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Abstract. The learning with rounding (LWR) problem, introduced by Banerjee, Peikert and Rosen
[BPR12] at EUROCRYPT ’12, is a variant of learning with errors (LWE), where one replaces random
errors with deterministic rounding. The LWR problem was shown to be as hard as LWE for a setting
of parameters where the modulus and modulus-to-error ratio are super-polynomial. In this work we
resolve the main open problem of [BPR12] and give a new reduction that works for a larger range of
parameters, allowing for a polynomial modulus and modulus-to-error ratio. In particular, a smaller
modulus gives us greater efficiency, and a smaller modulus-to-error ratio gives us greater security, which
now follows from the worst-case hardness of GapSVP with polynomial (rather than super-polynomial)
approximation factors.

As a tool in the reduction, we show that there is a “lossy mode” for the LWR problem, in which LWR
samples only reveal partial information about the secret. This property gives us several interesting new
applications, including a proof that LWR remains secure with weakly random secrets of sufficient min-
entropy, and very simple new constructions of deterministic encryption, lossy trapdoor functions and
reusable extractors.

Our approach is inspired by a technique of Goldwasser et al. [GKPV10] from ICS ’10, which implicitly
showed the existence of a “lossy mode” for LWE. By refining this technique, we also improve on the
parameters of that work to only requiring a polynomial (instead of super-polynomial) modulus and
modulus-to-error ratio.

Keywords: Learning with Errors, Learning with Rounding, Lossy Trapdoor Functions, Deterministic
Encryption.

1 Introduction

Learning With Errors. The Learning with Errors (LWE) assumption states that “noisy”
inner products of a secret vector with random public vectors, look pseudorandom. In the
last years many cryptosystems have been constructed whose security can be proven un-
der LWE, including (identity-based, leakage-resilient, fully homomorphic, functional) encryp-
tion [Reg05,GPV08,AGV09,LPR10,AFV11,BV11,LP11,GKP+12], oblivious transfer [PVW08],
(blind) signatures [GPV08,Lyu09,Rüc10,Lyu12], pseudo-random functions [BPR12], hash func-
tions [KV09,PR06],etc.
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The LWE assumption, with parameters n,m, q ∈ N and a “small” error distribution χ over Z,

states that for uniformly random A
$← Zm×nq , s

$← Znq , u
$← Zmq and an error vector e← χm

(A,A · s + e) is computationally indistinguishable from (A,u).

Sometimes it will be convenient to think of this distribution as consisting of m “LWE samples” of
the form (ai, 〈ai, s〉+ei) ∈ Zn+1

q . One of the main advantages of the LWE problem is that, for some
settings of parameters, we can prove its security under certain worst-case hardness assumptions

over lattices; see [Reg05,Pei09]. One important parameter is the “size” of the error terms e
$← χ

which we denote by β.5 As long as β exceeds some minimum threshold ≈
√
n, the concrete hardness

of the LWE problem mainly depends on the dimension n and on the ratio of the modulus q to the
error-size β. Therefore, we will often be unspecific about the exact distribution χ, and only focus
on the error-size β.

Learning With Rounding. The Learning with Rounding (LWR) problem was introduced
in [BPR12]. Instead of adding a random small error to various samples 〈a, s〉 ∈ Zq so as to hide
their exact value, we release a deterministically rounded version of 〈a, s〉. In particular, for some
p < q, we divide up the elements of Zq into p contiguous intervals of roughly q/p elements each and
define the rounding function b·cp : Zq → Zp that maps x ∈ Zq into the index of the interval that
x belongs to. For example if q, p are both powers of 2, than this could correspond to outputting
the log(p) most significant bits of x. We can extend the rounding function to vectors by applying
it componentwise. The LWR assumption states that:

(A, bA · scp) is computationally indistinguishable from (A, bucp).

If p divides q, than bucp is itself uniform over Zmp . The main advantage of LWR is that one does not
need to sample any additional “errors”, therefore requiring fewer random bits. The assumption has
been used to construct simple and efficient pseudorandom generators and functions in [BPR12],
and deterministic encryption in [XXZ12].

The work of [BPR12] shows a beautifully simple reduction proving the hardness of the LWR
problem under the LWE assumption for some range of parameters. In particular, they observe
that if the error size β is sufficiently small and the ratio q/p is sufficiently big, then b〈a, s〉cp =

b〈a, s〉 + ecp with overwhelming probability over random a
$← Zq and e

$← χ. In particular, the
only way that the two values differ is if 〈a, s〉 ends up within a distance of |e| from a boundary
between two different intervals; but since the intervals are of size q/p and the ball around the
boundary is only of size 2|e| this is unlikely to happen when q/p is super-polynomially bigger than
2|e|. Therefore, one can show that:

(A, bA · scp)
stat
≈ (A, bA · s + ecp)

comp
≈ (A, bucp)

where the first modification is statistically close and the second follows immediately from the
hardness of LWE.

Unfortunately, the argument only goes through, when (q/p) is bigger than the error size β by a
super-polynomial factor. In fact, if we want statistical distance 2−λ we would need to set q ≥ 2λβp,
where λ is a security parameter. This has three important consequences: (1) the modulus q has to be
super-polynomial, which makes all of the computations less efficient, (2) the modulus-to-error ratio

5 We will be informal for now; we can think of β as the the standard deviation or the expected/largest absolute
value of the errors.
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q/β is super-polynomial which makes the LWE problem easier and only gives us a reduction if we
assume the hardness of the lattice problem GapSVP with super-polynomial approximation factors
(a stronger assumption), (3) the ratio of the input-to-output modulus q/p is super-polynomial,
meaning that we must “throw away” a lot of information when rounding and therefore get fewer
bits of output per LWR sample. The work of [BPR12] conjectured that the LWR problem should
be hard even for a polynomial modulus q, but left it as the main open problem to give a reduction.

1.1 The New Reduction and Properties of LWR

LWR with Polynomial Modulus. In this work, we resolve the open problem of [BPR12] and
give a new reduction showing the hardness of LWR from that of LWE for a more general setting of
parameters, including when the modulus q is only polynomial. In particular, instead of requiring
q ≥ 2λβp, where λ is a security parameter as in [BPR12], we only require q ≥ nmβp, where we
recall that n is the dimension of the secret, and m is the number of LWR samples that we output,
β is the size of the LWE errors, and p is the new modulus we round to. In particular, as long as
the number of LWR samples m is fixed a-priori by some arbitrary polynomial, we can allow the
modulus q to be polynomial. As mentioned, this setting provides greater efficiency (computation
with smaller q) and greater security (smaller ratio q/β) allowing for a reduction from the worst-case
hardness of the lattice problem GapSVP with polynomial approximation factors. In particular, the
above efficiency and security improvements for LWR directly translate into improvements of the
PRG and the basic synthesizer-based PRF constructions of [BPR12] (but not to their optimized
“degree-k synthesizer” construction, which doesn’t directly rely on LWR, and requires a super-
polynomial modulus for different reasons).

To be even more precise, our reduction shows the hardness of LWR with parameters n,m, q, p
assuming the hardness of LWE with parameters n′,m, q, β (note: different dimension n′ vs. n) as
long as:

n ≥ log(q)

log(2γ)
· n′ and q ≥ γ(nmβp) (1)

for some flexible parameter γ ≥ 1. For example, setting γ = 1 allows for the smallest modulus
q ≈ nmβp, but requires a larger dimension n ≈ n′ log(q) in the LWR problem than the dimension n′

of the underlying LWE assumption. On the other hand, setting γ = qδ for some constant δ ∈ (0, 1)
gives a bigger polynomial modulus q ≈ (nmβp)1/(1−δ) but allow us to set the LWR dimension
n ≈ (1/δ)n′ = O(n′) to be closer to that of the underlying LWE assumption.

Note that, for our reduction to work, the modulus q must always be sufficiently larger than the
number of LWR samples m. Therefore, we can only set q to polynomial in a setting where the total
number of samples m given out is known ahead of time. This is the case for all of the applications
of [BPR12] as well as the new applications that we will describe in this work. In settings where
m is not known ahead of time (e.g., the attacker can decide how many samples it will get) we
would need to make the modulus q and the modulus-to-error ratio q/β super-polynomial, but our
reduction still provides tighter exact security than that of [BPR12]. It remains as an interesting
open problem to improve the parameters of the reduction further, and especially to remove the
dependence between the modulus q and the number of LWR samples m that we give out.

LWR with Weak and Leaky Secrets. Another advantage of our reduction is that we prove
the security of the LWR problem even when the secret s is not necessarily uniform over Znq . Indeed,

our proof also works when s is uniform over a smaller integer interval s
$← {−γ, . . . , γ}n ⊆ Znq ,

where the relation of γ ≥ 1 to the other parameters is given by equation (1). Moreover, our
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reduction works when the secret s is not even truly uniform over this interval (say, because the
attacker observed some leakage on s, or s was sampled using a weak random source) as long as s
retains some sufficiently high amount of min-entropy k ≈ n′ log(q), where n′ is the dimension of
the underlying LWE assumption. Notice that, no matter how small the entropy k is, we can still
prove security under some LWE assumption with correspondingly smaller dimension n′.

The work of Goldwasser et al. [GKPV10] shows similar results for the hardness of LWE with
a weak and leaky secret, at least as long as the modulus q and the modulus-to-error ratio q/β are
super-polynomial. Indeed, we will use a refinement of the technique from their work as the basis
of our LWE to LWR reduction. Our refinement will also allow us to improve the parameters of
[GKPV10], and show the hardness of LWE with a weak and leaky secret when the modulus q and
the ratio q/β are polynomial.

The Reduction. As discussed above, the original reduction of [BPR12] required us to choose
parameters so that rounded samples with and without error are almost always identical:
Pr[b〈a, s〉cp 6= b〈a, s〉+ ecp] ≤ negl. Therefore LWR outputs do not provide any more information
than LWE outputs. In contrast, in our setting of parameters, when q is polynomial, there is a
noticeable probability that the two values are different and therefore we will need a completely
different proof strategy.

