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Abstract. A dominating target of a graph G = (V, E) is a set of ver-
tices T s.t. for all W C V, if T C W and induced subgraph on W
is connected, then W is a dominating set of G. The size of the small-
est dominating target is called dominating target number of the graph,
dt(G). We provide polynomial time algorithms for minimum connected
dominating set, Steiner set, and Steiner connected dominating set in
dominating-pair graphs (i.e., dt(G) = 2). We also give approximation al-
gorithm for minimum connected dominating set with performance ratio
2 on graphs with small dominating targets. This is a significant improve-
ment on appz < d(opt + 2) given by Fomin et.al. [2004] on graphs with
small d-octopus.

Classification: Dominating target, d-octopus, Dominating set,
Dominating-pair graph, Steiner tree.

1 Introduction

Let G = (V,E) be a simple (no loops, no multiple edges) undirected graph.
For a subset Y C V, G(Y') will denote the induced subgraph of G on vertex
set Y ie. GY) = (Y, {(z,y) € E : z,y € Y}). Since we will only deal with
induced subgraphs in this paper, some times only Y may be used to denote
G(Y). For a vertex z € V, open neighborhood denoted by N(z) is given by
{y € V: (x,y) € E}. The closed neighborhood is defined by N[z] = N(x) U {z}.
Similarly, the closed and the open neighborhoods of a set S C V' are defined by
N[S] = UgesN|[z] and N(S) = N[S] — S respectively. A vertex set S7 is said
to dominate another set Sy if So C N[S]. If N[S1] = V, then S is said to
dominate G.

We address four closely related domination and connectivity problems on
undirected graphs; minimum connected dominating set (MCDS), Steiner con-
nected dominating set (SCDS), Steiner set (SS), and Steiner tree (ST), each
is known to be NP-complete [1978]. Steiner set problem finds application in
VLSI routing [1995], wire length estimation [I1998a], and network routing [I990].
Minimum con- nected dominating set and Steiner connected dominating set
problems have recently received attention due to their applications in wireless
routing in ad hoc networks [2003a].
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Many interesting graph classes such as permutation graphs, interval graphs,
AT-free graphs [1997a, 1972 [1962] [1999] have a pair of vertices with a property
that any path connecting them is a dominating set for the graph. This pair is
called a dominating pair of the graph. The concept of Dominating target was
introduced by Kloks et. al. [2001] as a generalization of the dominating pair.
Any vertex set T in a graph G = (V, E) is said to be a dominating target of G if
the following property is satisfied: for every W C V' if G(W) is connected and
T C W, then W dominates V. The cardinality of the smallest dominating target
is called the dominating target number of the graph G and it is denoted by dt(G).
The family of graphs with dt(G) = 2 are known as dominating-pair (DP) graphs
and their dominating target is referred as dominating-pair. Minimum connected
dominating set and Steiner set problems are polynomially solvable on the family
of AT-free graphs [1993], which is a subclass of DP. We will present here efficient
algorithms for MCDS, SS, and SCDS on dominating-pair graphs.

A relevant parameter to the current work is d-octopus, considered by by Fomin
et. al. [2004]. A d-octopus of a graph is a subgraph T = (W, F) of G s.t. W is a
dominating set of G, and T is the union of d (not necessarily disjoint) shortest
paths of G that have one endpoint in common. It is conjectured that dt(G) < d,
where the graph has a d-octopus, [2004]. Let opt be the optimal solution of MCDS
problem and appz be its approximation due to the algorithm by Fomin et.al.,
then appr < d(opt +2). The complexity of this algorithm is O(|V[39+3). We will
present an O(|V|#(@)+1) approximation algorithm for MCDS with performance
ratio 2, which is an improvement both in terms of complexity (assuming the
conjecture) and approximation factor (for an introduction on approximation
algorithms see [2003, [1992]).

2 Problem Definitions

In this paper we discuss the problem of computing following.

Minimum Connected Dominating Set (MCDS) Given a graph G=(V, E),
vertex set C' is a connected dominating set (CDS) if V = N[C] and G(C) is
connected. MCDS is a smallest cardinality CDS.

Steiner Connected Dominating Set (SCDS) Given a graph G = (V| E) and
a set R C V of required vertices, vertex set C is a connected |R|-dominating
set (R-CDS) if R C N[C] and G(C) is connected. SCDS of R is a smallest
cardinality R-CDS.

