maintenance

This sub-protocol is executed in a (maintain-ledger, sid,minerID)-interruptible
manner
Step 1: If a (clock-update, sidC) has been received during this update mini-round

then send (clock-update, sidC) to Gclock (if it hasn’t been sent already in the
current mini-round), and in the next activation go to the next step. Else in
the next activation repeat this step.

Step 2: Send (clock-read, sidC) to Gclock, receive as answer (clock-read, sidC , τ),
and proceed as follows.

if τ corresponds to a working mini-round then
◃ Generate a new block: extract transactions and form a state-block

and append
Let s⃗t be the encoded state in Cloc
Set buffer′ ← buffer
Parse buffer′ as sequence (tx1, . . . , txn)
Set N⃗ ← txcoin-base

minerID
Set st← blockifyB(N⃗)
repeat

Let (tx1, . . . , txn) be the current list of (remaining) transactions in
buffer′

for i = 1 to n do
if ValidTxB(txi, s⃗t||st) = 1 then

N⃗ ← N⃗ ||txi
Remove tx from buffer′

Set st← blockifyB(N⃗)

until N⃗ does not increase anymore
Execute ExtendState(st)
If the flag Welcome = 1, send (multicast, sid, tx) to F tx

N-MC for all
tx ∈ buffer.
Go to step 3 in the next activation.

else
Go to the beginning of step 2 in the next activation.

Step 3:
If a (clock-update, sidC) has been received during this working round then
send (clock-update, sidC) to Gclock, and in the next activation go to the next
step. Else in the next activation repeat this step.

Step 4:
Send (clock-read, sidC) to Gclock, receive as answer (clock-read, sidC , τ),
and proceed as follows.

if τ corresponds to an update mini-round then
If t < τ execute FetchInformation and set t← τ .
Go to step 1 in the next activation.

else
Go to the beginning of step 4 in the next activation.

Figure 8.7: The maintenance procedure of the UC Bitcoin protocol.

274 CHAPTER 8. A COMPOSABLE MODEL FOR BITCOIN

checked exactly the same way. Overall, this allows to check whether the
next activation of an honest party, given the history of activations will
provoke a clock update. Note that only an activation of an honest party
can make the clock advance.

8.5 The Bitcoin Ledger

We next show how to instantiate the ledger functionality from Sec-
tion 8.3 with appropriate parameters so that it is implemented by protocol
Ledger-Protocol. The proof of this appears in the next section. To de-
fine this Bitcoin ledger GB

ledger, we give the specific instantiations of the
relevant functions Validate, Blockify, ExtendPolicy, and predict-time.

Synchrony pattern. First, predict-time is defined to be predict-timeBC
to reflect the synchronization pattern of the UC Bitcoin protocol as
described in the proof of Lemma 8.4.2. This shows the dependency of the
realized ledger from the protocol that achieves it.

State-buffer-validation. Similarly, in case of Validate we use the same
predicate as the protocol uses to validate the states: For a given transaction
tx and a given ledger-state state, the predicate decides whether this
transaction is valid with respect to state. Given such a validation
predicate, the ledger validation predicate takes a specific simple form
which, excludes dependency on anything other than the transaction tx
and state, i.e., for any values of txid, τL, Pi, and buffer:

Validate((tx, txid, τL, Pi), state, buffer) := ValidTxB(tx, state).

Ledger-output format. As with the above parameters, the function
Blockify is defined to be blockifyB, i.e., the function used in the UC
Bitcoin protocol. In principle, any formatting function can be used and
the security proof goes through (as long as the same function is used
in the protocol Ledger-Protocol and functionality GB

ledger). However, as
we observe below in Definition 8.5.1, a meaningful Blockify should be
in certain relation with the ledger’s Validate predicate. This relation is
satisfied by the Bitcoin protocol.

8.5. THE BITCOIN LEDGER 275

The ledger policy. Finally, we define ExtendPolicy. At a high level,
upon receiving a list of possible candidate blocks which should go into the
state of the ledger, ExtendPolicy does the following: for each block it first
verifies that the blocks are valid with respect to the state they extend.
Only valid blocks might be added to the state. Moreover, ExtendPolicy
ensures the following property:

1. The speed of the ledger is not too slow. This is implemented by
defining an upper bound maxTimewindow on the time interval (number
of clock-ticks) within which at least windowSize state blocks have
to be added. This is known as minimal chain-growth.

2. The speed of the ledger is not too fast. This is implemented by
defining a lower bound minTimewindow on the time interval (number
of clock-ticks), such that the adversary is not allowed to propose
new blocks if windowSize or more blocks have already been added
during that time interval.

3. The adversary cannot create too many blocks with arbitrary (but
valid) contents. This is formally enforced by defining an upper
bound η on the number of these so-called adversarial blocks within a
sequence of windowSize state blocks. This is known as chain quality.
Formally, this is enforced by requiring that a certain fraction of
blocks need to satisfy higher quality standards (to model blocks
that are honestly generated).

4. Last but not least, ExtendPolicy guarantees that if a transaction is
“old enough”, and still valid with respect to the actual state, then
it is included into the state. This is a weak form of guaranteeing
that a transaction will make it into the state unless it is in conflict.
As we show in Section 8.8, this guarantee can be amplified by using
digital signatures.

In order to enforce these policies, ExtendPolicy first defines alternative
blocks which satisfy all of the above criteria in an ideal way, and whenever
it catches the adversary in trying to propose blocks that do not obey the
policies, it punishes the adversary by proposing its own generated blocks.
In particular, if the adversary violates the policy regarding minimal chain-
growth, the ExtendPolicy will directly propose a sequence of complying

276 CHAPTER 8. A COMPOSABLE MODEL FOR BITCOIN

blocks. The precise formal description of the extend policy (as pseudo-
code) for GB

ledger is given in Appendix B.2 for completeness.

On the relation between Blockify and Validate. As already dis-
cussed above, ExtendPolicy guarantees that the adversary cannot block
the extension of the state indefinitely, and that occasionally an honest
miner will create a block. These are implications of the chain-growth and
chain-quality properties from [GKL15]. However, our generic ExtendPolicy
makes explicit that a priori, we cannot exclude that the chain always
extends with blocks that include, for example, only a coin-base transac-
tion, i.e., any submitted transaction is ignored and never inserted into
a new block. This issue is an orthogonal one to ensuring that honest
transactions are not invalidated by adversarial interaction—which, as
argued in [GKL15], is achieved by adding digital signatures.

To see where this could be problematic in general, consider a blockify
that, at a certain point, creates a block that renders all possible future
transactions invalid. Observe that this does not mean that our protocol
is insecure and that this is as well possible for the protocols of [GKL15,
PSS17]; indeed our proof shows that the protocol will give exactly the same
guarantees as an Gledger parametrized with such an algorithm Blockify.

Nonetheless, a look in reality indicates that this situation never occurs
with Bitcoin. To capture that this is the case, Validate and Blockify need
to be in a certain relation with each other. Informally, this relation should
ensure that the above sketched situation does not occur, i.e., Blockify
should “not affect” the “true validity” of a transaction. A way to ensure
this, which is already implemented by the Bitcoin protocol, is by restricting
Blockify to only make an invertible manipulation of the blocks when they
are inserted into the state—e.g., be an encoding function—and define
Validate to depend on the inverse of Blockify. This is captured in the
following definition.

Definition 8.5.1. A co-design of Blockify and Validate is called non-self-
disqualifying if there exists an efficiently computable function Dec mapping
outputs of Blockify to vectors N⃗ such that there exists a validate predicate
Validate′ for which the following two properties hold for any possible state
state = st1|| . . . ||stℓ, buffer buffer vectors N⃗ := (tx1, . . . , txm), and

8.6. SECURITY ANALYSIS 277

transaction tx:

1.) Validate(tx, state, buffer)

=Validate′(tx,Dec(st1)|| . . . ||Dec(stℓ), buffer)

2.) Validate(tx, state||Blockify(N⃗), buffer)

= Validate′(tx,Dec(st1)|| . . . ||Dec(stℓ)||N⃗ , buffer)

We remark that the actual validation of Bitcoin does satisfy the above
definition, since a transaction is only rendered invalid with respect to
the state if the coins it is trying to spend have already been spent, and
this only depends on the transactions in the state and not the metadata
added by Blockify. Hence, in the following, we assume that ValidTxB and
blockifyB satisfy the relation in Definition 8.5.1.

8.6 Security Analysis

8.6.1 Overview
In this section we prove our main theorem, namely that, under appropriate
assumptions, Bitcoin realizes the instantiation of the ledger functionality
from the previous section. We prove our main theorem which can be
described informally as follows:

Theorem (Informal). For the security parameter κ and assuming that
windowSize = ω(log κ), then the protocol Ledger-Protocol securely realizes
the concrete ledger functionality GB

ledger defined in the previous section.
The assumptions on network delays and mining power, where mining
power is roughly understood as the ability to find proofs of work via queries
to the random oracle (and will be formally defined later) are as follows:

• In any round of the protocol execution, the collective mining power of
the adversary, contributed by corrupted and temporarily de-synchronized
miners, does not exceed the mining power of honest (and synchro-
nized) parties. The exact relation additionally captures the (negative)
impact of network delays on the coordination of mining power of
honest parties.

278 CHAPTER 8. A COMPOSABLE MODEL FOR BITCOIN

FROGclock FN-MC

Pi · · · Pj

Z

A

FStXGclock FN-MC

P ′
i · · · P ′

j

Z

S ′

GledgerGclock

P̄i · · · P̄j

Z

S

Figure 8.8: Illustration of the modular analysis.

• No message can be delayed in the network by more than ∆ = O(1)
rounds.

We prove the above theorem via what we believe is a useful modular-
ization of the Bitcoin protocol (cf. Figure 8.8). Informally, this modular-
ization distills out from the protocol a reactive state-extend subprocess
which captures the lottery that decides which miner gets to advance the
blockchain next and additionally the process of propagating this state to
other miners. In Lemma 8.6.2 we show that the state-extend-and-exchange
module/subprocess implements an appropriate reactive UC functional-
ity FStX. We can then use the UC composition theorem which allows us to
argue security of Ledger-Protocol in a simpler hybrid world where, instead
of using this subprocess, parties make calls to the functionality FStX.

For the sake of generality, our treatment will assume a shared (global)
clock functionality and therefore, our main proof follows the EUC-realization
(externalized UC) notion introduced in [CDPW07b] which then implies

8.6. SECURITY ANALYSIS 279

full GUC security as stated in [CDPW07b].

8.6.2 First Proof Step

In a first step, we distill out from the protocol Ledger-Protocol a state-
extend module/subprocess, denoted as StateExchange-Protocol, and show,
using a “game-hopping” argument, that a modular description of the
Ledger-Protocol in which every party makes invocations of this subpro-
cess, yields an equivalent protocol. We abstract the service provided
by this sub-process by a new lottery-functionality denoted FStX. The
modularized protocol, defined for the FStX-hybrid world is denoted by
Modular-Ledger-Protocol.

As we prove, the sub-process StateExchange-Protocol UC-realizes FStX
and hence the original protocol Ledger-Protocol and the modularized
protocol Modular-Ledger-Protocol are in fact indistinguishable. This fi-
nal step is a direct consequence of the universal composition theorem:
Ledger-Protocol UC emulates Modular-Ledger-Protocol where invocations
of StateExchange-Protocol are replaced by invocations of FStX (for appro-
priate parameters as precisely defined below).

Looking ahead, in the next section, we can hence focus on analyzing
the simpler protocol Modular-Ledger-Protocol in order to show that the
UC Bitcoin protocol realizes the Bitcoin Ledger of Section 8.5 — again
by invoking the composition theorem.

The State-Exchange Functionality

The state-exchange functionality F∆,pH ,pA
StX allows parties to submit ledger

states which are accepted with a certain probability. Accepted states are
then multicast to all parties. Informally, it can be seen as as lottery on
which (valid) states are exchanged among the participants. Note that for
simplicity of notation we do not write the parameters when clear from
the context.

Parties can use FStX to multicast a valid state, but instead of accepting
any submitted state and sending it to all (registered) parties, FStX keeps
track of all states that it ever saw, and implements the following mechanism
upon submission of a state s⃗t and a new block st from any party: If
s⃗t was previously accepted by FStX and s⃗t||st is a valid new state,
then FStX accepts s⃗t||st with probability pH (resp. pA for dishonest

280 CHAPTER 8. A COMPOSABLE MODEL FOR BITCOIN

parties) and sends it to registered parties. Each submission is evaluated
independently. The formal specification is found in Figure 8.9.

Realizing the State-Exchange Functionality

The state-exchange functionality is realized by the protocol given below.
It is obtained by identifying the relevant instructions from the UC-ledger
protocol. More precisely, protocol StateExchange-Protocol UC-realizes
the FStX functionality in the (FRO, Fbc

N-MC)-hybrid world. Note that
Fbc

N-MC is a (named) instance of the F∆
N-MC functionality. The protocol

is parametrized by q and D where q is the number of mining attempts per
submission attempt and D is the difficulty of the proof-of-work.

Protocol StateExchange-Protocolq,D(P)

Initialization:
The protocol maintains a tree T of all valid chains. Initially it contains the genesis
chain (G).

Registration/De-Registration:

• Upon receiving (register, sid) do the following: send (register, sid) to Fbc
N-MC

and FRO and output (register, sid, P).

• Upon receiving (de-register, sid), send (de-register, sid) to Fbc
N-MC and FRO.

Set all variables back to their initial values and return (de-register, sid, P).

• Upon receiving (is-registered, sid), return (register, sid, 1) if this party is
registered with Fbc

N-MC and FRO. Otherwise, return (register, sid, 0).

Exchange: Exchange queries are only answered once registered.

• Upon receiving (submit-new, sid, s⃗t, st) do
if isvalidstateB(s⃗t||st) = 1 then ◃ Check if there exists a chain in T which
contains the state s⃗t

if there exists C ∈ T with s⃗t then
Cnew ← extendchainD(C, st, q) ◃ Try to extend the chain
if Cnew ̸= C then

Update the local tree, i.e., add Cnew to T
Output (success, sid, 1) to P .

else
Output (success, sid, 0) to P .

On response (continue, sid) send (multicast, sid, Cnew) to Fbc
N-MC. ◃

Broadcast current chain

• Upon receiving (fetch-new, sid) if do the following:
Send (fetch, sid) to Fbc

N-MC and denote the response by (fetch, sid, b).
Extract all valid chains C1, . . . , Ck from b and add them to T .
Extract states s⃗t1, . . . , s⃗tk from C1, . . . , Ck and output them.

8.6. SECURITY ANALYSIS 281

Functionality F∆,pH ,pA
StX

The functionality is parametrized with a set of parties P. Any newly registered (resp.
deregistered) party is added to (resp. deleted from) P. For each party P ∈ P the
functionality manages a tree TP where each rooted path corresponds to a valid state
the party has received. Initially each tree contains the genesis state gen.
Finally, it manages a buffer M⃗ which contains successfully submitted states which
have not yet been delivered to (some) parties in P.
Submit/receive new states:

– Upon receiving (submit-new, sid, s⃗t, st) from some participant Ps ∈ P, if
isvalidstateB(s⃗t||st) = 1 and s⃗t ∈ TP do the following:

1. Sample B according to a Bernoulli-Distribution with parameter pH (or
pA if Ps is dishonest).

2. If B = 1, set s⃗tnew ← s⃗t||st and add s⃗tnew to TPs .
Else set s⃗tnew ← s⃗t.

3. Output (success, sid, B) to Ps.

4. On response (continue, sid) where P = {P1, . . . , Pn} choose n
new unique message-IDs mid1, . . . ,midn, initialize n new variables
Dmid1

:= DMAX
mid1

:= . . . := Dmidn := DMAX
midn

:= 1 set M⃗ :=

M⃗ ||(s⃗tnew,mid1, Dmid1
, P1)|| . . . ||(s⃗tnew,midn, Dmidn , Pn), and send

(submit-new, sid, s⃗tnew, Ps, (P1,mid1), . . . , (Pn,midn)) to the adver-
sary.

– Upon receiving (fetch-new, sid) from a party P ∈ P or A (on behalf of P),
do the following:

1. For all tuples (s⃗t,mid, Dmid, P) ∈ M⃗ set Dmid := Dmid − 1.

2. Let M⃗P
0 denote the subvector of M⃗ including all tuples of the form

(s⃗t,mid, Dmid, P) where Dmid = 0 (in the same order as they appear in
M⃗). For each tuple (s⃗t,mid, Dmid, P) ∈ M⃗P

0 add s⃗t to TP . Delete all
entries in M⃗P

0 from M⃗ and send M⃗P
0 to P .

– Upon receiving (send, sid, s⃗t, P ′) from A on behalf some corrupted P ∈ P, if
P ′ ∈ P and s⃗t ∈ TP , choose a new unique message-ID mid, initialize D := 1,
add (s⃗t,mid, Dmid, P

′) to M⃗ , and return (send, sid, s⃗t, P ′,mid) to A.

Further adversarial influence on the network:

– Upon receiving (swap, sid,mid,mid′) from A, if mid and mid′ are message-
IDs registered in the current M⃗ , swap the corresponding tuples in M⃗ . Return
(swap, sid) to A.

– Upon receiving (delay, sid, T,mid) from A, if T is a valid delay, mid is a
message-ID for a tuple (s⃗t,mid, Dmid, P) in the current M⃗ and DMAX

mid +T ≤
∆, set Dmid := Dmid + T and set DMAX

mid := DMAX
mid + T .

Figure 8.9: The state exchange functionality. Parameters are the delay
∆ and the success probabilities pH and pA for honest and adversarial
submissions.

282 CHAPTER 8. A COMPOSABLE MODEL FOR BITCOIN

Lemma 8.6.1. Let p := D
2κ . The protocol StateExchange-Protocolq,D UC-

realizes functionality F∆,pH ,pA
StX in the (FRO,F∆

N-MC)-hybrid model where
pA := p and pH := 1− (1− p)q.
Proof. We consider the following simulator:

Simulator Sstx

Initialization:
Set up a tree of valid chains T ← {(G)} and an empty network buffer M⃗ .
Set up an empty random oracle table H and set H[G] to a uniform random value
in {0, 1}κ. If the simulator ever tries to add a colliding entry to H, abort with
collision-error.
The simulator manages a set PRO of parties registered to the random oracle and a
set of parties Pnet registered to the network.

Simulating the Random Oracle:

• Upon receiving (eval, sid, v) for FRO from A on behalf of corrupted P ∈ PRO

do the following.

1. If H[v] is already defined, output (eval, sid, v,H[v]).

2. If v is of the form (s, st, n) and there existsa a chain C = B1, . . . ,Bn such
that H[Bn] = s proceed as follows. If C ̸∈ T abort with tree-error.
Otherwise continue. Extract the state s⃗t from C and extract the state
block st from v. Send (submit-new, sid, s⃗t, st) to FStX and denote by
(success, B) the output of FStX. If B = 1 set H[v] to a uniform random
value in {0, 1}κ strictly smallerb than D. Add C||v to T . Otherwise
set H[v] to a uniform random value in {0, 1}κ larger than D. Output
(eval, sid, v,H[v]).

3. Otherwise set v to a uniform random value in {0, 1}κ and output
(eval, sid, v,H[v]).

Simulating the Network:

• Upon receiving (multicast, sid, (mi1 , Pi1), . . . , (miℓ
, Piℓ

)) for Fbc
N-MC from A

on behalf of corrupted P ∈ Pnet with {Pi1
, . . . , Piℓ

} ⊆ Pnet proceed as
follows.

1. Choose ℓ new unique message-IDs midi1 , . . . ,midiℓ
, initialize ℓ

new variables Dmidi1
:= . . . := Dmidiℓ

:= 1, set M⃗ :=

M⃗ ||(mi1
,midi1

, Dmidi1
, Pi1

)|| . . . ||(miℓ
,midiℓ

, Dmidiℓ
, Pℓ).

2. For each (mij
, Pij

) where mij
is a chain in T extract the state s⃗tij

from mij
, and send (send, sid, s⃗t, Pij

) to FStX. Store the message-ID

m̂idij
returned by FStX with midij

. Note that if P has not yet received
that state, it is first fetched by A on behalf of P and if an unknown state
is encoded, a random oracle query is simulated for the input to simulate
the chain’s validity and its possible inclusion into T .

3. Output (multicast, sid, (mi1
, Pi1

,midi1
), . . . , (miℓ

, Piℓ
,midiℓ

) to A.

8.6. SECURITY ANALYSIS 283

• Upon receiving (fetch, sid) for Fbc
N-MC from A on behalf of corrupted P ∈

Pnet proceed as follows.

1. For all tuples (m,mid, Dmid, P) ∈ M⃗ , set Dmid := Dmid − 1.

2. Let M⃗P
0 denote the subvector M⃗ including all tuples of the form

(m,mid, Dmid, P) with Dmid = 0 (in the same order as they appear
in M⃗). Delete all entries in M⃗P

0 from M⃗ , and send M⃗P
0 to A.

• Upon receiving a message (delays, sid, (Tmidi1
,midi1), . . . , (Tmidiℓ

,midiℓ
))

do the following for each pair (Tmid,mid) in this message:

1. If Tmid is a valid delay (i.e., it encodes an integer in unary notation)
and mid is a message-ID registered in the current M⃗ , set Dmid :=
max{1, Dmid + Tmid}; otherwise, ignore this tuple.

2. If the simulator knows a corresponding FStX-message-ID m̂id for mid
send (delay, sid, Tmid, m̂id) to FStX.

• Upon receiving a message (swap, sid,mid1,mid2) from the adversary do the
following:

1. If mid1 and mid2 are message-IDs registered in the current M⃗ , then
swap the corresponding tuples in M⃗ .

2. If the simulator knows for both mid1 and mid2 FStX-message-IDs m̂id1

and m̂id2 send (swap, sid, m̂id1, m̂id2) to FStX.

3. Output (swap, sid) to A.

Interaction with the State Exchange Functionality :

• Upon receiving (submit-new, sid, s⃗t, Ps, (P1, m̂id1), . . . , (Pn, m̂idn)) from
FStX where s⃗t = st1, . . . , stk and {P1, . . . , Pn} := Pnet proceed as follows

1. If there exist a chain C ∈ T with state s⃗t generate new unique
message-IDs mid1, . . . ,midn, initialize D1 := · · · := Dn = 1,
set M⃗ ||(C,midi1, Dmid1

, P1)|| . . . ||(C,midn, Dmidn , Pn), and store the
message-IDs m̂idi along the message-IDs midi.
Output (multicast, sid, C, Ps, (P1,mid1), . . . , (Pn,midn)) to the adver-
sary.

2. Otherwise find a chain C′ in T with state st1, . . . , stk−1
c. Choose a

random nonce n and set Bk = (H[Bk−1], stk, n) and set H[Bk] to a
uniform random value in {0, 1}κ strictly smaller than D. Add the chain
C = C′||Bk to T .
Generate new unique message-IDs mid1, . . . ,midn, initialize D1 :=

· · · := Dn = 1, set M⃗ ||(C,midi1, Dmid1
, P1)|| . . . ||(C,midn, Dmidn , Pn),

and store the message-IDs m̂idi along the message-IDs midi. Output
(multicast, sid, C, Ps, (P1,mid1), . . . , (Pn,midn)) to the adversary.

284 CHAPTER 8. A COMPOSABLE MODEL FOR BITCOIN

aThis can be checked efficiently using H under the assumption that there are
no collisions.

bCan be done efficiently using rejection sampling.
cSuch a chain must exist as st1, . . . , stk−1 is a successfully submitted state

in FStX in which case the simulator knows a corresponding chain.

The proof works similar as the one for Lemma 5.1 in [PSS17]. Recall
the notation from Section 2.4 and introduce the shorthand notation
Treal := TexecStateExchange-Protocol,A,Z(κ,z) which is the (distribution of the)
joint view of all parties in the execution of StateExchange-Protocol for
adversary A and environment Z (upon some input z). Denote by Tideal :=
TexecFStX,Sstx,Z (κ, z) the joint view of all parties for FStX with simulator
Sstx. In the following, we treat the arguments κ and z as implicit.

Define a new hybrid world, via the following random experiment: the
experiment is defined as the real-world execution except that the random
oracle aborts on collisions with collision-error and that adversarial
oracle queries are emulated as in Sstx. We use the shorthand HYBA,Z
to refer to this hybrid world (defined analogously to exec·,·,Z). The
only difference is thus that in the hybrid world we may abort with
collision-error or tree-error as in the ideal execution. Let Thyb be
the associated distribution of the joint view.