Surprisingly, our strategy does not try to directly convert an LWE instance with a secret s
into an LWR instance with secret s. Instead, we will rely on the LWE problem to change the
distribution of the coefficient matrix A. In particular, we show that there is a “lossy” method of

sampling a matrix Ã
$← Lossy() such that:

(a) Under the LWE assumption, Ã
$← Lossy() is computationally indistinguishable from A

$←
Zm×nq .

(b) When Ã
$← Lossy(), the values Ã, bÃ · scp do not reveal too much information about s. In

particular, s maintains a large fraction of its statistical entropy given Ã, bÃ · scp.

Before we describe how the Lossy() sampler works in the next paragraph, let us show that the
above two properties allow us to prove the hardness of LWR problem. We can do so via a hybrid
argument where, given many LWR samples, we replace one sample at a time from being an LWR
sample to being uniformly random. In particular, assume we have m+ 1 LWR samples and let the

matrix A
$← Zm×nq denote the coefficient vectors of the first m samples, and let a

$← Znq be the
coefficient vector of the last sample. Then we can show:

([
A
a

]
,

[
bA · scp
b〈a, s〉cp

])
comp
≈
([

Ã
a

]
,

[
bÃ · scp
b〈a, s〉cp

])
stat
≈
([

Ã
a

]
,

[
bÃ · scp
bucp

])
comp
≈
([

A
a

]
,

[
bA · scp
bucp

])
In the first step, we use the LWE assumption to replace a uniformly random A by a lossy matrix

Ã
$← Lossy(), but still choose the last row a

$← Znq at random. In the second step, we use the
fact that inner product is a strong extractor, where we think of the secret s as the source and the
vector a as a seed. In particular, by the properties of the lossy sampler, we know that s maintains
entropy conditioned on seeing Ã, bÃ · scp and therefore the “extracted value” 〈a, s〉 is statistically

close to a uniformly random and independent u
$← Zq. In the last step, we simply replace the

lossy matrix Ã
$← Lossy() back by a uniformly random A. This shows that, given the first m LWR

samples the last one looks uniform and independent. We can then repeat the above steps m more
times to replace each of the remaining LWR samples (rows) by uniform, one-by-one.
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The Lossy Sampler. The basic idea of our Lossy sampler is taken from the work of Goldwasser
et al. [GKPV10]. We sample the lossy matrix Ã ∈ Zm×nq as

Ã
def
= BC + F where B

$← Zm×n
′

q , C
$← Zn

′×n
q , F

$← χm×n

where n′ < n is some parameter and χ is a “small” LWE error distribution. We now need to show
that this satisfies the properties (a) and (b) described above.

It is easy to see that Ã is computationally indistinguishable from a uniformly random matrix
under the LWE assumption with parameters n′,m, q, χ. In particular, each column i of the matrix
Ã can be thought of as an LWE distribution B ·ci+ fi with coefficient matrix B, secret ci which is
the ith column of the matrix C, and error vector fi which is the ith column of F. Therefore, using
n hybrid arguments, we can replace each column i of Ã by a uniformly random and independent
one. This part of the argument is the same as in [GKPV10].

Next, we need to show that the secret s retains entropy even conditioned on seeing Ã, bÃ · scp.
Let us first prove this property in the case when s

$← {−1, 0, 1}n is itself a random “short” vector.6

All of the information that we give out about s can be reconstructed from:

– The matrices B,C,F which define Ã = BC + F and are independent of s on their own.
– The value C · s whose bit-length is n′ log(q).
– A set Z consisting of all pairs (i, vi) ∈ [m]×Zp such that b(BC · s)icp 6= b(Ã · s)icp along with

the value vi = b(Ã · s)icp. The subscript i denotes the ith component of a vector.

Given the three pieces of information above, we can reconstruct Ã, bÃ ·scp by setting b(Ã ·s)icp :=
b(BC · s)icp for every index i not contained in Z, and setting b(Ã · s)icp := vi for every i which is
in Z. Therefore, we just need to show that the three pieces of information above do not reveal too
much about s. First, we show that the set Z is small with overwhelming probability. In particular,
an index i is contained in Z if and only if

b(BC · s)icp 6= b(BC · s)i + (F · s)icp. (2)

Assume that the entries of the error matrix F are all bounded by β in absolute value with
overwhelming probability, and therefore (F · s)i is bounded by nβ in absolute value.7 Then the
event (2) can only occur if the value (BC · s)i falls within distance nβ of a boundary between two
different intervals. Since each interval is of size ≈ q/p and the ball around each boundary is of size
2nβ, this happens with (noticeable but small) probability ≤ 2nβp/q ≤ 1/m, when q ≥ 2nmβp
(which gives us the bound of (1)). Therefore, the probability of any index i being in Z is at most
1/m, the expected size of Z is at most 1, and because these probabilities are independent, we can
use Chernoff to bound |Z| ≤ n′ with overwhelming probability 1 − 2−n

′
. So in total, Z can be

described by |Z|(logm+ log p) ≤ n′ log q bits with overwhelming probability. Therefore, together,
Z,Cs reveal only O(n′ log q) bits of information about s, even given B,C,F. We can summarize
the above as:

H∞(s|Ã, bÃscp) ≥ H∞(s|B,C,F,C · s, Z) ≥ H∞(s|B,C,F)−O(n′ log q) ≥ n−O(n′ log q).

Hence, if n is sufficiently larger than some O(n′ log q), the LWR secret maintains a large amount
of entropy given the LWR samples with a lossy Ã. The above analysis also extends to the case
where s is not uniformly random, but only has a sufficient amount of entropy.

6 This proof generalizes to larger intervals {−γ, . . . , γ} and corresponds to the parameter γ in equation (1). Here
we set γ = 1.

7 Our actual proof is more refined and only requires us to bound the expected absolute value of the entries.
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We can also extend the above analysis to the case where s
$← Znq is uniformly random over the

entire space (and not short), by thinking of s = s1 + s2 where s1
$← Znq is uniformly random and

s2
$← {−1, 0, 1}n is random and short. Using the same argument as above, we can show that, even

given s1, Ã and bÃ · scp, the value s2 (and therefore also s) maintains entropy.

Our analysis of lossiness as described above is inspired by [GKPV10] but differs from it
significantly. In particular that work considered LWE (not LWR) samples with the matrix Ã,
didn’t explicitly analyze lossiness, and required super-polynomial modulus and modulus-to-error
ratio. Indeed, we can use the ideas from the above analysis to also improve the parameters of that
work, showing the robustness of the LWE problem to weak and leaky secrets for a polynomial
modulus and modulus-to-error ratio. See Appendix B.

1.2 Applications

Reusable Computational Extractor. Recall that, by the leftover-hash lemma, the function
Ext(s; a) := 〈s,a〉 is a good randomness extractor which can take any (secret) source s ∈ Znq of

sufficient min-entropy k ≥ log(q)+2 log(1/ε) and a random public seed a
$← Znq , and its output will

be ε-close to uniformly random in Zq. But let’s say we want to extract many different mutually
(pseudo-)random values from the source s without keeping any long term state: each time we
want to extract a new output we choose a fresh seed and apply the extractor. It’s easy to see
that the above inner-product extractor is completely insecure after at most n applications, and
each successive output is easy to predict from the previous ones. The work of [DKL09] introduced
the notion of a reusable computational extractor that remains secure even after m applications,
where m can be an arbitrary polynomial, and gave a construction under a non-standard “learning-
subspaces with noise” assumption. Our results immediately give us a new simple construction
of reusable extractors defined by Ext(s; a) := b〈a, s〉cp. That is, we just round the output of the
standard inner product extractor! We show that, as long as the LWE assumption holds with some
parameters n′,m, q, β, the source s is distributed over {0, 1}n and has entropy k ≥ O(n′ log(q)),
and the modulus satisfies q ≥ 2βnmp, the above extractor is secure for m uses. In particular, we
can have m� n� k.

Lossy Trapdoor Functions. Lossy trapdoor functions (LTDFs) [PW08,PW11] are a family of
functions fpk(·) keyed by some public key pk, which can be sampled in one of two indistinguishable
modes: injective and lossy. In the injective mode the function fpk(·) is an injective function
and we can even sample pk along with a secret trapdoor key sk that allows us to invert it efficiently.
In the lossy mode, the function fpk(·) is “many-to-one” and fpk(s) statistically loses information
about the input s. LTDFs have many amazing applications in cryptography, such as allowing
us to output many hardcore bits, construct CCA-2 public-key encryption [PW11,MY10], and
deterministic encryption [FOR12]. We construct very simple and efficient LTDFs using the LWR
problem: the public key is a matrix pk = A and the function is defined as fA(s) = bA · scp.
We can sample an injective A with a trapdoor using the techniques of Ajtai [Ajt99] or subsequent
improvements [AP11,MP12], and one can sample a lossy A using our lossy sampler. Although prior
constructions of LTDFs based on LWE are known [PW11,BKPW12], our construction is extremely
simple to describe and implement and has the advantage that our lossy mode loses “almost all” of
the information contained in s. We also construct very simple and efficient “all-but-one” (ABO)
lossy trapdoor functions based on LWR, which are useful for building efficient CCA-2 encryption.
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Deterministic Encryption. Deterministic encryption [BBO07,BFOR08,BFO08,BS11,FOR12]
is intended to guarantee security as long as the messages have sufficient entropy. Although there are
black-box constructions of deterministic encryption using LTDFs [BFO08], we get a very simple
direct construction from the LWR problem: the public key is a matrix pk = A ∈ Zm×nq , and to
encrypt a message s ∈ {0, 1}n, we simply output bA · scp. We can sample A with a decryption
trapdoor using the standard techniques [Ajt99,AP11,MP12] mentioned previously. Our analysis
here is essentially the same as for our reusable extractor – we simply note that whenever s has
sufficient entropy, the output bA · scp is pseudorandom. We note that the same construction was
proposed by Xie et al. [XXZ12], but because the analysis there was similar to [BPR12,GKPV10],
they required a super-polynomial modulus and modulus-to-error ratio. The main advantage of this
scheme over other deterministic encryption schemes is that we do not need any fixed threshold on
the entropy of the message s: no matter how low it is we can still prove security under an LWE
assumption with correspondingly degraded parameters.