Steiner Set (SS) Given a graph G = (V,E) and a set R C V of required
vertices, vertex set S is an R-connecting set (R-CS) if G(SUR) is connected.
SS of R is a smallest cardinality R-CS.

Steiner Tree (ST) Given an edged-weighted graph G = (V, E,w) (w is the
edge-weight function) and a set R C V of required vertices, a tree T' is an
R-spanning tree (R-SPN) if it contains all R-vertices. ST of R is a minimum
weight (sum of the weights of the edges) R-SPN.
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Note that Steiner set problem is equivalent to Steiner tree problem when the
edge weights are taken to be 1; and MCDS is an instance of SCDS when R is
the entire V.

3 Exact Algorithms on Dominating Pair Graphs

3.1 Minimum Connected Dominating Set

Let (u,v) be a dominating pair of the graph G = (V, E) and X = N[u] and
Y = N[v]. For each z € X define A, = {a : (a,2) € E and {a,z} dominates
X}. Define By in a similar way for each y € Y. Now let I" be as follows. Here
xre€ X,yeY,and ... denote a shortest path between « and S3.

I'={P|P=wu...v, oru...by, forbe B, or
za...v, fora € A, or za...by, for a € Ay and b € By}

Balakrishnan et. al. [1993] have given O(|V|?) algorithms to compute MCDS
and SS in AT-free graphs. They claim that the smallest cardinality path in I" is a
MCDS of the graph. Although the authors address the problem of MCDS in AT-
free graphs, they do not use any property of this class other than the existence
of a dominating pair. Contrary to our expectation, the algorithm does not work
on all dominating pair (DP) graphs. In the graph of Figure 1 {x1, z2, 25,26} is
an MCDS but no MCDS of size 4 is computable by their algorithm (no CDS of
size 4 is in I').

x1 x2 x3

x4 x5 X6

Fig.1. A DP graph where Balakrishnan et.al. algorithm fails

Theorem 1. Let G = (V, E) be a dominating pair graph and {u,v} any domi-
nating pair with distance greater than 4. Then the shortest paths in I are MCDS
of G.

Proof. We show that if S is an MCDS then it can be transformed into another
MCDS S’ which belongs to I

Case 1. u € S,v € S. In this case S must be a shortest path connecting u
and v, which is already in I".

Case 2. u € S;,v & Soru¢gS,ve S We consider the first situation only.
There must exist a y € SN N(v). As S is connected, let P be a path from u to
y contained in S. If |S| — |P| > 1 then S’ = PU{v} is the required MCDS in I.
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So, assume that S = P. Let b be the vertex in P connected to y. If b € B, then
we are done. Else there must exist a y’ € Y not dominated by {b,y}. As S is a
MCDS, there must exist a b’ € P s.t. (b',y’) € E. Then S’ = SU{y',v} — {b,y}
is the required path in I

Case 3. u &€ S, v ¢ S. Therefore there exist S-vertices x and y such that
x € X and y € Y. Since S is connected there exists a path from z to y in
S, say P. P U {u,v} is a path connecting v and v so it must dominate entire
graph. Therefore P must dominate V' — X —Y . Further, the condition d(u,v) > 4
ensures that vertices that dominate any part of X are mutually exclusive from
the vertices dominating any part of Y. We consider three cases.

|S| —|P| > 2 Here S” = PU{u,v} is obviously in I.

|S| —|P|=1 Let S— P = {p}. Now p must dominate either parts of X or parts
of Y but not both. Without loss of generality assume that p dominates parts
of X. So P must be dominating V' — X. Thus S’ = S U {u} — {p}, which
is obviously connected, dominates entire V' and [S’| = |S|. From Case 2 we
know that there is a path @ € I' such that it dominates V and |Q| = |S'| =
S

|S| ‘: ||P| If the vertex a adjacent to z in P is in A, and the vertex b adjacent
to y in P is in By, then P isin I'.

Next assume that vertex a adjacent to x in P is not in A, or b adjacent to y in
P is not in A,. Without loss of generality assume the former. Then there must
exist #’ € X which is not dominated by {a,z}. Since both a and z dominate
parts of X, they do not dominate any part of Y. Thus P — {z,a} dominates Y.
Let S = PU{u,2'} — {x,a}. Clearly S’ U {v} is connected so it must dominate
V. But P — {z,a} dominates V so S’ also dominates entire V. From Case 2 we
know that there is a path @ € I" such that it dominates V and |Q| = |S’|. But
by construction |S’| = |S| so |Q] = |S]. O

If d(u,v) > 4 then compute I" and output the smallest path. In case d(u,v) < 4,
then either a shortest path connecting u to v will be an MCDS or there exists
an MCDS of size at most 4. This leads to an O(|V|?) algorithm to calculate an
MCDS in DP graphs.

