8.1 An MPC Protocol

Parties P_1, \ldots, P_n would like to conduct a majority vote. However, no one wants to reveal his voting behaviour.

a) Suppose the parties plan to use Sum Protocol II modulo Z_m from the slides to solve this problem. Describe the precise specification that is implemented by this protocol.

b) Show that the sum protocol is secure against up to $n - 1$ passively corrupted parties.

c) What happens with your protocol if some party P_i starts with input $x_i = n$. Is the protocol insecure?

d) Is the sum protocol secure against actively corrupted parties?

8.2 Types of Oblivious Transfer

Oblivious transfer (OT) comes in several variants:

- **Rabin OT**: Alice transmits a bit b to Bob, who receives b with probability $1/2$ while Alice does not know which is the case. That is, the output of Bob is either b or \perp (indicating that the bit was not received).

- **1-out-of-2 OT**: Alice holds two bits b_0 and b_1. For a bit $c \in \{0, 1\}$ of Bob’s choice, he can learn b_c but not b_{1-c}, and Alice does not learn c.

- **1-out-of-k OT for $k > 2$**: Alice holds k bits b_1, \ldots, b_k. For $c \in \{1, \ldots, k\}$ of Bob’s choice, he can learn b_c but none of the others, and Alice does not learn c.

Prove the equivalence of these three variants, by providing the following reductions:

a) 1-out-of-k OT \Rightarrow 1-out-of-2 OT

b) 1-out-of-2 OT \Rightarrow 1-out-of-k OT

Hint: In your protocol, the sender should choose k random bits and invoke the 1-out-of-2 OT protocol k times.

c) 1-out-of-2 \Rightarrow Rabin OT

d) Rabin OT \Rightarrow 1-out-of-2 OT

Hint: Use Rabin OT to send sufficiently many random bits. In your protocol, the receiver might learn both bits, but with negligible probability only.
8.3 Multi-Party Computation with Oblivious Transfer

In the lecture, it was shown that 1-out-of-\(k \) oblivious string transfer (OST) can be used by two parties \(A \) and \(B \) to securely evaluate an arbitrary function \(g : \mathcal{X} \times \mathcal{Y} \to \Omega \), where \(\mathcal{X} \) is \(A \)'s input domain, \(\mathcal{Y} \) is \(B \)'s input domain with \(|\mathcal{Y}| = k \), and \(\Omega \) is the output domain.

a) Let \(\mathcal{Z} \) be a finite (and small) domain. Generalize the above protocol to the case of three parties \(A, B, \) and \(C \), with inputs \(x \in \mathcal{X}, y \in \mathcal{X}, \) and \(z \in \mathcal{Z} \), respectively, who wish to compute a function \(f : \mathcal{X} \times \mathcal{Y} \times \mathcal{Z} \to \Omega \).

Hint: Which function table should \(A \) send to \(B \)? Which entry should \(B \) choose, and what should he send to \(C \)?

b) Is your protocol from a) secure against a passive adversary? If not, give an example of a function \(f \) where some party receives too much information by executing the protocol.

c) Modify your protocol to make it secure against a passive adversary.