2 Preliminaries

Notation. Throughout, we let λ denote the security parameter. We use bold lower-case letters
(e.g., s, e) to denote vectors, and bold upper-case letters (e.g., A,B) to denote matrices. If X

is a distribution or a random variable, we write x
$← X to denote the process of sampling x

according to X. If X is a set, we write x
$← X to denote the process of sampling x uniformly at

random over X. For two distribution ensembles X = {Xλ}, Y = {Yλ}, we write X
comp
≈ Y if for

all probabilistic polynomial time (PPT) distinguishers D there is a negligible function negl(·) such
that: |Pr[D(1λ, Xλ) = 1]− Pr[D(1λ, Yλ)] = 1| ≤ negl(λ).

Bounded Distribution. For a distribution χ over the reals, and a bound β, we say that χ is

β-bounded if the average absolute value of x
$← χ is less then β, i.e., if E[|χ|] ≤ β.

Probabilistic Notions. We recap some definitions and results from probability theory.

Definition 2.1 (Statistical Distance). Let X,Y be random variables with supports SX , SY , re-
spectively. We define their statistical difference as ∆(X,Y ) = 1

2

∑
u∈SX∪SY |Pr[X = u]− Pr[Y = u]|.

We write X
stat
≈ Y to denote that ∆(X,Y ) is negligible in the security parameter.

The min-entropy of a random variable X is H∞(X)
def
= − log(maxx Pr[X = x]), and measures the

“best guess” for X. The conditional min-entropy of X given Z, defined by Dodis et al. [DORS08],

is H∞(X|Z)
def
= − log (Ez←Z [ maxx Pr[X = x|Z = z] ]) = − log

(
Ez←Z

[
2−H∞(X|Z=z)]) . This

measures the “best guess” for X by an adversary that observes a correlated variable Z. That
is, for all (potentially inefficient) functions A, we have Pr[A(Z) = X] ≤ 2−H∞(X|Z) and there
exists some A which achieves equality. The following lemma says that conditioning on ` bits of
information, the min-entropy drops by at most ` bits.

Lemma 2.2 ([DORS08]). Let X,Y, Z be arbitrary (correlated) random variables where the
support of Z is of size at most 2`. Then H∞(X|Y,Z) ≥ H∞(X|Y )− `.

We will rely on the following definition of smooth min-entropy, which was first introduced by
Renner and Wolf [RW04]. Intuitively, a random variable has high smooth min-entropy, if it is
statistically close to a random variable with high min-entropy.
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Definition 2.3 (Smooth Entropy). We say that a random variable X has ε-smooth min-
entropy at least k, denoted by Hε

∞(X) ≥ k, if there exists some variable X ′ such that ∆(X,X ′) ≤ ε
and H∞(X ′) ≥ k. Similarly, we say that the ε-smooth conditional min-entropy of X given
Y is at least k, denoted Hε

∞(X|Y ) ≥ k if there exist some variables (X ′, Y ′) such that
∆((X,Y ), (X ′, Y ′)) ≤ ε and H∞(X ′|Y ′) ≥ k.

In the remainder of this paper, we will write Hsmooth
∞ (·) to denote Hε

∞(·) for some (unspecified)
negligible ε. We also prove a variant of Lemma 2.2 for smooth min entropy, which works when Z
takes on at most 2` values with overwhelming probability.

Lemma 2.4. Let X,Y, Z be correlated random variables and Z be some set such that Pr[Z ∈ Z] ≥
1− ε and |Z| ≤ 2`. Then, for any ε′ > 0, Hε+ε′

∞ (X|Y, Z) ≥ Hε′
∞(X|Y )− `.

Proof. Let k = Hε′
∞(X|Y ) and let (X ′, Y ′) be the random variables such that ∆((X,Y ), (X ′, Y ′)) ≤

ε′ and H∞(X ′|Y ′) = k. Let f(x, y) be a randomized function which outputs a sample from the
conditional distribution (Z | X = x, Y = y) or outputs ⊥ if Pr[X = x, Y = y] = 0. In other
words the joint distribution of (X,Y, Z) is the same as (X,Y, f(X,Y )). Let g(z) be a function
with range Z which outputs the input z if z ∈ Z and else outputs some fixed element zfxd ∈
Z. Then ∆((X,Y, Z), (X,Y, g(f(X,Y ))) ≤ ε and ∆((X,Y, g(f(X,Y )), (X ′, Y ′, g(f(X ′, Y ′))) ≤ ε′.
Therefore:

Hε+ε′
∞ (X|Y,Z) ≥ H∞(X ′|Y ′, g(f(X ′, Y ′))) ≥ H∞(X ′|Y ′)− ` ≥ k − `.

where the second inequality follows from Lemma 2.2. ut

We will use the following version of the Chernoff bound from [MU05].

Lemma 2.5. Let X1, . . . , Xn be independent Poisson trials, and let X =
∑n

i=1Xi and µ = E[X].
Then, for R ≥ 6µ, the following Chernoff bound holds: Pr[X ≥ R] ≤ 2−R.

2.1 Learning with Errors and Learning with Rounding

Learning With Errors (LWE). The decisional learning with errors (LWE ) problem was first
introduced by Regev [Reg05]. Informally, the problem asks to distinguish slightly perturbed random
linear equations from truly random ones. (Since we will only talk about the decisional problem in
this work, we will make this the default notion.)

Definition 2.6 (LWE Assumption [Reg05]). Let λ be the security parameter, n = n(λ),m =
m(λ), q = q(λ) be integers and let χ = χ(λ) be a distribution over Zq. The LWEn,m,q,χ assumption

says that, if we choose A
$← Zm×nq , s

$← Znq , e← χm, u
$← Zmq then the following distributions are

computationally indistinguishable:

(A,A · s + e)
comp
≈ (A,u).

It has been shown that the LWE-assumption holds for certain error distributions χ, assuming the
worst-case hardness of certain lattice problems. In particular, this is the case if χ is a discrete
Gaussian distribution with appropriate variance, see, e.g., [Pei09,Reg05] for precise statements.
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Learning with Rounding (LWR). The learning with rounding (LWR) problem was intro-
duced by Banerjee et al. [BPR12]. It can, in some sense, be seen as a de-randomized version of
the LWE-problem. The idea is to compute the error terms deterministically: instead of perturbing
the answer by adding a small error, we simply round the answer – in both cases we are intuitively
hiding the low order bits.

More formally, the LWR-problem is defined via the following rounding function for integers
q ≥ p ≥ 2:

b·cp : Zq → Zp : x 7→ b(p/q) · xc,

where we naturally identify elements of Zk with the integers in the interval {0, . . . , k − 1}.8 More
intuitively, b.cp partitions Zq into intervals of length ≈ q

p which it maps to the same image. We
naturally extend the rounding function to vectors over Zq by applying it component-wise.

In the presentation of our results we will make use that the probability that a random element
in Zq is close to a step in the rounding function is small. We therefore define, for any integer τ > 0:

borderp,q(τ)
def
= {x ∈ Zq : ∃y ∈ Z, |y| ≤ τ, bxcp 6= bx+ ycp} .

We can easily bound the probability of a random element being on the border.

Lemma 2.7. We have |borderp,q(τ)| ≤ 2τp and therefore Pr
x

$←Zq
[x ∈ borderp,q(τ)] ≤ 2τp

q .

Proof. Let I =
⋃
i∈{0,...,p−1}[i · q/p− τ , i · q/p+ τ) be a subset over the reals. It is easy to see that

borderp,q(τ) = Z ∩ I and therefore |borderp,q(τ)| ≤ 2τp. The claim follows. ut

The learning with rounding problem is now defined as follows:

Definition 2.8 (LWR [BPR12]). Let λ be the security parameter, n = n(λ),m = m(λ), q =

q(λ), p = p(λ) be integers. The LWRn,m,q,p problem states that for A
$← Zm×nq , s

$← Znq , u
$← Zmq

the following distributions are computationally indistinguishable: (A, bA · scp)
comp
≈ (A, bucp).

Notice that when p divides q, the distribution bucp : u
$← Zq is just the uniform over Zp.

Otherwise, the distribution is slightly skewed with some values in Zp having probability bq/pcq and

others dq/peq . However, it is easy to deterministically extract random bits from such independent
samples with an asymptotic rate of O(log(p)) bits per sample. Therefore, independent samples
from the skewed distribution are often “good enough” in practice.

We also define a variant of the LWR assumption where the secret s can come from some weak
source of entropy and the attacker may observe some partial leakage about s.

Definition 2.9 (LWR with Weak and Leaky Secrets). Let λ be the security parameter and
n,m, q, p be integer parameters as in Definition 2.8. Let γ = γ(λ) ∈ (0, q/2) be an integer and

k = k(λ) be a real. The LWR
WL(γ,k)
n,m,q,p problem says that for any efficiently samplable correlated

random variables (s, aux), where the support of s is the integer interval [−γ, γ]n and H∞(s|aux) ≥ k,
the following distributions are computationally indistinguishable:

(aux,A, bA · scp)
comp
≈ (aux,A, bucp)

where A
$← Zm×nq , u

$← Zmq are chosen randomly and independently of s, aux.

8 The choice of the floor function rather than ceiling or nearest integer is arbitrary and unimportant.
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3 Lossy Mode for LWR

We now show that, under the LWE assumption, the LWR problem has a ‘lossy mode’: we can
sample a matrix Ã which is computationally indistinguishable from a uniformly random A such
that the tuple (Ã, bÃscp) does not reveal too much information about the secret s.

Definition 3.1 (Lossy Sampler). Let χ = χ(λ) be an efficiently samplable distribution over Zq.
We define an efficient lossy sampler Ã

$← Lossy(1n, 1m, 1`, q, χ) via:

Lossy(1n, 1m, 1`, q, χ) : Sample B
$← Zm×`q ,C

$← Z`×nq ,F
$← χm×n and output Ã = B ·C + F.