3.2 Steiner Set

Let G = (V, E) be a graph and R a subset of its vertices. Define an edge-weighted
graph G, (V, E,w) where w(e) = 1 if both vertices of the edge ¢ are in V — R;
1/2 if one vertex is in V — R; 0 if neither is in V' — R. Define a function L
over the paths of G as follows. Let P be a path of G and length(P) denotes
its length in G, then L(P) = length(P) + 1 if both end vertices of P are in
V — R; length(P) 4+ 1/2 is one end vertex of P is in V — R; length(P) if neither
end-vertex is in V' — R. Observe that L(P) is the number of V' — R-vertices in P.

In describing the algorithm to compute Steiner set for a required set R in a
dominating-pair graph, we will first assume that R is an independent set (no
two R-vertices are adjacent). The general case will be shown to reduce into this
case in linear time.
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Theorem 2. Let G = (V, E) be a dominating-pair graph and R be an indepen-
dent set of vertices in it. Then there exists a pair of vertices u,v € V' such that
for every minimum-L path P between uw and v, P — R is a Steiner set of R in G.

Proof. Let S be a Steiner set for R in G. First we will assume that |S| > 3.
The case of |S| < 3 will be handled by simple search. Let u’, v’ be a dominating
pair of G. Let P, = u'..v"v" = P{u"v" be a G-shortest path from u’ to the
connected set S U R. Similarly let P, = v'...v"v"” = Pjv"v" be a G-shortest
path from v’ to S U R. Then v, v"" are in SU R; P — {u’”} and P, — {v"""} are
outside S U R; and no vertex of P| or of Py dominates any R vertex. Observe
that every path X connecting u” and v” dominates entire R because P;.X.P,
dominates entire graph. Let u”/z1xa...2,—1250" be a shortest path in G(SUR).
From the above observation v”/u"'zy...x,v""v" dominates all the R vertices. For
the convenience we will also label v’ and v with zp and xp41 respectively.

Suppose there is an S-vertex s not in {z;};ex,1). Since a Steiner set is
minimum, it must be dominating some R vertex which is not dominated by
any z;. Thus it must be dominated by u’ or v”. Let S’ be the set of S-
vertices outside {z;};c[p+1]- Define S1 = {s € S : N[s]n RN N[u"] # 0}
and So = {s € 8" : N[sJNn RN N[v"] # 0}. From the above observation
S1USe = 8’. We will show that S; N .Se = 0. Assume otherwise. Let s € S’ such
that m € N[u”] N RN N[s] and ro € N[v"] N RN N[s]. So u”risrav” is a path.
From the earlier observation it dominates entire R. Thus {u", s,v"} is a Steiner
set, but it contradicts an earlier assumption that SS has more than 3 vertices.

All paths connecting v to v” dominate all R-vertices and minimum-L paths
among them have L value at most S — |S’| + 2 because L(u"zox;...xp410") =
|S|—|S’|+2. Using the path P§ = u”xox;...x541v" we will find a pair of vertices
u, v such that all paths connecting these vertices dominate R and among them
minimum-L paths have |S| non-R-vertices. We achieve this in two steps First we
modify the u”-end of P§ and find u. Then work on the other end.

Case 1. S; = 0. Starting from g, let x;, be the first S-vertex on the path

Loy L1y« LTh41-

Claim. Either N[u”] N R C NJig) N R or there is an index j > i such that
u'ra;...441 0" is a path which dominates all R-vertices and L(u"r2jxj41...2p00")
< L(zoxy...x5+1v"), where r is an R vertex.

