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Abstract

Understanding the communication complexity of Byzantine agreement (BA) is a
fundamental problem in distributed computing. In particular, for protocols involving
a large number of parties (as in, e.g., the context of blockchain protocols), it is impor-
tant to understand the dependence of the communication on the number of parties n.
Although adaptively secure BA protocols with o(n2) communication are known in the
synchronous and partially synchronous settings, no such protocols are known in the
fully asynchronous case.

We show asynchronous BA protocols with (expected) subquadratic communication
complexity tolerating an adaptive adversary who can corrupt f < (1 − ε)n/3 of the
parties (for any ε > 0). One protocol assumes initial setup done by a trusted dealer,
after which an unbounded number of BA executions can be run; alternately, we can
achieve subquadratic amortized communication with no prior setup. We also show that
some form of setup is needed for (non-amortized) subquadratic BA tolerating Θ(n)
corrupted parties.

As a contribution of independent interest, we show a secure-computation protocol
in the same threat model that has o(n2) communication when computing no-input
functionalities with short output (e.g., coin tossing).

1 Introduction

Byzantine agreement (BA) [31] is a fundamental problem in distributed computing. In this
context, n parties wish to agree on a common output even when f of those parties might
be adaptively corrupted. Although BA is a well-studied problem, it has recently received
increased attention due to its application to blockchain (aka state machine replication)
protocols. Such applications typically involve a large number of parties, and it is therefore
critical to understand how the communication complexity of BA scales with n. While
protocols with adaptive security and o(n2) communication complexity have been obtained

∗Portions of this work were done while at George Mason University.
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in both the synchronous [29] and partially synchronous [1] settings, there are currently no
such solutions for the asynchronous model.1 This leads us to ask:

Is it possible to design an asynchronous BA protocol with subquadratic communication
complexity that tolerates Θ(n) adaptive corruptions?

We give both positive and negative answers to this question.

Positive results. We show asynchronous BA protocols with (expected) subquadratic
communication complexity that can tolerate adaptive corruption of any f < (1 − ε)n/3 of
the parties, for arbitrary ε > 0. (This corruption threshold is almost optimal, as it is known
[7] that asynchronous BA is impossible altogether for f ≥ n/3, even assuming prior setup
and static corruptions.) Our solutions rely on two building blocks, each of independent
interest:

1. We show a BA protocol ΠBA tolerating f adaptive corruptions and having sub-
quadratic communication complexity. This protocol assumes prior setup by a trusted
dealer for each BA execution, but the size of the setup is independent of n.

2. We construct a secure-computation protocol ΠMPC tolerating f adaptive corruptions,
and relying on a subquadratic BA protocol as a subroutine. For the special case of
no-input functionalities, the number of BA executions depends only on the security
parameter, and the communication complexity is subquadratic when the output length
is independent of n.

We can combine these results to give an affirmative answer to the original question. Specif-
ically, using a trusted dealer, we can achieve an unbounded number of BA executions
with o(n2) communication per execution. The idea is as follows. Let L be the number
of BA executions required by ΠMPC for computing a no-input functionality. The dealer
provides the parties with the setup needed for L + 1 executions of ΠBA; the total size of
this setup is linear in L but independent of n. Then, each time the parties wish to carry
out Byzantine agreement, they will use one instance of their setup to run ΠBA, and use the
remaining L instances to refresh their initial setup by running ΠMPC to simulate the dealer.
Since the size of the setup for ΠBA is independent of n, the total communication complexity
is subquadratic in n.

Alternately, we can avoid a trusted dealer (though we do still need to assume a PKI) by
having the parties run an arbitrary adaptively secure protocol to generate the initial setup.
This protocol may not have subquadratic communication complexity; however, once it is
finished the parties can revert to the solution above which has subquadratic communication
per BA execution. Overall, this gives BA with amortized subquadratic communication.

Impossibility result. We justify our reliance on a trusted dealer by showing that some
form of setup is necessary for (non-amortized) subquadratic BA tolerating Θ(n) corrupted
parties. Moreover, this holds even when secret channels and erasures are available.

1Tolerating f < n/3 static corruptions is easy; see Section 1.1.
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1.1 Related Work

The problem of BA was introduced by Lamport, Shostak and Pease [31]. Without some
form of setup, BA is impossible (even in a synchronous network) when f ≥ n/3. Fischer,
Lynch, and Patterson [23] ruled out deterministic protocols for asynchronous BA even when
f = 1. Starting with the work of Rabin [38], randomized protocols for asynchronous BA
have been studied in both the setup-free setting [14, 34] as well as the setting with a PKI
and a trusted dealer [11].

Dolev and Reischuk [21] show that any BA protocol achieving subquadratic communi-
cation complexity (even in the synchronous setting) must be randomized. BA with sub-
quadratic communication complexity was first studied in the synchronous model by King et
al., who gave setup-free almost-everywhere BA protocols with polylogarithmic communica-
tion complexity for the case of f < (1− ε)n/3 static corruptions [30] and BA with O(n1.5)
communication complexity for the same number of adaptive corruptions [29]. Subsequently,
several works [32, 33, 35, 1, 26] gave improved protocols with subquadratic communication
complexity (in the synchronous model with an adaptive adversary) using the “player re-
placeability paradigm,” which requires setup in the form of verifiable random functions.

Abraham et al. [1] show a BA protocol with adaptive security and subquadratic com-
munication complexity in the partially synchronous model. They also give a version of the
Dolev-Reischuk bound that rules out subquadratic BA (even with setup, and even in the
synchronous communication model) against a strong adversary who is allowed to remove
messages sent by honest parties from the network after those parties have been adaptively
corrupted. Our lower bound adapts their ideas to the standard asynchronous model where
honest parties’ messages can be arbitrarily delayed, but cannot deleted once they are sent.
(We refer to the work of Garay et al. [24] for further discussion of these two models.) In
concurrent work, Rambaud [39] proves an impossibility result similar to our own; we refer
to Section 7 for further discussion.

Cohen et al. [19] show an adaptively secure asynchronous BA protocol with o(n2) com-
munication. However, they consider a non-standard asynchronous model in which the ad-
versary cannot arbitrarily schedule delivery of messages. In particular, the adversary in their
model cannot reorder messages sent by honest parties in the same protocol step. We work
in the standard asynchronous model. On the other hand, our work requires stronger com-
putational assumptions and a trusted dealer (unless we settle for amortized subquadratic
communication complexity).

We remark for completeness that asynchronous BA with subquadratic communica-
tion complexity for a static adversary corrupting f < n/3 of the parties is trivial using
a committee-based approach, assuming a trusted dealer. Roughly, the dealer chooses a
random committee of Θ(κ) parties (where κ is a security parameter) who then run BA on
behalf of everyone. Achieving subquadratic BA without any setup in the static-corruption
model is an interesting open question.

Asynchronous secure multi-party computation (MPC) was first studied by Ben-Or,
Canetti and Goldreich [4]. Since then, improved protocols have been proposed with both
unconditional [40, 37, 36] and computational [27, 28, 16, 17] security. These protocols
achieve optimal output quality, and incur a total communication complexity of at least
Θ(n3κ) assuming the output has length κ. Our MPC protocol gives a trade-off between the
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communication complexity and the output quality. In particular, we achieve subquadratic
communication complexity when the desired output quality is sublinear (as in the case of
no-input, randomized functions).

1.2 Overview of the Paper

In Section 2 we discuss our model and recall some standard definitions. We show how to
achieve asynchronous reliable consensus and reliable broadcast with subquadratic communi-
cation in Section 3. In Section 4 we present an asynchronous BA protocol with subquadratic
communication complexity, assuming prior setup by a trusted dealer for each execution. In
Section 5 we show a communication-efficient asynchronous protocol for secure multi-party
computation (MPC). We describe how these components can be combined to give our main
results in Section 6. We conclude with our lower bound in Section 7.

2 Preliminaries and Definitions

We denote the security parameter by κ, and assume κ < n = poly(κ). In all our protocols, we
implicitly assume parties take 1κ as input; in our definitions, we implicitly allow properties
to fail with probability negligible in κ. We let ppt stand for probabilistic polynomial
time. We use standard digital signatures, where a signature on a message m using secret
key sk is computed as σ ← Signsk(m); a signature is verified relative to public key pk by
calling Vrfypk(m,σ). For simplicity, we assume in our proofs that the adversary cannot forge
valid signatures on behalf of honest parties. When replacing the signatures with real-world
instantiations, our theorems follow except with an additive negligible failure probability.

Model. We consider a setting where n parties P1, . . . , Pn run a distributed protocol over
a network in which all parties are connected via pairwise authenticated channels. We work
in the asynchronous model, meaning the adversary can arbitrarily schedule the delivery
of all messages, so long as all messages are eventually delivered. We consider an adaptive
adversary that can corrupt some bounded number f of the parties at any point during
the execution of some protocol, and cause them to deviate arbitrarily from the protocol
specification. However, we assume the “atomic send” model, which means that (1) if at
some point in the protocol an honest party is instructed to send several messages (possibly
to different parties) simultaneously, then the adversary can corrupt that party either before
or after it sends all those messages, but not in the midst of sending those messages; and
(2) once an honest party sends a message, that message is guaranteed to be delivered
eventually even if that party is later corrupted. In addition, we assume secure erasure.