Although the matrix Ã computed by the Lossy algorithm is statistically far from a uniformly
random matrix, it is easy to show that it is computationally indistinguishable from one under the
LWE`,m,q,χ assumption, where the dimension of the secret is now ` instead of n. In particular,
we can think of each column of C as an LWE secrets, the matrix B as the coefficients, and each
column of Ã as the corresponding LWE output. Therefore, the following lemma from [GKPV10]
follows by a simple hybrid argument.

Lemma 3.2 ([GKPV10]). Let A
$← Zm×nq , and let Ã

$← Lossy(1n, 1m, 1`, q, χ). Then, under
the LWE`,m,q,χ assumption, the following two distributions are computationally indistinguishable:

A
comp
≈ Ã.

We now prove the following lemma, which states that for appropriate parameters, the secret s
maintains a high level of smooth min-entropy (see Definition 2.3) given Ã and bÃ · scp. The proof
is sketched in Section 1.1, and the full derails are below.

Lemma 3.3. Let n,m, `, p, γ be positive integers, χ be some β-bounded distribution (i.e., E[|χ|] ≤
β), and q ≥ 2βγnmp be a prime. Then the following holds:

(i) (Uniform Secret) For Ã
$← Lossy(1n, 1m, 1`, q, χ) , s

$← Znq we have, for ε = 2−λ + q−`:

Hε
∞(s|Ã, bÃscp) ≥ n log(2γ)− (`+ λ) log(q).

(ii) (High-Entropy Secret) Let (s, aux) be correlated random variables with s ∈ [−γ, γ]n ⊆ Zn,

and let Ã
$← Lossy(1n, 1m, 1`, q, χ) be chosen independently. Then, for ε = 2−λ+ q−` and any

ε′ > 0 we have:

Hε′+ε
∞ (s|Ã, bÃscp, aux) ≥ Hε′

∞(s|aux)− (`+ λ) log(q).

Both parts above also holds when q is not prime, as long as the largest prime divisor of q, denoted
pmax, satisfies GCD(q, q/pmax) = 1, pmax ≥ 2βγnmp. In this case we get ε = (2−λ + (pmax)−` +
Pr[s = 0n mod pmax]).

Proof. We start by proving part (ii) of the Lemma, for a prime q. Recall that for Ã chosen
via the Lossy function, we can write Ã = BC + F as described above. Let us define the set

I
def
= {i ∈ [m] : b(BCs)icp 6= b(Ãs)icp}, where the subscript i denotes the ith component of

the vector. Let Z = {(i, b(Ãs)icp) : i ∈ I}. It is easy to see that we can reconstruct Ã, bÃscp
completely given B,C,F,Cs, Z. Therefore:

Hε+ε′
∞ (s|Ã, bÃscp, aux) ≥ Hε+ε′

∞ (s|B,C,F,Cs, Z, aux).
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Now we claim that |I| ≤ λ with overwhelming probability. This is trivially the case if s = 0
since we get Ãs = BCs = 0 and so I = ∅. Therefore, let us fix any choice of s 6= 0. Then we
also have PrC[Cs = 0] ≤ q−` and so Pr[|I| ≤ λ] ≤ q−` + Pr[|I| ≤ λ | Cs 6= 0]. To compute
Pr[|I| ≤ λ | Cs 6= 0], let us fix any choice of C, s such that Cs 6= 0. For i ∈ [m], let bi and fi be
the ith row of the matrices B and F respectively. Then:

Pr[i ∈ I] = Pr
bi,fi

[ b〈bi,Cs〉cp 6= b〈bi,Cs〉+ 〈fi, s〉cp ]

≤ Pr
bi,fi

[ 〈bi,Cs〉 ∈ borderp,q(|〈fi, s〉|) ] (3)

=
∑
j

Pr
fi

[ |〈fi, s〉| = j ] Pr
bi

[ 〈bi,Cs〉 ∈ borderp,q(j) ] (4)

≤
∑
j

Pr
fi

[|〈fi, s〉| = j]

(
2jp

q

)
(5)

= E[|〈fi, s〉|]
(

2p

q

)
≤ 2βγnp

q
≤ 1

m
(6)

where (3) follow from the definition of a ‘border’, (4) follows by conditioning, (5) follows by
Lemma 2.7 and the fact that 〈bi,Cs〉 is uniform over Zq, and (6) follows since each entry of s
is bounded by γ in absolute value and each entry of fi is by expectation less than β in absolute
value. Furthermore, the events i ∈ I are mutually independent since the above probabilities are
over independent choices of bi, fi. Therefore, for a fixed C, s such that Cs 6= 0, we have E[|I|] ≤ 1
and, by Chernoff (Lemma 2.5), Pr[|I| ≥ λ] ≤ 2−λ. Finally, taking into account the probability that
Cs = 0, we get Pr[|I| ≥ λ] ≤ 2−λ + q−` = ε.

Since the bit-length of Z is |Z| = |I|(log(m) + log(p)) we have |Z| ≤ λ(log(m) + log(p)) with
overwhelming probability. Therefore

Hε+ε′
∞ (s|Ã, bÃscp, Z, aux) ≥ Hε+ε′

∞ (s|B,C,F,Cs, Z, aux)

≥ Hε′
∞(s|B,C,F,Cs, aux)− λ(log(m) + log(p))

≥ Hε′
∞(s|B,C,F, aux)− ` log(q)− λ(log(m) + log(p))

≥ Hε′
∞(s|aux)− (`+ λ) log(q)

where the second and third line follows by Lemma 2.4, and the last line follows since q ≥ mp. This
proves part (ii) of the lemma for a prime q.

We now prove part (i) of the lemma for a prime q using the same techniques. Let us write

s
$← Znq as a sum s = s1 + s2 where s1

$← Znq and s2
$← [−γ, γ]n. Let I = {i ∈ [m], b(Ãs1 +

BCs2)icp 6= b(Ãs)icp}. Then we can completely reconstruct Ã, bÃscp given B,C,F,Cs2, Ãs1, Z
where Z = {(i, b(Ãs)icp) : i ∈ I}. We can prove that |I| ≤ λ with overwhelming probability the
exact same way as for part (i) and therefore |Z| ≤ λ(log(m) + log(p)) w.o.p. This tells us that

Hε
∞(s|Ã, bÃscp, Z) ≥ Hε

∞(s|B,C,F,Cs2, Ãs1, Z)

≥ H∞(s|B,C,F, Ãs1)− ` log(q)− λ(log(m) + log(p))

≥ H∞(s|s1)− (`+ λ) log(q)

≥ n log(2γ)− (`+ λ) log(q).
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This concludes the proof of part (i) of the lemma when q is prime.

Finally, it is easy to extend the analysis to a composite q as long as the largest prime factor
pmax of q is sufficiently large and relatively prime toq/pmax. The only place in our analysis where

we used that q is prime is in equation (5) to argue that, for any Cs 6= 0 and uniform bi
$← Zq,

the value 〈bi,Cs〉 is uniform over Zq. Unfortunately, this is no true for composite q. However,
if Cs 6= 0n (mod pmax) than 〈biCs〉 is (at the very least) uniform in the pmax component and
therefore

Pr
bi

$←Znq

[〈bi,Cs〉 ∈ borderp,q(j)] ≤
|borderp,q(j)|

pmax
≤ 2jp

pmax
.

This gives us a modified version of equation (6): 2βγnp
pmax

≤ 1
m which is satisfied as long as pmax ≥

2βγnmp. Lastly, we now also need the modified bound:

Pr[Cs = 0n mod pmax] ≤ Pr[s = 0n mod pmax] + Pr[Cs = 0` mod pmax | s 6= 0n mod pmax]

≤ Pr[s = 0n mod pmax] + (pmax)−`

The rest of the proof is exactly the same. ut

4 New “LWR from LWE” Reduction

In the following section we present the main result of this paper, namely sufficient conditions under
which the LWR-assumption holds. As discussed in the introduction, the main difference to the work
of Banerjee et al. [BPR12] is that our reduction works for a strictly larger range of parameters.
In particular, in contrast to their result, our result does not require a super-polynomial modulus
or modulus-to-error ratio, at least as long as the number of samples m that will be given out is
known ahead of time. The proof of the theorem is sketched in Section 1.1, and the full details are
given below.

Theorem 4.1. Let k, `, n,m, p, γ be positive integers and q be a prime. Further, let χ be a β-
bounded distribution for some real-valued β (all parameters are functions of λ) such that q ≥
2βγnmp. Assuming that the LWE`,m,q,χ assumption holds:

(i) If n ≥ (`+ λ+ 1) log(q)
log(2γ) + 2λ, then the LWRn,m,q,p-assumption holds.

(ii) If k ≥ (`+ λ+ 1) log(q) + 2λ, then the weak and leaky LWR
WL(γ,k)
n,m,q,p -assumption holds.

For exact security, if the above LWE assumption is (t, ε)-secure and ` ≥ λ, then in both cases the
corresponding LWR-problem is (t′, ε′)-secure, where t′ = t − poly(λ), ε′ = m(2 · nε + 3 · 2−λ) =
poly(λ)(ε+ 2−λ). Both parts of the above theorem also hold if q is not prime as long as the largest
prime divisor of q, denoted pmax, satisfies GCD(q, q/pmax) = 1, pmax ≥ 2βγnmp. In this case we
still get t′ = t− poly(λ), ε′ = poly(λ)(ε+ 2−λ).

Proof. We will only prove part (i) of the theorem here using part (i) of Lemma 3.3. The proof of
part (ii) of the theorem works in complete analogy using part (ii) of the lemma.