Proof of the claim suppose v dominates an R vertex r which is not dominated
by x;,. At least one S vertex must dominate it so let it be ;. Consider the path
u.u'rej. . xpp0” . 0" It dominates the graph so the subpath u”raz;...zp4 10"
must dominate all R-vertices. Further the number of non- R-vertices in this path
cannot exceed that of zg...zx11v” because while the former has only one new
vertex, it does not have z;,, an S vertex, which is present in the latter. end-
proof

Let u = x;, if N[u”"] N R C Nz;,] N R else define u = u”. Let Pj be the path
TigTig41.--Lp+1v” in the former case and u”rajxji1...xp410” in the latter case.
Observe that in either case Pj dominates all R-vertices (in former case there is
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at most one R-vertex between u” and z;, and R-vertices do not dominate other
R-vertices) and the number of non-R-vertices on it are no more than those in
xg...TE410", which is |S] — |Sa| + 1.

In addition, every path connecting u to v” must dominate all R-vertices as
the following reasoning shows. The case of u = u” is already established. In
case u = x;,, pad the path at the left with Pju"x¢...z;,—1 and to the right with
Pj. This path dominates the graph. Py does not dominate any R-vertex and
P{u"xg...x;,—1 does not dominate any R-vertex which is not already dominated
by 2;,. Since one path between u and v, namely Pj, has L value |S| — |S2| + 1,
the minimum-L paths between these vertices have at most |S| — [S2| + 1 non-R-
vertices.

Case 2. 51 # (. Then P; = u”xg...x+1v"” has at most |S| — |S2| + 1 non-R-
vertices. Define u = u”. All path between u and v/ dominate entire R, because
w = u”. The minimum L paths among them cannot have more than |S|—|Sa|+1
non-R vertices since L(P§) = |S| — |Sa| + 1.

Together these cases imply that there exists a vertex u such that all path
between u and v” dominate entire R and the minimum-IL path among them
have L value at most |S| — [Sa| + 1.

This completes the computation of u. To determine v we repeat the argument
from the other end. Let x;, be the first S vertex on the path xp412... starting
from zj41. Then v = v if S5 is non-empty or if N[v”] N R is not contained in
Nlzj,]NR. Otherwise v = z,. Repeating the argument given above we see that
all paths between u and v dominate all R-vertices and there is at least one path
between these vertices with at most |S| non-R-vertices. Therefore we conclude
that all minimum-L path between u and v have at most |S| non-R-vertices. [

The algorithm to compute the Steiner set is as follows.

Data: A DP graph G = (V,E) and aset RC V.
Result: A Steiner set for R.

1 For each set of at most 3 vertices check if it forms an R-connecting set. If any
such set is found, then output the smallest of these sets;

2 Otherwise compute all-pair shortest paths on G,,. Compute the set I" as the
collection of those G,,-shortest paths that dominate R. Select a path P from I”

with minimum L-value. Output P — R.
Algorithm 1. Steiner set algorithm for independent set R in DP graphs

The time complexity of the first step is O(|V|2.(|E| + |V])). The cost of the
second step is O(|V|? + |V|%.|E|) Hence the overall complexity is |V |>(|E|+ |V]).

This completes the discussion for independent R case. The general case is
easily reduced to this case. Let G = (V, E) be a dominating pair graph and R
be the required set of vertices. Shrink each connected components of G(R) into
a vertex. Then the resulting graph G’ is also a dominating pair graph (if u,v
is a dominating pair of G and v and v merge into u’ and v’ respectively after
shrinking, then u’,v’ is a dominating pair of G’). Also the new required vertex
set R’ is an independent set in G’ and each Steiner set for R’ in G’ is a Steiner
set of R in G and its converse is also true.
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3.3 Steiner Connected Dominating Set

Definition 1. Let G be a graph and R be a subset of its vertices. A subset
of vertices Dg is called R-dominating target if every connected subgraph of G
containing Dg dominates R. In addition, if each vertex of Dr has some R vertex
in its closed neighborhood, then we call it an essential- R-dominating-target.

Lemma 1. For any R there exists essential R-dominating target with cardinality
at most dt(G).

Proof. We present a constructive proof. Let D = {d; : i € I'} be a dominating
target of G of size dt(G). Let rg be any vertex in R and p; be a path from
ro to d; for each d; € D. Let d} is the first vertex from d; on p; such that
N[d]N R # 0. Let p} is the sub-path of p; from d; to the vertex prior to d..
Now we show that Dr = {d} : ¢ € I} is an essential R dominating target. By
construction, each vertex of Dy has at least one R vertex in its neighborhood.
Now consider arbitrary connected set C' containing Dg. Append the paths p to
C. The resulting graph is connected and contains all vertices of D so it dominates
entire G. But p, do not dominate any R-vertices so C' must be dominating all
the R-vertices. (]

If G is a dominating pair graph, then an essential R dominating target Dp exists
with at most 2 vertices. If it is a singleton, then SCDS problem becomes trivial
because this vertex dominates the entire R. So in the remainder of this section
we assume that Dr = {u,v} and denote the distance d(u,v) by do. Dgr being
an essential R-dominating target, N[u] N R # () and N[v] N R # ).