Let event1 be the event that some parties query two different values
v, v′ such that H[v] = H[v′], i.e. the event that a hash-collision occurs
(this event is a condition on the realized transcript tr in the support of
Treal or Thyb, respectively). For any two queries the probability that they
return the same hash value is 2−κ. By a union bound over all queries
we have that event1 happens with probability at most poly(κ) · 2−κ in
both worlds. Note that if event1 does not happen the hybrid random
experiment does not abort with collision-error.

Let event2 be the event that some party makes a query H[(s, ·, ·)]
where no v exists such that H[v] = s, but later some party makes a query
v′ such that H[v′] = s. The probability that any query H[(s, ·, ·)] a later
query returns s is 2−κ in both worlds By a union bound over all queries
we have that event2 happens with probability at most poly(κ) · 2−κ in
both worlds.

Next, we show that the tree-error abort does not occur in the

8.6. SECURITY ANALYSIS 285

hybrid world execution conditioned under event1 and event2 not happening.
Assume for contradiction that HYBA,Z aborts with tree-error with
event1 and event2 not happening. Let C = B1, . . . ,Bn be the shortest valid
chain created in the experiment HYBA,Z such that B1, . . . ,Bn−1 ∈ T
but B1, . . . ,Bn ̸∈ T . Let Bi = (si, sti, ni). Since C is a valid chain we
have H[(sn, stnnn)] < D. But at the time Bn was added to H no valid
chain existed where the last block has hash value sn (otherwise C would
be in T). This implies that no earlier query to H could have returned
sn, since if the query was Bn−1 C would not be the shortest chain with
the above property and if the query was not Bn−1 the event event1 must
have happened. This implies that event2 must have happened, which is a
contradiction.

This implies that conditioned under event1 and event2 not happening,
the hybrid-world execution proceeds the same as the real-world execution
and hence the two worlds are statistically close with respect to efficient
environments Z, i.e., execStateExchange-Protocol,A,Z ≈ HYBA,Z .

Now we compare HYBA,Z and execFStX,Sstx,Z . Consider the event
where a honest miner queries a block (s, st, n) and fails, i.e. where
H[(s, st, n)] > D. In the hybrid execution, this query is stored in the
random oracle table while the simulator in the ideal world does not store
the query in the random oracle table. Under the condition that such failed
queries are not repeated, the hybrid-world execution and the ideal-world
execution proceed in identical ways (note that the network simulation in
Sstx perfectly mimics the real and the hybrid worlds).

Note that the nonce n in a ‘failed’ query (s, st, n) is choosen uniform at
random from {0, 1}κ by honest parties. This implies that with probability
poly(κ) · 2−κ it was never queried before. As honest miner discard ‘failed’
queries (and failed queries do not leave the ITI and hence are hidden from
the adversary) it also follows that except with probability poly(κ) ·2−κ the
query will not be queried again (by any honest or corrupted party) unless
the nonce of that failed query would be successfully guessed. By a union
bound over all failed queries we have that failed queries are never queried
twice except with probability poly(κ) · 2−κ. Thus, execFStX,Sstx,Z ≈
HYBA,Z . This concludes the proof.

286 CHAPTER 8. A COMPOSABLE MODEL FOR BITCOIN

Proving the Modularization of the Ledger-Protocol

We present the modularized UC Bitcoin protocol in Appendix B.3. We
have the following lemma:

Lemma 8.6.2. The UC Bitcoin protocol Ledger-Protocolq,D,T UC emu-
lates Modular-Ledger-ProtocolT that runs in a hybrid world with access to
the functionality F∆,pH ,pA

StX with pA := D
2κ and pH = 1 − (1 − pA)q, and

where ∆ denotes the upper bound on the network delay.

Proof. The proof involves a sequence of modifications, morphing from the
original protocol to the modularized protocol in a “game-hopping” style
and finally identifying the sub-process StateExchange-Protocol that can
be replaced by calls to FStX and concluding the statement by invoking
Lemma 8.6.1. The detailed proof is given in Appendix B.3.2.

8.6.3 Second Proof Step

We now proof that if honest parties have some advantage over the dis-
honest parties in winning the lottery, then the UC Bitcoin protocol
Modular-Ledger-ProtocolT realizes the ledger functionality. By the compo-
sition theorem, we can directly conclude that Ledger-Protocolq,D,T realizes
the Bitcoin ledger functionality.

Relevant Quantities of the Analysis

The main theorem will require a condition on the power of the adversary
and it is useful to describe here the random variables induced by a pair
(Z,A). Recall from Sections 8.4.2 and 8.4.3 that a party is honest-and-
synchronized if it either joined at the onset of the execution or it joined a
sufficient number of rounds ago (depending on the delay). Furthermore,
recall that a logical round consists of two clock-ticks. In the following, we
denote the round number by r (which consists of two mini-rounds).

Definition 8.6.3 (Query Power). We define for the real-world execution
of Modular-Ledger-ProtocolT with respect to the pair (Z,A) the sequence
of random variables Q(r)

H to measure the number of distinct honest-and-
synchronized parties that are activated in the working mini-round of
round r to submit a query to F∆,pH ,pA

StX . Analogously, denote by Q(r)
A the

8.6. SECURITY ANALYSIS 287

number of submit-queries to F∆,pH ,pA
StX from corrupted parties in round r,

and by Q(r)
H,DS the number submit-queries by honest-but-desynchronized

parties in the working mini-round of round r.

Definition 8.6.4 (Mining Power.). We define mining power as simple
functions of the query-power. Note that in our analysis, pA and pH are
constants. We have:

• The total mining power T(r)mp := Q
(r)
A · pA + (Q

(r)
H +Q

(r)
H,DS) · pH .

• The adversarial mining power β(r) := pA ·Q(r)
A + pH ·Q(r)

H,DS .

• The honest mining power α(r) := 1− (1− pH)Q
(r)
H .

It might be useful to recall that from Bernoulli’s inequality we have
α(r) ≤ pH ·Q(r)

H . For small values of pH (as usual in Bitcoin) this upper
bound is a good approximation of α(r).

Note that α(r), β(r), and T(r)mp are random variables (on integer do-
mains). For example. α(r) maps the number of honest-and-synchronized
submit-queries to the probability that at least one is a successful query.
More formally, conditioned on Q(r)

H = q, the random variable α(r) is the
probability of at least one success among q queries and the expected
value of α(r) corresponds to the probability of at least one successful
state-extension in round r of the execution. The reason is that F∆,pH ,pA

StX
treats each submit-query independently at random. This is the main
motivation to introduce this intermediate step.

The analysis

In the analysis of Bitcoin, conditions are needed that allow to reasonably
lower and upper bound expected values of the above random variables (and
their variances). As we will quickly recap below, it is shown in [PSS17]
that if the involved query power exceeds any limits in the constant-
difficulty case, then no security guarantees can be obtained. We start
with the following definition.

Definition 8.6.5 (Query and Mining Pattern). We say that the pair
(Z,A), running for R rounds (referred to by numbers 0, . . . , R− 1) obeys

288 CHAPTER 8. A COMPOSABLE MODEL FOR BITCOIN

the query pattern (⃗h, a⃗, d⃗) if, for any round r, we have

Q
(r)
H ≥ hr, Q

(r)
A ≤ ar, Q

(r)
H,DS ≤ dr

where h⃗ = (h0, . . . , hR−1), a⃗ = (a0, . . . , aR−1), d⃗ = (d0, . . . , dR−1) are
vectors consisting of positive integers. Consequently, the pair (Z,A)
obeys the associated mining pattern denoted by (α⃗, β⃗), where vectors
α⃗ = (α0, . . . , αR−1) and β⃗ = (β0, . . . , βR−1) are defined by the mapping

α(r) ≥ 1− (1− pH)hr =: αr

β(r) ≤ pA · ar + pH · dr =: βr.

Technically, these definitions imply lower and upper bounds on the
expectations of the random variables α(r) and β(r) respectively, which is
what will be eventually needed.

Definition 8.6.6 (Power Limits). The pair (Z,A) is said to be qtot-
query-limited if Q(r)

H +Q
(r)
A +Q

(r)
H,DS ≤ qtot. The pair (Z,A) is said to

be Tmp-mining limited if for all r,

T(r)mp ≤ Tmp.

The bounds in the theorem will depend on several worst-case quantities
that we introduce below.

Definition 8.6.7. For mining patterns (α⃗, β⃗), we use the shorthand
notation

αmin := min {αr}r∈[0,R−1] and αmax := max {αr}r∈[0,R−1];
βmin := min {βr}r∈[0,R−1] and βmax := max {βr}r∈[0,R−1].

For a (non-empty) subset S ⊆ {0, . . . , R − 1} of rounds we define the
corresponding averages by

αS :=
1

|S|
·
∑
r∈S

αr and βS :=
1

|S|
·
∑
r∈S

βr.

For Tmp-mining limited pairs (Z,A), we define the relative-power fractions

ρh :=
αmin
Tmp

and ρa :=
βmin
Tmp

.

8.6. SECURITY ANALYSIS 289

We call a subset S of rounds an interval if it consists of consecutive round
numbers r, . . . , r + t for some integers r, t ≥ 0.

Following [PSS17], the theorem will take into account that the network
delay ∆ decreases the effectiveness of the actual honest mining power:

Definition 8.6.8 (Discount function.). We define the function γ(α,∆) :=
α

1+α∆ for α,∆ > 0.

We are now ready to state and prove the main theorem which assures
that we can realize the ledger for a given range of parameters.

Theorem 8.6.9. Let p ∈ (0, 1), integer q ≥ 1, pH = 1 − (1 − p)q,
and pA = p. Let ∆ ≥ 1 be the upper bound on the network delay.
For all pairs (Z,A) running for R rounds which obey the (α⃗, β⃗) mining
pattern as of Definition 8.6.5 and which are Tmp-limited as of Defini-
tion 8.6.6, the real-world execution of protocol Modular-Ledger-ProtocolT
(in the (Gclock,F∆,pH ,pA

StX ,F∆
N-MC)-hybrid world) is indistinguishable from

the ideal-world execution with ledger functionality GB
ledger (and the simu-

lator defined in the proof), if for some λ > 1, it holds that for any interval
S of rounds of size t ≥ 1 and any S′ ⊆ S of size t′ ∈ [max{1, t · (1 −
∆αmax)}, . . . , t] the relation

αS′ · (1− 2 · (∆ + 1) · Tmp) ≥ λ · βS (8.1)

holds, and if the ledger parameters (which are positive and integer-valued)
satisfy the conditions

windowSize = T and Delay = 4∆,

maxTimewindow ≥
2 · windowSize
(1− δ) · γmin

and minTimewindow ≤
2 · windowSize
(1 + δ) · Tmp

,

η ≥ min{(1 + δ) · βmax
γmin

· windowSize, windowSize},

where the quantities are defined as in Definition 8.6.7 and where γmin :=
γ(αmin,∆) and δ > 0 is an arbitrary constant. In particular, the realiza-
tion is perfect except with probability R · negl(T), where negl(T) denotes a
negligible function in T .

290 CHAPTER 8. A COMPOSABLE MODEL FOR BITCOIN

Remarks. Before proving the theorem, it is instructive to recall the flat
model of Bitcoin and to see how the above quantities appear there. By
the above definitions and theorem statement, we see that we only make
statements if the honest mining power is not too small, the dishonest
mining power is not too large (and stands in a certain relation to the
honest mining power) and if the respective mining power values are in a
reasonable range to the overall mining power. In particular, the theorem
expresses a condition that the average honest mining power dominates the
average mining power of the adversary, even if the honest average is taken
over slightly smaller intervals (note that in particular, for each singleton
set S, we obtain that the familiar condition that αr should dominate βr).
Note that βmin is the most restrictive restriction (but not a lower-bound)
on the adversary (similarly, αmax is the best guaranteed lower-bound for
honest-and-synchronous mining power). In general, the adversary (and
hence the environment) is free to activate as many ITI’s unless it would
exceed Tmp if the environment is Tmp-bounded, and no more than what is
allowed by β⃗. This is a more general setting in the fixed-difficulty setting
compared to previous works. We show how to cast previous analyses (with
respect to fixed difficulty) in our setting in Section 8.7.1. Furthermore, we
show in the next subsection how to get a better bound for chain-quality.

Looking ahead, for example in [PSS17], the overall number of parties
is fixed to be some number n and there is an upper bound on the number
of dishonest parties ρn (and de-synchronized parties are not allowed by
definition). Assume for simplicity that pH = pA = p for a very small value
p > 0. We then obtain αmin ≈ (1 − ρ) · n · p and βmax ≈ ρH · n · p. By
Tmp = n · p and since the mining pattern as defined above is flat in flat
models (cf. Section 8.7.1), the correspondence ρa = ρ and ρh = (1 − ρ)
follows.

Also, as pointed out by [PSS17], for too large values of p in a range
that would yield Tmp = n · p > 1

∆ (where ∆ is the network delay), there
is an attack against the protocol, even if one assumes an honest majority.
This indicates that the main condition of the theorem in equation (8.1) is
also necessary up to a constant factor.

We now prove our main theorem.

Proof of Theorem 8.6.9. We start with an overview followed by a sequence
of claims.

8.6. SECURITY ANALYSIS 291

Overview. We prove the theorem by proving the security with respect
to the so-called EUC notion (externalized UC) with the global clock
as the only shared functionality. This then not only implies standard
UC realization (with respect to a local clock), but also implies the full
GUC statement by the equivalence shown in [CDPW07b]. In order to
show the theorem we specify the simulator for the ideal world Sledg.
Sledg is specified as pseudo-code in Appendix B.4. Let us explain the
general structure: the simulator internally runs the round-based mining
procedure of every honest party. Whenever a working mini-round is over,
i.e., whenever the real world parties have issued their queries to FStX,
then the simulator will assemble the views of its simulated honest-and-
synchronized miners and determine their common prefix of states, which is
the longest state stored or received by each simulated party when chopping
off T blocks. The adversary will then propose a new block candidate,
i.e., a list of transactions, to the ledger to announce that the common
prefix has increased (procedure ExtendLedgerState). The ledger will
apply the Blockify on this list of transactions and add it to the state.
Note that since Blockify does not depend on time, the current time of
the ledger has no influence on this output. To reflect that not all parties
have the same view on this common prefix, the simulator can adjust the
state pointers accordingly (procedure AdjustView). The simulation
inside the simulator is perfect and is simply the emulation of real-world
processes. What restricts a perfect simulation is the requirement of a
consistent prefix and the restrictions imposed by ExtendPolicy. In order
to show that these restrictions are not forbidding a proper simulation,
we have to justify, why the choice of the parameters in the theorem are
sufficient to guarantee that (except with negligible probability). To this
end, we analyze the real-world execution to bound the corresponding bad
events that prevent a perfect simulation.

We basically follow the proof ideas of Pass, Seeman, and shelat [PSS17]
to bound the bad events and adapt their observations to our setting. The
analysis is divided into several different claims about the real-world execu-
tion. They include properties such as a lower-bound on the chain growth,
the chain quality, or an upper-bound on the chain growth. These claims
show that our simulator can simulate the real-world view perfectly, since
the restrictions imposed by the ledger prohibit that only with negligible
probability, where the distinguishing advantage is upper bounded by
R ·negl(T), where R denotes the number of rounds the protocol is running

292 CHAPTER 8. A COMPOSABLE MODEL FOR BITCOIN

and negl(·) denotes a negligible function in the parameter T .
Recall that each round consists of two time-ticks. Hence, if a state-

ment is expressed with respect to a certain number t of rounds, it can
equivalently be expressed with respect to 2t clock-ticks. Recall that the
ledger parameters have to be given with respect to the clock, since the
clock is the formal reference point of time. However, for the analysis, it
is easier to think in rounds. In the following sections, if we refer to an
interval r, . . . , r+ t, this refers to t full rounds, i.e., the time window when
the clock first switched to the value τ = 2r up to the point when the clock
value is τ ∈ {2(r + t), 2(r + t) + 1}.

Chain dissemination. We first state an obvious useful fact about the
protocol’s operation.

Lemma 8.6.10 (State dissemination). Let Pi and Pj be miners, and let
r ≥ 0. Assume Pi is honest in round r, and its adopted state has length ℓ.
For any honest miner Pj in round r +∆ who registered to the network
before round r, it holds that its adopted state must have at least length ℓ.

Proof. By assumption, all messages, and in particular transmitted states
of honest miners, are delayed maximally by ∆ rounds. Thus, if such a
miner receives a state of length ℓ, then any other honest miner will receive
this state within the next ∆ rounds since the protocol relays its adopted
state. Additionally, if an honest miner successfully extends a ledger-state
in round r, the new state is fetched by other honest miner at latest after
∆ rounds if they were registered before round r. Hence by then, they will
have adopted a chain of length at least ℓ.

Probably the most useful corollary which is used in the sequel, is
to apply the above lemma to the sub-class of honest-and-synchronized
miners. Note that if Pj in the above lemma is honest-and-synchronized at
round r +∆ it must have been registered to the network not later than
at round max{0, r −∆} and hence the statement applies.

Analyzing chain growth. We now state the relation between time
(measured in number of rounds) and guaranteed number of new state
blocks.

8.6. SECURITY ANALYSIS 293

Lemma 8.6.11 (Chain growth). Consider the real-world execution (under
the conditions of the theorem). Let Pi be a miner, and let r ≥ 0. Assume
Pi is honest-and-synchronized in round r, and the (longest) state adopted
by Pi in round r has length ℓ. Then, in round r + t, it holds that for any
δ > 0, except with probability R · negl(T), the length of the (longest) state
adopted of any honest-and-synchronized miner Pj in that round has length
at least ℓ+ T if t ≥ T

(1−δ)·γmin
.

More generally, for an interval of rounds r, . . . , r+ t, we can guarantee
a length increase of γ · t with γ := τ

1+τ∆ if for all possible subsets S
of rounds of size t′ = t(1 − γ∆) of this interval we have αS ≥ τ . The
guarantee holds except with probability exp(−Ω(tγ)).

Proof. We first prove that for any real-world adversary A, there is an ad-
versary A′ that, starting at the given round r, maximally delays messages
and prove that in a real-world execution with A′ the expected state length
of an honest-and-synchronized miner in round r+ t, where the expectation
is taken over the randomness of the adversarial strategy, is no larger than
with adversary A in round r + t. Given adversary A, the adversary A′
works as follows. It internally runs A until and including round r without
any modifications. After round r, A′ first delays all current messages
in the network to the maximally possible delay. Also, after round r,
whenever an honest-and-synchronized party sends a message containing
a state, A′ sets the maximal delay ∆ for this message. Message delays
defined by A for messages that contain valid states of honest parties are
ignored. The adversary further ignores any message sent by A on behalf
of corrupted parties after round r.

We define the following “hybrid world”, which equals the real world
execution, but with fixed randomness as follows: for random strings σ, σ′,
we define HYBFStX(σ′),A(σ),Z to be defined analogously to exec·,·,Z but
where the internal coins of A and FStX are fixed to σ and σ′ respectively
(note that both are poly-bounded by the run-time restrictions of UC). Let
T hyb
A(σ),FStX(σ′),Z be the associated distribution of the joint view (induced

by the random coins of Z). Let Lenri (T) be the function that maps a
transcript T (of real-world and hybrid-world executions) to the length
of the (longest) adopted chain by (honest-and-synchronized) miner i in
round r.

We first give an inductive proof to show that for any r > 0, and all

294 CHAPTER 8. A COMPOSABLE MODEL FOR BITCOIN

strings σ, σ′,

Pr
σZ∈R{0,1}poly(κ)

[Lenr+ti (T hyb
A(σ),FStX(σ′),Z(σZ)) ≥

Lenr+ti (T hyb
A′(A(σ)),FStX(σ′),Z(σZ))] = 1.

Base Case(s): We give the base cases t = 0 and = 1 to already include
the arguments for the general case below. We argue for any fixed σZ and
show that the condition in the event cannot be violated. Since adversary
A and A′ behave identical up to and including round r, the length of the
longest state known or received by any party is the same. The reason is
that A′ and A play exactly the same strategy when the randomness is
fixed, since A′ itself does not use additional random coins and thus case
t = 0 follows. Furthermore, when the randomness σ′ of FStX is fixed,
a miner i in any round r′ is successful, if and only if it is successful in
round r′ with adversary A′. Thus, the condition for t = 1 would only
be violated if player i receives a longer state in round r + 1. However,
since A′ maximally delays messages, if any state arrives in round r + 1 in
the real execution with A′, then it arrives no later than r + 1 in the real
execution with A. This concludes the base cases.
Induction Step: t→ t+ 1: By the induction hypothesis, we have that the
condition

Lenr+ti (T hyb
A(σ),FStX(σ′),Z(σZ)) ≥ Lenr+ti (T hyb

A′(A(σ)),FStX(σ′),Z(σZ))

holds with probability one. We argue that Lenr+t+1
i (·) ≥ Lenr+t+1

i (·)
holds as well (on the above arguments) with probability one. Assume
this was not the case, then by the above reasoning, it can only be due to
miner i receiving a state in round r + t+ 1 that would increase the value
of Lenr+t+1

i (T hyb
A′(A(σ)),FStX(σ′),Z(σZ)) but would not increase the value of

the variable Lenr+t+1
i (T hyb

A(σ),FStX(σ′),Z(σZ)) (since the success of miner i
in round r + t + 1 is fixed given σ′). By the same reasoning as above,
since A′ maximally delays delivery of new states, if any state arrives in
round r in the real execution with A′, then it arrives no later than r in
the real execution with A. This concludes the induction proof.

We note that the hybrid world, if we sample σ, σ′ this yields the
distribution Texecπ,A′,Z (κ, z) (for any fixed input z to the environment).

8.6. SECURITY ANALYSIS 295

Let us abbreviate this by Treal,A′ to save on notation (and assuming the
input z is hard-coded in the environment). Similarly, let us denote Treal,A
the distribution in an execution with A.

By taking the expectation over σ, σ′ (and by the law of total probabil-
ity), we immediately get from the above arguments that for any positive
integer c and any round r:

Pr[Lenr+ti (Treal,A) ≤ Lenri (Treal,A) + c]

≤ Pr[Lenr+ti (Treal,A′) ≤ Lenri (Treal,A′) + c]

where we also used that for t = 0, the length distributions induced by A
and A′ are identical. Hence, chain growth can be analyzed w.r.t. adversary
A′ to yield a useful statement for any adversary A.

Let us use the following terminology: We say a round r′ is uniform
if Lenr

′

i (tr) = Lenr
′

j (tr) holds (where tr is a transcript), for all honest-
and-synchronized miners i and j. Recall that adversary A′ does not
broadcast adversarially generated states and any new state is delayed
by exactly ∆ rounds. The slowest progress of the overall maximal state
length known to an honest-and-synchronized party occurs in case uniform
rounds are the only successful rounds (if at all). Otherwise, the honest
miner with the longest state could be successful and broadcast a longer
state at round r′, which would be guaranteed to arrive to any other honest
miner in r + ∆. Furthermore, by a standard coupling argument, the
probability of success of any honest-and-synchronized party in some round
r′ is minimized by an environment Z that activates just enough parties to
obey the mining pattern αr′ . The coupling with any other environment
can be obtained by letting the activation results be the same up to the
point where enough parties have been activated to satisfy the mining
pattern. Further activations honest-and-synchronized participants can
only induce more successful state extension than what Z obtained.

We are thus left with analyzing growth w.r.t. a simple adversary and
an environment Z with a fixed activation pattern per round to match the
mining pattern.

Obtaining a tail bound depending on number of blocks. Now,
fix some round r. If in round s = r + t, the length increase of the overall
longest state of an honest-and-synchronized miner is less than c blocks,
then at most c · ∆ non-uniform rounds occurred. According to above,

296 CHAPTER 8. A COMPOSABLE MODEL FOR BITCOIN

we can associate to each round i a random variable Xi which is 1 if at
least one honest-and-synchronized miner successfully extended the state
by a query to FStX. The Xi’s are independent by construction and there
must be at least t − c ·∆ uniform rounds. On the other hand, for any
concrete sub-sequence of rounds S ⊂ (r, . . . , r + t) of size t′, the Chernoff-
Hoeffding bound in Theorem 2.5.1 implies for our setting (of independent
heterogeneous variables) that

Pr

[∑
i∈S

Xi ≤ (1− δ) · αS · t′
]
≤ exp(−Ω(αS · t′)), (8.2)

where αS := 1
t′

∑
i∈S αi.