Let us first prove the following: under the LWE`,m,q,χ assumption with the parameters as in
the theorem, we have( [

bAcp
bacp

]
,

[
bAscp
b〈a, s〉cp

] )
comp
≈
( [

bAcp
bacp

]
,

[
bAscp
bucp

] )
(7)
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where A
$← Zm×nq ,a

$← Znq , s
$← Znq , u

$← Zq.
Firstly, by Lemma 3.3, we can replace A with Ã

$← Lossy(1n, 1m, 1`, q, χ) to get( [
bAcp
bacp

]
,

[
bAscp
b〈a, s〉cp

] )
comp
≈
( [

bÃcp
bacp

]
,

[
bÃscp
b〈a, s〉cp

] )
Now, by part (i) of Lemma 3.3, we have H2−λ+q−`

∞ (s|Ã, bÃscp) ≥ n log(2γ) − (` + λ) log(q) ≥
2λ+ log(q). Therefore, using the fact that inner product is a good (average-case) strong extractor,
we have: ( [

bÃcp
bacp

]
,

[
bÃscp
b〈a, s〉cp

] )
stat
≈
( [

bÃcp
bacp

]
,

[
bÃscp
bucp

] )
where u← Zq is uniformly random and independent. The exact statistical distance is bounded by
2 · 2−λ + q−`. Finally, we can replace the lossy Ã with a uniformly random A to get:( [

bÃcp
bacp

]
,

[
bÃscp
bucp

] )
comp
≈
( [

bAcp
bacp

]
,

[
bAscp
bucp

] )
Combining the above three hybrids proves (7).

To prove the statement of Theorem 4.1, we need to prove

(A, bAscp)
comp
≈ (A, bucp)

where u
$← Zmq . This follows by a simple sequence of hybrid arguments. Define the hybrid

distribution Hi = (A, bh(i)cp) where the first i components of the vector h(i) are taken from As
and the rest are chosen uniformly at random. Then Hm = (A, bAscp), H0 = (A, bucp). Moreover,
equation (7) immediately shows the indistinguishability of hybrids Hi and Hi+1.

For exact security, assume that the underlying LWE assumption is (t, ε) secure. Notice that
our argument consists of m hybrids in which we rely on equation (7). Furthermore, to prove (7)
we relied on three sub-steps: the first and the third rely on Lemma 3.3, which itself consists of n
hybrids using LWE, and the middle step using having statistical distance 2 · 2−λ + q−`. Therefore,
the total distance is m(2nε+ 2 · 2−λ + q−`). ut

Remark on β-bounded distributions. In the theorem, we require that the distribution χ is
β-bounded meaning that E[|χ|] ≤ β. A different definition, which also would have been sufficient
for us, would be to require that Pr

x
$←χ

[|x| > β] ≤ negl(λ). The latter notion of boundedness is used

in the work of Banerjee et al. [BPR12]. Although the two notions are technically incomparable (one
does not imply the other) for natural distributions, such as the discrete Gaussian, it is easier to
satisfy out notion. In particular, the discrete Gaussian distribution Ψσ with standard deviation σ
satisfies E[|Ψσ|] ≤ σ but we can only get the weaker bound Pr

x
$←Ψσ

[|x| >
√
ω(log(λ))σ] ≤ negl(λ).

Therefore, we find it advantageous to work with our definition.

Remark on Parameters. Notice that in the above theorem, the parameter γ offers a tradeoff
between the size of the modulus q and the secret vector length n: for a bigger γ we need a bigger
modulus q but can allow smaller secret length n. The following corollary summarizes two extreme
cases of small and large γ.

Corollary 4.2. Let Ψσ denote a discrete Gaussian distribution over Zq with standard deviation
σ, and assume that the LWE`,m,q,Ψσ -assumption holds. Then the LWRn,m,q,p-assumption holds in
either of the following settings of parameters:



14 J. Alwen, S. Krenn, K. Pietrzak and D. Wichs

– (Minimize Modulus/Error Ratio.) If q ≥ 2σnmp is a prime, and n ≥ (`+ λ+ 1) log(q) + 2λ.
By setting p = O(1), we can get a modulus-to-error ratio as small as q/σ = O(m · n).

– (Maximize Efficiency.) If q ≥ (2σnm)3 is a prime, p = 3
√
q and n ≥ 3`+ 5λ+ 3.

The efficiency of LWR is now similar to the LWE assumption with n = O(`) and log(p) =
O(log q).

Proof. The corollary follows directly from part (i) of Theorem 4.1. In part (i) we set γ = 1 and
in part (ii) we set γ = p = 2σnm = 3

√
q. We also rely on the fact that the discrete Gaussian

distribution satisfies E[|Ψσ|] ≤ σ and is therefore σ-bounded. ut

5 Reusable Extractors

The notion of a ‘computational reusable extractor’ was defined by Dodis et al. [DKL09]. Intuitively,
this is a tool that allows us to take some weak secret s that has a sufficient amount of entropy, and
to use it to repeatedly extract fresh pseudorandomness Ext(s; ai) using multiple public random
seeds ai. Each extracted output should look random and independent. Equivalently, we can think
of a reusable extractor as a weak PRF fs(·), which should be indistinguishable from a random
function when evaluated on random inputs ai and remain secure even if the secret key s is
not chosen uniformly at random, as long as it has entropy. The work of [DKL09] constructed
such reusable extractors under a new assumption called “Learning Subspaces with Noise (LSN)”.
Reusable extractors were also implicitly constructed based on the DDH assumption in the work
of Naor and Segev [NS09].9 Here we give a new construction based on the LWR problem, with a
security reduction from the LWE assumption.

Definition 5.1 (Reusable Extractor). Let S,D,U be some domains, parameterized by the
security parameter λ. A function Ext : S × D → U is a (k,m)-reusable-extractor if for
any efficiently samplable correlated random variables s, aux such that the support of s is S and
H∞(s|aux) ≥ k, we have:

(aux,a1, . . . ,am,Ext(s; a1), . . . ,Ext(s; am))
comp
≈ (aux,a1, . . . ,am, u1, . . . , um)

where the values {aj
$← D}, {uj

$← U} are sampled independently.

Theorem 5.2. Let n, p, γ be integers, p′ be a prime, and define q = p · p′. Then the function

Ext : [−γ, γ]n × Znq → Zp defined by Ext(s; a)
def
= b〈a, s〉cp

is a (k,m)-reusable extractor assuming that the LWE`,m,q,χ assumption holds for some β-bounded
distribution χ such that p′ > 2βγnmp and k ≥ (`+ λ+ 1) log(q) + 2λ.

Proof. Follow directly from part (ii) of Theorem 4.1. In particular, we want to show that

(aux,a1, . . . ,am,Ext(s; a1), . . . ,Ext(s; am))
comp
≈ (aux,a1, . . . ,am, u1, . . . um).

Let A be the matrix with rows a1, . . . ,am. Then showing this is the same as showing

(aux,A, bAscp)
comp
≈ (aux,A, bucp) where u

$← Zmq . ut
9 The function Ext(s;a) =

∏
asi
i is a reusable extractor if s ∈ Znq , and the a ∈ Gn for some DDH group of prime

order q.
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Notice that one nice property of the above reusable extractor is that it has a graceful degradation
of security as the min-entropy k of the source drops. In particular, there is no hard threshold on
the entropy k determined by the parameters that define the scheme: γ, n, q, p. Instead, as the
entropy k drops we can still reduce security from a correspondingly less secure LWE assumption
with smaller secret size `. In other words, the scheme designer does not need to know the actual
entropy k of the secret - but the scheme gets gradually less/more secure as the entropy of the
secret shrinks/grows. A similar notion of graceful security degradation was noted in the work of
Goldwasser et al. [GKPV10].

6 Lossy Trapdoor Functions

Lossy trapdoor functions (LTDFs) [PW08,PW11], are a family of functions fpk(·) keyed by some
public key pk, which can be sampled in one of two indistinguishable modes: injective and lossy.
In the injective mode the function fpk(·) is an injective function and we can even sample pk
along with a secret trapdoor key sk that allows us to invert it efficiently. In the lossy mode,
the function fpk(·) is “many-to-one” and fpk(s) statistically loses information about the input
s. LTDFs have many amazing applications in cryptography, such as allowing us to output many
hardcore bits, construct CCA-2 public-key encryption [PW11,MY10], and deterministic encryption
[FOR12]. In this section, we construct very simple and efficient LTDFs using the LWR problem,
with security based on standard LWE. Our LTDF function is incredibly simple: the public key is a
matrix pk = A and the function is defined as fA(s) = bA ·scp. As we will describe, one can sample
an injective A with a trapdoor using the techniques of Ajtai [Ajt99] or subsequent improvements
[AP11,MP12], and one can sample a lossy A using the techniques we developed in Section 3.
Although prior constructions of LTDFs from LWE are known [PW11,BKPW12], our construction
here has several advantages. Firstly, our scheme is extremely simple to describe and implement (we
find it much simpler than the alternatives). Secondly, in contrast to both [PW08,BKPW12], our
lossy mode loses “almost all” of the information contained in s. In fact, the amount of “lossiness”
in our LTDF construction is flexible and not determined by the parameters of the scheme itself.
Even after we fix the parameters that allow us to sample the injective mode, we have an additional
free parameter that allows us to make the lossy mode progressively more lossy under under a
progressively stronger variant of the LWE assumption (this is similar to the “graceful security
degradation” property of our reusable extractor).

We start by giving formal definitions of LTDFs and a more complex variant called “all-but-one
lossy TDFs” (ABO-TDFs). Then, we construct both variants using the LWR problem.

6.1 Definitions of LTDFs

We now define lossy trapdoor function (LTDFs). Our notion differs somewhat from that of [PW11]
in how we define the “lossy” property. Instead of requiring that, for a lossy pk, the range of fpk(·)
is small, we require that very little entropy is lost from observing fpk(·). As far as we know, our
version can be used interchangeably in all of the applications of LTDFs to date. As an example
of how existing proofs can be extended to work with this new notion of lossiness we describe
the necessary modifications to the proof of security for the CCA2 encryption scheme of [PW11]
in Appendix A. To avoid confusion, we call our notion entropic LTDF (eLTDF).

Definition 6.1 (eLTDF). A family of l(λ)-entropic lossy trapdoor functions (eLTDF) with
security parameter λ and domain Dλ consists of a PPT sampling algorithms Gen and two
deterministic polynomial-time algorithms F, F−1 such that:
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Injective Functions: For any (pk, sk) in the support of Gen(1λ, injective), any s ∈ Dλ we
require that F−1(sk, F (pk, s)) = s. In particular, the function fpk(·) = F (pk, ·) is injective.

