ETH Zurich, Department of Computer Science SS 2017

Dr. Martin Hirt Chen-Da Liu Zhang

## Cryptographic Protocols Exercise 3

## 3.1 Definition of Interactive Proofs

An *interactive proof* of membership for some language L is a protocol between two interactive probabilistic algorithms P and V that satisfies the following properties:

- (i) COMPLETENESS: If  $x \in L$ , then P makes V accept with probability at least p = 3/4.
- (ii) SOUNDNESS: If  $x \notin L$ , then any probabilistic algorithm P' makes V accept with probability at most q = 1/2.

The class of all languages L for which there exists an interactive proof (P, V) with a polynomially bounded verifier V is denoted by **IP**. Note that the prover P is assumed to be unbounded, i.e., there are no restrictions on its computing power.

- a) Name a language that is not in IP.
- **b)** Show that a deterministic prover is as powerful as a probabilistic one, i.e., prove that for every interactive proof (P, V), there exists a deterministic  $\hat{P}$  such that  $(\hat{P}, V)$  is an interactive proof that accepts the same language. HINT:  $\hat{P}$  may use P and V (but only with fixed random coins).
- c) Show that a language L for which there exists an interactive proof (P, V) with a deterministic verifier V is in **NP**.
- d) Show that a language L for which there exists an interactive proof with q = 0 is in NP.
- e) Argue that the definition of **IP** is independent of the actual choice of p and q. More precisely, given an interactive proof (P, V) with parameters 1 > p > q > 0, construct an interactive proof (P', V') with parameters p', q' for 1 > p' > q' > 0.

HINT: Use Hoeffding's inequality. Let  $\varepsilon > 0$  and let  $X_1, \ldots, X_n$  be i.i.d. Bernoulli random variables where  $\overline{X} = \frac{1}{n} \sum X_i$  and  $E[\overline{X}] = \mu$ . Then it holds that:

$$P[\overline{X} \le \mu - \varepsilon] \le e^{-2n\varepsilon^2}$$
$$P[\overline{X} \ge \mu + \varepsilon] \le e^{-2n\varepsilon^2}$$

## 3.2 Geometric Zero-Knowledge

In this exercise we consider geometric constructions using a ruler (without markings) and a compass (Lineal and Zirkel). The operations we consider are those that we know from high school, namely to draw a line through two points, to draw a circle with center at one point that goes through another point, to obtain the intersection between two lines/two circles/a line and a circle, and to copy circles.<sup>12</sup>

a) An *angle* is a geometric object consisting of two rays (half-lines) with a common end point. Show how one can add and subtract two angles, i.e., given angles  $\alpha$  and  $\beta$ , construct  $\alpha + \beta$  and  $\alpha - \beta$  using the above operations.

A well-known result from abstract algebra states that the trisection of an arbitrary angle cannot be drawn in the above sense.

- b) Peggy claims that she knows<sup>3</sup> the trisection  $\alpha$  of a publicly known angle  $\beta = 3\alpha$ . Construct an interactive protocol that allows her to prove this claim. You may assume that Peggy can generate a random point on a circle and that Vic can flip a fair coin.
- c) Prove that your protocol is complete and argue (informally) why it is a proof of knowledge.
- d) Prove that your protocol is zero-knowledge.

## 3.3 The "Complement" of Fiat-Shamir: Proof of Quadratic Non-Residuosity

The Fiat-Shamir protocol allows Peggy to prove to Vic that some given number  $z \in \mathbb{Z}_m^*$  $(m = p \cdot q)$  is a quadratic residue.

- a) Describe an interactive protocol (P, V) that allows Peggy to prove to Vic that a given number  $a \in \mathbb{Z}_m^*$  is *not* a quadratic residue. You may assume that Peggy is computationally unbounded.
- **b)** Argue that your protocol is complete and sound. Is your protocol a proof of a statement, or is it a proof of knowledge (or both)?
- c) Argue that your protocol leaks no information to the *honest* verifier V, who follows the protocol instructions.
- d) Does this hold for a *cheating* verifier V' as well?

<sup>&</sup>lt;sup>1</sup>This last operation can actually be performed with the other three.

 $<sup>^2 {\</sup>rm If}$  you desire, you may play with the applet on www.geogebra.org.

<sup>&</sup>lt;sup>3</sup>i.e., holds a copy of the geometric object  $\alpha$ .