We conclude that if for the sub-sequence S of rounds in the interval
from r to s, the relations c = E

[∑
i∈S Xi

]
= αS · t′ and |S| =: t′ = t− c∆

hold, we can derive a tail-estimate depending on the number of blocks.
We can define

cS :=
αSt

1 + αS∆

and assign a corresponding growth coefficient

γS :=
αS

1 + αS∆
.

and thus except with exponentially small probability in tγS = cS , the
length-increase is at least cS for this particular interval.

For the first part of the statement, observe that αS ≥ αmin, for all
subsets S, and that the function x

1+kx , where k is a positive integer and
x ∈ (0, 1), is monotone in x. We get the guaranteed minimal growth
by t · γmin in any interval of size t rounds for an honest-and-synchronized
party except with negligible probability in t · γmin by taking the union
bound overall all rounds r. What remains to prove is that this bound
applies also to the growth of the state if one compares any two honest-and-
synchronized miners which we do below (still following the proof steps
of [PSS17]).

For the second part of the statement, we generalize the above observa-
tion: if we have a guaranteed lower bound τ on the average αS (better than
αmin as used before) with respect to any subset of the required size within

8.6. SECURITY ANALYSIS 297

the given interval r, . . . , r + t (note that indeed we only have a bound
for the size of S in our experiments but no guarantee that a particularly
“good” one is chosen), the second part of the statement follows.

Bound for any honest-and-synchronized party. By Lemma 8.6.10,
we know that if an honest-and-synchronized miner knows some state,
then within ∆ rounds, every other honest miner will be aware of that
state. A similar calculation shows that the lower bound on the time
to have a state increase by T blocks by all honest-and-synchronized
parties follows the same law (and hence the perceived ledger speed is
the same). By requiring s = r + t − ∆ above, and thus considering
t′ := t−∆− c ·∆ = t− (c+1)∆ does not change the asymptotic behavior
since γSt−1 < γSt−γS∆ < γSt for all t and S since ∆γS < 1. Hence, this
additional additive term can be compensated by choosing a sufficiently
small constant δ in equation (8.2).

Mining limits. We state some helpful facts about bounds on the mining
behavior.

Lemma 8.6.12. The number of successful state-extensions that happen
with F∆,pH ,pA

StX in any given interval of t rounds (in the real-world execution
under the theorem conditions), where pA = p and pH = 1− (1− p)q for
some q ≥ 1 and p ∈ (0, 1) is bounded by (1 + δ) · t · Tmp for any δ > 0,
except with probability negl(Tmp ·t). Consequently, for a number T of state-
extensions to occur, the number of required rounds is less than T

(1+δ)Tmp

only with negligible probability in T . Finally, the number of adversarial
state extensions in a sub-set S of t rounds is no more than (1 + δ)βS · t
except with probability exp(−Ω(βS · t)) (for any δ > 0.

Proof. Since the state-exchange functionality evaluates each query inde-
pendently, we can upper bound the number of successes of these indepen-
dent Bernoulli-trials. We prove the bound for the environment Z (and
A) that makes as many queries as allowed per round (as limited by βr
and Tmp). As in the previous lemma, a coupling argument shows that
any other query-distribution cannot induce a larger probability exceeding
the given bound than Z, for which the query distribution is fixed. For
a round, let X(r) =

∑
iXi model the sum of the involved independent

trials to the state-exchange functionality. Clearly, βr ≤ E[X(r)] ≤ Tmp.

298 CHAPTER 8. A COMPOSABLE MODEL FOR BITCOIN

Let S be a set of t rounds. By linearity of expectation and invoking
Theorem 2.5.1 we get the tail-estimate

Pr

[∑
i∈S

X(i) ≥ (1 + δ) · t · Tmp

]
≤ exp(−Ω(βS · t))

≤ exp(−Ω(Tmp · t)),

where the last step invokes the theorem assumption that ∀r : βr ≥ ρaTmp
for the relative-power coefficient ρa.

Similarly, denote by Y (r) =
∑
i Yi the number of adversarial state-

extensions in round r. Again it is sufficient to consider a maximizing Z
which has an expected value of t · βS over a sub-set of rounds of size t.
Hence, we again can obtain an estimate of the form

Pr

[∑
i∈S

Y (i) ≥ (1 + δ) · t · βS

]
≤ exp(−Ω(βS · t)).

As a final conclusion we observe that for any number of state blocks T ,
the probability that for any δ > 0 it takes less than t = T

(1+δ)Tmp
rounds

to get T state extensions is negligible in T . Consequently, for this large
time interval, all tail bounds hold except with probability exp(−Ω(T)),
where the constant hidden in Ω(·) depend on δ and on the relative-power
coefficient ρa.

Block withholding. From chain growth and the theorem’s condition,
we derive that if an honest-and-synchronized miner adopts a new state
that contains a block the adversary obtained by FStX then either this
block has been published by the adversary before, or it was mined quite
recently by a corrupted party.

Lemma 8.6.13 (Bound on Withholding strategies). In the real-world
execution (under the conditions of the theorem), assume that in round
r, an honest-and-synchronized miner adopts a new longer state state.
Assume there is a block st in this new state that was accepted upon an
adversarial query to FStX and that is not part of any state adopted by
any honest-and-synchronized party before round r. The probability that
such a block st was first accepted by FStX before round r − ωt happens

8.6. SECURITY ANALYSIS 299

only with probability negl(βS · t), for any constant 0 < ω < 1, where S
denotes the interval r − ωt, . . . , r.

Proof. Let us define s⃗t(r) = st0|| . . . ||stk to be the state adopted by
the honest-and-synchronized miner in round r as assumed in the lemma
statement. Let s⃗t(r

′) be the longest prefix of s⃗t(r) such that s⃗t(r
′) is

either the genesis block or a state newly accepted by FStX upon a query
by an honest-and-synchronized party in round r′ ≤ r. Hence all the blocks
in that prefix are known to at least one honest-and-synchronized party
by round r′. In light of the lemma statement, we consider the case that
r − r′ ≥ ωt.

Let S denote the set of rounds from r′ to r. The number of new
states mined by the adversary does not exceed (1+ δ′) ·βSωt (except with
probability negl(βS · t)) by the previous lemma.

At the same time, equation (8.1) implies that on any subset S′ of
size t′ = ωt(1 − αmax∆) the condition αS′(1 −∆αS′) ≥ (1 + δ)βS has
to hold for some constant δ ∈ (0, 1). This is the case since for all
x,∆ > 0, x

1+x∆ > x(1 − x∆) (and Tmp ≥ αS′) and this implies that
γ := αS′

1+αS′∆
≥ (1 + δ)βS . Lemma 8.6.11 gives us a chain-growth of

|s⃗t(r)| − |s⃗t(r
′)| ≥ (1− δ′) · γωt except with probability negl(βS · t).

Since all |s⃗t(r)|−|s⃗t(r
′)| blocks must have been mined by the adversary

we have |s⃗t(r)| − |s⃗t(r
′)| ≤ (1 + δ′′) · βSωt. We get a contradiction, since

now

(1− δ′) · γωt ≤ (1 + δ′′) · βS · ωt,

which, for sufficiently small δ′, δ′′ would imply that γ < (1 + δ)βS .

Chain-growth upper-bound. Our ledger also restricts the growth
over time. This is based on the following observation.

Lemma 8.6.14 (Chain-Growth Upperbound). Consider the real-world
execution (under the conditions of the theorem) and let Pi be a miner,
and let r ≥ 0. Assume Pi is honest-and-synchronized in round r, and the
longest state received or stored by Pi in round r has length ℓ. Then, in
round r+t, it holds, except with probability R·negl(T), that the length of the
longest state (received or stored) of at least one honest-and-synchronized

300 CHAPTER 8. A COMPOSABLE MODEL FOR BITCOIN

miner Pj in that round has length at most ℓ+ T if t ≤ T
(1+δ)·Tmp

for any
δ > 0.

Proof. We can combine the previous observations to upper bound the
number of accepted blocks. By Lemma 8.6.12 the number of rounds
to generate T new extensions of states is at least t′ ≥ T

(1+δ′)Tmp
except

with probability negl(T) (for any δ′ > 0) and thus with overwhelming
probability, in t′ ≤ T

(1+δ′)Tmp
, no more than T new blocks are mined.

In addition, we can invoke Lemma 8.6.13 to conclude that a new state
that contains a block that the adversary is withholding since a round
prior to r−ωt is accepted by an honest-and-synchronized party only with
probability negl(βmint), for any 0 < ω < 1 (since βmin can be achieved in
any round by an adversarial strategy and hence can serve as the lower
bound in the exponent of the tail bound). Analogously to Lemma 8.6.12,
by the definition ρa · Tmp = βmin this error probability is thus negligible
in T .

Both observations together imply that in t′ = t(1 + ω) ≤ T
(1+δ′)Tmp

rounds, no honest-and-synchronized party experiences a state increase of
more than T blocks for any δ′ except with negligible probability in T . This
is equivalent to the condition that t ≤ T

(1+ω)(1+δ′)Tmp
and we can choose

δ′ sufficiently small to obtain the bound with respect to t ≤ T
(1+δ)Tmp

and
any given δ > 0 as required by the statement. The claim follows by taking
the union bound over all rounds as the arguments above hold for any
round r.

Worst-case chain quality. We give a very coarse bound on the overall
chain quality in any sequence of T blocks as follows:

Lemma 8.6.15 (Fraction of honest blocks). Let Pi be a miner, and let
r ≥ 0. Assume Pi is honest-and-synchronized in round r and that the
length of the longest state received or stored is ℓ ≥ T . The fraction of
adversarially mined blocks within a sequence of T blocks in the state is
at most min{1, (1 + δ) · βmax

γmin
} except with probability R · negl(T) for any

δ > 0.

Proof. Let us assume that at round r, the state adopted by miner Pi
is s⃗tr′ = st0|| . . . ||stk. We show that in any sub-sequence of T state
blocks stj+1, . . . , stj+T in s⃗tr, the fraction of adversarially mined blocks

8.6. SECURITY ANALYSIS 301

is bounded. Without loss of generality, one can assume that the state
s⃗t<j := st0|| . . . ||stj as well as the state s⃗t>j+T := st0|| . . . ||stj+T+1

are mined by honest-and-synchronized miners (or j + T equals the length
of the state). Otherwise, one can enlarge T to meet this condition — this
can only increase the fraction of adversarial blocks in the sequence of T
blocks and since any state is finite and starts with the genesis block, the
condition will be fulfilled for some T . We further assume that s⃗t<j is
mined at round r′, and that in round r′ + t, the state s⃗t>j+T appears for
the first time as the state, or the prefix of a state, of at least one honest-
and-synchronized miner. We conclude that if an adversary successfully
extended the state during some round by a new state block stj+s of the
above sequence stj+1, . . . , stj+T , then this happens in a round between
r′ and r′ + t.

We now relate the number t of rounds to the number T of blocks.
Since t is assumed to be the minimal number of rounds until the first
honest-and-synchronized miner adopted a state containing stj+1, we can
make use of the minimal chain-growth Lemma 8.6.11 to conclude that the
probability that the condition t > T

(1−δ′)γmin
occurs in such an execution

is at most negl(T). We hence have t ≤ T
(1−δ′)γmin

with overwhelming
probability in T .

Similar to above, by Lemma 8.6.12 the time it takes to generate T
blocks is at least t ≥ T

(1+δ)Tmp
except with probability negl(T) and thus

with overwhelming probability, in t ≤ T
(1+δ)Tmp

, no more than T blocks
are mined.

Furthermore, also by Lemma 8.6.12, we get a worst-case upper bound.
Let N t

A denote the expected value in t rounds, invoking Lemma 8.6.12
gives us that N t

A ≤ (1 + δ)βmaxt except with probability negl(βmint)
(where we again use the minimum to bound the average of any interval).
Hence, since ρa ·Tmp = βmin by definition it follows as in previous lemmata
that the bound holds except with probability negl(T).

Putting things together, we conclude that except with negligible proba-
bility in T , the number of times the adversary was successful in extending
the state by one block is upper bounded by the quantity

N
T

(1−δ′)γ
A ≤ 1 + δ

1− δ′
· T · βmax

γmin
.

Hence, the fraction of adversarial blocks within T consecutive blocks

302 CHAPTER 8. A COMPOSABLE MODEL FOR BITCOIN

cannot be more than f = min{1, (1+ δ′′)βmax

γmin
} for any δ′′ and sufficiently

small constants δ, δ′ > 0, except with negligible probability in the length
T of the sequence.

Since our arguments hold for any interval, the proof is concluded by
taking the union bound over the number of such sequences (which is in
the order of number of rounds).

Consistency (common prefix). We now state the lemma on the
common-prefix property in our setting.

Lemma 8.6.16 (Consistent states). Consider the real-world execution
under the condition of the main theorem. Let Pi and Pj be miners
(potentially the same), and let r′ ≥ r ≥ 0. Assume Pi is honest-and-
synchronized in round r, and Pj is honest-and-synchronized in round r′.
Assume that the length of the longest state received or stored by Pi in
round r is ℓ ≥ T . Then, the ℓ − T -prefix of that longest state of Pi in
round r is identical to the ℓ− T -prefix of the state of Pj stored or received
in round r′ except with probability R · negl(T).

Proof. We again follow the basic line of reasoning in [PSS17] and adapt
the appropriate arguments to our setting. First, since an inconsistency at
round r implies an inconsistency at round r′ > r, if the claim is proven
for the case r ≤ r′ ≤ r + 1, then by an inductive argument, the claim
holds for any r′ ≥ r.

The protocol mandates that the honest-and-synchronized miners trun-
cates the T newest blocks from the current respective state. Thus, we
need to argue that the block which is T +1 far away from the head will be
part of any state output by any honest-and-synchronized miner. Suppose
we are at round r′ in the protocol, then the time it takes to generate the
last T blocks is at least t ≥ T

(1+δ)Tmp
except with negligible probability in

T as established in Lemma 8.6.12 and any 0 < δ < 1.
Looking ahead, we will eventually conclude that with overwhelming

probability within the interval of rounds s = r − t, . . . , r′ ∈ {r, r + 1}
(where r ≥ t), the honest-and-synchronized miners have an opportunity
to agree on a common state and hence at round r′, they will still agree
on a large common prefix of the current state at round r′.

In the interval of rounds, let this set be denoted as usual by S, between
round s and round r′ = r, the expected number of rounds, where at lest

8.6. SECURITY ANALYSIS 303

one honest-and-synchronized miner is successful, is at least αSt. Thus,
again by a standard Chernoff bound, the probability that the number of
these successful rounds is smaller than q̄min := (1− δ′) · αSt is no more
than exp(−Ω(tαS)) in the real-world UC random experiment. Again, a
coupling argument as in Lemma 8.6.11 yields that this tail-bound (where
the environment activates the least number of parties possible and hence
the random variables that describe the success are independent) applies
to any environment. Finally, the conditions of the theorem in particular
assure that αS > βmin and hence this probability can be upper bounded
by negl(βmint).

Unfortunately, the “race” between the good guys and the bad guys
is not yet conclusively analyzed, since the mere superiority of honestly
mined blocks does not imply that the honest parties will reach agreement.
In particular, not all of the expected honestly mined blocks are equally
useful to obtain a so-called convergence opportunity. In particular, we
need to know how many of the honestly mined blocks happen in isolated,
sufficiently silent intervals.

Formally, let us introduce the random variable Ri that measures the
number of elapsed round between successful round i− 1 and successful
round i in the real-world UC execution, where R1 measures the number
of elapsed rounds to the first successful round. Based on Ri, the random
variable Xi is defined as follows: Xi = 1 if and only if Ri > ∆ and exactly
one honest-and-synchronized miner mines a new state (i.e., successfully
appends a new block to the state) in the ith successful round.

Let Ei1 be the event that there is at least one successful round in the
interval of ∆ rounds starting after successful round i− 1 (or at the onset
of the experiment). Let Ei2 be the event that strictly more than one miner
is successful in the following successful round i.

Overall, our goal is to suitably bound the number of blocks that
prevent those events of “success & silence” (i.e., bound the probability of
the event Xi = 0) in an interval of t rounds. We call these the undesirable
blocks. They have to be infrequent enough such that in combination with
adversarially mined blocks, they do not prevent too many convergence
opportunities. We hence need to suitably bound the occurrence of the
above two bad events Eij in our experiment.

By a union bound, and invoking that αr ≤ Tmp, we directly have that
Pr[Xi = 0] = Pr[Ei1 ∪ Ei2] ≤ ∆Tmp + Tmp, hence, on the positive side,
Pr[Xi = 1] ≥ 1− Tmp(∆ + 1).

304 CHAPTER 8. A COMPOSABLE MODEL FOR BITCOIN

Let X :=
∑q̄min

i=1 Xi and let us define q̄′min := (1− δ′′) · (1− Tmp(∆ +
1)) · q̄min. Since by equation (8.1) the term 1 − 2(∆ + 1)Tmp must be
positive, we have that Tmp(∆ + 1) ≤ 1

2 and, because FStX treats each
new state-submission independently of previous submission, we conclude
that Pr[Xi = 1 |X1, . . . , Xi−1] ≥ 1

2 . Since we do not argue here about
any particular optimal strategy by an environment-adversary pair (Z,A),
we need to invoke Lemma 8.6.17 from which we get

Pr[X ≤ q̄′min] ≤ exp
(
−(δ′′)2q̄min/2

)
. (8.3)

To express this w.r.t. βmin, observe that not only αr > βr (and thus
αmin > βmin) by equation (8.1) but also there is an actual constant
0 < δ̂ < 1 such that Tmp(∆+1) < 1− δ̂. This is true since by the theorem
condition we deduce that

(1− 2(∆ + 1)Tmp) ≥ λ(βmin/αmin)
=⇒ 1− λ(βmin/αmin) ≥ 2(∆ + 1)Tmp > (∆ + 1)Tmp.

And since λ > 1, i.e., we get can bound the constant by 0 < δ̂ <
λ(βmin/αmin) and obtain

(1− Tmp(∆ + 1)) · q̄min > δ̂(1− δ′) · αSt > δ̂(1− δ′) · βSt.

And hence conclude by equation (8.3) that Pr[X ≤ q̄′min] ≤ exp(−Ω(βmint)).
We thus have a (high-probability) lower bound on the number of silent
patterns.

We are actually interested in the number of times we have Xi =
Xi+1 = 1. This situation, as introduced above, means that we have a
situation, in which for ∆ rounds, no miner is successful, then exactly one
honest-and-synchronized miner is successful, and afterwards, we again
have ∆ rounds of silence. This is denoted in [PSS17] as a convergence
opportunity. For example, a convergence opportunity has the desirable
property, that at the end of such an opportunity, if the adversary is unable
to provide a longer state to the honest-and-synchronized miners during
this period, all honest-and-synchronized miners will reach an agreement
on the current longest state. Thus, in order to prevent this, an adversary
needs to be successful in mining roughly at the rate of the number of
convergence opportunities within t rounds.

8.6. SECURITY ANALYSIS 305

We have already seen that with overwhelming probability, there are at
least q̄min successful rounds, and among which (q̄min − q̄′min) can disturb
convergence opportunities. Since a single disturbing round can at most
prevent two convergence opportunities (it violates the condition for a
convergence opportunity with its neighbors in the sequence X1, . . . , Xk),
the number of effective convergence opportunities, say C, is lower bounded
(except with neglgiblble probability) by

C ≥ q̄min − 2(q̄min − q̄′min) = 2q̄′min − q̄min
≥ (1− δ′)αSt[1− 2Tmp(∆ + 1)− 2δ′′].

For any constant ϵ, by picking δ′ and δ′′ sufficiently small, this yields a
bound (except with negligible probability as derived above) of

C > (1− ϵ)(1− 2Tmp(∆ + 1))αSt.

The final argument is a counting argument. Let us denote by Sr′
the set of maximal states known to FStX at round r′ (i.e., any path
from the root to some a leaf) of length at least ℓ + C, where ℓ is the
length of the longest state known to at least one honest-and-synchronized
miner at round s. Note that Sℓ+Cr′ is non-empty: since each convergence
opportunity increases the length by at least one, and before each successful
round, there is a period of ∆ rounds where no honest miner mines a new
state, there has to exist at least one state with length at least ℓ+ C at
round r′.

Assume that the number of successful state extensions made by the
adversary (to FStX) between round s and r′ is TA < C. Then, by the
pigeonhole principle, for all s⃗t ∈ Sr′ , it holds that there is at least one
block stk, such that functionality FStX is successfully queried by exactly
one honest-and-synchronized miner P in round i to extend the state to
length k + 1, but no query by the adversary to extend a state of length k
to a state of length k + 1 has been successful up to and including round
r′. Even more, TA < C implies that such an i has to exist that also
constitutes a convergence opportunity.

After this convergence opportunity at round i, all honest-and-synchronized
miners have a state whose first k+1 blocks are s⃗ti = st0 . . . , stk. Unless
the adversary provides an alternative state with a prefix s⃗t′i of length
k+1, such that st′l ̸= stl for at least one index 0 < l ≤ k, no honest-and-
synchronized miner will ever mine on a state whose first k + 1 blocks do
not agree with s⃗ti.

306 CHAPTER 8. A COMPOSABLE MODEL FOR BITCOIN

The existence of an alternative prefix s⃗t′i of length k + 1 for any such
i and for all states s⃗t ∈ Sℓ+Cr′ implies TA ≥ C and therefore contradicts
the assumption that TA < C.

What is left to prove is that for any such interval of size t (from
round s to round r′), the probability that TA < C holds in any real-
world execution except with negligible probability in βmint. Analogously
to Lemma 8.6.12, by the definition ρa · Tmp = βmin (and recalling that
we established a lower bound on t in the beginning) we get that this error
probability is negligible in T .

First, by Lemma 8.6.13, for any ω > 0, the probability that any new
state accepted by an honest-and-synchronized miner during the period
of at most t+ 1 rounds (from s to r′) is actually a state extension that
the adversary withheld since round s − ω(t + 1) (or even before) is at
most negl(βmint). By Lemma 8.6.12, the number of adversarial blocks
(i.e., successful state extensions by A) generated within this slightly larger
interval S′ of size |S′| = (1 + ω)(t+ 1) rounds is (except with probability
negl(βmint)) upper bounded by TA ≤ (1 + δ)(1 + ω)(t+ 1)βS′ . Also by
picking constant ω sufficiently small, we have that |S| ≥ (1− αmax∆)|S′|
and thus αS dominates βS′ by the theorem assumptions. We hence get
TA ≤ (1+δ)(1+ω)

λ (t+1)αS ·(1−2Tmp ·(∆+1)) by equation (8.1). By picking
the constants δ and ω, and ϵ sufficiently small relative to λ, we hence get
TA < C except with probability negl(βmint). Since our arguments hold
for any particular intervals S, we again apply the union bound over the
number of rounds and get the desired claim.

We used the following useful lemma in the previous proof to bound the
deviation with respect to an arbitrary environment (inducing a certain
sequence of random variables):

Lemma 8.6.17. Let τ ≥ 1
2 and consider boolean random variables

X1, . . . , Xn for which it holds that Pr[Xi = 1 |X1, . . . , Xi−1] ≥ τ . Then,
for any δ > 0,

Pr[

n∑
i=1

Xi ≤ (1− δ)τn] ≤ exp
(
−δ2n/2

)
.

Proof. We define the random variables Yk :=
∑k
i=1(Xi−τ) = (

∑k
i=1Xi)−

kτ . First, they satisfy the sub-martingale condition, i.e., for all k,

8.6. SECURITY ANALYSIS 307

E[Yk |Y1, . . . Yk−1] ≥ Yk−1: let Pr[Yk = yk−1 + (1 − τ) |Yk−1 = yk−1] =
Pr[Xk = 1 |X1, . . . , Xk−1] =: p1 ≥ τ and Pr[Yk = yk−1 + (−τ) |Yk−1 =
yk−1] = Pr[Xk = 0 |X1, . . . , Xk−1] := p0 ≤ 1 − τ . The (conditional) ex-
pected value is p1(yk−1+(1−τ))+p0(yk−1−τ) ≥ yk−1+p1(1−τ)−p0τ ≥
yk−1+[τ(1− τ)− (1− τ)τ] = yk−1. Second, we have a bounded difference
of |Yk − Yk−1| ≤ max(τ, 1− τ) = τ by the condition τ ≥ 1/2. Applying
the Azuma-Hoeffding bound given by Theorem 2.5.2 to the variables Yk
gives

Pr[Yn ≤ −δτn] ≤ exp(−δ2n/2).