Lossy Functions: When pk
$← Gen(1λ, lossy), the function F (pk, ·) is lossy. In particular,

for any mutually correlated random variables (s, aux) where the domain of s is Dλ and

for an independently sampled pk
$← Gen(1λ, lossy), we have: Hsmooth

∞ (s|pk, F (pk, s), aux) ≥
Hsmooth
∞ (s|aux)− l(λ). We call the parameter l = l(λ) the residual leakage of the LTDF.

Indistinguishability: The distributions of pk as sampled by Gen(1λ, injective) and Gen(1λ, lossy)
are computationally indistinguishable.

We also define a variant called an “all-but-one” trapdoor function (ABO-TDF) [PW11]. In this
variant, the function F (pk, b, ·) also takes in a “branch” b in some (large) domain B . The sampling
algorithm chooses (pk, sk) in such a way that there is a special branch b∗ for which F (pk, b∗, ·) is
lossy, but for all other b 6= b∗, the function F (pk, b, ·) is injective. Furthermore, the value of the
special branch b∗ is computationally hidden by the public key pk.

Definition 6.2 (eABO-TDF). A family of l-entropic all-but-one trapdoor functions (eABO-
TDF) with security parameter λ, branch collection Bλ and domain Dλ consists of a PPT algorithm
Gen and two deterministic polynomial-time algorithms G,G−1. For b∗ ∈ Bλ, algorithm Gen(1λ, b∗)
outputs a function description pk and trapdoor sk such that the following holds.

Injective Branches: For all b ∈ Bλ \ {b∗}, all s ∈ Dλ we have G−1(sk, b,G(pk, b, s)) = s. In
particular the function G(pk, b, ·) is injective.

Lossy Branch: The function G(pk, b∗, ·) is lossy in the following sense: for any fixed b∗ ∈ Bλ,
any mutually correlated random variables (s, aux) where the domain of s is Dλ, and for

an independently sampled (pk, sk)
$← Gen(1λ, b∗), we have: Hsmooth

∞ (s|pk,G(pk, b∗, s), aux) ≥
H∞(s|aux)− l.

Indistinguishability: For any pair b∗0, b∗1 ∈ Bλ the resulting distributions of the function
descriptions sampled by Gen(1λ, b∗0) and Gen(1λ, b∗1) are computationally indistinguishable.

6.2 Construction of LTDFs

We now show how to construct eLTDFs from the LWR problem (assuming standard LWE).

Tools. As a tool in our construction, we will rely on the fact that we can sample a random LWE
matrix A along with an inversion trapdoor that allows us to recover s, e given an LWE sample
As + e where the error e is “sufficiently” short. The first example of such algorithms was given
by Ajtai in [Ajt99], and was subsequently improved in [AP11]. More recently [MP12] significantly
improved the efficiency of these results, by using a “qualitatively” different type of trapdoor. We
describe the properties that we need abstractly, and can use any of the above algorithms in a
black-box manner. In particular we need the following algorithms for some range of parameters
(m,n, q, β):

GenTrap(1n, 1m, q): A PPT algorithm which on input positive integers n, q and sufficiently large
m samples a matrix A ∈ Zm×nq and trapdoor T such that A is statistically close to uniform
(in n log q).

Invert(T,A, c): An algorithm which receives as input (A, T ) in the support of GenTrap(1n, 1m, q)
and some value c ∈ Zmq such that c = As + e for some s ∈ Znq and some error satisfying
||e||2 ≤ β. The algorithm outputs s.
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LWRInvert(T,A, c) Takes as input (A, T ) in the support of GenTrap(1n, 1m, q) and some value
c ∈ Zmp such that c = bAscp for some s ∈ Znq and outputs s.

In particular [MP12] shows that there are algorithms (GenTrap, Invert) which work for n ≥ 1, q ≥ 2,
sufficiently large m = O(n log q) and sufficiently small β < q/O(

√
n log q). Since we can convert

LWR samples bAscp into samples A · s + e for some reasonable short error ||e||2 ≤
√
mq/p, this

also implies the following.

Lemma 6.3 (Trapdoors for LWR). There exist efficient (GenTrap, LWRInvert) as above for any
n ≥ 1, q ≥ 2, sufficiently large m ≥ O(n log q) and p ≥ O(

√
mn log q).

Proof. We can take an LWR sample A, c = bAscp and transforms it into an LWE sample A,As+e
for some “short” e as follows:

Transformq(c): Takes as input c ∈ Zmp and outputs d(q/p) · ce ∈ Zmq .

It is easy to see that, if c = bA · scp for some s, and q > p then:

Transformq(c) = d(q/p) · ce = d(q/p)b(p/q)A · sce = d(q/p)((p/q)A · s + e′)e = A · s + e

where e′ ∈ (−1, 0]m and e ∈ (−q/p, 0]m. Therefore ||e||∞ ≤ q/p, and ||e||2 ≤
√
mq/p. As long as

p ≥ O(
√
mn log q) is sufficiently big, we have ||e||2 ≤ q/O(

√
n log q) is sufficiently small so that

Invert(T,A,Transformq(c)) outputs s. Therefore we just define LWRInvert(c)
def
= Invert(T,A,Transformq(c)).

The Construction. We now describe our construction of eLTDFs based LWR. We will rely
on the algorithms GenTrap and LWRInvert described above. We also rely on the lossy sampling
algorithm Lossy and its properties developed in Section 3. The construction is parameterized
by integers n,m, q, p (all functions of the security parameter λ). Furthermore, there will be two
additional parameters ` and χ which are only needed by the lossy sampler.

Gen(1λ, injective): Sample (A, T )
$← GenTrap(1n, 1m, q). Output pk = A and trapdoor sk =

(A, T ).

Gen(1λ, lossy): Sample A
$← Lossy(1n, 1m, 1`, q, χ). Output description pk = A.

F (pk, s): On input s ∈ {0, 1}n and matrix pk = A ∈ Zm×nq output bAscp.
F−1(pk, c): On input c ∈ Zmp and t = (A, T ) output LWRInvert(T,A, c).

For the following theorem summarizes the properties of this construction.

Theorem 6.4. Let χ be an efficiently samplable β-bounded distribution and λ be the security
parameter. For any positive integers n ≥ λ, sufficiently large m ≥ O(n log q), p ≥ O(

√
mn log q)

and a prime q ≥ 2βnmp, if the LWE`,m,q,χ assumption holds then the above construction is an
l-LTDF with where l = (`+ λ) log q.

Proof. Firstly, the correctness of inversion follows directly from Lemma 6.3.

Secondly, the indistinguishability property follows since: (1) in injective mode we set pk = A as
the output of GenTrap which is statistically close to uniform, and (2) in lossy mode we set pk = A
as the output of Lossy which is computationally indistinguishable from uniform by Lemma 3.2.
Therefore, the two distributions are computationally indistinguishable.

Finally the second part Lemma 3.3 using γ = 1 directly implies the bound on the lossiness of
the construction. ut
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7 Construction of “All-But-One” Lossy Trapdoor Functions

We now show how to construct eABO-TDFs from the LWR problem. Our construction relies on
the ideas of [ABB10] used to construct identity based encryption from LWE. It also bears some
similarity to the identity-based lossy-trapdoor functions of [BKPW12].

Technical Tools. As part of the construction we make use of the following full rank difference
mappings for which we have adapted the definition of [ABB10].

Definition 7.1 (FRD Mapping). Let q positive integers. A collection of full rank difference
(FRD) mappings is a sequence of functions H = {Hn,q} with domain Bn,q and range Zn×nq such
that for all distinct x0, x1 ∈ Bn the matrix H(x0)−H(x1) ∈ Zn×nq has full rank. Moreover Hn,q is
computable in time polynomial in n log q.

A construction of an FRD mappings for prime q and any n is given in [CD09] with domain
Bn,q = Znq .

As a second tool, we also use the following lemma (similar to one in [ABB10]) which shows
how to extend a trapdoor that allows us to solve LWE with some matrix A into a trapdoor that
allows us to solve LWE for some larger matrix derived from A.

Lemma 7.2. For n ≥ 1, q ≥ 2, and sufficiently large m = O(n log q), p = O(m
√
n log q)

there exists PPT algorithms BigInvert and GenTrap such that for (A1, T )
$← GenTrap(1n, 1m, q),

any A0 ∈ Zm×nq , R ∈ {−1, 1}m×m, s ∈ Znq and invertible G ∈ Zn×nq we have s =
BigInvert(R, T,A1,G, bDscp) where

D =

[
A0

RA0 + A1G

]
.

Proof. We use the construction of [MP12] to instantiate GenTrap and Invert as described at the
beginning of this section, and the algorithm Transformq described in the proof of Lemma 6.3. First,
we describe algorithm BigInvert.

Let c = Transformq(bDscp) = Ds + e ∈ Z2m
q where ||e||∞ ≤ q/p. Denote the first half of c as

c0 ∈ Zmq and the second half as c1 ∈ Zmq . Algorithm BigInvert first computes c′ = c1 −Rc0. Then

it computes s̄
$← Invert(T,A1, c

′) and outputs G−1s̄.
To see why this works we can write c0 := A0s + e0 and c1 := (RA0 + A1G)s + e1 for error

vectors e0 and e1 with ||e0||∞, ||e1||∞ ≤ q/p. Therefor we have

c′ = c1 −Rc0 = RA0s + A1Gs + e1 −RA0s−Re0 = A1s
′ + e′

where s′ := Gs and e′ := e1 − Re0. To show that Invert(T,A1, c
′) returns s̄ = s′ (and so that

G−1s̄ = s) it suffices to upper-bound ||e′||2 such that the algorithms of [MP12] can be used for
GenTrap and Invert. In particular by definition of R and p we see that ||e′||∞ ≤ (m+ 1)(q/p) and
therefore ||e′||2 ≤

√
m(m+ 1)(q/p) < O(q/(

√
n log q)) as required. ut

Construction. The following construction uses the algorithm Lossy, GenTrap and BigInvert
described above. Moreover it is parameterized by integers n,m, q, `, p and a distribution χ, all
functions of security parameter λ. Finally the construction also makes use of an FRD collection
H = Hn,q with domain Znq .