In many cases we assume an incorruptible dealer who can initialize the parties with setup
information in advance of any protocol execution. Such setup may include both public
information given to all parties, as well as private information given to specific parties;
when we refer to the size of a setup, we include the total private information given to all
parties but count the public information only once. A public key infrastructure (PKI) is
one particular setup, in which all parties hold the same vector of public keys (pk1, . . . , pkn)
and each honest party Pi holds the honestly generated secret key ski corresponding to pki.
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Byzantine agreement. We include here the standard definition of Byzantine agreement.
Definitions of other primitives are given in the relevant sections.

Definition 1 (Byzantine agreement) Let Π be a protocol executed by parties P1, . . . , Pn,
where each party Pi holds an input vi and parties terminate upon generating output. Π is
an f -secure Byzantine agreement protocol if the following hold when at most f parties are
corrupted:

• Validity: if every honest party has the same input value v, then every honest party
outputs v.

• Consistency: all honest parties output the same value.

3 Building Blocks

In this section we show asynchronous protocols with subquadratic communication for reli-
able consensus, reliable broadcast, graded consensus, and coin flipping.

3.1 Reliable Consensus

Reliable consensus is a weaker version of Byzantine agreement where termination is not
required. The definition follows.

Definition 2 (Reliable consensus) Let Π be a protocol executed by parties P1, . . . , Pn,
where each party Pi holds an input vi and parties terminate upon generating output. Π
is an f -secure reliable consensus protocol if the following hold when at most f parties are
corrupted:

• Validity: if every honest party has the same input value v, then every honest party
outputs v.

• Consistency: either no honest party terminates, or all honest parties output the
same value.

We show a reliable consensus protocol ΠRC with subquadratic communication. The
protocol can be viewed as a variant of Bracha’s reliable broadcast protocol [7, 8] for the
case where every party has input. The protocol assumes prior setup initialized by a trusted
dealer. The trusted setup has expected size O(κ2) and takes the following form. First,
the dealer selects two secret committees C1, C2 by independently placing each party in C1

(resp., C2) with probability κ/n. Then, for each party Pi in C1 (resp., C2), the dealer
generates a public/private key pair (pk1,i, sk1,i) (resp., (pk2,i, sk2,i)) for a digital signature
scheme and gives the associated private key to Pi; the public keys (but not the identities of
the members of the committees) are given to all parties.

The protocol itself is described in Figure 1. It begins by having each party in C1 send
its signed input to all the parties. The parties in C2 then send a signed ready message
on a value v the first time they either (1) receive v from κ − t parties in C1 or (2) receive
ready messages on v from t+ 1 parties in C2. All parties terminate upon receiving ready
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messages on the same value from κ − t parties in C2. Each committee has expected size
O(κ), and each member of a committee sends a single message to all parties; thus, O(κn)
messages are sent (in expectation) during the protocol.

Security relies on the fact that an adversary cannot corrupt too many members of C1

(resp., C2) “until it is too late,” except with negligible probability. For a static adversary
this is immediate. For an adaptive adversary this follows from the fact that each member
of a committee sends only a single message and erases its signing key after sending that
message; thus, once the attacker learns that some party is in a committee, adaptively
corrupting that party is useless.

Protocol ΠRC

We describe the protocol from the point of view of a party Pi with input vi, assuming the
setup described in the text. Set t = (1− ε) · κ/3.

1. If Pi ∈ C1: Compute σi ← Signsk1,i(vi), erase sk1,i, and send (echo, (i, vi, σi)) to all
parties.

2. If Pi ∈ C2: As long as no ready message has yet been sent, do: upon receiving
(echo, (j, v, σj)) with Vrfypk1,j (v, σj) = 1 on the same value v from at least κ− t distinct

parties, or receiving (ready, (j, v, σj)) with Vrfypk2,j (v, σj) = 1 on the same value v from

strictly more than t distinct parties, compute σi ← Signsk2,i(v), erase sk2,i, and send
(ready, (i, v, σi)) to all parties.

3. Upon receiving (ready, (j, v, σj)) with Vrfypk2,j (v, σj) = 1 on the same value v from at

least κ− t distinct parties and, output v and terminate.

Figure 1: A reliable consensus protocol, parameterized by ε.

Theorem 3 Let 0 < ε < 1/3 and f ≤ (1 − 2ε) · n/3. Then ΠRC is an f -secure reliable
consensus protocol with expected setup size O(κ2) and expected communication complexity
O((κ+ I) · κn), where I is the size of each party’s input.

Proof Recall that t = (1−ε)·κ/3. Say a party is 1-honest if it is in C1 and is not corrupted
when executing step 1 of the protocol, and 1-corrupted if it is in C1 but corrupted when
executing step 1 of the protocol. Define 2-honest and 2-corrupted analogously. Lemma 24
shows that with overwhelming probability C1 (resp., C2) contains fewer than (1 + ε) · κ
parties; there are more than κ− t parties who are 1-honest (resp., 2-honest); and there are
fewer than t < κ − t parties who are 1-corrupted (resp., 2-corrupted). For the rest of the
proof we assume these hold. We also use the fact that once a 1-honest (resp., 2-honest)
party P sends a message, that message is the only such message that will be accepted by
honest parties on behalf of P (even if P is adaptively corrupted after sending that message).

We first prove that ΠRC is f -valid. Assume all honest parties start with the same
input v. Each of the parties that is 1-honest sends an echo message on v to all other
parties, and so every honest party eventually receives valid echo messages on v from more
than κ− t distinct parties. Since there are fewer than κ− t parties that are 1-corrupted, no
honest party receives valid echo messages on v′ 6= v from κ− t or more distinct parties. It
follows that every 2-honest party sends a ready message on v to all other parties. A similar
argument then shows that all honest parties output v and terminate.
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Toward showing consistency, we first argue that if honest Pi, Pj send ready messages
on vi, vj , respectively, then vi = vj . Assume this is not the case, and let Pi, Pj be the first
honest parties to send ready messages on distinct values vi, vj . Then Pi (resp., Pj) must
have received at least κ− t valid ready messages on vi (resp., vj). But then at least

(κ− t) + (κ− t) = (1 + ε) · κ+ t

valid ready messages were received by Pi, Pj overall. But this is impossible, since the
maximum number of such messages is at most |C2| plus the number of 2-corrupted parties
(because 2-honest parties send at most one ready message), which is strictly less than
(1 + ε) · κ+ t.

Now, assume an honest party Pi outputs v. Then Pi must have received valid ready

messages on v from at least κ− t distinct parties in C2, more than κ− 2t > t of whom are
2-honest. As a consequence, all 2-honest parties eventually receive valid ready messages
on v from more than t parties, and so all 2-honest parties eventually send a ready message
on v. Thus, all honest parties eventually receive valid ready messages on v from at least
κ− t parties, and so output v also.

3.2 Reliable Broadcast

Reliable broadcast allows a sender to consistently distribute a message to a set of parties. In
contrast to full-fledged broadcast (and by analogy to reliable consensus), reliable broadcast
does not require termination.

Definition 4 (Reliable broadcast) Let Π be a protocol executed by parties P1, . . . , Pn,
where a designated sender P ∗ initially holds input v∗, and parties terminate upon generating
output. Π is an f -secure reliable broadcast protocol if the following hold when at most f
parties are corrupted:

• Validity: if P ∗ is honest at the start of the protocol, then every honest party out-
puts v∗.

• Consistency: either no honest party terminates, or all honest parties output the
same value.

It is easy to obtain a reliable broadcast protocol ΠRBC (cf. Figure 2) from reliable
consensus: the sender P ∗ simply signs its message and sends it to all parties, who then
run reliable consensus on what they received. In addition to the setup for the underlying
reliable consensus protocol, ΠRBC assumes P ∗ has a public/private key pair (pk∗, sk∗) with
pk∗ known to all other parties.

Theorem 5 Let 0 < ε < 1/3 and f ≤ (1 − 2ε) · n/3. Then ΠRBC is an f -secure reliable
broadcast protocol with expected setup size O(κ2) and expected communication complexity
O((κ+ I) · κn), where I is the size of the sender’s input.
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Protocol ΠRBC

1. P ∗ does: compute σ∗ ← Signsk∗(v∗), erase sk∗, and send (v∗, σ∗) to all parties.

2. Upon receiving (v∗, σ∗) with Vrfypk∗(v, σ) = 1, input v to ΠRC (with parameter ε).

3. Upon receiving output v from ΠRC, output v and terminate.

Figure 2: A reliable broadcast protocol, implicitly parameterized by ε.

Proof Consistency follows from consistency of ΠRC. As for validity, if P ∗ is honest
at the outset of the protocol then P ∗ sends (v∗, σ∗) to all parties in step 1; even if P ∗

is subsequently corrupted, that is the only valid message from P ∗ that other parties will
receive. As a result, every honest party runs ΠRC using input v, and validity of ΠRC implies
validity of ΠRBC.

3.3 Graded Consensus

Graded consensus [22] can be viewed as a weaker form of consensus where parties output
a grade along with a value, and agreement is required to hold only if some honest party
outputs a grade of 1. Our definition does not require termination upon generating output.