And by definition Yn ≤ −δτn↔ Xn ≤ nτ − nδτ , the statement follows.

Concluding observations. Finally, we conclude the proof by noting
that after a delay of ∆ rounds, all honestly multicast transactions are
known to all honest-and-synchronized miners and would be included into
the next honestly minded block if valid. In the simulation, the simulator
also does it in the ideal world and hence will never propose blocks of
honest parties that do not comply with the conditions of the defined
ExtendPolicy of GB

ledger. Further, the synchronization of a party takes at
most Delay = 4∆ clock ticks: if Pj joins the network, his knowledge of
the longest chain and the set of valid transactions relative to that state,
which is known to at least one honest and synchronized miner is only
reliable after 2∆ rounds (4∆ clock ticks) since it takes at most ∆ rounds
to multicast the initial message that the miner has joined the network,
and additional ∆ rounds until the replies are received. During this 2∆
round the new miner will also have received all messages sent at or after
he joined the network, and in particular all transactions that are more
than ∆ rounds (2∆ = Delay

2) old and potentially valid.
The pointers of honest-and-synchronized parties can also not be too

distant, i.e., the slackness is upper bounded by windowSize ≥ T as
otherwise we would have a common-prefix violation in that execution
(assume the prefix of the chain known to a honest-and-synchronized party
was further away than T blocks from the prefix of the actual longest
chain, this would yield a fork with substantial probability). The theorem
follows.

308 CHAPTER 8. A COMPOSABLE MODEL FOR BITCOIN

8.6.4 Improving the Chain-Quality Parameter

As long as αmin > βmax, we see that among windowSize state blocks,
there is at least an honestly generated block, because then, by equa-
tion (8.1), we also have γmin > βmax and thus βmax

γmin
< 1. Such an

assumption is usually taken in existing analyses. However, we can derive
more general bounds for chain-quality (where the above case is one special
case) to obtain bounds for more general scenarios. In light of the chain-
growth statement in Lemma 8.6.11, we introduce the following useful
quantity:

Definition 8.6.18. Let the mining pattern be (α⃗, β⃗) for R rounds, let
the network delay be ∆, and let S be an interval. Define

cg∆(S) := max{τ ∈ (0, 1) | ∀S′ ⊆ S
with |S′| ≥ max{1, |S|(1−∆ · γ(τ,∆))} : αS′ ≥ τ};

and define the fraction

fcq := max
S⊆{0,...,R−1}

βS
γ(cg∆(S),∆)

.

Both quantities are well-defined as functions since we assume that
∀r : αr > 0. We derive a more general worst-case guarantee for the
fraction of adversarial blocks and we see that the fraction of adversarial
blocks is actually less than one under the theorem condition.

Lemma 8.6.19 (Generalization of Lemma 8.6.15). Consider a real-world
execution as in Theorem 8.6.9. Let Pi be a miner, and let r ≥ 0. Assume
Pi is honest-and-synchronized in round r and that the length of the longest
state received or stored is ℓ ≥ T . The fraction of adversarially mined blocks
within a sequence of T blocks in the state is at most min{1, (1 + δ) · fcq}
except with probability R · negl(T) for any δ > 0 and where fcq is defined
as in Definition 8.6.18. Under the condition of Theorem 8.6.9, this means
that for the ledger GB

ledger, we can guarantee

η ≥ min{(1 + δ) · fcq · windowSize, windowSize},

with fcq < 1 (and for any δ > 0).

8.6. SECURITY ANALYSIS 309

Proof. The proof proceeds as the one of Lemma 8.6.15: consider any sub-
sequence of T state blocks stj+1, . . . , stj+T in s⃗tr. We again assume that
s⃗t<j is mined at round r′ (by an honest-and-synchronized party), and that
in round r′ + t, the state s⃗t>j+T appears for the first time as the state,
or the prefix of a state, of at least one honest-and-synchronized miner.
Recall that if an adversary successfully extended the state during some
round by a new state block stj+s of the above sequence stj+1, . . . , stj+T ,
then this happens in a round between r′ and r′ + t. Let us denote this
interval by the set S of rounds.

Since t is assumed to be the minimal number of rounds until the first
honest miner adopted a state containing stj+1, we can actually make
use of the general part of Lemma 8.6.11 to conclude that the probability
that the condition t ≥ T

(1−δ′)γ(cg∆(S),∆) occurs in such an execution is
at most negl(T) and obtain t ≤ T

(1−δ′)γ(cg∆(S),∆) with overwhelming
probability in T . On the other hand, the lower bound on t is as in the
proof of Lemma 8.6.15.

Let again N t
A denote the expected value of adversarial blocks in t

rounds, invoking Lemma 8.6.12 gives us that N t
A ≤ (1 + δ)βSt except

with probability negl(βSt).
The number of times the adversary was successful in extending the

state by one block can therefore be upper bounded by the quantity

N
T

(1−δ′)γ
A ≤ 1 + δ

1− δ′
· T · βS

γ(cg∆(S),∆)
.

Since our arguments hold for any interval, the proof is concluded by taking
the worst case over all rounds and the maximal fraction equals fcq as
claimed.

To establish the last part of the statement, we observe that equa-
tion (8.1) in particular implies that for any interval S (of sufficient size),
we have that any subset S′ of rounds of size (1 − αmax∆)|S| fulfills
αS′(1 − Tmp∆) > (1 + ϵ)βS for some ϵ > 0. Since a lower bound x
for αS′ over all subsets of size (1 − αmax∆)|S| implies that x is also a
lower bound for any larger subset S′′ and hence for cg∆(S). Observ-
ing that for x,∆ > 0, x

1+x∆ > x(1 − x∆) and Tmp ≥ cg∆(S), we get
γ(cg∆(S),∆) > βS as required to conclude that fcq < 1.

310 CHAPTER 8. A COMPOSABLE MODEL FOR BITCOIN

8.7 Special Cases of our Model and Function-
ality Wrappers

In this section, we first explain important special cases of our main theorem
and show how to use functionality wrappers to enforce its conditions to
obtain composable statements.

8.7.1 Special Cases and Existing Works
We demonstrate how the protocols, assumptions, and results from the two
existing works analyzing security of Bitcoin (in a property based manner)
can be cast as special cases of our construction. We focus on the analyses
of Pass et al. (PSs for short) and of Garay et al. (GKL for short).

These models assume a number n of participants being active in the
protocol execution. All honest parties are assumed to be synchronized
(e.g., by special initialization messages by the environment).

GKL analysis (fixed difficulty and delay). We start with the result
in [GKL15], in particular with the so-called flat and synchronous model
with next-round delivery and a constant number of parties n (i.e., Bitcoin
is seen as an n-party MPC protocol).19 The relevant variables are defined
as follows:

• Each party is allowed to perform q ≥ 1 hash queries. This translates
to a success probability of pH = 1− (1− p)q and pA = p, and to a
total mining power TGKL

mp := p · q · n.

• The adversary gets (at most) q queries per corrupted party with
probability pA = p (there are no desynchronized parties). If tr
denotes the number of corrupted parties in round r, the expected
value would be tr · q · p and thus we can define the upper bound on
the adversarial mining power βGKL

max = p · q · (ρ · n), where ρn is the
(assumed) upper bound on the number of miners contributing to the
adversarial mining power (independent of r). Since the adversary is
free to go to the limit in the model, the mining pattern is also flat:
β⃗ = (βGKL

max , . . . , β
GKL
max).

19In a recent paper, the authors of [GKL15] propose an analysis of Bitcoin for a
variable number of parties.

8.7. SPECIAL CASES OF OUR MODEL AND FUNCTIONALITY
WRAPPERS 311

• Each honest and synchronized miner gets exactly one activation per
round and has success probability pH = 1 − (1 − p)q ∈ (0, 1), for
some integer q > 0 and hence we get a minimal honest mining power
of αGKL

min = 1−(1−p)q(1−ρ)·n (independent of r). Note that since n is
assumed to be fixed in their model, q(1−ρ)·n is in fact a lower bound
on the honest and synchronized hashing power. Since the model
assumes that this lower bound could potentially always be allowed,
we again define the flat mining pattern α⃗ = (αGKL

min , . . . , α
GKL
min).

• If instant delivery is assumed, this translates to defining ∆GKL := 1,
i.e., guaranteed delivery in the next round.

PSs analysis (fixed difficulty). Similarly, we can instantiate the
above values with the assumptions of [PSS17]:

• For each corrupted party, the adversary gets at most one query per
round. Each honest miner makes exactly one query per round. In
total, there are n parties among which ρn can be corrupted (in any
round).

• In the PSs model, pH = pA = p and hence TPSs
mp = p · n. With these

values we get βPSs
max = p · (ρ · n). Putting things together, we also

have αPSs
min = 1− (1− p)(1−ρ)·n, where (1− ρ) · n is the lower bound

on the honest (and hence also synchronized) parties. As before, the
mining pattern is flat.

• The delay of the network is upper bounded by a constant ∆PSs (as
usual, unknown to the participants).

The security is established with the following lemma:

Lemma 8.7.1. For the special settings above, if we impose the assumption
that

α
{GKL,PSs}
min · (1− 2 · (∆{GKL,PSs} + 1) · α{GKL,PSs}

min) ≥ λ · β{GKL,PSs}
max

(8.4)

then this implies the secure realization of the Bitcoin ledger with the
parameters assured by Theorem 8.6.9 for the above choices of values,
respectively.

312 CHAPTER 8. A COMPOSABLE MODEL FOR BITCOIN

Proof Sketch. The statement of course follows from the arguments given
in the respective works [GKL15] and [PSS17] since our execution model
in particular allows us to formulate the above assumptions. However, it is
instructive to see how the security follows in view of Theorem 8.6.9. In par-
ticular, why security follows when replacing the condition in equation (8.1)
by equation (8.4). At first sight, the condition is stronger as it implies
that the best strategy of the adversary is dominated by the worst strategy
of the honest players. However, the discount factor (1− 2 · (∆{GKL,PSs} +

1) · α{GKL,PSs}
min) is better than (1− 2 · (∆{GKL,PSs} + 1) · TGKL,PSs

mp). The
key observation why equation (8.4) subsumes equation (8.1) in the special
cases described above are the following:

• Since the number n of parties is fixed and exactly divided into honest
and adversarial, and because the worst-case honest strategy still
dominates the adversary’s best strategy, we can use to following
argument to justify why equation (8.4) is actually sufficient. Still,
the best strategy of the adversary is to activate as many corrupted
parties, say t, as allowed by the upper bound βmax. Since the
number of parties is fixed, this implies that at most n− t activations
of honest parties remain and by definition αmin = 1− (1− p)(n− t)
is the matching lower bound. Hence, and in contrast to the more
general setting, here the best strategy for corrupted parties induces
a concrete strategy for honest parties.20 A bit more formally, let x
denote the number of queries such that αmin = 1− (1− p)x holds.
Assume in some round r, more honest parties are activated, say qrH .
By definition, βmax ≥ p · (n − x) and we can formally assign the
difference (qrH − x) to the adversary’s budget (and the condition
αmin > βmax is preserved as stated below). First, observe that for
integers x, y > 1,

αr − α = (1− (1− p)x+y)− (1− (1− p)x) = (1− p)x − (1− p)x+y

= (1− p)x · (1− (1− p)y) ≤ (1− (1− p)y) ≤ (1− (1− y · p))
= y · p,

where the last inequality is a consequence of Bernoulli’s inequality.
20Note that in a more general setting, this not need to be the case: even if the bound

on the adversary is small, by activating a huge fraction of honest parties the consensus
of honest parties could still be disturbed and hence our analysis has to consider such
“malicious” strategies as well.

8.7. SPECIAL CASES OF OUR MODEL AND FUNCTIONALITY
WRAPPERS 313

The adversary’s mining power is thus increased, however not beyond
βmax since the identity n− x = (n− qrH) + (qrH − x) is guaranteed
because n and x are fixed for the analysis.

• Looking at the proof of Theorem 8.6.9, we see that the quantities
αS and βS can be identified by αmin and βmax, respectively, and in
addition the relationship αmin > βmax is implied by equation (8.4)
(and thus αS > βS for any subset S of rounds of any size. With
this, all Lemmata in the proof of Theorem 8.6.9 simplify and no
further condition in addition to equation (8.4) is needed.

With this in mind, replacing the condition in equation (8.1) by equa-
tion (8.4) the proof of Theorem 8.6.9, under the conditions imposed by
the above models, yields the statement of the lemma.

8.7.2 Restrictions and Composition

Note that the theorem statement a-priori holds for any environment (but
simply yields a void statement if the conditions are violated). In order to
turn this into a composable statement without restrictions, we follow the
approach proposed in Section 8.2 and model restrictions in the setup of
the protocol via wrapper functionalities. The general conceptual principle
behind this is the following: For the hybrid world, that consists of a
network FN-MC, a clock Gclock and a random oracle FRO with output
length κ (or alternatively the state-exchange functionality FStX instead
of the random oracle), define a wrapper functionality W which enforces a
given mining pattern (α⃗, β⃗) (and the upper bounds on the mining power).
If the conditions of Theorem 8.6.9 are met, then we get a UC-realization
statement with respect to all (efficient) environments.

A general wrapper. We define a wrapper along the lines of the basic
example in Section 8.2 and we provide the details and the specification of
such a general random-oracle wrapper W∆,Tmp

α⃗,β⃗,D
(FRO) in Figure 8.10. This

wrapper slightly changes the synchrony pattern of the real-world execution:
since a lower bound on honest mining power is enforced (otherwise, the
clock does not go on), we realize the ledger with a slightly different
predicate predict-timeBC to reflect this assumption. It is easy to see that
this is a straightforward extension to the derivation in Lemma 8.4.2. We

314 CHAPTER 8. A COMPOSABLE MODEL FOR BITCOIN

note that this change to the synchronization pattern just stems from
the fact how we implement such restricting assumptions but does not
affect other modeling decisions. Recall that this is a major motivation
to abstract the time-dependency of the ledger using such an abstract
predicate, such that minor details have only local effects.

For this wrapper we have the following desired corollary to Theo-
rem 8.6.9 and Lemma 8.6.2. This statement is guaranteed to compose
according to the UC composition theorem.

Corollary 8.7.2. The protocol Ledger-Protocolq,D,T , which is defined in
the (Gclock,F∆

N-MC,W
Tmp

α⃗,β⃗,D
(FRO))-hybrid world, UC-realizes functionality

GB
ledger (for the parameters established by Theorem 8.6.9 and the extended

predicate predict-timeBC as described above) if the parameters of the wrap-
per (and thus formally enforced by the setup-functionality of the protocol),
satisfy equation (8.1).

It is straightforward to design different wrappers capturing a range of
assumptions that one might want to make (and which imply the conditions
of Theorem 8.6.9), such as an explicit restriction on number of active
participants etc. Each of these real-world assumptions might influence
the time-progress and hence the predict-time-predicate.

8.8 Modular Constructions based on the Ledger

The ledger functionality can be enhanced in a modular way in various
directions. In fact, the presented ledger functionality can be seen as the
minimal composable goal of a blockchain protocol. Different blockchain
protocols would typically achieve different ledgers, either because they
achieve stronger guarantees or offer more capabilities in addition to the
basic ones we captured. In this section, we show a straightforward
extension.

As already observed in [GKL15], the Bitcoin protocol makes use
of digital signatures to protect transactions which allows it to achieve
stronger guarantees. Informally, the stronger guarantee ensures that
every transaction submitted by an honest miner will eventually make
it into the state. Using our terminology, this means that by employing
digital signatures, Bitcoin implements a stronger ledger. In this section

8.8. MODULAR CONSTRUCTIONS BASED ON THE LEDGER 315

Functionality W∆,λ,Tmp

α⃗,β⃗,D
(FRO)

The wrapper functionality is parametrized by the mining pattern, the difficulty, and
the upper bound Tmp on the total mining power per round (which thereby also implies
an upper bound on the total number of RO-queries per round). The wrapper is
assumed to be registered with the global clock Gclock. The functionality manages the
variable counter and is aware of set of registered parties, and the set of corrupted
parties.

Initially, P′ = ∅ and counter = 0, qA = 0 and qH = 0. Define p := D
2κ (where κ is

the output length of the underlying random oracle).

General:

• The wrapper stops the interaction with the adversary as soon as the adversary
tries to exceed its allowed budget of hashing power.

Relaying inputs to the random oracle:

• Upon receiving (eval, sid, x) from A on behalf of a party P which is corrupted
or registered but de-synchronized, then first execute Round Reset. Then do
the following:
qA ← qA + 1; β(counter) ← qA · p
if (qA + qH) · p ≤ Tmp then

if β(counter) ≤ β⃗[counter] then
Forward the request to FRO and return to A whatever FRO returns.

• Upon receiving (eval, sid, x) from an uncorrupted, registered and synchronized
party P , then first execute Round Reset. Then do the following:
qH ← qH + 1; α(counter) ← 1− (1− p)qH
if (qA + qH) · p ≤ Tmp then

Forward the request to FRO and return to P whatever FRO returns.
if αcounter ≥ α⃗[counter] then

Send (clock-update, sidC) to Gclock ◃ Release the clock if lower bound
is reached.

• Any other request is relayed to the underlying functionality (and recorded by
the wrapper) and the corresponding output is given to the destination specified
by the underlying functionality.

Standard UC Corruption Handling:

• Upon receiving (corrupt, sid, P) from the adversary, set P′ ← P′ ∪ {P}.

Procedure Round-Reset:
Send (clock-read, sidC) to Gclock and receive (clock-read, sidC , τ) from Gclock. If
|τ − counter| > 0 and the new time τ is even (i.e., a new round started), then set
counter← τ and set qA ← 0 and qH ← 0.

Figure 8.10: The wrapper that restricts access to the random oracle based
on a given mining pattern.

316 CHAPTER 8. A COMPOSABLE MODEL FOR BITCOIN

we present this stronger ledger and show how such an implementation
can be captured as a UC protocol which makes black-box use of the
Ledger-Protocol to implement this ledger. The UC composition theorem
makes such a proof immediate, as we do not need to think about the
specifics of the invoked ledger protocol, and we can instead argue security
in a world where this protocol is replaced by GB

ledger.

Protection of transactions using accounts. In Bitcoin, a miner
creates an account ID AccountID by generating a signature key pair
and hashing the public key. Any transaction of this party includes
this account ID, i.e., tx = (AccountID, tx′). An important property
is that a transaction of a certain account cannot be invalidated by a
transaction with a different account ID. Hence, to protect the validity of
a transaction, upon submitting tx, party Pi has to sign it, append the
signature and verification key to get a transaction ((AccountID, tx′), vk , σ).
The validation predicate now additionally has to check that the account
ID is the hash of the public key and that the signature σ is valid with
respect to the verification key vk . Roughly, an adversary can invalidate
tx, only by either forging a signature relative to vk , or by possessing key
pair whose hash of the public key collides with the account ID of the
honest party.

The realized ledger abstraction, denoted by GB+
ledger, is a ledger func-

tionality as the one from the previous section, but which additionally
allows parties to create unique accounts. Upon receiving a transaction
from party Pi, GB+

ledger only accepts a transaction containing the AccountID
that was previously associated to Pi and ensures that parties are restricted
to issue transactions using their own accounts. As we explain, this also
amplifies transaction liveness.

8.8.1 A Stronger Ledger with Account Management
To achieve stronger guarantees than our original Bitcoin ledger, a party
issues transactions relative to an account. More abstractly speaking,
a transaction contains an identifier, AccountID, which can be seen as
the abstract identity that claims ownership of the transaction. More
specifically, we can represent this situation by having transactions tx
be pairs (AccountID, tx′) with the above meaning. Signatures enter the
picture at this level: an honest participant of the Bitcoin network will issue

8.8. MODULAR CONSTRUCTIONS BASED ON THE LEDGER 317

only signed transactions on the network. In order to link verification key
to the account, AccountID is the hash of the verification keys, where we
require collision resistance. More concretely, whenever a miner is supposed
to submit a transaction tx, it signs it and appends the signature and
its verification key. This bundle is distributed into the Bitcoin network.
The validation consists now of three parts. First, it is verified that the
public key matches the account, second, the signature is verified, and
third, its validated whether the actual transaction (AccountID, tx′) is
valid, with respect to a separate validation predicate ValidTxB on states
and transactions tx of the above format. Only if all three tests succeed,
the transactions is valid.

Looking ahead, the goal of this is the following: Assume that for the
validation predicate ValidTxB it holds that if a transaction (AccountID, tx)
is valid relative to a state, then the only reason why it can get invalid
is due to the presence of another transaction with the same account. If
we think of wallets, if a miner can spend his coins at current time, then
only another transaction by himself can invalidate that (by spending the
same coins, which the Bitcoin network will refuse). In combination with
the unforgeability of signatures, no adversary can ever render a valid
transaction invalid. Together with the weak liveness guarantee we can
derive a better liveness guarantee.

We now show how to implement this account management in the
GB
ledger hybrid world to achieve a stronger ledger that formalizes account

management in an ideal manner. Our protocol makes use of an existentially
unforgeable digital signatures scheme.

The Protocol for Account Management

Hybrid ledger functionality. Let ValidTxB and blockifyB be as in
the previous section but with the following additional property: each
transaction is a pair tx = (AccountID, tx′) where the first part is bitstring
of fixed length and the second part is an arbitrary transaction. In addition
we require the following property: for any state state and any transaction
tx it holds that ValidTxB(tx, state) = 1 implies, for any state extension
state||st′, that ValidTxB(tx, state||st′) = 1, if st′ does not contain a
transaction with the same identifier AccountID. Recall that we assume
that Definition 8.5.1 is satisfied.

We assume the Bitcoin ledger functionality with the following vali-

318 CHAPTER 8. A COMPOSABLE MODEL FOR BITCOIN

dation predicate, which is defined relative to a collision-resistant hash
function H, and a signature scheme DSS.

Algorithm to describe the assumed validation predicate

function ValDSS(BTX, state, buffer)
Let BTX = (tx, txid, τL, pi)
Parse tx as ((AccountID, tx′), vk , σ) (Return 0 in case of a wrong format)
if AccountID = H(vk) and Ver(vk , tx, σ) = 1 then

return ValidTxB(tx, state)
else

return 0

Protocol. The protocol is straightforward: whenever the protocol is
given an input of the form (AccountID, tx) it first checks that it is the
party associated with this account ID. Then, it receives the newest state
from the ledger and checks, whether this input is valid with respect to the
current state. If this is the case, the party signs the input and submits it
to the ledger.

Protocol accountMgmt(P)

Initialization:
This protocol talks to the Gledger, but only changes the behavior of read or submit-
queries to the ledger. Any other command is simply relayed to Gledger and the
corresponding output is given to the environment.
The protocol keeps a counter i and a vector submitted of inputs submitted to the
ledger which are not yet contained in the state of the ledger.

Account Management:

• Upon receiving (CreateAccount, sid), execute (sk , vk) ← Gen, update i ←
i+ 1 and set AccountIDi ← H(vk). Return (CreateAccount, sid,AccountIDi)

Ledger Read and Write:

• Upon receiving (read, sid) send (read, sid) to Gledger and receive as answer
the current state = st1|| . . . ||stn. Then do the following:

state′ ← st1 ◃ Genesis state
for i = 2 to n do

From state block sti, extract the contents
(tx1, vk1, σ1)|| . . . ||(txn, vkn, σn)
Define new block-content x⃗′ ← tx1|| . . . ||txn
state′ ← state||blockifyB(x⃗

′)

Return (read, sid, state′)

8.8. MODULAR CONSTRUCTIONS BASED ON THE LEDGER 319

• Upon receiving (submit, sid, tx), check that tx = (AccountID, tx′) for
AccountID ∈ {AccountID1, . . .AccountIDi}. If the check fails, ignore the input.
Otherwise, do the following:

1. Read the state state from Gledger as above.

2. If ValidTxB(tx, state) = 1, then sign the input by σ ← Sign(sk , tx) and
send (submit, sid, (tx, vk , σ))

The Enhanced Ledger Functionality

We present an enhanced ledger functionality with a validation predicate
that enforces that an adversarial transaction cannot prevent a transaction
by an honest party to eventually make it into the stable state of the ledger.
In particular, we get the following enhanced functionality:

Functionality GB+
ledger

GB+
ledger is identical to GB

ledger except with the following additional capabilities:

Difference to standard Ledger:

• Upon receiving (CreateAccount, sid) from party Pi (or the adversary on
behalf of a party Pi), send (AccountReq, sid, Pi) to A and upon receiving a
reply (AccountReq, sid, Pi,AccountID) do the following:

1. If AccountID is not yet associated to any party, store the pair
(AccountID, Pi) internally and return (CreateAccount, sid,AccountID)
to Pi.