Parameters: For security parameter λ define branch set B := Znq and the domain D = Zn2 .
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Gen(1λ, b∗): Function Sampling

1. Sample A0
$← Lossy(1n, 1m, 1`, q, χ) and uniform R

$← {−1, 1}m×m.

2. Sample (A, T )
$← GenTrap(1n, 1m, q) and set A1 := RA0 + AH(b∗).

3. Output pk = (A0,A1,A) and sk = (R, T,A, H(b∗)).
G(pk, b, s): Function Evaluation

1. Set

Ā :=

[
A0

A1 −AH(b)

]
and output bĀ · scp ∈ Z2m

q .
G−1(sk, b, c): Function Inversion

1. Parse sk = (R, T,A, H(b∗)).
2. Set G := H(b∗)−H(b) and output vector s = BigInvert(R, T,A,G, c).

We summarize the properties of this construction in the following theorem.

Theorem 7.3. Let λ be a security parameter. Let `,m, n, p be integers, q prime, β real (all
functions of λ) such that n ≥ λ, the values m ≥ O(n log q), p ≥ O(m

√
n log q) are sufficiently

large and q ≥ 4βnm2p. Let χ be some distribution such that Pr
x

$←χ
[|x| ≥ β] ≤ negl(λ). Then,

assuming that the LWE`,m,q,χ assumption holds, the above construction is an l-ABO TDF where
l = (`+ λ) log q.

Proof. Firstly, Lemma 7.2 immediately implies that the algorithm G−1 inverts c correctly when
b 6= b∗.

Next, we show that, no matter what branch b∗ is chosen, the output of pk
$← Gen(1λ, b∗)

is computationally indistinguishable from sampling three uniformly random and independent
matrices A0,A1,A and setting pk = (A0,A1,A). Firstly, in the computation of Gen(1λ, b∗),
we can switch A0 to being sampled uniformly at random instead of in its lossy mode, and this
is indistinguishable by Lemma 3.2. Therefore, now A,A0 are random and mutually independent.
Secondly, we can view multiplication by A0 as a strong extractor [DORS08] applied to R (think
of each row of R as weak randomness, and the matrix A0 as a seed), and therefore RA0 is close
to being uniform and independent of A and A0. Thus A1 = RA0 + AH(b∗) looks random and
independent of A0 and A. This proves the indistinguishability property of eABO-TDFs.

It remains to show that the residual leakage of the lossy branch is at most l. When evaluating

G(pk, b∗, s) we have c = bĀscp where Ā =

[
A0

RA0

]
and A0

$← Lossy(1n, 1m, 1`, q, χ). Unfortunately,

since the matrix Ā itself is not sampled from the lossy algorithm, we cannot use Lemma 3.3 in
a black-box way. Instead, recall that we can write A0 = BC + F where B,C are random and
F← χm×n. Therefore we can write

Ā =

[
A0

RA0

]
= B∗C + F∗ where B∗ =

[
B

RB

]
and F∗ =

[
F

RF

]
.

Secondly, we claim that RB is statistically close to being uniformly random and independent
of B,RF. Here we again rely on the fact that matrix multiplication is a good extractor: we can
think of RF as leaking n log(q) bits of information on each row of R, and RB as extracting
n log(q) bits of information – therefore the statistical distance is negligible if m > 2n log(q)+O(λ).
Therefore, Ā = B∗C+F∗ has the almost the same distribution as an output of the lossy algorithm
Lossy(1n, 12m, 1`, q, χ) except that the distribution of F∗ is different. Nevertheless, we can bound
each entry of F∗ by β∗ = mβ in absolute value with overwhelming probability. Since this was
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the only property that Lemma 3.3 relied on, we can apply its conclusions with m∗ = 2m and
β∗ = mβ. ut

8 Deterministic Encryption

Deterministic public-key encryption [BBO07,BFOR08,BFO08,BS11,FOR12] is intended to guar-
antee security as long as the messages have sufficient entropy. Although there are black-
box constructions of deterministic encryption using LTDFs [BFO08], here we present a very
simple direct construction from the LWR problem. There are several definitions of deterministic
encryption which can be proven equivalent; see [BFOR08,BFO08]. Here, we will use one such simple
definition based on indistinguishability of encrypting messages from two different distributions.

Definition 8.1 (Deterministic Encryption). A deterministic encryption scheme with message

length n = n(λ) consists of a PPT procedure (pk, sk)
$← Gen(1λ) along with two deterministic poly-

time functions Enc,Dec. For correctness, we require that for all (pk, sk) in the support of Gen(1λ),
all messages s ∈ {0, 1}n, we have Decsk(Encpk(s)) = s. We say that the scheme is secure for all

k(λ)-sources if for any two distribution ensembles {S(0)
λ }λ∈N, {S

(1)
λ }λ∈N over {0, 1}n(λ) which are

efficiently sampleable in poly(λ)-times and have sufficient entropy H∞(S0
λ) ≥ k, H∞(S1

λ) ≥ k, we

have (pk,Encpk(s0))
comp
≈ (pk,Encpk(s1)), where s0

$← S
(0)
λ and s1

$← S
(1)
λ and (pk, sk)

$← Gen(1λ).

Construction. We give a very simple construction of deterministic encryption based on the
LWR assumption. This construction is the same as one given by Xie et al. [XXZ12], except
for the setting of parameters. Whereas they required a super-polynomial modulus and modulus
to error ratio by relying on variants of the analysis of [GKPV10,BPR12] we use our improved
analysis from Section 4. We will rely on the LWR trapdoor generation and inversion algorithms
GenTrap, LWRInvert described in Section 6.2 and Lemma 6.3. Our scheme is parameterized by some
n,m, q, p, all functions of the security parameter λ, and has message length n.

(pk, sk)
$← Gen(1λ): Choose (A, T )

$← GenTrap(1n, 1m, q). Output pk = A, sk = T .
Encpk(s): For a message s ∈ {0, 1}n, output bA · scp.
Decsk(c): For a ciphertext c ∈ Zmp , output LWRInvert(T,A, c).

Theorem 8.2. Let λ be the security parameter, n ≥ λ, `,m, p be an integers, q be a prime, and χ
be an efficiently samplable β-bounded distribution (all parameters are functions of λ) such that m ≥
O(n log q), p ≥ O(

√
mn log q) are sufficiently large and q ≥ 2βnmp. If the LWE`,m,q,χ assumption

holds then the above construction with parameters n,m, q, p is a deterministic encryptions secure
for all k sources where k ≥ (`+Ω(λ)) log(q).

Proof. Correctness of decryption follows directly from Lemma 6.3. On the other hand, indistin-
guishability follows by part (ii) of Theorem 4.1. In particular, we chose our parameters such that

the LWR
WL(1,k)
n,m,q,p assumption with weak (and leaky) secrets holds. This means that for any sources

S
(0)
λ , S

(1)
λ over {0, 1}n such that H∞(S0

λ) ≥ k, H∞(S1
λ) ≥ k, we have:

(pk,Encpk(s0))
stat
≈ (A, bA · s0cp)

comp
≈ (A, bucp)

comp
≈ (A, bA · s1cp)

stat
≈ (pk,Encpk(s1))

where s0
$← S

(0)
λ , s1

$← S
(1)
λ , (pk, sk)

$← Gen(1λ), A
$← Zm×nq and u

$← Zmq . In particular, the first
step follows by noting that GenTrap produces pk = A statistically close to uniform, the second

step follows by LWR
WL(1,k)
n,m,q,p and the last two steps mimic the first two in reverse.
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One big advantage of our scheme is that the parameters n,m, q, p do not determine the minimal
entropy k. Instead for any k, we can prove security under a corresponding LWE assumption with
dimension ` < k. This is similar to the property of our reusable extractors and LTDF, allowing for
a graceful degradation of security as the entropy of the message decreases.

9 Conclusion

In summary, we give an improved security reduction showing the hardness of LWR under the LWE
assumption for a wider setting of parameters. In doing so, we also show that the LWR problem
has a “lossy mode”. Together, these results lead to several interesting applications: security with
weak/leaky secrets, reusable extractors, lossy trapdoor functions, and deterministic encryption.
We conclude with several interesting open problems. Firstly, can we improve the reduction further
and get rid of the dependence between the modulus q and the number of samples m? Secondly, can
we use the techniques from this work to also improve the parameters of the “degree-k synthesizer”
PRF construction of [BPR12]? Lastly, can we use the techniques from this work to also get a
reduction for Ring LWR from Ring LWE? This does not seem to follow in a straight-forward
manner.
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A Using Entropic Lossiness for CCA-2 Encryption.

We briefly (informally) argue that our entropic notions of eLTDF and eABO-TDF can be used
to securely instantiate the CCA2 encryption construction of [PW11]. Let us first recall the
construction. It uses a pairwise independent hash function familyH and one-time signature scheme.

Public key generation consists of sampling h
$← H, a public key for LTDF F (pkF , ·) and for an

ABO-TDF G(pkG, ·, ·), all with the same input domain D. The branch-set of ABO-TDF contains
the space of verification keys for the signature scheme. The public key is pk = (h, pkF , pkG)
and secret key is the trapdoor skF for F . To encrypt a message m sample fresh signature key pair

(vk, sk) and uniform s
$← D. Then compute components c1 = f(s), c2 = g(vk, s) and c3 = m+h(s)

and output ciphertext c = (c1, c2, c3, vk, σ) where σ is a signature of (c1, c2, c3). To decrypt, we

recover s from c1, recompute and verify that c2
?
= G(pkG, vk, s) and that the signature σ is good,

and if so recover m from c3.