Definition 6 (Graded consensus) Let Π be a protocol executed by parties P1, . . . , Pn,
where each party Pi holds an input vi and is supposed to output a value wi along with a
grade gi ∈ {0, 1}. Π is an f -secure graded-consensus protocol if the following hold when at
most f parties are corrupted:

• Graded validity: if every honest party has the same input value v, then every honest
party outputs (v, 1).

• Graded consistency: if some honest party outputs (w, 1), then every honest party
Pi outputs (w, gi).

We formally describe a graded-consensus protocol ΠGC inspired by the graded consensus
protocol of Canetti and Rabin [14], and prove the following theorem in Appendix B.

Theorem 7 Let 0 < ε < 1/3 and f ≤ (1 − 2ε) · n/3. Then ΠGC is an f -secure graded-
consensus protocol with expected setup size O(κ3) and expected communication complexity
O((κ+ I) · κ2n), where I is the size of each party’s input.

3.4 A Coin-Flip Protocol

We describe here a protocol that allows parties to generate a sequence of random bits (coins)
Coin1, . . . ,CoinT for a pre-determined parameter T . We denote the sub-protocol to generate
the ith coin by CoinFlip(i). Roughly speaking, the protocol guarantees that (1) when all
honest parties invoke CoinFlip(i), all honest parties output the same value Coini and (2) until
the first honest party invokes CoinFlip(i), the value of Coini is uniform.

Our coin-flip protocol assumes setup provided by a trusted dealer that takes the following
form: For each iteration 1, . . . , T , the dealer chooses uniform Coini ∈ {0, 1}; chooses a
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random subset Ei of the parties by including each party in Ei with probability κ/n; and
then gives authenticated secret shares of Coini (using a perfectly secret dκ/3e-out-of-|Ei|
secret-sharing scheme) to the members of Ei. (Authentication is done by having the dealer
sign the shares.) Since each share (including the signature) has size O(κ), the size of the
setup is O(κ2T ).

The coin-flip protocol itself simply involves having the parties in the relevant subset send
their shares to everyone else. The communication complexity is thus O(κ2n) per iteration.

Lemma 8 Let 0 < ε < 1/3 and f ≤ (1 − 2ε) · n/3. Then as long as at most f parties are
corrupted, CoinFlip(i) satisfies the following:

1. all honest parties obtain the same value Coini,

2. until the first honest party invokes CoinFlip(i), the value of Coini is uniform from the
adversary’s perspective.

Proof Lemma 24 implies that, except with negligible probability, Ei contains more than
dκ/3e honest parties and fewer than (1− ε) · κ/3 corrupted parties. The stated properties
follow.

4 (Single-Shot) BA with Subquadratic Communication

In this section we describe a BA protocol ΠBA with subquadratic communication com-
plexity. (See Figure 3.) ΠBA assumes setup that is then used for a single execution of
the protocol. The setup for ΠBA corresponds to the setup required for O(κ) executions of
graded consensus, O(κ) iterations of the coin-flip sub-protocol, and a single execution of
reliable consensus. Using the protocols from the previous section, ΠBA thus requires setup
of size O(κ4) overall.

Following ideas by Mostéfaoui et al. [34], our protocol consists of a sequence of Θ(κ) iter-
ations, where each iteration invokes a graded-consensus subprotocol and a coin-flip subpro-
tocol. In each iteration there is a constant probability that honest parties reach agreement;
once agreement is reached, it cannot be undone in later iterations. The coin-flip protocol
allows parties to adopt the value of a common coin if agreement has not yet been reached
(or, at least, if parties are unaware that agreement has been reached). Reliable consensus
is used so parties know when to terminate.

We prove security via a sequence of lemmas. Throughout the following, we fix some
value 0 < ε < 1/3 and let f ≤ (1− 2ε)n/3 be a bound on the number of corrupted parties.

Lemma 9 If at most f parties are corrupted during an execution of ΠBA, then with all but
negligible probability some honest party sets ready = true within the first κ iterations.

Proof Consider an iteration k of ΠBA such that no honest party set ready = true in any
previous iteration. (This is trivially true in the first iteration). We begin by showing that
some honest party sets ready = true in that iteration with probability at least 1/2. Consider
two cases:
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Protocol ΠBA

We describe the protocol from the point of view of a party with input v ∈ {0, 1}.
Set b := v and ready := false. Then for k = 1 to κ+ 1 do:

1. Run ΠGC on input b, and let (b, g) denote the output.

2. Invoke CoinFlip(k) to obtain Coink.

3. If g = 0 then set b := Coink.

4. Run ΠGC on input b, and let (b, g) denote the output.

5. If g = 1 and ready = false, then set ready := true and run ΠRC on input b.

6. Set k := k + 1 and goto step 1.

Termination: If ΠRC ever terminates with output b′, output b′ and terminate.

Figure 3: A Byzantine agreement protocol, implicitly parameterized by ε.

• If some honest party outputs (b, 1) in the first execution of ΠGC during iteration k,
then graded consistency of ΠGC guarantees that every other honest party outputs
(b, 1) or (b, 0) in that execution. The value b is independent of Coink, because b is
determined prior to the point when the first honest party invokes CoinFlip(i); thus,
Coink = b with probability 1/2. If that occurs, then all honest parties input b to the
second execution of ΠGC and, by graded validity, every honest party outputs (g, 1) in
the second execution of ΠGC and sets ready = true.

• Say no honest party outputs grade 1 in the first execution of ΠGC during iteration k.
Then all honest parties input Coink to the second execution of ΠGC and, by graded
validity, every honest party outputs (g, 1) in the second execution of ΠGC and sets
ready = true.

Thus, in each iteration where no honest party has yet set ready = true, some honest
party sets ready = true in that iteration with probability at least 1/2. We conclude that
the probability that no honest party has set ready = true after κ iterations is negligible.

Lemma 10 Assume at most f parties are corrupted during execution of ΠBA. If some
honest party executes ΠRC using input b in iteration k, then (1) honest parties who execute
ΠGC in any iteration k′ > k use input b, and (2) honest parties who execute ΠRC in any
iteration k′ ≥ k use input b.

Proof Consider the first iteration k in which some honest party P sets ready = true,
and let b denote P ’s input to ΠRC. P must have received (b, 1) from the second execution
of ΠGC in iteration k. By graded consistency, all other honest parties must receive (b, 0)
or (b, 1) from that execution of ΠGC as well. Thus, any honest parties who execute ΠRC

in iteration k use input b, and any honest parties who run2 the first execution of ΠGC in
iteration k + 1 will use input b as well. Graded validity ensures that any honest party who

2Note that some honest parties may terminate before others, and in particular it may be the case that
not all honest parties run some execution of ΠGC.
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receives output from that execution of ΠGC will receive (b, 1), causing them to use input b
to the next execution of ΠGC as well as ΠRC (if they execute those protocols), and so on.

Lemma 11 Assume at most f parties are corrupted during an execution of ΠBA. If some
honest party sets ready = true within the first κ iterations and executes ΠRC using input b,
then all honest parties terminate with output b.

Proof Let k ≤ κ be the first iteration in which some honest party sets ready = true and
executes ΠRC using input b. By Lemma 10, any other honest party who executes ΠRC must
also use input b, and furthermore all honest parties who execute ΠGC in any subsequent
iteration use input b there as well. We now consider two cases:

• If no honest party terminates before all honest parties receive output from the second
execution of ΠGC in iteration k + 1, then graded validity of ΠGC ensures that all honest
parties receive (b, 1) as output from that execution, and thus all parties execute ΠRC

using input b at this point if they have not done so already. Validity of ΠRC then
ensures that all honest parties output b and terminate.

• If some honest party P has terminated before all honest parties receive output from the
second execution of ΠGC in iteration k + 1, validity of ΠRC implies that P must have
output b. In that case, consistency of ΠRC guarantees that all parties will eventually
output b and terminate.

This completes the proof.

Theorem 12 Let 0 < ε < 1/3 and f ≤ (1−2ε) ·n/3. Then ΠBA is an f -secure BA protocol
with expected setup size O(κ4) and expected communication complexity O(κ4n).

Proof By Lemma 9, with overwhelming probability some honest party sets ready =
true within the first κ iterations and thus executes ΠRC using some input b. It follows
from Lemma 11 that all honest parties eventually output b and terminate. This proves
consistency.

Assume all honest parties have the same input v. Unless some honest party terminates
before all honest parties have concluded the first iteration, one can verify (using graded
validity of ΠGC) that in the first iteration all honest parties output (v, 1) from the first
execution of ΠGC; use input v to the second execution of ΠGC; output (v, 1) from the second
execution of ΠGC; and execute ΠRC using input v. But the only way some honest party could
terminate before all honest parties have concluded the first iteration is if that party executes
ΠRC using input v. Either way, Lemma 11 shows that all honest parties will terminate with
output v, proving validity.

5 MPC with Subquadratic Communication

In this section we give a protocol for asynchronous secure multiparty computation (MPC).
Our protocol uses a Byzantine agreement protocol as a subroutine; importantly, the number
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of executions of Byzantine agreement is independent of the number of parties as well as the
output length, as long as the desired input quality is low enough. Our MPC protocol also
relies on a sub-protocol for (a variant of the) asynchronous common subset problem; we
give a definition, and a protocol with subquadratic communication complexity, in the next
section.