2. If AccountID is already associated to a party, then output
(CreateAccount, sid,Fail) to Pi.

Standard Bitcoin Ledger:

• Identical to Gledger with validation predicate Valstrong and with the fixed trans-
action format described above. We omit the formal specification here.

The following validation predicate is used within GB+
ledger and provides

better guarantees. We discuss the improvements in the next section.

320 CHAPTER 8. A COMPOSABLE MODEL FOR BITCOIN

Algorithm to define the strong validation

function Valstrong(BTX, state, buffer)
Let BTX = (tx, txid, τL, pi)
if tx = (AccountID, tx′) and AccountID is associated with pi then

return ValidTxB(tx, state)
else

return 0

We have the following lemma:

Lemma 8.8.1. Let DSS be a secure digital signature scheme and let H be
a collision resistant hash function. Then the protocol accountMgmt in the
GB
ledger-hybrid world UC-realizes ledger GB+

ledger, where the functionalities
are instantiated as described above.

Proof Sketch. It is straightforward to write a simulator in the ideal-world
execution that perfectly mimics the protocol as long as no hash-collision
or signature forgery occurs. This is because the only non-trivial property
that the ledger enforces (beyond what is already guaranteeed) is that just
the account holder can submit a transaction but no one else in his name.
If no hash-function collision is found, the only possible way is to forge a
signature. If both events do not happen, the real world indeed implements
the stronger validation predicate. Assuming a collision-resistant hash
function a and signature scheme that is unforgeable under chosen-message
attacks, this implies the statement.

On the Better Guarantees

The stronger guarantee for honestly submitted transactions stems from
two facts. First, by Definition 8.5.1, the state blocks contain transactions
beyond coin-base transactions. Second, since a transaction of a party
is associated with its account, and cannot be invalidated by another
transaction with a different account, this implies that the transaction
remains valid relative to state (unless the honest party itself issues a
transaction that contradicts a previous transaction for one of its accounts,
but we neglect this here). As an example, assume an honest party submits
a single transaction for one of its accounts, and assume this transaction
is valid relative to the state state. Then, by the defined enforcing
mechanism of ExtendPolicy, this transaction is guaranteed to enter the

8.8. MODULAR CONSTRUCTIONS BASED ON THE LEDGER 321

state after staying in the buffer for long enough, and when an honest party
mines a subsequent block after this delay. This means that after that
delay has passed, the transaction has to appear within the subsequent
window of windowSize blocks.

A brief worst-case calculation. Looking at the ledger abstraction, we
can directly compute the following worst-case upper bound for any miner
(we neglect here the offset at the beginning of the execution for simplicity):
after submitting the transaction, the transaction will appear (relative to
the view of the submitting party) within the next 4 · windowSize blocks
after submitting the transaction (except with negligible probability). The
reason is that upon submitting, (1) the view of the miner submitting the
transaction could be windowSize blocks behind the head of the state of
the ledger, (2) by the definition of ExtendPolicy, at most 2 · windowSize
blocks can be added to the state while the transaction is staying in the
buffer before the ledger starts enforcing that the transaction be part of
the subsequent next honest state block. This can be guaranteed within
another interval of windowSize state blocks. We note that this calculation
yields a quite loose bound. By the correspondence of windowSize and the
chop-off parameter T of the Bitcoin protocol, and assuming that T = 6
blocks take approximately one hour, we get a worst-case time estimate for
transaction liveness of four hours— given that transactions are correctly
signed and are not invalidated due to other transactions with the same
account.

Conclusion,
Supplementary Material,

and Bibliography

Chapter 9

Conclusion

This thesis is driven by one central question: what is security and how
should it be defined? We saw that it is desirable to specify security
statements as constructions, i.e., to formulate what is assumed and to give
a precise description of the ideal system that a protocol should achieve
based on the assumptions. The constructive cryptography framework
is a perfect match to formulate and prove these kind of construction
statements. We believe that our results help to understand and judge the
importance of practically relevant protocols and to appreciate a systematic
way to identify which ideal abstractions such protocols should emulate and
to figure out in which cases existing game-based notions are (in-)sufficient
for a given application.

We hope that the general approach of this thesis helps to spawn
future research in various areas of cryptography. In light of this thesis,
in the realm of secure communication, a general treatment of Internet
protocols in constructive cryptography could help to build a more secure
infrastructure. In the same way, the area of secure cloud storage could
benefit from new analyses in a wide range of applications including for
example the notions for proofs-of-ownership or de-duplication techniques.
And finally, in the blockchain space, the emerging applications, some of
which have the potential to become a critical part of the infrastructure
in the information society, need careful analyses that smoothly support
their secure development and design.

Appendix A

Details of Chapter 5

A.1 Finishing the Construction Proof
We conclude the last steps of the proof of Theorem 5.3.1 here, i.e., we
complete the sequence of hybrid worlds as promised in Section 5.3.3.
Recall that in the title of each box that depicts two hybrids at once, there
are typically two names surrounded by solid or dashed boxes such as HC0

and HC1 . This means that all code specifically surrounded by a dashed line
is executed in HC0 , but not HC1 . Similarly, all code specifically surrounded
by a solid line is executed in HC1 , but not in HC0 . All remaining code is
executed in both systems. In cases where the box represents just one
hybrid system, we might draw boxes to highlight certain parts of the code.

A.1.1 Completing Step 5.)
The fifth hybrid system HZ4 is a syntactic modification of the fourth. In
particular, we observe that the mapping of identities to interfaces is stored
redundantly, once within the network and once within the certification
authority. Hence, it is sufficient to store it only once. We further simplify
the case distinction upon input (send,m, ID) at an interface Pi, and upon
input (inject, s, IDs, IDr) at interface E. The behavior of the resulting
system is not affected by any of these changes and the two hybrids are
equivalent, i.e., HZ3 = HZ4 .

328 APPENDIX A. DETAILS OF CHAPTER 5

Resource HZ3 and HZ4

Initialization

Jca, Jnet, S ← ∅
Ica1 , Ica2 , Inet

1 , Inet
2 , T, L← empty tables

Jca, Jnet, S ← ∅
I1, I2, T, L← empty tables

Interface Pi
Input: (register, ID)

if IDPi
= ⊥ then

(skS , pkS)← GenS
(skR, pkR)← GenR
if ID ̸∈ Jca then

Jca ← Jca ∪ {ID}
Ica1 [Pi]← ID
Ica2 [ID]← Pi

T [ID]← (pkS , pkR)
if ID ̸∈ Jnet ∧ I1[Pi] = ⊥ then

Jnet ← Jnet ∪ {ID}
Inet
1 [Pi]← ID

Inet
2 [ID]← Pi

I1[Pi]← ID
I2[ID]← Pi

IDPi
← ID

valPi ← [skS , pkS , skR, pkR]
if Mi ̸∈ Z then

S ← S ∪ {ID}
output Success at Pi

else
output Fail at Pi

else
output Fail at Pi

Input: (send,m, ID)
if IDPi

̸= ⊥ then
Let valPi = [skS , pkS , skR, pkR]
if T [ID] ̸= ⊥ then

Parse T [ID] as (pk ′
S , pk

′
R)

if (pk ′
S , pk

′
R) ̸= (⊥,⊥) then

if (IDPi
, ID) ∈ S × S then

m∗ �M
s← Signcrypt(skS , pk

′
R,m

∗)
else if (IDPi

, ID) ∈ (Jnet × S)
then

m∗ �M
s← Signcrypt(skS , pk

′
R,m

∗)
else

m∗ ← m
s← Signcrypt(skS , pk

′
R,m

∗)

if ID ∈ S then
m∗ �M
s← Signcrypt(skS , pk

′
R,m

∗)
else

m∗ ← m
s← Signcrypt(skS , pk

′
R,m

∗)

L[s, IDPi
, ID]← m

output (s, IDPi
, ID) at E

A.1. FINISHING THE CONSTRUCTION PROOF 329

Interface E of Net

Input: (inject, s, IDs, IDr)
if IDr ∈ Jnet then

Pi ← Inet
2 [IDr]

Pi ← I2[IDr]

Let valPi = [skS , pkS , skR, pkR]
if T [IDs] ̸= ⊥ then

Parse T [IDs] as (pk ′
S , pk

′
R)

if (pk ′
S , pk

′
R) ̸= (⊥,⊥) then

m← Unsigncrypt(skR, pk
′
S , s)

if (IDs, IDr) ∈ S × S then
bad1 ← (m ̸= ⊥ ∧

L[s, IDs, IDr] = ⊥)
m← L[s, IDs, IDr]

if (IDs, IDr) ∈ S×(Jnet\S) then
bad2 ← (m ̸= ⊥ ∧

L[s, IDs, IDr] = ⊥)
m← L[s, IDs, IDr]

if IDs ∈ S then
m← L[s, IDs, IDr]

if m ̸= ⊥ then
output (m, IDs) at Pi

Interface E of CA

Input: (register, ID, val)
if ID ̸∈ J then

T [ID]← val
J ← J ∪ {ID}
output Success at E

else
output Fail at E

Input: fetchAll

output (J, T) at E

Interface Mi ∈ Z
Input: reveal

output valPi at Mi

Interface Mi ̸∈ Z
Input: reveal

output ⊥ at Mi

A.1.2 Completing Step 6.)

The sixth hybrid system HZ5 is a syntactic modification of the previous one.
In this system, we observe that also the identities are stored redundantly,
so it is sufficient to only store the identities in one set (which is Jca in
this case). Furthermore, we can test various conditions at once and do
not need nested if-statements upon input (register, ID) at an interface
Pi. The modifications we make in this step do not affect the behavior.
Their sole purpose is to bring this system closer to the ideal world system.
By inspecting the pseudo-code we conclude HZ4 = HZ5 .

330 APPENDIX A. DETAILS OF CHAPTER 5

Resource HZ4 and HZ5

Initialization
Jca, Jnet, S ← ∅
I1, I2, T, L← empty tables

Interface Pi
Input: (register, ID)

if IDPi
= ⊥ ID ̸∈ Jca ∧ I1[Pi] = ⊥

then
(skS , pkS)← GenS
(skR, pkR)← GenR

if ID ̸∈ Jca or true then
Jca ← Jca ∪ {ID}
T [ID]← (pkS , pkR)

if ID ̸∈ Jnet ∧ I1[Pi] = ⊥ or true
then

Jnet ← Jnet ∪ {ID}
I1[Pi]← ID
I2[ID]← Pi

IDPi
← ID

valPi ← [skS , pkS , skR, pkR]
if Mi ̸∈ Z then

S ← S ∪ {ID}
output Success at Pi

else
output Fail at Pi

else
output Fail at Pi

Input: (send,m, ID)

IDPi
← I1[Pi]

if IDPi
̸= ⊥ then

Let valPi = [skS , pkS , skR, pkR]

if T [ID] ̸= ⊥ ID ∈ Jca then

Let valPi = [skS , pkS , skR, pkR]

Parse T [ID] as (pk ′
S , pk

′
R)

if (pk ′
S , pk

′
R) ̸= (⊥,⊥) then

if ID ∈ S then
m∗ �M

Let ℓ := |m|
m∗ � {0, 1}ℓ

s← Signcrypt(skS , pk
′
R,m

∗)
else

m∗ ← m
s← Signcrypt(skS , pk

′
R,m

∗)
L[s, IDPi

, ID]← m
output (s, IDPi

, ID) at E

A.1. FINISHING THE CONSTRUCTION PROOF 331

Interface E of Net

Input: (inject, s, IDs, IDr)

Pi ← I2[IDr]

if IDr ∈ Jnet Pi ̸= ⊥ then

Pi ← I2[IDr]

Let valPi = [skS , pkS , skR, pkR]

if T [IDs] ̸= ⊥ IDs ∈ Jca then

Let valPi = [skS , pkS , skR, pkR]

Parse T [IDs] as (pk ′
S , pk

′
R)

if (pk ′
S , pk

′
R) ̸= (⊥,⊥) then

m← Unsigncrypt(skR, pk
′
S , s)

if IDs ∈ S then
m← L[s, IDs, IDr]

if m ̸= ⊥ then
output (m, IDs) at Pi

if m ̸= ⊥ then
output (m, IDs) at Pi

if IDs ̸∈ S then
m← Unsigncrypt(skR, pk

′
S , s)

if m ̸= ⊥ then
output (m, IDs) at Pi

Interface E of CA

Input: (register, ID, val)
if ID ̸∈ J then

T [ID]← val
J ← J ∪ {ID}
output Success at E

else
output Fail at E

Input: fetchAll

output (J, T) at E

Interface Mi ∈ Z
Input: reveal

output valPi at Mi

Interface Mi ̸∈ Z
Input: reveal

output ⊥ at Mi

A.1.3 Completing Step 7.)
The seventh hybrid system HZ6 contains the final syntactic modifications
and equals the ideal world with simulators attached at the corresponding
interfaces. First, instead of generating the key pairs upon registration, we
simply generate them when needed. For this, the system first generates
some sufficiently long shared randomness. Whenever a key is generated
for an honest party whose key is stolen, the corresponding part of the
shared randomness is used to generate it (the simulator will learn the
shared randomness for those people). If a key is to be generated for a
party whose key is not stolen, the randomness is sampled uniformly at
random to generate the keys. Finally, we replace the the list L that stores

332 APPENDIX A. DETAILS OF CHAPTER 5

messages, source and destination identities, and the ciphertext by two
lists and implement an equivalent lookup using these two lists. Finally,
we also rename the set Jca to J and conclude that HZ5 = HZ6 .

Resource HZ5 and HZ6

Initialization

Jca, J, Jnet, S ← ∅ j ← 0

I1, I2, T, L , Lsim, Lres ← empty tables

(r11 , r
2
1)||(r

1
2 , r

2
2)|| . . . ||(r

1
n, r

2
n) � {0, 1}n·(2κ) ◃ Common randomness

Interface Pi
Input: (register, ID)

if ID ̸∈ Jca J ∧ I1[Pi] = ⊥ then

(skS , pkS)← GenS
(skR, pkR)← GenR

Jca J ← Jca J ∪ {ID}

T [ID]← (pkS , pkR)

I1[Pi]← ID
I2[ID]← Pi

valPi ← [skS , pkS , skR, pkR]

if Mi ̸∈ Z then
S ← S ∪ {ID}

output Success at Pi
else

output Fail at Pi

Input: (send,m, ID)
IDPi

← I1[Pi]
if IDPi

̸= ⊥ then
if ID ∈ Jca J then

for each ID ∈ J do
if I2[ID] ̸= ⊥ ∧ T [ID] = ⊥ then

Let Pk ← I2[ID]
if Mk ̸∈ Z then

(r1k, r
2
k) � {0, 1}2κ

(skS , pkS)← GenS(r1k)

(skR, pkR)← GenR(r2k)
T [ID]← (pkS , pkR)
valPk ← [skS , pkS , skR, pkR]

Parse valPi as [skS , pkS , skR, pkR]

Parse T [ID] as (pk ′
S , pk

′
R)

if (pk ′
S , pk

′
R) ̸= (⊥,⊥) then

if ID ∈ S then
Let ℓ := |m|
m∗ � {0, 1}ℓ
s← Signcrypt(skS , pk

′
R,m

∗)
else

m∗ ← m
s← Signcrypt(skS , pk

′
R,m

∗)

L[s, IDPi
, ID]← m

Lsim[c, IDPi
, ID]← j

Lres[j]← (m, IDPi
, ID)

j ← j + 1

output (s, IDPi
, ID) at E

A.1. FINISHING THE CONSTRUCTION PROOF 333

Interface E of Net

Input: (inject, s, IDs, IDr)

for each ID ∈ J do
if I2[ID] ̸= ⊥ ∧ T [ID] = ⊥ then

Let Pk ← I2[ID]
if Mk ̸∈ Z then (r1k, r

2
k) � {0, 1}2κ

(skS , pkS)← GenS(r1k)

(skR, pkR)← GenR(r2k)
T [ID]← (pkS , pkR)
valPk ← [skS , pkS , skR, pkR]

Pi ← I2[IDr]
if Pi ̸= ⊥ then

if IDs ∈ Jca J then
Let valPi = [skS , pkS , skR, pkR]

Parse T [IDs] as (pk ′
S , pk

′
R)

if (pk ′
S , pk

′
R) ̸= (⊥,⊥) then

if IDs ∈ S then
m← L[s, IDs, IDr]
if m ̸= ⊥ then

output (m, IDs) at Pi

if ∃j : Lsim[c, IDs, IDr] = j}
then

j ← Lsim[c, IDs, IDr]
Parse Lres[j] as
(m, IDs, IDr)
output (m, IDs) at Pi

if IDs ̸∈ S then
m← Unsigncrypt(skR, pk

′
S , s)

if m ̸= ⊥ then
output (m, IDs) at Pi

Interface E of CA

Input: (register, ID, val)
if ID ̸∈ J then

T [ID]← val

Jca J ← Jca J ∪ {ID}
output Success at E

else
output Fail at E

Input: fetchAll

for each ID ∈ J do
if I2[ID] ̸= ⊥ ∧ T [ID] = ⊥ then

Let Pk ← I2[ID]
if Mk ̸∈ Z then

(r1k, r
2
k) � {0, 1}2κ

(skS , pkS)← GenS(r1k)

(skR, pkR)← GenR(r2k)
T [ID]← (pkS , pkR)
valPk ← [skS , pkS , skR, pkR]

output (J, T) at E

Interface Mi ∈ Z
Input: reveal

if I1[Pi] ̸= ⊥ and valPi = ⊥ then
(skS , pkS)← GenS(r1i)

(skR, pkR)← GenR(r2i)
valPi ← [skS , pkS , skR, pkR]

output valPi at Mi

Interface Mi ̸∈ Z
Input: reveal

output ⊥ at Mi

A.1.4 Completing Step 8.)
We depict the final hybrid system HZ6 a second time. For better ac-
cessibility, we color the corresponding parts of the simulators in blue
and surround it by a solid line, and we color the code executed by the

334 APPENDIX A. DETAILS OF CHAPTER 5

constructed resource SecNTn green and surround it by a dashed line.
The last hybrid system is thus the compilation of the simulator and the
constructed resource–and thus equals the ideal system—which can be
concluded by inspection.

Resource HZ6

Initialization

J, S ← ∅ j ← 0

I1, I2, Lres, T, Lsim ← empty tables

(r11 , r
2
1)||(r

1
2 , r

2
2)|| . . . ||(r

1
n, r

2
n) � {0, 1}n·(2κ) ◃ Common randomness

Interface Pi
Input: (register, ID)

if ID ̸∈ J ∧ I1[Pi] = ⊥ then
J ← J ∪ {ID}
I1[Pi]← ID
I2[ID]← Pi
if Mi ̸∈ Z then

S ← S ∪ {ID}
output Success at Pi

else
output Fail at Pi

Input: (send,m, ID)

IDPi
← I1[Pi]

if IDPi
̸= ⊥ then

if ID ∈ J then

for each ID ∈ J do
if I2[ID] ̸= ⊥ ∧ T [ID] = ⊥ then

Let Pk ← I2[ID]
if Mk ̸∈ Z then

(r1k, r
2
k) � {0, 1}2κ

(skS , pkS)← GenS(r1k)

(skR, pkR)← GenR(r2k)
T [ID]← (pkS , pkR)
valPk ← [skS , pkS , skR, pkR]

Parse valPi as [skS , pkS , skR, pkR]

Parse T [ID] as (pk ′
S , pk

′
R)

if (pk ′
S , pk

′
R) ̸= (⊥,⊥) then

if ID ∈ S then

Let ℓ := |m|

m∗ � {0, 1}ℓ
s← Signcrypt(skS , pk

′
R,m

∗)
else

m∗ ← m
s← Signcrypt(skS , pk

′
R,m

∗)
Lsim[c, IDPi

, ID]← j

Lres[j]← (m, IDPi
, ID)

j ← j + 1
output (s, IDPi

, ID) at E

A.1. FINISHING THE CONSTRUCTION PROOF 335

Interface E of Net

Input: (inject, s, IDs, IDr)

for each ID ∈ J do
if I2[ID] ̸= ⊥ ∧ T [ID] = ⊥ then

Let Pk ← I2[ID]
if Mk ̸∈ Z then (r1k, r

2
k) � {0, 1}2κ

(skS , pkS)← GenS(r1k)

(skR, pkR)← GenR(r2k)
T [ID]← (pkS , pkR)
valPk ← [skS , pkS , skR, pkR]

Pi ← I2[IDr]
if Pi ̸= ⊥ then

if IDs ∈ J then

Let valPi = [skS , pkS , skR, pkR]

Parse T [IDs] as (pk ′
S , pk

′
R)

if (pk ′
S , pk

′
R) ̸= (⊥,⊥) then

if IDs ∈ S then

if ∃j : Lsim[c, IDs, IDr] = j}
then

j ← Lsim[c, IDs, IDr]

Parse Lres[j] as
(m, IDs, IDr)
output (m, IDs) at Pi

if IDs ̸∈ S then

m← Unsigncrypt(skR, pk
′
S , s)

if m ̸= ⊥ then

output (m, IDs) at Pi

Interface E of CA

Input: (register, ID, val)

if ID ̸∈ J then

T [ID]← val

J ← J ∪ {ID}

output Success at E

else

output Fail at E

Input: fetchAll

for each ID ∈ J do
if I2[ID] ̸= ⊥ ∧ T [ID] = ⊥ then

Let Pk ← I2[ID]
if Mk ̸∈ Z then

(r1k, r
2
k) � {0, 1}2κ

(skS , pkS)← GenS(r1k)

(skR, pkR)← GenR(r2k)
T [ID]← (pkS , pkR)
valPk ← [skS , pkS , skR, pkR]

output (J, T) at E

Interface Mi ∈ Z
Input: reveal

if I1[Pi] ̸= ⊥ and valPi = ⊥ then

(skS , pkS)← GenS(r1i)

(skR, pkR)← GenR(r2i)
valPi ← [skS , pkS , skR, pkR]

output valPi at Mi

Interface Mi ̸∈ Z
Input: reveal

output ⊥ at Mi

Appendix B

Details of Chapter 8

B.1 From Unicast to Multicast
A unicast channel can be defined as follows:

Functionality F∆,PR

U-CH

The functionality is parametrized with a receiver PR, and and upper bound ∆ on
the delay of any channel. It keeps track of the set of possible senders P. Any newly
registered (resp. deregistered) party is added to (resp. deleted from) P. The list of
messages is stored in M⃗ , initially empty.

• Upon receiving (send,m) from some Ps ∈ P or from the adversary A, choose a
new unique message-ID midfor m, initialize variables Dmid := 1 and DMAX

mid =

1, set M⃗ := M⃗ ||(m,mid, Dmid), and send (m,mid, Dmid) to the adversary.

• Upon receiving (fetch) from PR:
1. For all registered mids, set Dmid := Dmid − 1.
2. Let M⃗0 denote the subvector M⃗ including all triples (m,mid, Dmid) with

Dmid = 0 (in the same order as they appear in M⃗). Delete all entries
in M⃗0 from M⃗ and send M⃗0 to PR.

• Upon receiving (delay, Tmid,mid) from the adversary, if DMAX
mid + Tmid ≤ ∆

and mid is a message-ID registered in the current M⃗ , set Dmid := Dmid+Tmid
and DMAX

mid := DMAX
mid + Tmid; otherwise, ignore the message.

• Upon receiving (swap,mid,mid′) from the adversary, if mid and mid′ are
message-IDs registered in the current M⃗ , then swap the triples (m,mid, Dmid)

and (m,mid′, Dmid′) in M⃗ . Return (swap-ok) to the adversary.