Lemma 2. Let S be a connected set of vertices in G, i.e., the induced graph
on S is connected. Then S is a connected dominating set of R iff S dominates
Nzlu] M R and Na[v] N R, here N3[.| denotes 2-distance closed neighborhood.

Proof. “Only if” part is trivial since Na[u] N R and Nz[v] N R are subsets of R.

As {u,v} is an essential dominating target, N{u] N R and N[v] N R are non-
empty. Let r1 € N[u]NR and ro € N[v]NR. So there must be some z € No[u]NS
and y € Nafv] NS s.t. 71 and ro are adjacent to x and y respectively. Let
S1 = {r1,u} and Sz = {re,v}. Then S’ = SUS; USs is connected and contains
u and v. By the definition of R-dominating target, S’ dominates all R-vertices.
Thus S must dominate R — (Nz[u] U Na[v]). Combining this with the given
fact that S dominates Nao[u] N R and Nz[v] N R, we conclude that S dominates
entire R. (]

Lemma 3. Let d(u,v) > 5 and S be a connected set of vertices in G containing
u. If S also contains a vertex x such that d(z,v) < 2, then S dominates Na[u]NR.

Proof. Let @ be a shortest path from x to v. Define S’ = SUQ. By construction
S’ is connected and contains {u, v} therefore it dominates R. In particular, it
dominates Na[u] N R. Vertices of @ — {z} are contained in N[v] and d(u,v) is
at least 5, so vertices of @ — {z} do not dominate Na[u] N R. Therefore S must
dominate Na[u] N R. O
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Lemma 4. Let d(u,v) > 5 and S be a connected R-dominating set. Let y be a
cut vertez of G(S) and G(S—{y}) has a component C such that CU{y} contains
all the S wvertices within 3-neighborhood of v. If P is a path in G connecting y
and u, then S" = C U P is also a connected R-dominating-set.

Proof. From Lemma [2 it is sufficient to show that S’ is connected and it dom-
inates Na[v] N R and Nau] N R. Firstly, C' U {y} is connected so S’ is also
connected. Next, S is an R-dominating-set and SN N3[v] is contained in CU{y}
so C' U {y} dominates No[v] N R. Finally, N[v] N R is non-empty and S is an
R-dominating set so S contains a vertex x such that d(z,v) < 2. All S-vertices
within 3-neighborhood of v are in C' U {y} so = € S’. Further, u also belongs to
S’ since it is in P. Using Lemma Bl we deduce that S’ dominates Ny[u] N R. This
completes the proof. O

Let S be a SCDS for R. We partition it into levels as follows. x € S is defined
to be in level 4 if d(u, x) = i. Observe that there is at least one S-vertex at level
2 and at least one S-vertex at level dy — 2. Further, if x € S is the only vertex
at level ¢ where 2 < i < dy — 2, then « is a cut vertex of G(5).

Lemma 5. Let dy > 9. Then there exists an SCDS for R which has a unique
vertex xo with d(u,xg) = dy for some dy € {3,4} and a unique vertex yo with
d(v,yo) = da for some do € {3,4}.

We omit the proof to save the space.

Theorem 3. Suppose G has an essential R dominating target {u, v} with d(u,v)
> 9. Then every minimum vertez set, S, among the sets satisfying the following
conditions is a SCDS of R.

(a) G(S) is connected.

(b) 3xo € S with d(u,xo) = 3 or 4 such that x¢ is a cut vertex of G(S) and a
component of G(S —{xo}), Cu, is such that C,, U{xo} dominates No[u]NR.

(c) 3yo € S with d(v,yo) = 3 or 4 such that yo is a cut vertex of G(S) and a
component of G(S —{yo}), Cy, is such that C, U{yo} dominates Na[v] N R.

(d) S —C, — C, is a shortest path between xo and yo.

Proof. From Lemma [2] every set satisfying the conditions is a connected R-
dominating set. Therefore if a SCDS belongs to this collection of sets, then
every smallest set satisfying the conditions must be a SCDS.