5.1 Validated ACS with Subquadratic Communication

A protocol for the asynchronous common subset (ACS) problem [5, 12] allows n parties to
agree on a subset of their initial inputs of some minimum size. We consider a validated
version of ACS (VACS), where it is additionally ensured that all values in the output
multiset satisfy a given predicate Q [15, 10].

Definition 13 Let Q be a predicate, and let Π be a protocol executed by parties P1, . . . , Pn,
where each party outputs a multiset of size at most n, and terminates upon generating output.
Π is an f-secure Q-validated ACS protocol with `-output quality if the following
hold when at most f parties are corrupted and every honest party’s input satisfies Q:

• Q-Validity: if an honest party outputs S, then each v ∈ S satisfies Q(v) = 1.

• Consistency: every honest party outputs the same multiset.

• `-Output quality: all honest parties output a multiset of size at least ` that contains
inputs from at least `− f parties who were honest at the start of the protocol.

Our VACS protocol Π`,Q
VACS (see Figure 4) is inspired by the protocol of Ben-Or et al. [5].

During the setup phase, a secret committee C is chosen by independently placing each party
in C with probability s/n, where s = 3

2+ε` and ` is the desired output quality. Each party in
the committee acts as a sender in a reliable-broadcast protocol, and then the parties run |C|
instances of Byzantine agreement to agree on the set of reliable-broadcast executions that
terminated. The expected communication complexity and setup size for Π`,Q

VACS are thus
(in expectation) a factor of O(`) larger than those for reliable broadcast and Byzantine
agreement.

Using the protocols from the previous sections, we thus obtain:

Theorem 14 Let 0 < ε < 1/3, f ≤ (1 − 2ε) · n/3, and ` ≤ (1 + ε/2) · 2n/3. Then Π`,Q
VACS

is an f -secure Q-validated ACS protocol with `-output quality. It has expected setup size
O(`κ4) and expected communication complexity O(` · (I + κ3) · κn), where I is the size of
each party’s input, and uses O(`) invocations of Byzantine agreement in expectation.

Proof Say v is in the multiset output by some honest party, where v was output by
RBCi. BAi must have resulted in output 1, which (by validity of BA) can only occur if some
honest party used input 1 when executing BAi. But then Q(v) = 1. This proves Q-validity

of Π`,Q
VACS.

By consistency of BA, all honest parties agree on CoreSet. If i ∈ CoreSet, then BAi must
have resulted in output 1 which means that some honest party P must have used input 1
to BAi. (Validity or BAi ensures that if all honest parties used input 0, the output of BA
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Protocol Π`,Q
VACS

We describe the protocol from the point of view of a party P with input v. We assume prior
setup in which a committee C is chosen (see text).

1. Execute |C| instances of reliable broadcast, denoted RBC1, . . . ,RBC|C|. If P is the ith
member of C, then P executes the ith instance of ΠRBC as the sender using input v.

2. On output vi from RBCi with Q(vi) = 1, if P has not yet begun executing the ith
instance BAi of Byzantine agreement, then begin that execution using input 1.

3. When P has output 1 in ` instances of Byzantine agreement, then begin executing any
other instances of Byzantine agreement that have not yet begun using input 0.

4. Once P has terminated in all instances of Byzantine agreement, let CoreSet be the indices
of those instances that resulted in output 1. After receiving output vi from RBCi for all
i ∈ CoreSet, output the multiset {vi}i∈CoreSet.

Figure 4: A VACS protocol (implicitly parameterized by ε) with `-output quality and
predicate Q.

must be 0). But then P must have terminated in RBCi; consistency of RBCi then implies
that all honest parties eventually terminate RBCi with the same output vi. Consistency of
Π`,Q

VACS follows.
Lemma 24 shows that with overwhelming probability there are more than 2+ε

3 ·
3

2+ε` = `
honest parties in C at step 1 of the protocol. Validity of RBC implies that in the corre-
sponding instances of RBC, all honest parties terminate with an output satisfying Q. If
every honest party begins executing all the corresponding instances of BA, those ` instances
will all yield output 1. The only way all honest parties might not begin executing all those
instances of BA is if some honest party outputs 1 in some (other) ` instances of BA, but
then consistency of BA implies that all honest parties output 1 in those same ` instances.
We conclude that every honest party outputs 1 in at least ` instances of BA, and so outputs
a multiset S of size at least `. Since each instance of RBC (and so each corrupted party)
contributes at most one value to S, this proves `-output quality.

5.2 Secure Multiparty Computation

We begin by reviewing the definition of asynchronous MPC by Canetti [13]. Let g be an n-
input function, possibly randomized, where if the inputs of the parties are x = (x1, . . . , xn)
then all parties should learn y ← g(x1, . . . , xn). In the real-world execution of a protocol Π
computing g, each party Pi initially holds 1κ and an input xi, and an adversary A has input
1κ and auxiliary input z. The parties execute Π, and may be adaptively corrupted by A
during execution of the protocol. At the end of the execution, each honest party outputs its
local output (as dictated by the protocol), and A outputs its view. We let realΠ,A(κ,x, z)
denote the distribution over the resulting vector of outputs as well as the set of corrupted
parties.

Security of Π is defined relative to an ideal-world evaluation of g by a trusted party. The
parties hold inputs as above, and we now denote the adversary by S. The ideal execution
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proceeds as follows:

• Initial corruption. S may adaptively corrupt parties and learn their inputs.

• Computation with `-output quality. S sends a set CoreSet ⊆ {P1, . . . , Pn} of size
at least ` to the trusted party. In addition, S sends to the trusted party an input x′i
for each corrupted Pi ∈ CoreSet.

For Pi 6∈ CoreSet, let x′i =⊥; if Pi ∈ CoreSet is honest, then let x′i = xi. The trusted
party computes y ← g(x′1, . . . , x

′
n) and sends (y,CoreSet) to each party.

• Additional corruption. S may corrupt additional parties.3

• Output stage. Each honest party outputs (y,CoreSet).

• Post-execution corruption. S may corrupt additional parties, and then outputs
an arbitrary function of its view.

We let ideal`g,S(κ,x, z) be the distribution over the vector of outputs and the set of cor-
rupted parties following an ideal-world execution as above.

Definition 15 Π f -securely computes g with `-output quality if for any ppt adversary A
corrupting up to f parties, there is a ppt adversary S such that:

{ideal`g,S(κ,x, z)}κ∈N;x,z∈{0,1}∗ ≈c {realΠ,A(κ,x, z)}κ∈N;x,z∈{0,1}∗ .

We construct an MPC protocol Π`
MPC that offers a tradeoff between communication

complexity and output quality; in particular, it has subquadratic communication complexity
when the output quality and the output length of the functionality being computed are
sublinear in the number of parties. We provide a high-level overview of our protocol next,
with a full description in Figure 5.

Let t = (1− ε) · κ/3. Our protocol assumes trusted setup as follows:

1. A random committee C is selected by including each party in C independently with
probability κ/n. This is done in the usual way by giving each member of the committee
a secret key for a signature scheme, and giving the corresponding public keys to all
parties. In addition:

(a) We assume a threshold fully homomorphic encryption (TFHE) scheme [2, 6]
TFHE = (KGen,Enc,Dec,Eval) with non-interactive decryption whose secret key
is shared in a t-out-of-|C| manner among the parties in C. (We refer to Ap-
pendix C.1 for appropriate definitions of TFHE.)

Specifically, we assume a TFHE public key ek is given to all parties, while a
share dki of the corresponding secret key is given to the ith party in C.

(b) The setup for Π`
MPC includes setup for |C| instances of ΠRBC (with the ith party

in C the sender for the ith instance of ΠRBC), as well as one instance of ΠRC.

3S learns nothing additional, because we assume secure erasure (in both the ideal- and real-world execu-
tions).

14



2. All parties are given a list of |C| commitments to each of the TFHE shares dki; the
randomness ωi for the ith commitment is given to the ith member of C.

3. All parties are given the TFHE encryption of a random κ-bit value r. We denote the
resulting ciphertext by crand ← Encek(r).

4. Parties are given the setup for one instance of VACS protocol Π`,Q
VACS. We further

assume that each party in the committee that is chosen as part of the setup for that
protocol is given a secret key for a signature scheme, and all parties are given the
corresponding public keys.

5. All parties are given a common reference string (CRS) for a universally composable
non-interactive zero-knowledge (UC-NIZK) proof [20] (see below).

The overall expected size of the setup is O((`+ κ) · poly(κ)).
Fix a (possibly randomized) functionality g the parties wish to compute. We assume

without loss of generality that g uses exactly κ random bits (one can always use a PRG
to ensure this). To compute g, each party Pi begins by encrypting its input xi using the
TFHE scheme, and signing the result; it also computes an NIZK proof of correctness for
the resulting ciphertext. The parties then use VACS (with `-output quality) to agree on
a set S containing at least ` of those ciphertexts. Following this, parties carry out a local
computation in which they evaluate g homomorphically using the set of ciphertexts in S
as the inputs and the ciphertext crand (included in the setup) as the randomness. This
results in a ciphertext c∗ containing the encrypted result, held by all parties. Parties in
C enable decryption of c∗ by using reliable broadcast to distribute shares of the decrypted
value (along with a proof of correctness). Finally, the parties use reliable consensus to agree
on when to terminate.