338 APPENDIX B. DETAILS OF CHAPTER 8

B.1.1 On Realizing Multicast from Unicast

We sketch how to realize a multicast network, in particular its synchronized
version along the lines of [KMTZ13], by means of a synchronized message-
diffusion protocol over a network of unicast channels (and implicitly
assuming a local clock to obtain the round structure). The core of
this diffusion protocol are the assumed and known (e.g., by a common
list of IP addresses) relay-nodes to which parties thus can connect and
which forward in each round all new messages they received (either from
registered parties or other relay nodes) in the previous round to all the
unicast channels they are connected to as senders.1 Let G = (V,E)
denote the (dynamically updatable) directed graph whose vertices V are
the parties and the relay-nodes which are currently participating in the
execution and an edge (pi, pj) is in E iff pi is one of the senders of the
multicast channel with receiver pj . It is straightforward to verify that
provided that G restricted to the honest parties (i.e., when corrupted
parties and the edges that use them are deleted from G) remains strongly
connected (i.e., there is a directed path between any two honest parties,
in either direction), then the diffusion mechanism executed over unicast
channels with delay at most ∆ security realizes a multicast network with
delay ∆d where d is an upper bound of the diameter of G. Indeed, the
simulator, which is given any message submitted to any unicast channel
and enough activations when the dummy parties themselves get activated
(note that it is essentially a synchronous computation among the relay-
nodes), needs to simply simulate when the respective parties would see
a message and schedule the corresponding deliveries by using the delays
submitted by the adversary. The fact that each channel has at most ∆
delay means that it will take delay at most ∆L rounds for it to travel
through an honest path of length L. Last but not least, in order to receive
messages from the network established this way, when a party joins the
network, it has to multicast a special message to the relay-nodes that
has to contain its identifier such that the relay-nodes can start sending
messages to that party. This induces at most a delay of ∆ rounds until
the party is guaranteed to receive the messages sent over the network. For
simplicity, we ignore this additional delay incurred by the registration to

1In order to ensure that parties can send some messages twice, a nonce is attached
to each input message that is to be multicasted. The relayers do not add another
nonce to the message they relay.

B.2. FURTHER DETAILS ON THE BITCOIN LEDGER 339

the network, and omit it in our specification of the multicast functionality
in Section 8.2.2. If one implements the network using the above sketched
method, one would formally obtain the a multicast functionality as given
in Figure 8.1, but where the party set P contains all parties that have
joined (and not yet left) the network at least ∆ rounds ago, since the
sketched solution does not support instant registration. All remaining
guarantees remain unchanged with respect to this new party set.

B.2 Further Details on the Bitcoin Ledger

This section includes complementary material for Section Section 8.5. We
here give the formal description of the Extend Policy for GB

ledger below.
It is easy to observe that the computation performed by this algorithm is
well-defined for any definition of Validate and Blockify.

The presentation is logically divided into the step of deriving a default
extension and the actual tests whether the adversarial proposal is admis-
sible. The default extension is taken as the ledger-state extension if and
only the proposal by the adversary does not pass the test specified and
implemented by ExtendPolicy. The derivation of the default extension is
given as pseudo-code in Figure B.1. Note also that the policy makes the
initial bootstrapping time of the chain explicit, where by bootstrapping
time we mean the time it takes for the first state block to be inserted into
the ledger state.

Algorithm ExtendPolicy for GB
ledger

function ExtendPolicy(I⃗TH , state, NxtBC, buffer, τ⃗state)
We assume call-by-value and hence the function has no side effects.
This Function implements the Extend Policy of the Bitcoin Ledger.

N⃗df ← DefaultExtension(I⃗TH , state, NxtBC, buffer, τ⃗state) ◃ Extension if adversary
violates policy.
Let τL be current ledger time (computed from I⃗TH)
Parse NxtBC as a vector ((hFlag1, NxtBC1), · · · , (hFlagn, NxtBCn))
N⃗ ← ε ◃ Initialize Result
if |state| ≥ windowSize then ◃ Determine time of the block which is windowSize
blocks behind the state head

Set τlow ← τ⃗state[|state| − windowSize + 1]
else

Set τlow ← 0

340 APPENDIX B. DETAILS OF CHAPTER 8

oldValidTxMissing← false ◃ Flag to keep track whether old enough, valid
transactions are inserted.
for each list NxtBCi of transaction IDs do ◃ Compute the next state block and
verify validity

N⃗i ← ε
Use the txid contained in NxtBCi to determine the list of transactions
Let t⃗x = (tx1, . . . , tx|NxtBCi|) denote the transactions of NxtBCi
if tx1 is not a coin-base transaction then

return N⃗df
else

N⃗i ← tx1
for j = 2 to |NxtBCi| do

Set sti ← blockifyB(N⃗i)
if ValidTxB(txj , state||sti) = 0 then

return N⃗df ◃ Default Extension if adversarial proposal is invalid
N⃗i ← N⃗i||txj

Set sti ← blockifyB(N⃗i)
if the proposal is declared to be an honest block, i.e., hFlagi = 1 then

for each BTX = (tx, txid, τ ′, Pi) ∈ buffer of an honest party Pi with time
τ ′ < τlow − Delay

2 do
if ValidTxB(tx, state||sti) = 1 but tx ̸∈ N⃗i then

oldValidTxMissing← true ◃ A transaction is missing in adversarial
proposal.

N⃗ ← N⃗ ||N⃗i

state← state||sti
τ⃗state ← τ⃗state||τL
j ← max{{windowSize} ∪ {k | stk ∈ state ∧ proposal of stk had hFlag = 1}}
◃ Determine most recent honestly-generated block in the interval behind the
head.
if |state| − j ≥ η then

return N⃗df ◃ Adversary proposed too few honestly generated blocks.
if |state| ≥ windowSize then

◃ Update τlow: the time of the state block which is windowSize blocks
behind the head of the current, possibly extended state
Set τlow ← τ⃗state[|state| − windowSize + 1]

else
Set τlow ← 0

if τL − τlow < minTimewindow then ◃ Ensure that ledger does not proceed too fast
return ε

else if τlow > 0 and τL − τlow > maxTimewindow then ◃ A sequence of blocks cannot
take too much time.

return N⃗df
else if τlow = 0 and τL − τlow > 2 · maxTimewindow then ◃ Bootstrapping cannot take
too much time.

return N⃗df
else if oldValidTxMissing then ◃ If not all old enough, valid transactions have been
included.

return N⃗df
return N⃗

B.2. FURTHER DETAILS ON THE BITCOIN LEDGER 341

Algorithm for Default State Extension

function DefaultExtension(I⃗TH , state, NxtBC, buffer, τ⃗state)
We assume call-by-value and hence the function has no side effects.
The function returns a policy-compliant extension of the ledger state.

Let τL be current ledger time (computed from I⃗TH)
Set N⃗df ← txcoin-base

minerID of an honest miner
Sort buffer according to time stamps and let t⃗x = (tx1, . . . , txn) be the trans-
actions in buffer
Set st← blockifyB(N⃗df)
repeat

Let t⃗x = (tx1, . . . , txn) be the current list of (remaining) transactions
for i = 1 to n do

if ValidTxB(txi, state||st) = 1 then
N⃗df ← N⃗df||txi
Remove txi from t⃗x
Set st← blockifyB(N⃗df)

until N⃗df does not increase anymore
if |state|+ 1 ≥ windowSize then ◃ Let τlow be the time of the block which is
windowSize− 1 blocks behind the head of the state.

Set τlow ← τ⃗state[|state| − windowSize + 2]
else

Set τlow ← 0
c← 1
while τL − τlow > maxTimewindow do

Set N⃗c ← txcoin-base
minerID of an honest miner

N⃗df ← N⃗df||N⃗c

c← c+ 1
if |state|+ c ≥ windowSize then ◃ Update τlow to the time of the state
block which is windowSize− c blocks behind the head.

Set τlow ← τ⃗state[|state| − windowSize + c+ 1]
else

Set τlow ← 0
return N⃗df

Figure B.1: Function to compute a policiy-compliant default ledger-state
extension.

342 APPENDIX B. DETAILS OF CHAPTER 8

B.3 Further Details on Modularization of the
Ledger Protocol

B.3.1 The Modular Ledger Protocol

We describe a modularized version of the UC Bitcoin protocol which is
indistinguishable from the original protocol:

Protocol Modular-Ledger-ProtocolT (P)

Variables and Initial Values:

• The same as in the original protocol, except replace:

The protocol stores a local (working) chain Cloc which initially contains the
genesis block, i.e., Cloc ← (G).

by

The protocol manages the exported ledger state s⃗texp which initially is the
genesis state, i.e. , s⃗t← (gen). It also manages a local (working) state s⃗tloc
(initially also the genesis state).

Registration/De-Registration:

• As in the original protocol, but where the two local setup functionalities
(Fbc

N-MC,FRO) are subsumed by one local functionality FStX.

Ledger-Queries:
Ledger queries are only answered once registered.

• As in the original protocol.

Handling other external calls:

• As in the original protocol.

Furthermore, the only places where we modify the original protocol
in a non-trivial way are in the main sub-processes (only executed once
registered):

B.3. FURTHER DETAILS ON MODULARIZATION OF THE
LEDGER PROTOCOL 343

Sub-Protocol ExtendState(st)

Send (submit-new, sid, s⃗tloc, st) to FStX.
Denote the response by (success, sid, B) of FStX.
if B = 1 then

Update the local state, i.e., s⃗tloc ← s⃗tloc||st.
Send (continue, sid) to FStX ◃ Broadcast current state using FStX.

and

Sub-Protocol FetchInformation

Send (fetch-new, sid) to FStX.
Denote the response from FStX by (fetch-new, sid, (s⃗t1, . . . , s⃗tk)).
Set both s⃗tloc,s⃗texp to the longest state in s⃗tloc, s⃗texp, s⃗t1, . . . , s⃗tk (to resolve ties
the ordering decides).
Send (fetch, sid) to F tx

N-MC; denote the response from F tx
N-MC by (fetch, sid, b).

Extract received transactions (tx1, . . . , txk) from b.
Set buffer← buffer||(tx1, . . . , txk).
If a new-party message was received, set welcome← 1. Otherwise, set
welcome← 0.
Remove all transactions from buffer which are invalid with respect to s⃗t⌈Tloc

B.3.2 On the Soundness of the Modular Decomposi-
tion

We perform a “game-hopping” argument to show that Ledger-Protocol
UC emulates the protocol Modular-Ledger-Protocol when in the latter
protocol, the invocations to FStX are replace by calls to sub-process
StateExchange-Protocol. We start with the original Ledger-Protocol and
consider the protocol part below where will alter the protocol step by
step.

Fragments of Original Protocol Part

Initialization:
The protocol stores a local (working) chain Cloc which initially contains the genesis
block, i.e., Cloc ← (G). [...]

ExtendState(st):
Cnew ← extendchainD(Cloc, st, q)
if Cnew ̸= Cloc then

344 APPENDIX B. DETAILS OF CHAPTER 8

Update the local chain, i.e., Cloc ← Cnew.
Send (multicast, sid, Cloc) to Fbc

N-MC ◃ Multicast current chain

FetchInformation:
◃ Update the local state

Send (fetch, sid) to Fbc
N-MC; denote the response from Fbc

N-MC by (fetch, sid, b).
Extract valid chains C1, . . . , Ck from b.
Set both Cloc, Cexp to the longest valid chain in Cloc, Cexp, C1, . . . , Ck (to resolve
ties the ordering decides).
[. . .]

Modification 1. The first modification of the protocol (see below)
proceeds as Ledger-Protocol except (a) it stores a history of all valid chains
in a tree T and (b) in the ExtendState(st) procedure it checks that
s⃗t||st is a valid state and that there exists a chain in T which encodes the
state s⃗t. We observe that the protocol calls ExtendState(st) only with
st where s⃗t||st is a valid state. This implies that the first check is always
satisfied. Moreover, note that the current local chain Cloc which encodes
state s⃗t is at any time stored in the tree T . We therefore call the state
encoded in Cloc by s⃗tloc and see that the second check is therefore also
always satisfied. Hence, the modified protocol has the same input/output
behavior as the Ledger-Protocol.

Fragments, Modification 1

Initialization:
The protocol stores a local (working) chain Cloc which initially contains the genesis
block, i.e., Cloc ← (G). [...]
The protocol additionally maintains a tree T of valid chains which initially contains
the (genesis) chain (G).

ExtendState(st):
if isvalidstateB(s⃗tloc||st) = 1 then

if there exists C ∈ T which encodes s⃗tloc then
Cnew ← extendchainD(Cloc, st, q)
if Cnew ̸= Cloc then

Update the local chain, i.e., Cloc ← Cnew.
Add Cloc to T

Send (multicast, sid, Cloc) to Fbc
N-MC ◃ Multicast current chain

FetchInformation:
Send (fetch, sid) to Fbc

N-MC; denote the response from Fbc
N-MC by (fetch, sid, b).

Extract all valid chains C1, . . . , Ck from b and add them to T .

B.3. FURTHER DETAILS ON MODULARIZATION OF THE
LEDGER PROTOCOL 345

Set both Cloc, Cexp to the longest valid chain in Cloc, Cexp, C1, . . . , Ck (to resolve
ties the ordering decides).
[. . .]

Modification 2. In Modification 2 (see below) the local state s⃗tloc is
stored directly instead of being encoded in chain Cloc. The procedures
ExtendState(st) and FetchInformation are modified to accommodate
this change. Note that the Cloc is stored in T as we have seen in the
first modification. This implies that the behavior of ExtendState(st)
remains the same as in the first modification.

Fragments, Modification 2

Initialization:
The protocol manages [...] a local (working) state s⃗tloc (initially also the genesis
state).[...]
The protocol additionally maintains a tree T of valid chains which initially contains
the genesis chain (G).

ExtendState(st):
if isvalidstateB(s⃗tloc||st) = 1 then

if there exists C ∈ T which encodes s⃗tloc then
Cnew ← extendchainD(C, st, q)
if Cnew ̸= C then

Add C to T
Update the local state, i.e., s⃗tloc ← s⃗tloc||st.

Send (multicast, sid, Cloc) to Fbc
N-MC ◃ Multicast current chain

FetchInformation:
Send (fetch, sid) to Fbc

N-MC; denote the response from Fbc
N-MC by (fetch, sid, b).

Extract all valid chains C1, . . . , Ck from b and add them to T .
Extract all state s⃗t1, . . . , s⃗tk from chains C1, . . . , Ck.
Set both s⃗tloc, s⃗texp to the longest state in s⃗tloc, s⃗texp, s⃗t1, . . . , s⃗tk (to resolve ties
the ordering decides).
[. . .]

Modification 3. In Modification 3 (see below) parts of the procedures
ExtendState(st) and FetchInformation are split off into separate
sub-procedures. Otherwise the protocol remains the same. As there are
no changes to the program logic the protocol still has the same behavior
as the original protocol.

346 APPENDIX B. DETAILS OF CHAPTER 8

Fragments, Modification 3

Initialization:
The protocol manages [...] a local (working) state s⃗tloc (initially also the genesis
state).[...]
The protocol additionally maintains a tree T of valid chains which initially contains
the (genesis) chain (G).

ExtendState(st):
B ← submit-new(s⃗tloc, st)
if B = 1 then

Update the local state, i.e., s⃗tloc ← s⃗tloc||st.
Execute continue. ◃ Broadcast current chain

Procedure submit-new(s⃗t, st):
if isvalidstateB(s⃗t||st) = 1 then

if there exists C′ ∈ T which encodes s⃗t then
Set C ← C′. ◃ C is assumed to be a global variable
Cnew ← extendchainD(C, st, q)
if Cnew ̸= C then

Add C to T
return 1

return 0

Procedure continue:
Send (multicast, sid, C) to Fbc

N-MC

FetchInformation:
(s⃗t1, . . . , s⃗tk)← fetch-new
Set both s⃗tloc, s⃗texp to the longest state in s⃗tloc, s⃗texp, s⃗t1, . . . , s⃗tk (to resolve ties
the ordering decides).
[. . .]

Procedure fetch-new:
Send (fetch, sid) to Fbc

N-MC; denote the response from Fbc
N-MC by (fetch, sid, b).

Extract all valid chains C1, . . . , Ck from b and add them to T .
Extract states s⃗t1, . . . , s⃗ts from C1, . . . , Ck and output them.

Final Considerations. Finally consider the part of Modular-Ledger-Protocol
below which is the same as Modification 3 except that the chain stor-
age T and the calls to sub-procedures submit-new, continue, and
fetch-new are replaced by the calls to FStX. Now, if these calls are
answered by the protocol StateExchange-Protocol, we get the exact same
behavior as implemented by the third modification above. To see this, we
recap quickly the relevant fragment:

B.3. FURTHER DETAILS ON MODULARIZATION OF THE
LEDGER PROTOCOL 347

Fragments, Modular-Ledger-Protocol

Initialization:
The protocol manages [...] a local (working) state s⃗tloc (initially also the genesis
state). [...]

ExtendState(st):
Send (submit-new, sid, s⃗tloc, st) to FStX.
Denote the response by (success, sid, B) of FStX.
if B = 1 then

Update the local state, i.e., s⃗tloc ← s⃗tloc||st.
Send (continue, sid) to FStX ◃ Broadcast current state using FStX.

FetchInformation:
Send (fetch-new, sid) to FStX.
Denote the response from FStX by (fetch-new, sid, (s⃗t1, . . . , s⃗tk)).
Set s⃗tloc, s⃗texp to the longest state in s⃗tloc, s⃗texp, s⃗t1, . . . , s⃗tk (to resolve ties the
ordering decides).
[. . .]

Also, when registering/de-registering from FStX, StateExchange-Protocol
simply registers/de-registers from (Fbc

N-MC,FRO), just as the original pro-
tocol. As we prove in the main body in Lemma 8.6.1, StateExchange-Protocol
UC-realizes FStX, hence replacing calls to StateExchange-Protocol by calls
to the ideal (hybrid) functionality yields an indistinguishable protocol to
Ledger-Protocol.

348 APPENDIX B. DETAILS OF CHAPTER 8

B.4 The Simulator of the Main Theorem
It follows the formal specification of the simulator.

Simulator Sledg

Initialization:
The simulator manages internally a simulated state-exchange functionality FStX, a
simulated network FN-MC. An honest miner P registered to GB

ledger is assumed to
be registered in all simulated functionalities. Moreover, the simulator maintains the
local state s⃗tP and the buffer of transactions bufferP of such a party. Upon any ac-
tivation, the simulator will query the current party set from the ledger (and simulate
the corresponding message they send out to the network in the first maintain-ledger
activation after registration), query all activations from honest parties I⃗TH , and read
the current clock value to learn the time. In particular, the simulator knows which
parties are honest and synchronized and which parties are de-synchronized.

General Structure:
The simulator internally runs adversary A in a black-box way and simulates the
interaction between A and the (emulated) real-world hybrid functionalities. The
inputs from A to the clock are simply relayed (and the replies given back to A). The
ideal world consists of the ledger functionality and the clock.

Messages from the Clock:

• Upon receiving (clock-update, sidC , P) from Gclock, if P is an honest
registered party, then remember that this party has received such a
clock update (and the environment gets an activation). Otherwise, send
(clock-update, sidC , P) to A. In addition (before releasing the activation
token), the simulator checks whether the clock advances. If so, and if this was
a working mini-round (and hence all maintain commands have already been
submitted by honest and synchronized parties), then execute ExtendLedger-
State before giving the activation to A.

Messages from the Ledger:

• Upon receiving (submit, BTX) from GB
ledger where BTX := (tx, txid, τ, P) forward

(multicast, sid, tx) to the simulated network FN-MC in the name of P . Output
the answer of FN-MC to the adversary.

• Upon receiving (maintain-ledger, sid,minerID) from GB
ledger, extract from I⃗TH

the party Pi that issued this query. If Pi has already done its instructions for
the current mini-round, then ignore the request. Otherwise, do:

1. Execute SimulateMining(PminerID, τ) and if this was the last maintain
command in a working mini-round and the round will advance, then
execute ExtendLedgerState before giving the activation to A.

2. In addition, remember that party Pi is done with mining in the current
mini-round.

• Upon any further activation of the simulator, the simulator inspects the entire
sequence of inputs by honest parties to the ledger I⃗TH and does the following:

B.4. THE SIMULATOR OF THE MAIN THEOREM 349

1. For any input, I = (read, sid) of party P , if the current round is an
update mini-round, then execute Step 4 of the mining procedure as
below in SimulateMining

2. Remember that the update for party P is done for this round.

Simulation of the State Exchange Functionality:

• Upon receiving (submit-new, sid, s⃗t, st) from A on behalf of a corrupted P ∈
Pstx, then relay it to the simulated FStX and do the following:

1. If FStX returns (success, B) give this reply to A

2. If A replies with (continue, sid), input (continue, sid) to the simulated
FStX

3. If the current mini-round is an update mini-round, then execute Exten-
dLedgerState

• Upon receiving (fetch-new, sid) from A (on behalf of a corrupted P) forward
the request to the simulated FStX and return whatever is returned to A.

• Upon receiving (send, sid, s, P ′) from A on behalf some corrupted party P , do
the following:

1. Forward the request to the simulated FStX.

2. If the current mini-round is an update mini-round, then execute Exten-
dLedgerState

3. Return to A the return value from FStX.

• Upon receiving (swap, sid,mid,mid′) from A, forward the request to the sim-
ulated FStX and return whatever is returned to A.

• Upon receiving (delay, sid, T,mid) from A forward the request to the simu-
lated FStX and do the following:

1. Query the ledger state state

2. Execute AdjustView(state)

3. Return to A the output of FStX

Simulation of the Network (over which transactionss are sent) :

• Upon receiving (multicast, sid, (mi1
, Pi1

), . . . , (miℓ
, Piℓ

) with list of transac-
tions from A on behalf some corrupted P ∈ Pnet, then do the following:

1. Submit the transactions to the ledger on behalf of this corrupted party,
and receive for each transaction the transaction id txid

2. Forward the request to the internally simulated FN-MC, which replies
for each message with a message-ID mid

3. Remember the association between each mid and the corresponding txid

4. Provide A with whatever the network outputs.

350 APPENDIX B. DETAILS OF CHAPTER 8

• Upon receiving (an ordinary input) (multicast, sid,m) from A on behalf of
some corrupted P ∈ Pnet, then execute the corresponding steps 1. to 4. as
above.

• Upon receiving (fetch, sid) from A on behalf some corrupted P ∈ Pnet for-
ward the request to the simulated FN-MC and return whatever is returned to
A.

• Upon receiving (delays, sid, (Tmidi1
,midi1

), . . . , (Tmidiℓ
,midiℓ

)) from A for-
ward the request to the simulated FN-MC and return whatever is returned to
A.

• Upon receiving (swap, sid,mid,mid′) from A forward the request to the simu-
lated FN-MC and return whatever is returned to A.

procedure SimulateMining(P, τ)
Simulate the mining procedure of P of the protocol:
if time-tick τ corresponds to a working sub-round then

Execute Step 2 of the mining protocol. This includes:
-Define the next state block st using the transaction set TxsP
-Send (submit-new, sid, s⃗tP , st) to simulated functionality FStX.
-If successful, store s⃗tP ||st as the new s⃗tP
-If successful, distribute the new state via FStX.

else if time-tick τ corresponds to an update sub-round then
Execute Step 4 of the mining protocol. This means that if the new
information has not been fetched in this round already, then the
following is executed:

-Fetch transactions (tx1, . . . , txu) (on behalf of P) from
simulated FN-MC and add them to TxsP .