The CCA2 security of the scheme is argued in several steps. First, we choose a random vk∗

for the challenger ciphertext and, when generating pkG, we set the lossy branch to be b∗ = vk∗.
Second, we decrypt all decryption queries using the trapdoor to skG (instead of skF ) and then
check that c1 was computed correctly. Lastly, we choose pkF in its lossy mode. At this point we
can use an information theoretic argument to argue that, for the secret s∗ used in the challenge
ciphertext c∗ = (c∗1 = F (pkF , s

∗), c∗2 = G(pkG, vk
∗, s∗), c∗3 = m + h(s∗)), the min-entropy of s∗

given c∗1, c
∗
2 is large. In the original proof, we could argue that H∞(s∗ | c∗1, c∗2) ≥ H∞(s∗)−2l where

the range of the lossy functions f(·), g(vk∗, ·) is at most 2l. Then since h is a strong (average case)
extractor [DORS08], its output looks essentially uniform when evaluated on s∗ even given c∗1, c

∗
2,

and therefore the message is information theoretically hidden.

We notice that the same conclusion can be reached when F is an eLTDF and G is an eABO
TDF. Assume that the leakage of each function is l. Then, for the challenge ciphertext, we can
show

Hsmooth
∞ (s∗ | pkF , pkG, vk∗, c∗1, c∗2) ≥ Hsmooth

∞ (s∗|pkF , c∗1)− l ≥ Hsmooth
∞ (s∗)− 2l
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where, in the first step, we think of aux = (pkF , c
∗
1) as auxiliary information. The rest of the proof

is exactly the same.

B Robustness of LWE for Non-Uniform Secrets

As mentioned in the main part of this document, an analogue to Theorem 4.1 also holds for the
LWE-assumption with weak and leaky keys, i.e., the case where the LWE-secret s is not drawn
uniformly at random, but only from a high min-entropy distribution.

This is formalized by the following definition:

Definition B.1 (LWE with Weak and Leaky Secrets). Let λ be the security parameter and
n,m, q be integer parameters and χ be a distribution as in Definition 2.6. Let γ = γ(λ) ∈ (0, q/2) be

an integer and k = k(λ) be a real. The LWE
WL(γ,k)
n,m,q,χ problem says that for any efficiently samplable

correlated random variables (s, aux), where the support of s is the integer interval [−γ, γ]n and
H∞(s|aux) ≥ k, the following distributions are computationally indistinguishable:

(aux,A,A · s + e)
comp
≈ (aux,A,u)

where A
$← Zm×nq , u

$← Zmq , e
$← χm are chosen randomly and independently of s, aux.

We will need the following lemma, which intuitively says that if two distributions are close,
then with high probability a sample from the first distribution can also be used as a sample for
the second distribution:

Lemma B.2. Let DX , DY be probability distributions such that ∆(DX , DY ) ≤ δ. Then there exist

distributions DW , D
′
X , D

′
Y such that for X

$← DX , Y
$← DY the following holds:

X̃ ≈ X and Ỹ ≈ Y ,

are identically distributed, where we define

X̃ =

{
W

$← DW with probability 1− δ
X ′

$← D′X with probability δ
and Ỹ =

{
W

$← DW with probability 1− δ
Y ′

$← D′Y with probability δ .

Proof. We prove the lemma for the discrete case, the continuous case can be shown analogously.
Assume, without loss of generality, that ∆(DX , DY ) = δ, and that DX and DY are both defined
over the same set S. For s ∈ S and distribution DA we write DA(s) to denote Pr

A
$←DA

[A = s].

We first note that:

δ = ∆(DX , DY ) =
1

2

∑
a∈S
|(DX(a)−DY (a))|

=
1

2

 ∑
a∈S

DX (a)≥DY (a)

(DX(a)−DY (a)) +
∑
a∈S

DY (a)>DX (a)

(DY (a)−DX(a))


=

1

2

(∑
a∈S

(DX(a)−min(DX(a), DY (a))) +
∑
a∈S

(DY (a)−min(DX(a), DY (a)))

)

=
1

2

(
2− 2

∑
a∈S

(min(DX(a), DY (a)))

)
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and thus
∑

a∈S(min(DX(a), DY (a))) = 1− δ.
We now define DW as follows:

∀s ∈ S : DW (s)
def
=

min(DX(s), DY (s))∑
a∈S min(DX(a), DY (a))

=
min(DX(s), DY (s))

1− δ
.

Similarly, we define D′X by:

∀s ∈ S : D′X(s)
def
=

DX(s)−DW (s)

1−
∑

a∈S DW (a)
=
DX(s)−DW (s)

δ
=

{
0 if DX(s) < DY (s)
DX(s)−DY (s)

δ otherwise,

and similarly for D′Y .
We now get that

DX̃(s) =

{
(1− δ)min(DX(s),DY (s))

1−δ + δ · 0 if DX(s) < DY (s)

(1− δ)min(DX(s),DY (s))
1−δ + δDX(s)−DY (s)

δ otherwise

}
= DX(s) ,

and similar for DỸ (s). ut

Using this Lemma, we can prove the following proposition which states that samples from some
distribution X can be deterministically turned into samples from another (unknown) distribution
Y using some extra auxiliary information whose length depends on the statistical distance of X
and Y .

Proposition B.3. There exists some fixed deterministic function f such that the following holds.
For i ∈ {1, . . . ,m}, let DXi, DYi be any distributions whose support is of size at most 2t such
that ∆(DXi , DYi) ≤ δ. Define the random variables X = (X1, . . . , Xm),Y = (Y1, . . . , Ym) where

Xi
$← DXi , Yi

$← DYi are sampled independently. Then there exists some random variable Z
correlated with X such that:

1. The output f(X, Z) has the same distribution as Y .
2. Z is short with high probability. More precisely, if δ ≤ 1/m then the expected bit-length of Z is

E[|Z|] = (t+ logm) and for any λ ≥ 6, we have Pr[|Z| ≥ λ(t+ logm)] ≤ 2−λ .

Proof. For every i ∈ {1, . . . ,m}, let DWi , DX′i
, DY ′i

be the distributions satisfying Lemma B.2.
Following the lemma, we can think of each component Xi of X = (X1, . . . , Xm) as being

sampled independently as follows: flip a coin ci ∈ {0, 1} with bias Pr[ci = 0] = δ. If ci = 0 sample

Xi
$← DX′i

, otherwise sample Xi
$← DWi . Notice that the function f does not “know” (depend on)

the distributions DWi , DX′i
.

We can define the correlated random variable Z as follows. For every i where ci = 0 the variable

Z contains the tuple (i, Yi) where Yi
$← DY ′i

. The function f(X, Z) simply takes X and, for all
indices i contained in Z, replaces Xi with the corresponding Yi. It is easy to see that, by Lemma B.2
the output of f is identically distributed to Y .

It remains to show that Z is short. Each such tuple contained in Z consists of (logm+ t) bits
of information. The expected number of such tuples is δ ·m ≤ 1, and since the probabilities of i
being in Z are independent, we can use the Chernoff bound (Lemma 2.5) to prove that the number
of tuples in Z is greater than λ with probability only ≤ 2−λ. ut

The following lemma shows that, when Ã
$← Lossy() is chosen via the lossy sampler than the

LWE samples Ã, Ã · s + e with some sufficiently large noise e do not reveal too much information
about s. This is a direct analogue to Lemma 3.3, which showed the above property for LWR
samples.
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Lemma B.4. Let `, n,m, q, β, γ, σ be integer parameters and χ a distribution (all parameterized
by λ) such that Pr

x
$←χ

[|x| ≥ β] ≤ negl(λ) and σ ≥ βγnm. Let Ψσ be either (1) the discrete

Gaussian distribution with standard deviation σ, or (2) the uniform distribution over the integer

interval [−σ, σ]. Then, for any random variable s over [−γ, γ]n and independently sampled Ã
$←

Lossy(1n, 1m, 1`, q, χ), e
$← Ψσ, we have:

Hsmooth
∞ (s|Ã, Ãs + e) ≥ H∞(s)− (`+ 2λ) log(q) .

(Recall that Ã is computationally indistinguishable from A
$← Zm×nq under the LWE`,m,q,χ

assumption.)

Proof. Recall that, by the definition of Lossy, we can write Ã = BC+F as described in Section 3.
Firstly, we can assume that all entries of F are bounded by β in absolute value, as this modification
is statistically close to the original distribution. We can also write Ã·s+e = BC·s+F·s+e, where
each entry of the vector F ·s is bounded by βγn in absolute value. For any fixed choice of the vector
v = Fs, the components of v + e and e are independently distributed and the statistical distance
∆(ei,vi + ei) ≤ βγn/σ ≤ 1/m (see e.g., [GKPV10] for a proof of this when Ψσ is the discrete
Gaussian, and [AJW11] when Ψσ is uniform over [−σ, σ]). Therefore, using Proposition B.3, there
is some universal function f and some random variable Z(v) that is correlated with e such that
f(e, Z(v)) ≈ v + e are identically distributed and the bit-length of Z(v) is ≤ λ(log(m) + log(q))
with overwhelming probability. This gives us the distributional equivalence:

(Ã, Ã · s + e) ≈ (BC + F,BC · s + F · s + e) ≈ (BC + F,BC · s + f(e, Z(F · s)))

Therefore:

Hsmooth
∞ (s|Ã, Ãs + e) ≥ Hsmooth

∞ (s|B,C,F, e,C · s, Z(F · s))

≥ Hsmooth
∞ (s|B,C,F, e)− ` log q − λ(log(m) + log(q))

≥ Hsmooth
∞ (s)− (`+ 2λ) log q.

This concludes the proof. ut

We can now formulate an analogue to Theorem 4.1, stating that the LWE-assumption is also
satisfied for weak and leaky keys:

Theorem B.5. Let k, `,m, n, β, γ, σ, q be integer parameters and χ a distribution (all parameter-
ized by λ) such that Pr

x
$←χ

[|x| ≥ β] ≤ negl(λ) and σ ≥ βγnm. Let Ψσ be either (1) the discrete

Gaussian distribution with standard deviation σ or (2) the uniform distribution over the integer

interval [−σ, σ]. Assuming that the LWE`,m,q,χ assumption holds, the weak and leaky LWE
WL(γ,k)
n,m,q,Ψσ

-
assumption holds if k ≥ (`+Ω(λ)) log(q).

We omit the proof as it follows directly from Lemma B.4, in the exact same way that Theorem 4.1
follows from Lemma 3.3.
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