In the description above, we have omitted some details. In particular, the protocol
ensures adaptive security by having parties erase certain information once it is no longer
needed. This means, in particular, that we do not need to rely on equivocal TFHE [18].

In our protocol, parties generate UC-NIZK proofs for different statements. (Note that
UC-NIZK proofs are proofs of knowledge; they are also non-malleable.) In particular, we
define the following languages, parameterized by values (given to all parties) contained in
the setup:

1. (i, ci) ∈ L1 if there exist xi, ri such that ci = Encek(xi; ri).

2. (i, c∗, di) ∈ L2 if di = Decdki(c
∗) and comi = Com(dki;ωi). (Here, comi is the com-

mitment to dki included in the setup.)

We prove the following theorem in Appendix D.

Theorem 16 Let 0 < ε < 1/3, f ≤ (1 − 2ε) · n/3, and ` ≤ (1 + ε/2) · 2n/3. Assuming
appropriate security of the NIZK proofs and TFHE, protocol Π`

MPC f -securely computes g
with `-output quality. Π`

MPC requires setup of expected size O((`+κ) · poly(κ)), has expected
communication complexity O((` + κ) · (I + O) · poly(κ) · n), where I is the size of each
party’s input and O is the size of the output, and invokes Byzantine agreement O(`) times
in expectation.
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Protocol Π`
MPC

Let t = (1 − ε) · κ/3. We describe the protocol from the point of view of a party Pi with
input xi, assuming the setup described in the text.

1. Compute ci ← Encek(xi) along with a UC-NIZK proof πi that (i, ci) ∈ L1. Erase xi and
the randomness used to generate c1 and πi.

Execute Π`,Q
VACS using input (i,Signski(ci), ci, πi), where Q(i, σ, c, π) = 1 iff Vrfypki(c, σ) =

1 and π is a correct proof for (i, c). Let S′ denote the multiset output by Π`,Q
VACS. Let

S ⊆ S′ be the set obtained by including, for all i, only the lexicographically first tuple
(i, ?, ?, ?) in S′. Let I = {i | ∃ (i, ?, ?, ?) ∈ S}.

2. Define the circuit Cg taking |I|+ 1 inputs, where Cg({xi}i∈I , r) = g({xi}i∈I , {⊥}i 6∈I ; r).
Compute c∗ := Evalek(Cg, {ci}i∈I , crand).
If Pi ∈ C, compute di := Decdki(c

∗) and a UC-NIZK proof π′i that (i, c∗, di) ∈ L2. Erase
dki, ωi, and the randomness used to generate π′i.

Execute |C| instances of ΠRBC. If Pi is the ith member of C, it executes the ith instance
of ΠRBC as the sender using input (i, di, π

′
i).

3. Upon receiving t outputs {(j, dj , π′j)} from the ΠRBC instances, with valid proofs and dis-
tinct j, compute yi := Rec({dj}) and execute ΠRC with input yi. When ΠRC terminates
with output y, output (y, I) and terminate.

Figure 5: An MPC protocol with `-output quality, parameterized by ε.

6 Putting it All Together

The BA protocol ΠBA from Section 4 requires prior setup by a trusted dealer that can be
used only for a single BA execution. Using multiple, independent instances of the setup it
is, of course, possible to support any bounded number of BA executions. But a new idea is
needed to support an unbounded number of executions.

In this section we discuss how to use the MPC protocol from Section 5 to achieve this
goal. The key idea is to use that protocol to refresh the setup each time a BA execution
is done. We first describe how to modify our MPC protocol to make it suitable for our
setting, and then discuss how to put everything together to obtain the desired result.

6.1 Securely Simulating a Trusted Dealer

As just noted, the key idea is for the parties to use the MPC protocol from Section 5 to
simulate a trusted dealer. In that case the parties are evaluating a no-input (randomized)
functionality, and so do not need any output quality; let ΠMPC = Π0

MPC. Importantly, ΠMPC

has communication complexity subquadratic in n.
Using ΠMPC to simulate a dealer, however, requires us to address several technicalities.

As described, ΠMPC evaluates a functionality for which all parties receive the same output.
But simulating a dealer requires the parties to compute a functionality where parties receive
different outputs. The standard approach for adapting MPC protocols to provide parties
with different outputs does not work in our context: specifically, using symmetric-key en-
cryption to encrypt the output of each party Pi using a key that Pi provides as part of its
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input does not work since ΠMPC has no output quality (and even Π`
MPC only guarantees

`-output quality for ` < n). Assuming a PKI, we can fix this by using public-key encryption
instead (in the same way); this works since the public keys of the parties can be incorpo-
rated into the functionality being computed—since they are common knowledge—rather
than being provided as inputs to the computation.

Even when using public-key encryption as just described, however, additional issues re-
main. ΠMPC has (expected) subquadratic communication complexity only when the output
length O of the functionality being computed is sublinear in the number of parties. Even if
the dealer algorithm generates output whose length is independent of n, naively encrypting
output for every party (encrypting a “null” value of the appropriate length for parties whose
output is empty) would result in output of total length linear in n. Encrypting the output
only for parties with non-empty output does not work either since, in general, this might
reveal which parties get output, which in our case would defeat the purpose of the setup!

We can address this difficulty by using anonymous public-key encryption [3]. Roughly,
an anonymous public-key encryption (APKE) scheme has the property that a ciphertext
leaks no information about the public key pk used for encryption, except to the party
holding the corresponding secret key sk (who is able to decrypt the ciphertext using that
key). Using APKE to encrypt the output for each party who obtains non-empty output, and
then randomly permuting the resulting ciphertexts, allows us to compute a functionality
with sublinear output length while hiding which parties receive output. This incurs—at
worst—an additional multiplicative factor of κ in the output length.

Summarizing, we can simulate an arbitrary dealer algorithm in the following way. View
the output of the dealer algorithm as pub, {(i, si)}, where pub represents the public output
that all parties should learn, and each si is a private output that only Pi should learn.
Assume the existence of a PKI, and let pki denote a public key for an APKE scheme, where
the corresponding secret key is held by Pi. Then use ΠMPC to compute pub, {Encpki(si)},
where the ciphertexts are randomly permuted. As long as the length of the dealer’s output
is independent of n, the output of this functionality is also independent of n.

6.2 Unbounded Byzantine Agreement with Subquadratic Communica-
tion

We now show how to use the ideas from the previous section to achieve an unbounded
number of BA executions with subquadratic communication. We describe two solutions:
one involving a trusted dealer who initializes the parties with a one-time setup, and another
that does not require a dealer (but does assume a PKI) and achieves expected subquadratic
communication in an amortized sense.

For the first solution, we assume a trusted dealer who initializes the parties with the
setup for one instance of ΠBA and one instance of ΠMPC. (We also assume a PKI, which
could be provided by the dealer as well; however, when we refer to the setup for ΠMPC

we do not include the PKI since it does not need to be refreshed.) Importantly, the setup
for ΠMPC allows the parties to compute any no-input functionality; the size of the setup is
fixed, independent of the size of the circuit for the functionality being computed or its output
length. For an execution of Byzantine agreement, the parties run ΠBA using their inputs and
then use ΠMPC to refresh their setup by simulating the dealer algorithm. (We stress that the
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parties refresh the setup for both ΠBA and ΠMPC.) The expected communication complexity
per execution of Byzantine agreement is the sum of the communication complexities of ΠBA

and ΠMPC. The former is subquadratic; the latter is subquadratic if we follow the approach
described in the previous section. Thus, the parties can run an unbounded number of
subquadratic BA executions while only involving a trusted dealer once.

Alternately, we can avoid a trusted dealer by having the parties simulate the dealer
using an arbitrary adaptively secure MPC protocol. (We still assume a PKI.) The commu-
nication complexity of the initial MPC protocol may be arbitrarily high, but all subsequent
BA executions will have subquadratic (expected) communication complexity as above. In
this way we achieve an unbounded number of BA executions with amortized (expected)
subquadratic communication complexity.

7 A Lower Bound for Asynchronous Byzantine Agreement

We show that some form of setup is necessary for adaptively secure asynchronous BA with
(non-amortized) subquadratic communication complexity. Our bound holds even if we allow
secure erasure, and even if we allow secret channels between all the parties. (However, we
assume an attacker can tell when a message is sent from one party to another.)

A related impossibility result was shown by Abraham et al. [1, Theorem 4]; their result
holds even with prior setup and in the synchronous model of communication. However,
their result relies strongly on an adversary who can delete messages sent by honest parties
after those parties have been adaptively corrupted. In contrast, our bound applies to the
standard communication model where honest parties’ messages cannot be deleted once they
are sent.

In concurrent work [39], Rambaud shows a bound that is slightly stronger than ours: His
result holds even in the partially synchronous model, and rules out subquadratic communi-
cation complexity even with a PKI. We note, however, that his analysis treats signatures in
an idealized manner, and thus it does not apply, e.g., to protocols using unique signatures
for coin flipping.