From Lemma [ there exists a SCDS, S, of R with cut vertices xy at distance
3 or 4 from w such that C,, = {& € S : d(u,z) < d(u,zo)} is a component of
G(S — {zo}). S being an SCDS, {x¢} U C,, must dominate Nz[u] N R. Similarly
Yo at a distance 3 or 4 from v in S such that condition (c) is also satisfied. If we
replace S —C, — C, by a G-shortest path between zy and yg then also the set will
be a CDS, from Lemmal[2l Therefore minimality of S requires that S—C\, —C,, is
a shortest path connecting xg and yo. Therefore S is one of the CDS that satisfy
the conditions. Therefore the smallest sets that satisfy the conditions must be

SCDS. -
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Corollary 1. If S is an SCDS, then |Cy| < d(u,x0) and |Cy| < d(v,yo).

Proof. If C,, is replaced by a shortest path P between u and xq in .S, then from
Lemma [4] the resulting set is also R-CDS. Besides, the optimality of S requires
that |S| < [S]| —|Cul + |P| = |S] — |Cu] — d(u, xq). O

Algorithm 2] computes SCDS of any vertex set R in a DP graph with essential
dominating pair {u, v} with d(u,v) > 9.

Data: A DP graph G = (V, E), a subset of vertices R, essential
R-dominating-pair {u, v} with d(u,v) > 9
Result: A Steiner connected dominating set of R
1 Compute all pair shortest paths;
2 for allz €V s.t. d(u,z) = 8 or 4 do
Ay = {Puc} U{A : G(A) is connected,
xz € A, |A| <d(u,z), N2[u] "R C N[A]};
/* P, is a shortest path between u and x */
A, = smallest cardinality set in Ay;
end
for ally € V s.t. d(v,y) = 8 or 4 do
Ay ={Pyy} U{A: G(A) is connected,
y € A,JA| < d(v,y), Na[o] N R € N[A]};
/* P,y is a shortest path between v and y */
A, = smallest cardinality set in A,;
9 end
10 S={A; UAyU Py : d(u,z) =3 or 4, d(v,y) = 3 or 4, P, a shortest path
between x and y};
11 return the smallest set in S;
Algorithm 2. SCDS algorithm for DP graphs

B = BN w

o]

The correctness of the Algorithm 2]is immediate from Theorem [l Step 1 costs
O(|V|(IV] +|E|)). Steps 2 and 6 each costs O(|V|*.|R|) Cost of the tenth step is
O(]V|?). The total complexity of the algorithm is O(|V[1.|R|).

For the case with dy < 8 either the SCDS is a shortest path connecting v and v
or it contains at most dy vertices. Therefore a simple way to handle this case is to
test every set of up to dg cardinality for connectivity and R domination and select
the smallest. If no such set exists, then the shortest path is the solution. This
approach costs O(|V'[®.|R|). The cost of computing an essential R-dominating-
target is O(|V| + |E|). Adding all the costs we have following theorem.

Theorem 4. In a dominating-pair graph the Steiner connected dominating set
for any subset R can be computed in O(|V[.|R|) time. If the distance between

the R-dominating pair vertices is greater than 8, then complexity improves to
O(IVI|R]).

4 Approximation Algorithms

Following result is by Fomin et.al.
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Theorem 5 ([2004]). Let T = (W, F) be a d-octopus of a graph G = (V, E),
then

— T can be computed in O(|V|3+3).
— If v(G) is a minimum connected dominating set, then |W| < d.(v(G) + 2).

It is conjectured that dt(G) < d for a graph having a d octopus [2004]. We
will present a appr < 2v(G) algorithm with complexity O(|V||E| + |V/|#(&)+1),
Following theorem is stated without proof.

Theorem 6. Let G = (V,E,w) be an edge-weighted (non-negative weights)
graph and R C'V be an arbitrary set of required vertices. Then a Steiner tree of
R can be calculated in O(|V|(|V| + |E|) + (V| — |R|)FI=2|R)?).

Corollary 2. Let G = (V,E) be a graph and R C V be an arbitrary set of
required vertices. Then a Steiner set for R can be computed in O(|V|(|V] +
|E]) + (V] = |R])FI=2|RP).

For convenience we define f(k) = |V|(|V|+ |E|) + |V |¥(k + 2)2.

