
ETH Zurich, Department of Computer Science
SS 2017

Dr. Martin Hirt
Chen-Da Liu Zhang

Cryptographic Protocols

Solution to Exercise 10

10.1 Not Sending Values

Note first that, given at least t+ 1 of the n shares, a` can be computed using Lagrange
interpolation. That is, let S ⊆ {1, . . . , n} \ {`} with |S| ≥ t+ 1. Then,

a` =
∑
j∈S

wjaj where wj =
∏
k∈S
k 6=j

α` − αk
αj − αk

.

Since the weights wj are constant, a` is a linear function of the shares aj for j ∈ S.

The above leads to the following protocol idea: Each player Pi re-shares his share ai as
[ai] = (ai1, . . . , ain) among the players. This is followed by an accusation phase to make
sure that all honest players agree on the same set S of players who have performed the
re-sharing. Then, the players compute a sharing of a` (using only local operations on
their respective shares) as shown above and reconstruct the value.

The actual protocol:

1. Sharing: Every player Pi shares his share ai among all players. Let aij denote
Pj ’s share of ai.

2. Accusations: If a player Pi does not receive his share aji from some player Pi,
then Pi complains about this by broadcasting an accusation. As an answer, Pj
must broadcast the value aji. If Pj does not do so, he is disqualified. Denote by S
the set of players that have not been disqualified.

3. Computing the share of a`: Every player Pi (locally) computes his share a`i of
the value a` as follows:

a`i =
∑
j∈S

wjaji where wj =
∏
k∈S
k 6=j

α` − αk
αj − αk

.

4. Reconstructing a`: Every Pi sends his share a`i to all other players. Let Si
denote the set of players from which Pi has received a share. Pi computes a` as
follows:

a` =
∑
j∈Si

wja`j where wj =
∏
k∈Si
k 6=j

αk
αk − αj

.

It is important that all (honest) players choose the same set S (as done in Step 2).
Otherwise, they would execute Step 3 on different sharings and reconstruction would
not work anymore. It is easy to verify that this protocol does not violate privacy.

10.2 ElGamal Commitments

a) We are to show that the commitment function

C : Zq × Zq → G×G, (a, α) 7→ (gα, γahα)

is homomorphic. This can be seen as follows:

C(a, α) · C(a′, α′) = (gα, γahα) · (gα′
, γa

′
hα

′
)

= (gα+α
′
, γa+a

′
hα+α

′
)

= C(a+ a′, α+ α′).

b) Given a pair (g1, g2) = (gα, γahα), one can recover a (inefficiently) as follows:

1. Compute α = logg g1, the discrete logarithm to basis g of g1.

2. Compute x = logγ(g2h
−α).

c) For a ∈ Zq, denote by Ca the random variable corresponding to a commitment to a,
i.e., for α chosen uniformly at random.

Recall that part of the commitment scheme is the publicly known but randomly
chosen h ∈ G. Thus, to prove that ElGamal commitments are computationally
hiding, it needs to be shown that, for every a and a′, (h,Ca) is computationally
indistinguishable from (h,Ca′).

1

To that end, for a ∈ Zq, consider first an additional random variable C̃a defined by
choosing α ∈ Zq and k ∈ G uniformly at random and setting C̃a := (gα, γak).

Using the triangle inequality2 and the fact that C̃a ≡ C̃a′ for all a, a′ ∈ Zq, one
obtains that

∆D((h,Ca), (h,Ca′)) ≤ ∆D((h,Ca), (h, C̃a)) + ∆D((h, C̃a′), (h,Ca′)).

The value ∆D((h,Ca), (h, C̃a)) (and similarly ∆D((h, C̃a′), (h,Ca′))) can be bounded
by a reduction to the DDH problem, i.e., transforming the distinguisher D into a
distinguisher D′a for DDH triples as follows: D′a receives as input a triple (x, y, z)
(which is either of the form (gu, gv, guv) or (gu, gv, gw) for randomly chosen u, v, w ∈
Zq). Then, D′a calls D on (x, (y, γaz)) and outputs whatever bit D outputs.