We provide an outline of our proof that omits several technical details, but conveys
the main ideas. Let Π be a setup-free protocol for asynchronous BA with subquadratic
communication complexity. We show an efficient attacker A who succeeds in violating the
security of Π. The attacker exploits the fact that with high probability, a uniform (honest)
party P will communicate with only o(n) other parties during an execution of Π. The
adversary A can use this to “isolate” P from the remaining honest parties in the network
and cause an inconsistency. In more detail, consider an execution in which P holds input 1,
and the remaining honest parties S′ all hold input 0. A tricks P into thinking that it
is running in an alternate (simulated) execution of Π in which all parties are honest and
hold input 1, while fooling the parties in S′ into believing they are running an execution in
which all honest parties hold 0 and at most f (corrupted) parties abort. By validity, P will
output 1 and the honest parties in S′ will output 0, but this contradicts consistency.

To “isolate” P as described, A runs two simulated executions of Π alongside the real
execution of the protocol. (Here, it is crucial that Π is setup-free, so A can run the simulated
executions on behalf of all parties.) A delays messages sent by honest parties to P in the
real execution indefinitely; this is easy to do in the asynchronous setting. When a party
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Q ∈ S′ sends a message to P in the simulated execution, A corrupts Q in the real execution
and then sends that message on Q’s behalf. Analogously, when P sends a message to
some honest party Q ∈ S′ in the real execution, A “intercepts” that message and forwards
it to the corresponding party in the simulation. (A subtlety here is that messages sent
between two honest parties cannot be observed via eavesdropping, because we allow secret
channels, and can not necessarily be observed by adaptively corrupting the recipient Q after
it receives the message, since we allow erasure. Instead, A must corrupt Q before it receives
the message sent by P .) It only remains to argue that, in carrying out this strategy, A does
not exceed the corruption bound.

A BA protocol is (f, δ)-secure if the properties of Definition 1 simultaneously hold with
probability at least δ when f parties are corrupted.

Theorem 17 Let 2
3 < δ < 1 and f ≥ 2. Let Π be a setup-free BA protocol that is (f, δ)-

secure in an asynchronous network. Then the expected number of messages that honest
parties send in Π is at least (3δ−2

8δ )2 · (f − 1)2.

Proof If f ≥ n/3 the theorem is trivially true (as asynchronous BA is impossible); thus,
we assume f < n/3 in what follows. We present the proof assuming f is even and show
that in this case, the expected number of messages is at least c2f2. The case of odd f can
be reduced to the case of even f since any (f, δ)-secure protocol is also an (f − 1, δ)-secure
protocol.

Let c = 3δ−2
8δ . Fix an (f, δ)-secure protocol Π whose expected number of messages is

less than c2f2. Fix a subset S ⊂ [n] with |S| = f
2 . Let S′ denote the remaining parties.

Consider an execution (Ex1) of Π that proceeds as follows: At the start of the execution, an
adversary corrupts all parties in S and they immediately abort. The parties in S′ remain
honest and run Π using input 0. By δ-security of Π we have:

Lemma 18 In Ex1 all parties in S′ output 0 with probability at least δ.

Now consider an execution (Ex2) of Π involving an adversary A. (As explained in the
proof intuition, A’s goal is to make P believe it is running in an execution in which all
parties are honest and have input 1, and to make the honest parties in S′ believe they are
running in Ex1.) At the start of the execution, A chooses a uniform P ∈ S and corrupts
all parties in S except for P . All parties in S′ are initially honest and hold input 0, while
P holds input 1. A maintains two simulated executions that we label red and blue. (See
Figure 6.) In the blue execution, A plays the role of all parties other than P ; all these
virtual parties run Π honestly with input 1. In the red execution, A simulates an execution
in which all parties in S immediately abort, and all parties in S′ run Π honestly with
input 0. A uses these two simulations to determine how to interact with the honest parties
in the real execution. Specifically, it schedules delivery of messages as follows:

• S′ to P , real execution. Messages sent by honest parties in S′ to P in the real exe-
cution are delayed, and delivered only after all honest parties have generated output.

• P to S′, real execution. When P sends a message to an honest party Q ∈ S′ in
the real execution, A delays the message and then corrupts Q. Once Q is corrupted,
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A delivers the message to Q in the real execution (and can then read the message).
A also delivers that same message to Q in the blue simulation.

• S′ to P , blue execution. When a party Q ∈ S′ sends a message m to P in the blue
execution, A corrupts Q in the real execution (if Q was not already corrupted), and
then sends m to P (on behalf of Q) in the real execution. (Messages that Q may have
sent previously to P in the real execution continue to be delayed.)

• S to P , blue execution. When a party Q ∈ S sends a message m to P in the blue
execution, Q sends m to P in the real execution (recall that parties in S \ {P} are
corrupted in Ex2).

• S′ to S′, real execution. Messages sent by honest parties in S′ to other parties in S′

in the real execution are delivered normally. If the receiver is corrupted, the message
is relayed to A, who simulates this same message in the red execution.

• S′ to S \ {P}, real execution. Messages sent by honest parties in S′ to the (cor-
rupted) parties in S \ {P} in the real execution are ignored.

• S′ to S′, red execution. If a party Q ∈ S′ is corrupted in the real execution, then
whenever a message m is sent by a party Q to another party in S′ in the red execution,
Q sends m in the real execution.

If A would ever need to corrupt more than f parties in total, then it simply aborts.
(However, the real execution continues without any further interference from A.)

Lemma 19 In Ex2, the distribution of the joint view of all parties in S′ who remain un-
corrupted is identical to the distribution of their joint view in Ex1. In particular, with
probability at least δ in Ex2 all parties in S′ who remain uncorrupted output 0.

Proof The only messages received by the parties in S′ in either Ex1 or Ex2 are those
that arise from an honest execution of Π among the parties in S′, all of whom hold input 0.
Moreover, in Ex2 the decision as to whether or not a party in S′ is corrupted is independent
of the joint view of all uncorrupted parties in S′. The final statement follows from Lemma 18.

We also show that with positive probability, A does not abort.

Lemma 20 In Ex2, A does not abort with probability at least 1− 4c.

Proof A aborts if it would exceed the corruption bound. Initially, only the f/2 parties in
S are corrupted. Let M denote the total number of messages sent either by the parties in S′

to the parties in S or by parties in S to parties in S′ in the blue execution. By assumption,
Exp[M ] < c2f2. Let X be the event that M ≤ c

2f
2. Lemma 22 implies that

Pr[X] ≥ Pr

[
M ≤ Exp[M ]

2c

]
≥ 1− 2c.

Let Y be the event that, among the first cf2/2 messages sent by parties in S′ to parties
in S or vice versa, a uniformly chosen P ∈ S sends and/or receives at most f/2 of those
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Figure 6: Adversarial strategy in Ex2. In the real execution (shown at right) corrupted
parties in S interact with P as if they are honest with input 1, and ignore honest parties
in S′. Corrupted parties in S′ interact with P as if they are honest with input 1, and interact
with S′ as if they are honest with input 0. All messages between P and honest parties in S′

are delayed indefinitely. The adversary maintains two simulated executions (shown at left)
to determine which messages corrupted parties will send in the real execution.

messages. By the pigeonhole principle, at most cf parties in S can receive and/or send
f/2 or more of those messages, and so Pr[Y ] ≥ 1 − cf/|S| = 1 − 2c.4 Thus, Pr[X ∧ Y ] =
Pr[X]+Pr[Y ]−Pr[X∪Y ] ≥ (1−2c)+(1−2c)−1 = 1−4c. The lemma follows by observing
that when X and Y occur, at most f/2 parties in S′ are corrupted.

Finally, consider an execution (Ex3) in which a uniform P ∈ S is chosen and then Π is
run honestly with all parties holding input 1.

Lemma 21 In Ex2, conditioned on the event that A does not abort, the view of P is
distributed identically to the view of P in Ex3. In particular, with probability at least δ in
Ex2, P outputs 1.

Proof In Ex2, the view of P is determined by the virtual execution in which all parties
run Π honestly using input 1. The final statement follows because in Ex3, (f, δ)-security of
Π implies that P outputs 1 with probability at least δ.

4It is convenient to view the communication between S and S′ as an undirected, bipartite multi-graph
in which each node represents a party and an edge (U, V ) represents a message sent between parties U ∈ S
and V ∈ S′. As the number of edges in this graph is at most cf2/2, there can not be more than cf nodes
in S whose total degree is at least f/2.
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We now complete the proof of the theorem. In execution Ex2, let Z1 be the event that
A does not abort; by Lemma 20, Pr[Z1] ≥ 1 − 4c. Let Z2 be the event that P does not
output 0 in Ex2; using Lemma 21 we have

Pr[Z2] ≥ Pr[Z2 | Z1] · Pr[Z1] ≥ δ · (1− 4c).