-Fetch states s⃗t1, . . . , s⃗ts (on behalf of P) from the simulated
FStX and update s⃗tP to the largest state among s⃗tP and s⃗ti.

procedure ExtendLedgerState
Consider all honest and synchronized players P :

- Let s⃗t be the longest state among all states s⃗tP or states contained
in a receiver buffer M⃗P with delay 1 (and hence is a potential
output in the next round)

Compare s⃗t⌈T with the current state state of the ledger
if |state| > |s⃗t⌈T | then

Execute AdjustViiew(state)
if state is not a prefix of s⃗t⌈T then

Abort the simulation (due to inconsistency)
Define the difference diff to be the block sequence s.t. state||diff = s⃗t⌈T .
Let n← |diff|
for each block diffj , j = 1 to n do

Map each transaction tx in this block to its unique transaction ID txid
If a transaction does not yet have an txid, then submit it to the ledger

and receive the corresponding txid from GB
ledger

Let listj = (txidj,1, . . . , txidj,ℓj
) be the corresponding list for this block.

if coinbase txidj,1 specifies a party that was honest at block creation time
then

B.4. THE SIMULATOR OF THE MAIN THEOREM 351

hFlagj ← 1
else

hFlagj ← 0

Output (next-block, hFlagj , listj) to GB
ledger (receiving (next-block, ok) as

an immediate answer)
Execute AdjustView(state||diff)

procedure AdjustView(state)
pointers← ε
for each honest and synchronized party Pi do

Using the simulated functionality FStX do the following:
- Let s⃗t be the longest state among s⃗tPi

and those contained in the
receiver buffer M⃗Pi

with delay 1

Determine the pointer pti s.t. s⃗t⌈T = state|pti
if such a pointer value does not exist then

Abort simulation (due to inconsistency)
if Party Pi has not executed step 4 of the mining protocol in this
current mini-round then

pointers← pointers||(Pi, pti)
◃ As otherwise, the new state is only fetched in the next round

Output (set-slack, pointers) to GB
ledger

pointers← ε
desyncStates← ε
for each honest but de-synchronized party Pi do

Using the simulated functionality FStX do the following:
- Let s⃗t be the longest state among s⃗tPi

and those contained in the
receiver buffer M⃗Pi

with delay 1
if Party Pi has not executed step 4 of the mining protocol in this
current mini-round then

Set the pointer pti to be |s⃗t⌈T |
pointers← pointers||(Pi, pti)
desyncStates← desyncState||(Pi, s⃗t

⌈T)
◃ As otherwise, the new state is only fetched in the next round

Output (set-slack, pointers) to GB
ledger

Output (desync-state, desyncStates) to GB
ledger

Bibliography

[ABC+07] Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph
Herring, Lea Kissner, Zachary Peterson, and Dawn Song.
Provable data possession at untrusted stores. In Proceedings
of the 14th ACM Conference on Computer and Communi-
cations Security, CCS ’07, pages 598–609, New York, NY,
USA, 2007. ACM.

[ABC+11] Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph
Herring, Osama Khan, Lea Kissner, Zachary Peterson, and
Dawn Song. Remote data checking using provable data
possession. ACM Trans. Inf. Syst. Secur., 14(1):12:1–12:34,
June 2011.

[ACDV14] Elli Androulaki, Christian Cachin, Dan Dobre, and Marko
Vukolić. Erasure-coded byzantine storage with separate
metadata. In Marcos K. Aguilera, Leonardo Querzoni, and
Marc Shapiro, editors, Principles of Distributed Systems,
pages 76–90, Cham, 2014. Springer International Publishing.

[AD15] Marcin Andrychowicz and Stefan Dziembowski. Pow-based
distributed cryptography with no trusted setup. In Rosario
Gennaro and Matthew Robshaw, editors, Advances in Cryp-
tology – CRYPTO 2015, pages 379–399, Berlin, Heidelberg,
2015. Springer Berlin Heidelberg.

[ADDV16] Giuseppe Ateniese, Özgür Dagdelen, Ivan Damgård, and
Daniele Venturi. Entangled cloud storage. Future Gener.
Comput. Syst., 62(C):104–118, September 2016.

354 BIBLIOGRAPHY

[ADMM14] Marcin Andrychowicz, Stefan Dziembowski, Daniel Mali-
nowski, and Lukasz Mazurek. Fair two-party computations
via bitcoin deposits. In Rainer Böhme, Michael Brenner,
Tyler Moore, and Matthew Smith, editors, Financial Cryp-
tography and Data Security, pages 105–121, Berlin, Heidel-
berg, 2014. Springer Berlin Heidelberg.

[ADMM16] Marcin Andrychowicz, Stefan Dziembowski, Daniel Mali-
nowski, and Lukasz Mazurek. Secure multiparty compu-
tations on bitcoin. Commun. ACM, 59(4):76–84, March
2016.

[ADPMT08] Giuseppe Ateniese, Roberto Di Pietro, Luigi V. Mancini,
and Gene Tsudik. Scalable and efficient provable data pos-
session. In Proceedings of the 4th International Conference
on Security and Privacy in Communication Netowrks, Se-
cureComm ’08, pages 9:1–9:10, New York, NY, USA, 2008.
ACM.

[ADR02] Jee Hea An, Yevgeniy Dodis, and Tal Rabin. On the security
of joint signature and encryption. In Lars R. Knudsen, edi-
tor, Advances in Cryptology — EUROCRYPT 2002, pages
83–107, Berlin, Heidelberg, 2002. Springer Berlin Heidel-
berg.

[AKST14] Daniel Apon, Jonathan Katz, Elaine Shi, and Aishwarya
Thiruvengadam. Verifiable oblivious storage. In Hugo
Krawczyk, editor, Public-Key Cryptography – PKC 2014,
pages 131–148, Berlin, Heidelberg, 2014. Springer Berlin
Heidelberg.

[An01] Jee Hea An. Authenticated encryption in the public-key
setting: Security notions and analyses. Cryptology ePrint
Archive, Report 2001/079, 2001. https://eprint.iacr.
org/2001/079.

[BBM18] Christian Badertscher, Fabio Banfi, and Ueli Maurer. A
constructive perspective on signcryption security. In B A,
editor, Security and Cryptography for Networks, pages 0–0,
Cham, 2018. Springer International Publishing.

https://eprint.iacr.org/2001/079
https://eprint.iacr.org/2001/079

BIBLIOGRAPHY 355

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying
hash functions for message authentication. In Neal Koblitz,
editor, Advances in Cryptology — CRYPTO ’96, pages 1–15,
Berlin, Heidelberg, 1996. Springer Berlin Heidelberg.

[BD06] Tor E. Bjørstad and Alexander W. Dent. Building bet-
ter signcryption schemes with tag-kems. In Moti Yung,
Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors,
Public Key Cryptography - PKC 2006, pages 491–507, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg.

[BDOZ11] Moshe Babaioff, Shahar Dobzinski, Sigal Oren, and Aviv
Zohar. On bitcoin and red balloons. SIGecom Exch., 10(3):5–
9, December 2011.

[BEG+94] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor.
Checking the correctness of memories. Algorithmica,
12(2):225–244, Sep 1994.

[BF08] Manuel Barbosa and Pooya Farshim. Certificateless sign-
cryption. In Proceedings of the 2008 ACM Symposium
on Information, Computer and Communications Security,
ASIACCS 2008, Tokyo, Japan, March 18-20, 2008, pages
369–372. ACM, 2008.

[BF11] Paul Baecher and Marc Fischlin. Random oracle reducibil-
ity. In Phillip Rogaway, editor, Advances in Cryptology
– CRYPTO 2011, pages 21–38, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

[BGK+18] Christian Badertscher, Peter Gaži, Aggelos Kiayias, Alexan-
der Russell, and Vassilis Zikas. Ouroboros genesis: Com-
posable proof-of-stake blockchains with dynamic availabil-
ity. Cryptology ePrint Archive, Report 2018/378, 2018.
https://eprint.iacr.org/2018/378.

[BGM+18] Christian Badertscher, Juan Garay, Ueli Maurer, Daniel
Tschudi, and Vassilis Zikas. But why does it work? a
rational protocol design treatment of bitcoin. In Jesper Buus
Nielsen and Vincent Rijmen, editors, Advances in Cryptology

https://eprint.iacr.org/2018/378

356 BIBLIOGRAPHY

– EUROCRYPT 2018, pages 34–65, Cham, 2018. Springer
International Publishing.

[BH03] Michael Backes and Dennis Hofheinz. How to break and
repair a universally composable signature functionality. In
Kan Zhang and Yuliang Zheng, editors, Information Secu-
rity, volume 3225 of LNCS, pages 61–72, Heidelberg, 2003.
Springer.

[BHMQU05] Michael Backes, Dennis Hofheinz, Jörn Müller-Quade, and
Dominique Unruh. On fairness in simulatability-based cryp-
tographic systems. In Proceedings of the 2005 ACM Work-
shop on Formal Methods in Security Engineering, FMSE
’05, pages 13–22, New York, NY, USA, 2005. ACM.

[BJO09] Kevin D. Bowers, Ari Juels, and Alina Oprea. Proofs of
retrievability: Theory and implementation. In Proceedings
of the 2009 ACM Workshop on Cloud Computing Security,
CCSW ’09, pages 43–54, New York, NY, USA, 2009. ACM.

[BK14] Iddo Bentov and Ranjit Kumaresan. How to use bitcoin
to design fair protocols. In Juan A. Garay and Rosario
Gennaro, editors, Advances in Cryptology – CRYPTO 2014,
pages 421–439, Berlin, Heidelberg, 2014. Springer Berlin
Heidelberg.

[BKR13] Mihir Bellare, Sriram Keelveedhi, and Thomas Ristenpart.
Dupless: Server-aided encryption for deduplicated storage.
In Proceedings of the 22Nd USENIX Conference on Security,
SEC’13, pages 179–194, Berkeley, CA, USA, 2013. USENIX
Association.

[BM18] Christian Badertscher and Ueli Maurer. Composable and
robust outsourced storage. In Nigel P. Smart, editor, Topics
in Cryptology – CT-RSA 2018, pages 354–373, Cham, 2018.
Springer International Publishing.

[BMM+15a] Christian Badertscher, Christian Matt, Ueli Maurer, Phillip
Rogaway, and Björn Tackmann. Augmented secure channels
and the goal of the tls 1.3 record layer. In Man-Ho Au and

BIBLIOGRAPHY 357

Atsuko Miyaji, editors, Provable Security, pages 85–104,
Cham, 2015. Springer International Publishing.

[BMM+15b] Christian Badertscher, Christian Matt, Ueli Maurer, Phillip
Rogaway, and Björn Tackmann. Robust authenticated en-
cryption and the limits of symmetric cryptography. In Jens
Groth, editor, Cryptography and Coding, pages 112–129,
Cham, 2015. Springer International Publishing.

[BMT18] Christian Badertscher, Ueli Maurer, and Björn Tackmann.
On composable security for digital signatures. In Michel
Abdalla and Ricardo Dahab, editors, Public-Key Cryptog-
raphy – PKC 2018, pages 494–523, Cham, 2018. Springer
International Publishing.

[BMTZ17] Christian Badertscher, Ueli Maurer, Daniel Tschudi, and
Vassilis Zikas. Bitcoin as a transaction ledger: A composable
treatment. In Jonathan Katz and Hovav Shacham, editors,
Advances in Cryptology – CRYPTO 2017, pages 324–356,
Cham, 2017. Springer International Publishing.

[BN00] Mihir Bellare and Chanathip Namprempre. Authenticated
encryption: Relations among notions and analysis of the
generic composition paradigm. In Tatsuaki Okamoto, editor,
Advances in Cryptology — ASIACRYPT 2000, pages 531–
545, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

[Boy03] Xavier Boyen. Multipurpose identity-based signcryption.
In Dan Boneh, editor, Advances in Cryptology - CRYPTO
2003, pages 383–399, Berlin, Heidelberg, 2003. Springer
Berlin Heidelberg.

[BPW03] Michael Backes, Birgit Pfitzmann, and Michael Waidner. A
universally composable cryptographic library. Cryptology
ePrint Archive, Report 2003/015, January 2003.

[BR00] Mihir Bellare and Phillip Rogaway. Encode-then-encipher
encryption: How to exploit nonces or redundancy in plain-
texts for efficient cryptography. In Tatsuaki Okamoto, editor,
Advances in Cryptology — ASIACRYPT 2000, pages 317–
330, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

358 BIBLIOGRAPHY

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple
encryption and a framework for code-based game-playing
proofs. In Serge Vaudenay, editor, Advances in Cryptology
- EUROCRYPT 2006, pages 409–426, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg.

[BRW04] Mihir Bellare, Phillip Rogaway, and David Wagner. The
eax mode of operation. In Bimal Roy and Willi Meier,
editors, Fast Software Encryption, pages 389–407, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

[BSZ07] Joonsang Baek, Ron Steinfeld, and Yuliang Zheng. Formal
proofs for the security of signcryption. Journal of Cryptology,
20(2):203–235, Apr 2007.

[But13] Vitalik Buterin. A next-generation smart contract and
decentralized application platform. White Paper on
GitHub, 2013. https://github.com/ethereum/wiki/
wiki/White-Paper.

[Cac11] Christian Cachin. Integrity and consistency for untrusted
services. In Ivana Černá, Tibor Gyimóthy, Juraj Hromkovič,
Keith Jefferey, Rastislav Králović, Marko Vukolić, and Ste-
fan Wolf, editors, SOFSEM 2011: Theory and Practice of
Computer Science, pages 1–14, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

[Can01a] R. Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In Proceedings of
the 42Nd IEEE Symposium on Foundations of Computer
Science, FOCS ’01, pages 136–147, Washington, DC, USA,
2001. IEEE Computer Society.

[Can01b] R. Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In Proceedings of the
42Nd IEEE Symposium on Foundations of Computer Sci-
ence, FOCS ’01, pages 136–, Washington, DC, USA, 2001.
IEEE Computer Society.

[Can04] Ran Canetti. Universally composable signature, certification
and authentication. In Proceedings of CSFW 2004, 2004.

https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper

BIBLIOGRAPHY 359

[CDMP05] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud,
and Prashant Puniya. Merkle-damgård revisited: How
to construct a hash function. In Victor Shoup, editor,
Advances in Cryptology – CRYPTO 2005, pages 430–448,
Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[CDPW07a] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi
Walfish. Universally composable security with global setup.
In Salil P. Vadhan, editor, Theory of Cryptography, pages
61–85, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[CDPW07b] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi
Walfish. Universally composable security with global setup.
In Salil P. Vadhan, editor, Theory of Cryptography, pages
61–85, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[CDSMW08] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and
Hoeteck Wee. Black-box construction of a non-malleable
encryption scheme from any semantically secure one. In
Ran Canetti, editor, Theory of Cryptography, volume 4948
of LNCS, pages 424–441, 2008.

[CDV14] Christian Cachin, Dan Dobre, and Marko Vukolić. Separat-
ing data and control: Asynchronous bft storage with 2t + 1
data replicas. In Pascal Felber and Vijay Garg, editors,
Stabilization, Safety, and Security of Distributed Systems,
pages 1–17, Cham, 2014. Springer International Publishing.

[CEK+16] Jan Camenisch, Robert Enderlein, Stefan Krenn, Ralf
Küsters, and Daniel Rausch. Universal composition with
responsive environments. In Jung Hee Cheon and Tsuyoshi
Takagi, editors, Advances in Cryptology — ASIACRYPT
2016, volume 10032 of LNCS, pages 807–840. Springer, 2016.

[CEM16] Jan Camenisch, Robert R. Enderlein, and Ueli Maurer.
Memory erasability amplification. In Vassilis Zikas and
Roberto De Prisco, editors, Security and Cryptography for
Networks, pages 104–125, Cham, 2016. Springer Interna-
tional Publishing.

360 BIBLIOGRAPHY

[CG09] Christian Cachin and Martin Geisler. Integrity protection
for revision control. In Michel Abdalla, David Pointcheval,
Pierre-Alain Fouque, and Damien Vergnaud, editors, Ap-
plied Cryptography and Network Security, pages 382–399,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[CGHZ16] Sandro Coretti, Juan Garay, Martin Hirt, and Vassilis
Zikas. Constant-round asynchronous multi-party computa-
tion based on one-way functions. In Jung Hee Cheon and
Tsuyoshi Takagi, editors, Advances in Cryptology – ASI-
ACRYPT 2016, pages 998–1021, Berlin, Heidelberg, 2016.
Springer Berlin Heidelberg.

[CKO14] Nishanth Chandran, Bhavana Kanukurthi, and Rafail Os-
trovsky. Locally updatable and locally decodable codes. In
Yehuda Lindell, editor, Theory of Cryptography, pages 489–
514, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[CKS09] C. Cachin, I. Keidar, and A. Shraer. Fail-aware untrusted
storage. In 2009 IEEE/IFIP International Conference on
Dependable Systems Networks, pages 494–503, June 2009.

[CKW13] David Cash, Alptekin Küpçü, and Daniel Wichs. Dynamic
proofs of retrievability via oblivious ram. In Thomas Johans-
son and Phong Q. Nguyen, editors, Advances in Cryptology
– EUROCRYPT 2013, pages 279–295, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

[CMT13] Sandro Coretti, Ueli Maurer, and Björn Tackmann. Con-
structing confidential channels from authenticated channels—
public-key encryption revisited. In Kazue Sako and Palash
Sarkar, editors, Advances in Cryptology - ASIACRYPT
2013, pages 134–153, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg.

[CP13] Kai-Min Chung and Rafael Pass. A simple oram. Technical
report, DTIC Document, 2013.

[CR03] Ran Canetti and Tal Rabin. Universal composition with
joint state. In Dan Boneh, editor, Advances in Cryptology —

BIBLIOGRAPHY 361

CRYPTO 2003, volume 2729 of Lecture Notes in Computer
Science, pages 265–281. Springer, 2003.

[CSS07] Christian Cachin, Abhi Shelat, and Alexander Shraer. Effi-
cient fork-linearizable access to untrusted shared memory.
In Proceedings of the Twenty-sixth Annual ACM Symposium
on Principles of Distributed Computing, PODC ’07, pages
129–138, New York, NY, USA, 2007. ACM.

[CSV16a] Ran Canetti, Daniel Shahaf, and Margarita Vald. Uni-
versally composable authentication and key-exchange with
global pki. In Chen-Mou Cheng, Kai-Min Chung, Giuseppe
Persiano, and Bo-Yin Yang, editors, Public-Key Cryptogra-
phy – PKC 2016, pages 265–296, Berlin, Heidelberg, 2016.
Springer Berlin Heidelberg.

[CSV16b] Ran Canetti, Daniel Shahaf, and Margarita Vald. Uni-
versally composable authentication and key-exchange with
global pki. In Chen-Mou Cheng, Kai-Min Chung, Giuseppe
Persiano, and Bo-Yin Yang, editors, Public-Key Cryptogra-
phy – PKC 2016, pages 265–296, Berlin, Heidelberg, 2016.
Springer Berlin Heidelberg.

[DDM15a] Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay.
Compact attribute-based encryption and signcryption for
general circuits from multilinear maps. In Alex Biryukov and
Vipul Goyal, editors, Progress in Cryptology – INDOCRYPT
2015, pages 3–24, Cham, 2015. Springer International Pub-
lishing.

[DDM15b] Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay.
Functional signcryption: Notion, construction, and applica-
tions. In Man-Ho Au and Atsuko Miyaji, editors, Provable
Security, pages 268–288, Cham, 2015. Springer International
Publishing.

[Den05] Alexander W. Dent. Hybrid signcryption schemes with in-
sider security. In Colin Boyd and Juan Manuel González Ni-
eto, editors, Information Security and Privacy, pages 253–
266, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

362 BIBLIOGRAPHY

[DGHM13] Grégory Demay, Peter Gaži, Martin Hirt, and Ueli Maurer.
Resource-restricted indifferentiability. In Thomas Johansson
and Phong Q. Nguyen, editors, Advances in Cryptology –
EUROCRYPT 2013, pages 664–683, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

[DH76] Whitfield Diffie and Martin Hellman. New directions in
cryptography. IEEE Transactions on Information Theory,
IT-22(6):644–654, November 1976.

[DP09] Devdatt Dubhashi and Alessandro Panconesi. Concentra-
tion of Measure for the Analysis of Randomized Algorithms.
Cambridge University Press, New York, NY, USA, 1st edi-
tion, 2009.

[DvDF+16] Srinivas Devadas, Marten van Dijk, Christopher W. Fletcher,
Ling Ren, Elaine Shi, and Daniel Wichs. Onion oram: A
constant bandwidth blowup oblivious ram. In Eyal Kushile-
vitz and Tal Malkin, editors, Theory of Cryptography, pages
145–174, Berlin, Heidelberg, 2016. Springer Berlin Heidel-
berg.

[DVW09] Yevgeniy Dodis, Salil Vadhan, and Daniel Wichs. Proofs
of retrievability via hardness amplification. In Omer Rein-
gold, editor, Theory of Cryptography, pages 109–127, Berlin,
Heidelberg, 2009. Springer Berlin Heidelberg.

[DZ10] Alexander W Dent and Yuliang Zheng. Practical signcryp-
tion. Springer Science & Business Media, 2010.

[EKPT09] Chris Erway, Alptekin Küpçü, Charalampos Papamanthou,
and Roberto Tamassia. Dynamic provable data possession.
In Proceedings of the 16th ACM Conference on Computer
and Communications Security, CCS ’09, pages 213–222, New
York, NY, USA, 2009. ACM.

[ES18] Ittay Eyal and Emin Gün Sirer. Majority is not enough:
Bitcoin mining is vulnerable. Commun. ACM, 61(7):95–102,
June 2018.

BIBLIOGRAPHY 363

[Eya15] I. Eyal. The miner’s dilemma. In 2015 IEEE Symposium
on Security and Privacy, pages 89–103, May 2015.

[FGMP15] Marc Fischlin, Felix Günther, Giorgia Azzurra Marson,
and Kenneth G. Paterson. Data is a stream: Security of
stream-based channels. In Rosario Gennaro and Matthew
Robshaw, editors, Advances in Cryptology – CRYPTO 2015,
pages 545–564, Berlin, Heidelberg, 2015. Springer Berlin
Heidelberg.

[FNR+15] Christopher Fletcher, Muhammad Naveed, Ling Ren, Elaine
Shi, and Emil Stefanov. Bucket oram: single online
roundtrip, constant bandwidth oblivious ram. Technical
report, IACR Cryptology ePrint Archive, Report 2015, 1065,
2015.

[GD02] Virgil D. Gligor and Pompiliu Donescu. Fast encryption and
authentication: Xcbc encryption and xecb authentication
modes. In Mitsuru Matsui, editor, Fast Software Encryption,
pages 92–108, Berlin, Heidelberg, 2002. Springer Berlin
Heidelberg.

[GGH+13] Craig Gentry, Kenny A. Goldman, Shai Halevi, Charanjit
Julta, Mariana Raykova, and Daniel Wichs. Optimizing
oram and using it efficiently for secure computation. In Emil-
iano De Cristofaro and Matthew Wright, editors, Privacy
Enhancing Technologies, pages 1–18, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

[GHJR15] Craig Gentry, Shai Halevi, Charanjit Jutla, and Mariana
Raykova. Private database access with he-over-oram archi-
tecture. In Tal Malkin, Vladimir Kolesnikov, Allison Bishop
Lewko, and Michalis Polychronakis, editors, Applied Cryp-
tography and Network Security, pages 172–191, Cham, 2015.
Springer International Publishing.

[GK07] Kristian Gjøsteen and Lillian Kråkmo. Universally compos-
able signcryption. In Javier Lopez, Pierangela Samarati,
and Josep L. Ferrer, editors, Public Key Infrastructure,

364 BIBLIOGRAPHY

pages 346–353, Berlin, Heidelberg, 2007. Springer Berlin
Heidelberg.

[GKL15] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The
bitcoin backbone protocol: Analysis and applications. In
Elisabeth Oswald and Marc Fischlin, editors, Advances in
Cryptology - EUROCRYPT 2015, pages 281–310, Berlin,
Heidelberg, 2015. Springer Berlin Heidelberg.

[GKZ10] J. A. Garay, A. Kiayias, and H. Zhou. A framework for the
sound specification of cryptographic tasks. In 2010 23rd
IEEE Computer Security Foundations Symposium, pages
277–289, July 2010.

[GM11] Michael T. Goodrich and Michael Mitzenmacher. Privacy-
preserving access of outsourced data via oblivious ram sim-
ulation. In Luca Aceto, Monika Henzinger, and Jiří Sgall,
editors, Automata, Languages and Programming, pages 576–
587, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[GM18] François Gérard and Keno Merckx. Setla: Signature and
encryption from lattices. Cryptology ePrint Archive, Report
2018/056, 2018. https://eprint.iacr.org/2018/056.