4.1 Computation of a Minimum Dominating Target

Let G = (V,E) be a graph. Then T C V is a dominating target iff for all
W CVifT CW and G(W) is connected, then N[W] = V. The problem of
computing a minimum dominating target is known to be NP-complete, [T98]1].
Here we generalize the algorithm given in [I993] to compute a dominating pair
in AT-free graphs, to one that computes a dominating target in general graphs.

Lemma 6. A set S C V is a dominating target of G if and only if for every
vertex v € V, S doesn’t lie in a single component of G(V — N[v]).

First compute all neighborhood deleted components of the graph, which costs
O(|V|*#3) [2003D]. Starting with ¢+ = 1. Select each set of size t and check
if it is completely contained in any of the pre-computed components. If any
set is found which is not contained in any component, then it is a dominating
target, otherwise increment ¢ and repeat till one dominating target is found.
This computation costs O(dt(G) - [V|4(E)+1) time.

4.2 Minimum Connected Dominating Set

Theorem 7. Let G = (V, E) be a connected graph with dominating target num-
ber dt(G). If the cardinality of MCDS is opt(G), then in O(|V|.|E| + |V |#(&)+1)
time a connected dominating set of G can be computed with cardinality no greater
than opt(G) + dt(G).

Proof. Let D be a minimum dominating target of the graph. It can be computed
in O(|V]#(&)+1) as described in section 2.3. Let T be a Steiner tree for the
required set D. Hence from the definition of dominating targets, T is a connected
dominating set for G. This can be calculated by algorithm of Theorem [ in
O(f(dt(G) —2)).
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Let M be any MCDS of G. In particular, it dominates D so M U D is a
connected set containing D. As T is the minimum connected set containing D,
IT| < [MUD| <[M|+|D| = M|+ di(G). O

Tt is easy to see that dt(G) < opt(G). So appz < 2.0pt(G).

4.3 Steiner Connected Dominating Set

Theorem 8. Let G = (V, E) be a connected graph with dominating target num-
ber dt(G) and R C V. Let the Steiner connected dominating set (SCDS) of
R have cardinality opt(G, R). Then a connected R-dominating set (an approxi-
mation to SCDS for R), can be computed in O(|V|.|E| + |V |+ time with
cardinality no greater than opt(G, R) + 2dt(G).

Proof. As described in the proof of Lemmal[ll compute an essential R-dominating-
target Dg in O(|V|*(@)+1) time.

Compute Steiner tree of Dg, T using algorithm of Theorem[@l T is a connected
set containing Dg so it dominates R. As |Dgr| < dt(G), the cost of the computa-
tion is bounded by f(dt(G) — 2). Next we show that |T| < opt(G, R) + 2.dt(G).

Let S be an SCDS of R in G. Dpg is an essential dominating target for R so
each member of Dp is adjacent to some R vertex. For each d € Dy, let r4 denote
any one vertex from R which adjacent to d. Let Rp denote the set {rq: D € Dg}.
Since S dominates R, SURp is connected. Further, by construction SURpUDRg
is connected also connected. By the definition of Steiner trees 7' is the smallest
connected set containing Dg. So |T| < |SU Rp U Dg| < |S| 4+ |Rp| + |Dr| <
opt(G, R) + 2.dt(G). The last inequality is due to the fact that |Rp| < |Dg| <
dt(G). O

opt(G, R) = size of the smallest connected R-dominating set > size of the small-
est R-dominating target = Dpg. Therefore from the last two lines of the above
proof appz < 3.0pt(G, R).

4.4 Steiner Set

Corollary 3. Let G = (V, E) be a connected graph with dominating target num-
ber dt(G) and R C V. Let opt(G, R) denote the cardinality of a Steiner set of
R, then an R-connecting set (Steiner set approximation) can be computed in
O(|V|.|E| + |V|™E*YY time with cardinality not exceeding opt(G, R) + 2dt(G).

Proof (sketch). Reduce G to G’ by shrinking each connected component, R;, of
R to a vertex r;. Set R’ is independent in G’. Observe that if S is an R-connecting
set in G, then S U R’ is the union of R’ and a connected R’-dominating set in
G’. Conversely if C is a connected R’ dominating set in G', then C — R’ is a
connecting set of R’ is G’ which is also a connecting set of R in G. Therefore we
can compute a Steiner set of R by first computing SCDS of R’ in G’. The claim
follows from the theorem. O

Future Work: It remains to decide whether MCDS, SS, and SCDS are NP-hard
on graphs with bounded dominating targets.
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