Let Z3 be the event that all uncorrupted parties in S′ output 0 in Ex2. By Lemma 19,
Pr[Z3] ≥ δ. Recalling that 2/3 < δ < 1, we see that

Pr[Z2 ∧ Z3] = Pr[Z2] + Pr[Z3]− Pr[Z2 ∪ Z3] ≥ 2δ − 4cδ − 1 =
δ

2
>

1

3
> 1− δ,

contradicting (f, δ)-security of Π.
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A Concentration Inequalities

We briefly recall the following standard concentration bounds.

Lemma 22 (Markov bound) Let X be a non-negative random variable. Then for a > 0,

Pr[X ≥ a] ≤ E[X]

a
.

Lemma 23 (Chernoff bound) Let X1, ..., Xn be independent Bernoulli random variables
with parameter p. Let X :=

∑
iXi, so µ := E[X] = p · n. Then, for δ ∈ [0, 1]

• Pr[X ≤ (1− δ) · µ] ≤ e−δ2µ/2.

• Pr[X ≥ (1 + δ) · µ] ≤ e−δ2µ/(2+δ).

Let χs,n denote the distribution that samples a subset of the n parties, where each party
is included independently with probability s/n. The following lemma will be useful in our
analysis.

Lemma 24 Fix s ≤ n and 0 < ε < 1/3, and let f ≤ (1−2ε) ·n/3 be a bound on the number
of corrupted parties. If C ← χs,n, then:

1. C contains fewer than (1 + ε) · s parties except with probability e−
ε2s
2+ε .
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2. C contains more than (1 + ε/2) · 2s/3 honest parties except with probability at most
e−ε

2s/12·(1+ε).

3. C contains fewer than (1 − ε) · s/3 corrupted parties except with probability at most
e−ε

2s/(6−9ε).

Proof Let H ⊆ [n] be the indices of the honest parties. Let Xj be the Bernoulli random
variable indicating if Pj ∈ C, so Pr[Xj = 1] = s/n. Define Z1 =

∑
j Pj , Z2 :=

∑
j∈H Xj ,

and Z3 :=
∑

j 6∈H Xj . Then:

1. Since E[Z1] = s, setting δ = ε in Lemma 23 yields

Pr [Z1 ≥ (1 + ε) · s] ≤ e−ε2s/(2+ε).

2. Since E[Z2] ≥ (n− f) · s/n ≥ (1 + ε) · 2s/3, setting δ = ε
2+2ε in Lemma 23 yields

Pr

[
Z2 ≤

(1 + ε/2) · 2s
3

]
≤ e−ε2s/12·(1+ε).

3. Since E[Z3] ≤ f · s/n ≤ (1− 2ε) · s/3, setting δ = ε
1−2ε in Lemma 23 yields

Pr

[
Z3 ≥

(1− ε) · s
3

]
≤ e−ε2s/(6−9ε).

B Graded Consensus

We describe a graded-consensus protocol ΠGC in Figure 7. The protocol is inspired by the
graded consensus protocol of Canetti and Rabin [14]. ΠGC assumes setup that defines three
secret committees C1, C2, C3 by including each party independently in each committee with
probability κ/n. Each party in a committee will act as a sender in a reliable-broadcast
protocol RBC; independent setup is used for each of these. The graded-consensus protocol
itself consists of three phases, where in phase i, each party in committee Ci uses RBC to send
a phase-specific message to all parties. In the first phase, parties in C1 reliably broadcast
their input values. All parties wait until κ − t of these executions of reliable broadcast
output a value (and terminate), and then set their prepare2 value to be the majority value
among those outputs. In the second phase, parties in C2 reliably broadcast their prepare2

values. All parties wait for κ− t of these executions of reliable broadcast to output values
consistent with the values from the first phase, and then set their prepare3 value to be the
majority among such outputs. In the third phase, parties in C3 reliably broadcast their
prepare3 values. Parties wait for κ − t of these executions of reliable broadcast to output
values consistent with the received prepare2 values, and then decide on their output.

Since each set Ci has expected size O(κ), the expected communication complexity and
setup size for ΠGC are only a factor of κ larger than their corresponding values for RBC.
Instantiating RBC using ΠRBC gives the complexity bounds stated in Theorem 7.
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Protocol ΠGC

We describe the protocol from the point of view of a party Pi with input vi ∈ {0, 1}. We let
RBC denote a reliable broadcast protocol.

1. Initialize Ŝ1 = Ŝ2 = S1 = S2 = S3 := ∅, b1 := v, b2 = b3 := ⊥

2. If Pi ∈ C1: participate in RBCi as the sender with input (prepare1, b1). Participate in
the remaining protocols RBCj , j 6= i, j ∈ C1, as the receiver.

3. Upon receiving output (prepare1, j, bj) in RBCj , add (bj , j) to S1.

4. When |S1| = κ− t, do: Set Ŝ1 = S1 and set b2 to the majority bit among values in Ŝ1.
Participate in RBCi as the sender with input (prepare2, i, Ŝ1, b2) if Pi ∈ C2. Participate
in the other protocols RBC1, . . . ,RBC|C2| as the receiver.

5. Upon receiving output (prepare2, j, Ŝ1,j , bj) in RBCj do: if Ŝ1,j ⊆ S1 and bj is the

majority bit among Ŝ1,j , add (bj , j) to S2.

6. When |S2| = κ− t, do: Set Ŝ2 = S2 and set b3 to the majority bit among values in Ŝ2.
Participate in RBCi as the sender with input (prepare3, i, Ŝ2, b3) if Pi ∈ C3. Participate
in each protocol RBCj , j 6= i, j ∈ C3, as the receiver.

7. Upon receiving output (prepare3, j, Ŝ2,j , bj) in RBCj do: if j ∈ C3, Ŝ2,j ⊆ S2, and bj is

the majority bit among Ŝ2,j , add (bj , j) to S3.

8. When |S3| = κ− t, do:

• If there exists b ∈ {0, 1} s.t. for all (bj , j) ∈ Ŝ2 it holds that bj = b, then output
(b, 1).

• Else if there exists b ∈ {0, 1} s.t. for all (bj , j) ∈ S3 it holds that bj = b, then
output (b, 0).

• Else output (0, 0).

Figure 7: A protocol for graded consensus.

Lemma 25 Let Pi and Pj be honest parties, and denote as S1,j , S1,i the respective sets S1

of those parties in an execution of ΠGC. Then with overwhelming probability, eventually
S1,j ⊆ S1,i.

Proof Suppose that (b`, `) ∈ S1,j . With overwhelming probability, this implies that Pj
output (prepare1, `, b`) in RBC` where P` in C1. By the consistency property of RBC, Pi
either eventually outputs (prepare1, `, b`) in RBC` and hence adds (b`, `) to S1,i or terminates
ΠGC (with overwhelming probability). Thus, every value in S1,j is eventually added to S1,i

(and hence S1,j ⊆ S1,i), with overwhelming probability.

Lemma 26 Let Pi and Pj be honest parties, and denote as sets S2,j , S2,i the respective sets
S2 of those parties in an execution of ΠGC. Then with overwhelming probability, eventually
S2,j ⊆ S2,i.

Proof Denote as S1,j , S1,i the respective sets S1 of parties Pi and Pj and suppose that
(b`, `) ∈ S2,j .With overwhelming probability, this implies that Pj output (prepare2, `, Ŝ1,`, b`)
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in RBC` where P` in C2, Ŝ1,` ⊆ S1,j , and b` is the majority bit among values in Ŝ1,`. By
the consistency property of RBC and the previous lemma, Pi either eventually outputs
(prepare2, `, b`) in RBC` and Ŝ1,` ⊆ S1,j ⊆ S1,i or or terminates ΠGC (with overwhelming
probability). Once the former happens, Pi adds (b`, `) to S2,i. Thus, every value in S2,j is
eventually added to S2,i (and hence S2,j ⊆ S2,i), with overwhelming probability.

Lemma 27 With overwhelming probability, for every honest party Pi the sets S1, S2, and
S3 are each eventually of size κ− t.

Proof Let Pi be an honest party. We analyze the size of the sets in sequence.

S1: By validity, Pi outputs in all RBC instances corresponding to honest parties in C1

with overwhelming probability and adds a corresponding tuple to S1 as a result. Since by
Lemma 24, at least κ− t parties in C1 are honest, the claim for S1 follows.

S2: Since all honest parties S1 sets eventually become of size κ− t, all honest parties Pj in
C2 eventually send a message (prepare2, `, Ŝ1,j , bj) in RBCj . By Lemma 25, Ŝ1,j ⊆ Si, with
overwhelming probability, eventually. This implies that all checks for the instance RBCj are
satisfied in Step 5 with overwhelming probability at some point. By validity of RBC and
Lemma 24, Pi eventually adds at least κ− t tuples of the form (bj , j) to S2 in this manner,
with overwhelming probability.

S3: The argument for S3 is analogous to the previous one.

Lemma 28 If all honest parties Pi in C1 send (prepare1, i, b) in RBCi, then no honest party
adds a tuple (1− b, j) to S2, with overwhelming probability.