[GMP+08] Sebastian Gajek, Mark Manulis, Olivier Pereira, Ahmad-
Reza Sadeghi, and Jörg Schwenk. Universally composable
security analysis of tls. In Joonsang Baek, Feng Bao, Kefei
Chen, and Xuejia Lai, editors, Provable Security, pages 313–
327, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[GMPY11] Juan A. Garay, Philip MacKenzie, Manoj Prabhakaran, and
Ke Yang. Resource fairness and composability of crypto-
graphic protocols. Journal of Cryptology, 24(4):615–658,
Oct 2011.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ron Rivest. A digital
signature scheme secure against adaptive chosen message
attacks. SIAM Journal on Computing, 17(2):281–308, April
1988.

https://eprint.iacr.org/2018/056

BIBLIOGRAPHY 365

[GO96] Oded Goldreich and Rafail Ostrovsky. Software protection
and simulation on oblivious rams. Journal of the ACM
(JACM), 43(3):431–473, 1996.

[HCH+15] John Hughes, Scott Cantor, Jeff Hodges, Frederick Hirsch,
Prateek Mishra, Rob Philpott, and Eve Maler. Profiles for
the Security Assertions Markup Language (SAML). OASIS
Standard, March 2015.

[HHPSP11] Shai Halevi, Danny Harnik, Benny Pinkas, and Alexan-
dra Shulman-Peleg. Proofs of ownership in remote storage
systems. In Proceedings of the 18th ACM Conference on
Computer and Communications Security, CCS ’11, pages
491–500, New York, NY, USA, 2011. ACM.

[HKR15] Viet Tung Hoang, Ted Krovetz, and Phillip Rogaway. Ro-
bust authenticated-encryption aez and the problem that
it solves. In Elisabeth Oswald and Marc Fischlin, editors,
Advances in Cryptology – EUROCRYPT 2015, pages 15–44,
Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[HSD+05] Changhua He, Mukund Sundararajan, Anupam Datta, Ante
Derek, and John C. Mitchell. A modular correctness proof
of ieee 802.11i and tls. In Proceedings of the 12th ACM
Conference on Computer and Communications Security,
CCS ’05, pages 2–15, New York, NY, USA, 2005. ACM.

[JK07] Ari Juels and Burton S. Kaliski, Jr. Pors: Proofs of re-
trievability for large files. In Proceedings of the 14th ACM
Conference on Computer and Communications Security,
CCS ’07, pages 584–597, New York, NY, USA, 2007. ACM.

[JKSS12] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk.
On the security of tls-dhe in the standard model. In Rei-
haneh Safavi-Naini and Ran Canetti, editors, Advances in
Cryptology – CRYPTO 2012, pages 273–293, Berlin, Heidel-
berg, 2012. Springer Berlin Heidelberg.

[Jut01] Charanjit S. Jutla. Encryption modes with almost free
message integrity. In Birgit Pfitzmann, editor, Advances in

366 BIBLIOGRAPHY

Cryptology — EUROCRYPT 2001, pages 529–544, Berlin,
Heidelberg, 2001. Springer Berlin Heidelberg.

[KB14] Ranjit Kumaresan and Iddo Bentov. How to use bitcoin
to incentivize correct computations. In Proceedings of the
2014 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS ’14, pages 30–41, New York, NY,
USA, 2014. ACM.

[KB16] Ranjit Kumaresan and Iddo Bentov. Amortizing secure
computation with penalties. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications
Security, CCS ’16, pages 418–429, New York, NY, USA,
2016. ACM.

[KKKT16] Aggelos Kiayias, Elias Koutsoupias, Maria Kyropoulou,
and Yiannis Tselekounis. Blockchain mining games. In
Proceedings of the 2016 ACM Conference on Economics
and Computation, EC ’16, pages 365–382, New York, NY,
USA, 2016. ACM.

[KLO12] Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the
(in)security of hash-based oblivious ram and a new balancing
scheme. In Proceedings of the Twenty-third Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’12, pages
143–156, Philadelphia, PA, USA, 2012. Society for Industrial
and Applied Mathematics.

[KMB15] Ranjit Kumaresan, Tal Moran, and Iddo Bentov. How
to use bitcoin to play decentralized poker. In Proceedings
of the 22Nd ACM SIGSAC Conference on Computer and
Communications Security, CCS ’15, pages 195–206, New
York, NY, USA, 2015. ACM.

[KMO+15] Markulf Kohlweiss, Ueli Maurer, Cristina Onete, Björn
Tackmann, and Daniele Venturi. (de-)constructing tls 1.3.
In Alex Biryukov and Vipul Goyal, editors, Progress in
Cryptology – INDOCRYPT 2015, pages 85–102, Cham, 2015.
Springer International Publishing.

BIBLIOGRAPHY 367

[KMTZ13] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis
Zikas. Universally composable synchronous computation. In
Amit Sahai, editor, Theory of Cryptography, pages 477–498,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[KPW13] Hugo Krawczyk, Kenneth G. Paterson, and Hoeteck Wee.
On the security of the tls protocol: A systematic analysis. In
Ran Canetti and Juan A. Garay, editors, Advances in Cryp-
tology – CRYPTO 2013, pages 429–448, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

[KT08] Ralf Küsters and Max Tuengerthal. Joint state theorems for
public-key encryption and digitial signature functionalities
with local computation. In In Proc. 21st IEEE Computer
Security Foundations Symposium (CSF’08, 2008.

[Kup10] Alptekin Kupcu. Efficient Cryptography for the Next Gen-
eration Secure Cloud. PhD thesis, 2010.

[KVV16] Ranjit Kumaresan, Vinod Vaikuntanathan, and
Prashant Nalini Vasudevan. Improvements to secure
computation with penalties. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS ’16, pages 406–417, New York, NY,
USA, 2016. ACM.

[KY01] Jonathan Katz and Moti Yung. Unforgeable encryption
and chosen ciphertext secure modes of operation. In Ger-
hard Goos, Juris Hartmanis, Jan van Leeuwen, and Bruce
Schneier, editors, Fast Software Encryption, pages 284–299,
Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[KZZ16] Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. Fair
and robust multi-party computation using a global transac-
tion ledger. In Marc Fischlin and Jean-Sébastien Coron, ed-
itors, Advances in Cryptology – EUROCRYPT 2016, pages
705–734, Berlin, Heidelberg, 2016. Springer Berlin Heidel-
berg.

368 BIBLIOGRAPHY

[Lam79] Leslie Lamport. Constructing digital signatures from a one-
way function. Technical Report CSL-98, SRI International,
Menlo Park, California, October 1979.

[Lam98] Leslie Lamport. The part-time parliament. ACM Trans.
Comput. Syst., 16(2):133–169, May 1998.

[Lam02] Leslie Lamport. Paxos made simple, fast, and byzantine. In
Procedings of the 6th International Conference on Princi-
ples of Distributed Systems. OPODIS 2002, Reims, France,
December 11-13, 2002, page 7–9. Suger, Saint-Denis, rue
Catulienne, France, 2002.

[LBZ11] Joseph K. Liu, Joonsang Baek, and Jianying Zhou. On-
line/offline identity-based signcryption revisited. In Xuejia
Lai, Moti Yung, and Dongdai Lin, editors, Information
Security and Cryptology, pages 36–51, Berlin, Heidelberg,
2011. Springer Berlin Heidelberg.

[LKMS04] Jinyuan Li, Maxwell Krohn, David Mazières, and Dennis
Shasha. Secure untrusted data repository (sundr). In Pro-
ceedings of the 6th Conference on Symposium on Opearting
Systems Design & Implementation - Volume 6, OSDI’04,
pages 9–9, Berkeley, CA, USA, 2004. USENIX Association.

[LQ03] B. Libert and J. J. Quisquater. A new identity based
signcryption scheme from pairings. In Proceedings 2003
IEEE Information Theory Workshop, pages 155–158, 2003.

[LQ04] Benoît Libert and Jean-Jacques Quisquater. Efficient sign-
cryption with key privacy from gap diffie-hellman groups.
In Feng Bao, Robert Deng, and Jianying Zhou, editors, Pub-
lic Key Cryptography – PKC 2004, pages 187–200, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The
byzantine generals problem. ACM Trans. Program. Lang.
Syst., 4(3):382–401, July 1982.

[LW16] Bin Liu and Bogdan Warinschi. Universally composable
cryptographic role-based access control. In Liqun Chen

BIBLIOGRAPHY 369

and Jinguang Han, editors, Provable Security, pages 61–80,
Cham, 2016. Springer International Publishing.

[Mau02] Ueli Maurer. Indistinguishability of random systems. In
Lars R. Knudsen, editor, Advances in Cryptology — EU-
ROCRYPT 2002, pages 110–132, Berlin, Heidelberg, 2002.
Springer Berlin Heidelberg.

[Mau12] Ueli Maurer. Constructive cryptography – a new paradigm
for security definitions and proofs. In Sebastian Mödersheim
and Catuscia Palamidessi, editors, Theory of Security and
Applications, pages 33–56, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg.

[MGGR13] I. Miers, C. Garman, M. Green, and A. D. Rubin. Zerocoin:
Anonymous distributed e-cash from bitcoin. In 2013 IEEE
Symposium on Security and Privacy, pages 397–411, May
2013.

[ML02] John Malone-Lee. Identity-based signcryption. Cryptology
ePrint Archive, Report 2002/098, 2002. https://eprint.
iacr.org/2002/098.

[MMB15] Tarik Moataz, Travis Mayberry, and Erik-Oliver Blass. Con-
stant communication oram with small blocksize. In Proceed-
ings of the 22Nd ACM SIGSAC Conference on Computer
and Communications Security, CCS ’15, pages 862–873, New
York, NY, USA, 2015. ACM.

[MR11] Ueli Maurer and Renato Renner. Abstract cryptography.
In Innovations in Computer Science. Tsinghua University
Press, 2011.

[MR16] Ueli Maurer and Renato Renner. From indifferentiability to
constructive cryptography (and back). In Martin Hirt and
Adam Smith, editors, Theory of Cryptography, pages 3–24,
Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[MRT12] Ueli Maurer, Andreas Rüedlinger, and Björn Tackmann.
Confidentiality and integrity: A constructive perspective. In

https://eprint.iacr.org/2002/098
https://eprint.iacr.org/2002/098

370 BIBLIOGRAPHY

Ronald Cramer, editor, Theory of Cryptography, pages 209–
229, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[MS02] David Mazières and Dennis Shasha. Building secure file
systems out of byzantine storage. In Proceedings of the
Twenty-first Annual Symposium on Principles of Distributed
Computing, PODC ’02, pages 108–117, New York, NY, USA,
2002. ACM.

[MSW08] P. Morrissey, N. P. Smart, and B. Warinschi. A modular
security analysis of the tls handshake protocol. In Josef
Pieprzyk, editor, Advances in Cryptology - ASIACRYPT
2008, pages 55–73, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system. White Paper, 2008. http://bitcoin.org/
bitcoin.pdf.

[NR09] Moni Naor and Guy N. Rothblum. The complexity of online
memory checking. J. ACM, 56(1):2:1–2:46, February 2009.

[Pat05] Akshay Patil. On symbolic analysis of cryptographic
protocols. Massachusetts Institute of Technology, 2005.
http://hdl.handle.net/1721.1/33331.

[PPB14] Tapas Pandit, Sumit Kumar Pandey, and Rana Barua.
Attribute-based signcryption : Signer privacy, strong un-
forgeability and ind-cca2 security in adaptive-predicates
attack. In Sherman S. M. Chow, Joseph K. Liu, Lucas C. K.
Hui, and Siu Ming Yiu, editors, Provable Security, pages
274–290, Cham, 2014. Springer International Publishing.

[PRS11] Kenneth G. Paterson, Thomas Ristenpart, and Thomas
Shrimpton. Tag size does matter: Attacks and proofs for
the tls record protocol. In Dong Hoon Lee and Xiaoyun
Wang, editors, Advances in Cryptology – ASIACRYPT 2011,
pages 372–389, Berlin, Heidelberg, 2011. Springer Berlin
Heidelberg.

http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
http://hdl.handle.net/1721.1/33331

BIBLIOGRAPHY 371

[PS17] Rafael Pass and Elaine Shi. Fruitchains: A fair blockchain.
In Proceedings of the ACM Symposium on Principles of
Distributed Computing, PODC ’17, page 315–324, New York,
NY, USA, 2017. ACM.

[PSS17] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of
the blockchain protocol in asynchronous networks. In Jean-
Sébastien Coron and Jesper Buus Nielsen, editors, Advances
in Cryptology – EUROCRYPT 2017, pages 643–673, Cham,
2017. Springer International Publishing.

[PW01] Birgit Pfitzmann and Michael Waidner. A model for asyn-
chronous reactive systems and its application to secure
message transmission. In Proceedings of the 2001 IEEE
Symposium on Security and Privacy, pages 184–200. IEEE,
2001.

[Rab83] M. O. Rabin. Randomized byzantine generals. In 24th
Annual Symposium on Foundations of Computer Science
(sfcs 1983), pages 403–409, Nov 1983.

[RBBK01] Phillip Rogaway, Mihir Bellare, John Black, and Ted
Krovetz. Ocb: A block-cipher mode of operation for ef-
ficient authenticated encryption. In Proceedings of the 8th
ACM Conference on Computer and Communications Secu-
rity, CCS ’01, pages 196–205, New York, NY, USA, 2001.
ACM.

[RFY+13] L. Ren, C. W. Fletcher, X. Yu, M. van Dijk, and S. Devadas.
Integrity verification for path oblivious-ram. In 2013 IEEE
High Performance Extreme Computing Conference (HPEC),
pages 1–6, Sept 2013.

[Rog02] Phillip Rogaway. Authenticated-encryption with associated-
data. In Proceedings of the 9th ACM Conference on Com-
puter and Communications Security, CCS ’02, pages 98–107,
New York, NY, USA, 2002. ACM.

[Ros12] Mike Rosulek. Must you know the code of f to securely
compute f? In Reihaneh Safavi-Naini and Ran Canetti,

372 BIBLIOGRAPHY

editors, Advances in Cryptology – CRYPTO 2012, pages 87–
104, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[RS06] Phillip Rogaway and Thomas Shrimpton. A provable-
security treatment of the key-wrap problem. In Serge Vaude-
nay, editor, Advances in Cryptology - EUROCRYPT 2006,
pages 373–390, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg.

[RSA78] Ron Rivest, Adi Shamir, and Leonard Adleman. A method
for obtaining digital signatures and public-key cryptosys-
tems. Communications of the ACM, 21(2):120–126, 1978.

[RSS11] Thomas Ristenpart, Hovav Shacham, and Thomas Shrimp-
ton. Careful with composition: Limitations of the indif-
ferentiability framework. In Kenneth G. Paterson, editor,
Advances in Cryptology – EUROCRYPT 2011, pages 487–
506, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[SCC+10] Alexander Shraer, Christian Cachin, Asaf Cidon, Idit Kei-
dar, Yan Michalevsky, and Dani Shaket. Venus: Verification
for untrusted cloud storage. In Proceedings of the 2010
ACM Workshop on Cloud Computing Security Workshop,
CCSW ’10, pages 19–30, New York, NY, USA, 2010. ACM.

[SCG+14] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers,
E. Tromer, and M. Virza. Zerocash: Decentralized anony-
mous payments from bitcoin. In 2014 IEEE Symposium on
Security and Privacy, pages 459–474, May 2014.

[SDS+18] Emil Stefanov, Marten Van Dijk, Elaine Shi, T.-H. Hubert
Chan, Christopher Fletcher, Ling Ren, Xiangyao Yu, and
Srinivas Devadas. Path oram: An extremely simple oblivious
ram protocol. J. ACM, 65(4):18:1–18:26, April 2018.

[SSP13] Elaine Shi, Emil Stefanov, and Charalampos Papamanthou.
Practical dynamic proofs of retrievability. In Proceedings
of the 2013 ACM SIGSAC Conference on Computer &
Communications Security, CCS ’13, pages 325–336, New
York, NY, USA, 2013. ACM.

BIBLIOGRAPHY 373

[SSS12] Emil Stefanov, Elaine Shi, and Dawn Xiaodong Song. To-
wards practical oblivious RAM. In 19th Annual Network
and Distributed System Security Symposium, NDSS 2012,
San Diego, California, USA, February 5-8, 2012, 2012.

[SSVPR10] S. Sharmila Deva Selvi, S. Sree Vivek, and C. Pandu Rangan.
Identity based public verifiable signcryption scheme. In
Swee-Huay Heng and Kaoru Kurosawa, editors, Provable
Security, pages 244–260, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg.

[SvDJO12] Emil Stefanov, Marten van Dijk, Ari Juels, and Alina Oprea.
Iris: A scalable cloud file system with efficient integrity
checks. In Proceedings of the 28th Annual Computer Security
Applications Conference, ACSAC ’12, pages 229–238, New
York, NY, USA, 2012. ACM.

[SVVR12] S. Sharmila Deva Selvi, S. Sree Vivek, Dhinakaran Vinayaga-
murthy, and C. Pandu Rangan. Id based signcryption
scheme in standard model. In Tsuyoshi Takagi, Guilin
Wang, Zhiguang Qin, Shaoquan Jiang, and Yong Yu, ed-
itors, Provable Security, pages 35–52, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg.

[SW13] Hovav Shacham and Brent Waters. Compact proofs of
retrievability. Journal of Cryptology, 26(3):442–483, Jul
2013.

[SZ00] Ron Steinfeld and Yuliang Zheng. A signcryption scheme
based on integer factorization. In Gerhard Goos, Juris Hart-
manis, Jan van Leeuwen, Josef Pieprzyk, Jennifer Seberry,
and Eiji Okamoto, editors, Information Security, pages 308–
322, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

[SZ15] Yonatan Sompolinsky and Aviv Zohar. Secure high-rate
transaction processing in bitcoin. In Rainer Böhme and
Tatsuaki Okamoto, editors, Financial Cryptography and
Data Security, pages 507–527, Berlin, Heidelberg, 2015.
Springer Berlin Heidelberg.

374 BIBLIOGRAPHY

[TP14] Youliang Tian and Changgen Peng. Universally composable
secure group communication. Cryptology ePrint Archive,
Report 2014/647, 2014. https://eprint.iacr.org/2014/
647.

[WHC+14] Xiao Shaun Wang, Yan Huang, T-H. Hubert Chan, Abhi
Shelat, and Elaine Shi. Scoram: Oblivious ram for secure
computation. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security,
CCS ’14, pages 191–202, New York, NY, USA, 2014. ACM.

[WMAS13] Yang Wang, Mark Manulis, Man Ho Au, and Willy Susilo.
Relations among privacy notions for signcryption and key
invisible “sign-then-encrypt”. In Colin Boyd and Leonie
Simpson, editors, Information Security and Privacy, pages
187–202, Berlin, Heidelberg, 2013. Springer Berlin Heidel-
berg.

[WS96] David Wagner and Bruce Schneier. Analysis of the ssl
3.0 protocol. In Proceedings of the 2Nd Conference on
Proceedings of the Second USENIX Workshop on Electronic
Commerce - Volume 2, WOEC’96, pages 29–40, Berkeley,
CA, USA, 1996. USENIX Association.

[Zhe97] Yuliang Zheng. Digital signcryption or how to
achieve cost(signature & encryption) « cost(signature) +
cost(encryption). In Burton S. Kaliski, editor, Advances in
Cryptology — CRYPTO ’97, pages 165–179, Berlin, Heidel-
berg, 1997. Springer Berlin Heidelberg.

[ZI98] Yuliang Zheng and Hideki Imai. How to construct effi-
cient signcryption schemes on elliptic curves. Information
Processing Letters, 68(5):227 – 233, 1998.

[Zoh15] Aviv Zohar. Bitcoin: Under the hood. Commun. ACM,
58(9):104–113, August 2015.

https://eprint.iacr.org/2014/647
https://eprint.iacr.org/2014/647

	Introduction
	Motivation
	Security Notions and Applications
	Overview and Contributions
	Secure Communication Primitives
	Secure Outsourced Storage
	Digital Signatures Schemes
	Blockchain Protocols

	Related Work

	Preliminaries
	Notation
	General conventions
	Algorithms, Games, and Random Experiments

	Basic Cryptographic Primitives
	Symmetric-Key Encryption
	Message Authentication Codes
	Erasure Codes
	Digital Signature Scheme

	Constructive Cryptography
	Basic Concepts
	Constructions
	Composition
	An Important Special Case
	An Example of Resources and Constructions
	Specifications

	Overview of the UC Framework
	Basics
	Real-world process
	Ideal-world process
	Hybrid worlds
	Secure Realization and Composition

	Large Deviation Bounds

	I Secure Communication
	Authenticated Encryption
	Introduction
	Motivation and Contribution
	Authenticated Encryption with Associated Data
	The Constructive Cryptography Setting

	Augmented Secure Channels
	An Improved Secure Channel
	Formal Description
	Construction
	Application: On TLS Security

	Robust Authenticated Encryption
	Introduction
	Motivation
	RAE: Standard Definition
	The Constructive Cryptography Setting
	Specific Contributions

	Shared Uniform Random Injections
	Definition of RAE Security

	Random Injection Channels
	Constructing Random Injection Channels

	What is Best-Possible Security?
	RIC Characterizes Best-Possible Security

	Further Applications of the New Concept
	Security by Verifiable Redundancy
	Guarantees for Nonce-Reuse

	Signcryption
	Introduction
	Motivation
	Specific Contributions
	The Constructive Cryptography Setting

	Signcryption: Game-Based Notions
	Multi-User Outsider Security
	Multi-User Insider Security

	Gracefully-Degrading Secure Networks
	Definition
	Assumed Resources
	Construction

	II Secure Outsourced Storage
	A Model for Outsourced Storage
	Introduction
	Motivation
	Specific Contributions
	On the Importance of Composition and Robustness
	The Constructive Cryptography Setting
	Specific Related Work

	Basic Server-Memory Resource
	More Secure Memories
	Constructions
	Authentic Server-Memory from Basic Server-Memory Resources
	Confidential from Authentic Server-Memory Resources
	Secure from Confidential Server-Memory Resources
	Do all ORAM Schemes realize a Secure Server-Memory Resource?

	Auditable Server-Memory Resources
	Basic, authenticated, and confidential auditable server memory
	Secure and auditable server memory

	Constructing Auditable Server-Memories
	Making Authentic Server-Memory Resources Auditable
	Making Secure Server-Memory Resources Auditable
	Revisiting the Hash-Based Challenge-Response Approach

	III Digital Signatures
	A Constructive Model for Signatures
	Introduction
	Motivation
	Methodology and Outline of the Model
	Formalizing Message Authentication
	Relation to Previous Work
	Specific Contribution
	The Constructive Cryptography Setting

	Message Repositories
	Description of Message Repositories
	Modeling Security Guarantees by Access to the Repository

	The Constructive Perspective
	The Basic Definitions
	Unforgeability of Signatures implies Validity of Construction
	Chaining Multiple Construction Steps
	Validity of Construction implies Unforgeability of Signatures
	On the Transferability of Verification Rights

	IV Blockchain Protocols
	A Composable Model for Bitcoin
	Introduction
	Bitcoin: A Service for Cryptographic Protocols
	Our Contributions
	Overview of Bitcoin and Related Work

	Principles of our Model
	Functionalities with Dynamic Party Sets
	Modeling Network Assumptions
	Modeling Time and Clock-dependent Protocol Execution
	Modeling Hash Queries
	Assumptions as UC-Functionality Wrappers

	The Basic Transaction-Ledger Functionality
	Introduction and Overview
	Specific Defining Features

	Bitcoin as a UC Protocol
	Basics of Bitcoin
	Overview and Modeling Decisions
	The Formal Protocol Description

	The Bitcoin Ledger
	Security Analysis
	Overview
	First Proof Step
	Second Proof Step
	Improving the Chain-Quality Parameter

	Special Cases of our Model and Functionality Wrappers
	Special Cases and Existing Works
	Restrictions and Composition

	Modular Constructions based on the Ledger
	A Stronger Ledger with Account Management

	Conclusion
	Details of Chapter 5
	Finishing the Construction Proof
	Completing Step 5.)
	Completing Step 6.)
	Completing Step 7.)
	Completing Step 8.)

	Details of Chapter 8
	From Unicast to Multicast
	On Realizing Multicast from Unicast

	Further Details on the Bitcoin Ledger
	Further Details on Modularization of the Ledger Protocol
	The Modular Ledger Protocol
	On the Soundness of the Modular Decomposition

	The Simulator of the Main Theorem