It is easily verified that if (x, y, z) is of the form (gu, gv, guv), then the input (x, (y, γaz))
to D is distributed identically to (h,Ca), and if (x, y, z) is of the form (gu, gv, gw),
then (x, (y, γaz)) to D is distributed identically to (h, C̃a). Thus,

∆D((h,Ca), (h, C̃a)) = ∆D′
a((gu, gv, guv), (gu, gv, gw)),

and, finally,

∆D((h,Ca), (h,Ca′)) ≤ ∆D′
a((gu, gv, guv), (gu, gv, gw))

+∆D′
a′ ((gu, gv, guv), (gu, gv, gw)),

where D′a′ is defined analogously to D′a. Thus, under the DDH assumption, ElGamal
commitments are computationally hiding.

1To be explicit: the randomness involved here is over the choice of h and α.
2See Section 1.7 of the lecture notes for a definition of computational indistinguishability and of the distin-

guishing advantage.

10.3 Multi-Party Computation from Homomorphic Commitments

a) Some player P can commit to a value x ∈ X among all players using the following
protocol: The input of the sender P is x and the other players Pi have no inputs. P
chooses a value r ∈R R and broadcasts y = C(x, r). P ’s output of the subprotocol
is r, and the other players output the value y′ received in the broadcast protocol.
The protocol is always considered successful.3

b) Suppose some player P wants to open some commitment y for which he knows (x, r)
such that C(x, r) = y to some other player P ′. The input of P is the opening
information (x, r). P ′’s input is the commitment y. In order to open y, P just sends
(x, r) to P ′, who accepts and outputs x if and only if y = C(x, r).

If P wants to open y to all players, he simply broadcasts (x, r).

Since the first is a subprotocol for output (i.e., the value is not used further in
the computation) between two players, there is no need for the players to agree on
whether it succeeded. For the second subprotocol, broadcast again ensures that all
honest players agree on whether the protocol was successful. Note that, here, just
sending (x, r) is not sufficient.

c) A player P committed by y can transfer this commitment to some other player P ′

using the following protocol: The input of P is the opening information (x, r) and
the input of all other players (including P ′) is the commitment y. Player P sends
(x, r) to P ′, who checks if y = C(x, r). If so, he broadcasts 1 and otherwise 0. Some
player Pi accepts the protocol run and considers P ′ committed by y if and only if
the broadcast value is 1.

Again, the broadcast properties ensure that, in the end, either all honest players
consider P ′ committed to y or reject the protocol.

d) Suppose some player P is committed to a and b by A = C(a, α) and B = C(b, β).
Then, he can commit to the product c = ab using the following protocol: The inputs
of P are a, b, α, β and the inputs of the other players Pi are A,B. First, P computes
C = C(c, γ) for some γ ∈R R and broadcasts C. Then, he executes a distributed (see
below) zero-knowledge proof of knowledge of a pre-image of (A,C) with respect to
the homomorphism

ψ : X ×R×R→ Y × Y, (x, ξ, ρ) 7→ (C(x, ξ), C(xb, xβ + ρ)) .

It is easily seen that the function is homomorphic.

The pre-image of (A,C) that P uses in the protocol is (a, α, γ − aβ). Moreover, any
party can compute the homomorphism as

ψ(a, α, ρ) = (C(a, α), Ba · C(0, ρ)) .

A player Pi accepts the protocol if and only if P succeeds in the zero-knowledge
proof. P outputs the randomness γ of C, and the other players Pi output C.

Observe that there must exist u, l such that the following two conditions hold:

1. [u] = (A,C)l.

2. ∀c1, c2 ∈ C with c1 6= c2 gcd(c1 − c2, l) = 1

Such conditions are satisfied if |Y | = q with q prime number, u = 0, l = q, and the
challenge space is C = {0, . . . , q − 1}.

3Note that players simply assume a default value if P does not broadcast anything, which is the reason why
this protocol is always successful. The important thing is that all honest players have the same value y′, which
is guaranteed by the broadcast channel.

In the distributed zero-knowledge proof, P broadcasts all of his messages. The chal-
lenge is chosen as follows: Each player commits to a random value. Then, the sum
of these values is opened and used as the challenge.

Since P broadcasts C as well as all the messages in the zero-knowledge proof and
since the challenge is chosen in a distributed fashion, the honest players agree on
whether or not the protocol was successful.