Proof Assume toward a contradiction that all honest parties Pi in C1 send (prepare1, i, b)
in RBCi and there is an honest party P that adds a tuple (1− b, j) to S2. This implies that
it received (prepare2, j, Ŝ1,j , 1 − b) in RBCj , where j ∈ C2 and 1 − b is the majority value
among values in Ŝ1,j , and |Ŝ1,j | ≥ κ − t. By assumption, Ŝ1,j ⊆ S1, and so P outputs in
all instances of RBC that correspond to Ŝ1,j . By validity and since all honest parties in C1

send (prepare1, i, b) in RBCi, at least κ − 2t > t of the tuples in Ŝ1,j are of the form (b, j)
and at most most t tuples in Ŝ1,j are of the form (1− b, j), with overwhelming probability.
This contradicts that b is the majority value among values in Ŝ1,j .

Lemma 29 If an honest party Pi has Ŝ2 such that all (bj , j) ∈ Ŝ2, bj = b for some
b ∈ {0, 1}, then each honest party Pj has for all (bj , j) ∈ S3, bj = b, with overwhelm-
ing probability.

Proof Let Ŝ2 be the set of Pi at Step 6 that contains consistently the same value, i.e.,
such that all (bj , j) ∈ Ŝ2, bj = b.

We argue that the set S3 of Pj consistently contains b as well, since any set Ŝ2,k that Pj
accepts in Step 7 has the majority bit b.

Assume that there exists a set Ŝ2,k that has a different majority bit than b. Then, the

sets Ŝ2 of Pi and Ŝ2,k both have size at least κ − t. Since there are at most t dishonest
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parties by Lemma 24, and by validity of the reliable broadcast, at least κ− 2t values came
from prepare2 messages from honest parties.

Since honest parties only send one prepare value, this implies that there are 2κ− 4t =
2κ/3 · (1 + 2ε) distinct honest parties, which is in contradiction with Lemma 24. Hence, the

majority bits in all accepted sets Ŝ2,k
2 is the same and the statement follows.

Lemma 30 ΠGC satisfies graded validity.

Proof By Lemma 27, every honest party accumulates a set S3 of size κ − t and hence
outputs a value and a grade.

Assume all honest parties have input v. This implies that all honest parties Pi in C1

send (prepare1, i, v). By Lemma 28, no honest parties add (1 − v, j) to S2. Hence, every
honest party outputs (v, 1).

Lemma 31 All honest parties generate output in ΠGC.

Proof This follows from the fact that every honest party eventually accumulates S3 with
size κ− t by Lemma 27.

Lemma 32 ΠGC satisfies graded consistency.

Proof Termination is argued in Lemma 31. Let Pi and Pj be two honest parties. Assume
that Pi outputs (v, 1). Let Ŝi2 denote the set Ŝ2 that Pi accumulates in Step 6. Then Ŝi2
contains consistently the same bit. By Lemma 26, Pj cannot output (1 − v, 1). Moreover,

by Lemma 29, the set Ŝj3 consistently contains v, and hence Pj outputs (v, 1) or (v, 0).

C Additional Definitions

C.1 Threshold Fully Homomorphic Encryption

For our protocol we require a threshold (compact) fully homomorphic encryption (TFHE)
scheme. Our definitions follow prior work [25, 41, 9, 2, 6].

Definition 33 A threshold fully homomorphic encryption (TFHE) scheme consists of the
following algorithms:

• The key-generation algorithm KGen takes as input the security parameter along with
integers t,N . It outputs an encryption key ek and decryption keys dk1, . . . , dkN .

• The encryption algorithm Enc takes as input the encryption key ek and a message m.
It outputs a ciphertext c.

• The (deterministic) homomorphic evaluation algorithm Eval takes as input the encryp-
tion key ek, an n-input circuit C, and n ciphertexts c1, . . . , cn; it outputs a ciphertext c.

• The (deterministic) partial decryption algorithm Dec takes as input a decryption key
dki and a ciphertext c. It outputs a decryption share di.
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• The reconstruction algorithm Rec takes as input decryption shares {di} and outputs a
message m.

We require:

Correctness: For any integers n, t,N , messages {mi}i∈[n], n-input circuit C, and set I ⊆
[N ] with |I| = t, if we run (ek, {dki}i∈[N ])← KGen(1κ, 1t, 1N ) followed by

c := Evalek(C,Encek(m1), . . . ,Encek(mn)),

then Rec({Decdki(c)}i∈I) = C(m1, . . . ,mn).

Compactness: There is a polynomial p such that for all (ek, dk) output by KGen(1κ, 1t, 1N )
and all {mi}, the length of

Evalek(C,Encek(m1), . . . ,Encek(mn))

is at most p(|C(m1, . . . ,mn)|, κ).

For our application, it is easiest to define security in terms of simulation.

Definition 34 We say a TFHE scheme is simulation secure if there is a probabilistic
polynomial-time simulator Sim such that for any probabilistic polynomial-time adversary
A, the following experiments are computationally indistinguishable:

realA,C(1κ, 1t, 1N ) :

1. Compute (ek, {dki}Ni=1)← KGen(1κ, 1t, 1N ) and give ek to A.

2. A adaptively chooses a subset S ⊂ [N ] with |S| < t as well as messages m1, . . . ,mn

and a circuit C. In return, A is given {dki}i∈S and {ci ← Encek(mi)}ni=1.

3. A outputs {(m′i, r′i)}i∈S. Define c′i := Encek(m
′
i; r
′
i) for i ∈ S.

4. Let c∗ := Evalek({ci}ni=1, {c′i}i∈S) and give {Decdki(c∗)}i 6∈S to A.

idealA,C(1κ, 1t, 1N ) :

1. Compute ek ← Sim(1κ, 1t, 1N ) and give ek to A.

2. A adaptively chooses a subset S of parties with |S| < t as well as messages m1, . . . ,mn

and a circuit C. In return, Sim(1n) is run to compute {dki}i∈S and {ci}ni=1 that are
given to A.

3. A outputs {(m′i, r′i)}i∈S.

4. Let y = C({mi}ni=1, {m′i}i∈S). Compute {di}i 6∈S ← Sim(y) and give the result to A.
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C.2 Anonymous Public-Key Encryption

We recall the definition of anonymous public-key encryption from [3].

Definition 35 A CPA-secure public-key encryption scheme PE = (KGen,Enc,Dec) is anony-
mous if the following is negligible for any ppt adversary A:∣∣∣∣Pr

[
(pk0, sk0)← KGen(1κ); (pk1, sk1)← KGen(1κ);
m← A(pk0, pk1); b← {0, 1}; c← Encpkb(m)

: A(c) = b

]
− 1

2

∣∣∣∣ .
D Proof of Theorem 16

The claims regarding the communication complexity, size of the setup, and the number
of invocations of Byzantine agreement follow because Π`

MPC runs a VACS protocol with
`-output quality and inputs of length O(I · poly(κ)) in step 2; |C| = O(κ) (in expectation)
reliable broadcast protocols on inputs of length O(O · poly(κ)) in step 4; and a reliable
consensus protocol on inputs of length O in step 5. To prove security of the protocol, we
define a simulator S that works as follows:

Setup: S generates the setup honestly, with two exceptions:

• S uses the TFHE simulator to generate the TFHE public key, t − 1 decryption
keys {dki}, and n+ 1 ciphertexts c1, . . . , cn, crand.

• S generates the CRS for the UC-NIZK proof system using the corresponding
simulator.

In particular, this defines a set C of the parties.

Corruptions: Whenever A corrupts a party, S gives A the state held by that party at
that point in time. Let S denote the set of parties that A corrupts that are (1) in
C and (2) corrupted before executing step 2 of the protocol. If |S| ≥ t the simulator
aborts (call this event abort1). Otherwise, when A corrupts the ith party in S, it is
given dki as part of that party’s state.

If A corrupts a party Pi before Pi has begun executing step 1 of the protocol, then S
corrupts Pi in the ideal world to obtain Pi’s input (which it then gives to A along with
Pi’s state). When A corrupts a party at any other point in the protocol, S delays its
corruption of that party until after S sends CoreSet to the trusted party (as described
below).

Steps 1–2: If Pi is uncorrupted when it is supposed to begin executing step 1 of the
protocol, S begins executing Π`,Q

VACS on behalf of Pi, using ci and a simulated proof πi.

Let S be the set output by any honest party following the execution of Π`,Q
VACS, and

define I as in step 1 of the protocol. S sets CoreSet := I.

Let {c′i}i∈I be the ciphertexts contained in the tuples in S. If c′i 6= ci for some party

Pi who was not corrupted by A when Pi began executing Π`,Q
VACS, the simulator aborts

(call this event abort2). For each i ∈ I corresponding to a party Pi who was corrupted

by A when Pi began executing Π`,Q
VACS, use the NIZK simulator and πi to extract the

31



plaintext x′i corresponding to c′i. Send CoreSet and {x′i} to the trusted party. Receive
in return an output y.

Step 3–4: Run the TFHE simulator on input y to obtain {di}i∈C\S . For any party Pi ∈ C
that is not corrupted by step 3 of the protocol, S runs step 3 of the protocol on Pi’s
behalf using a simulated proof π′i. Finally, for any party that is not corrupted by
step 4 of the protocol, S runs step 5 on the protocol on that party’s behalf using
input y.

Note that abort1 occurs with negligible probability by Lemma 24, and abort2 occurs
with negligible probability by security of the VACS protocol and the signature scheme.
Computational indistinguishability of the entire simulation follows straightforwardly.
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