Cryptographic Protocols
Solution to Exercise 6

6.1 One-Way Homomorphism Zero-Knowledge Proofs of Knowledge

The protocols are instantiations of the proof of knowledge of a pre-image of a one-way group homomorphism. That is, for each scenario, one needs to provide a suitable homomorphism ϕ between two groups, u and ℓ (for each z), as well as a challenge space C such that the preconditions of the theorem are satisfied.

a) Let $\phi : \mathbb{Z}_m^* \times \mathbb{Z}_m^* \rightarrow \mathbb{Z}_m^*$, $(x, y) \mapsto x^{e_1}y^{e_2}$. Then, ϕ is a homomorphism since

$$\phi((x, y) \cdot (x', y')) = \phi((xx', yy')) = (xx')^{e_1}(yy')^{e_2} = x^{e_1}y^{e_2}x'^{e_1}y'^{e_2} = \phi(x, y) \cdot \phi(x', y').$$

Let $C \subseteq \{0, \ldots, e_1 + e_2 - 1\}$ be polynomially bounded. For $z \in \mathbb{Z}_m^*$, let $u := (z, z)$ and $\ell := e_1 + e_2$. Then,

1. ℓ is prime, and thus $\gcd(c_1 - c_2, \ell) = 1$ for all $c_1, c_2 \in C$, and
2. $\phi(u) = \phi(z, z) = z^{e_1}z^{e_2} = z^{e_1 + e_2} = z^{\ell}$.

b) Let $\phi : \mathbb{Z}_4^* \rightarrow H^2$, $(x_1, x_2, x_3, x_4) \mapsto (z_1, z_2) = (h_1^{x_3}h_2^{x_1}, h_1^{x_2}h_2^{x_4}h_3^{x_3})$. Clearly, ϕ is a homomorphism since

$$\phi((x_1, x_2, x_3, x_4) + (x'_1, x'_2, x'_3, x'_4)) = (h_1^{x_3+x'_3}h_2^{x_1+x'_1}, h_1^{x_2+x'_2}h_2^{x_4+x'_4}h_3^{x_3+x'_3}) = (h_1^{x_3}h_2^{x_1} \cdot h_1^{x'_3}h_2^{x'_1}, h_1^{x_2}h_2^{x_4}h_3^{x_3} \cdot h_1^{x'_2}h_2^{x'_4}h_3^{x'_3}) = (h_1^{x_3}h_2^{x_1}, h_1^{x_2}h_2^{x_4}h_3^{x_3}) \cdot (h_1^{x'_3}h_2^{x'_1}, h_1^{x'_2}h_2^{x'_4}h_3^{x'_3}) = \phi((x_1, x_2, x_3, x_4)) \cdot \phi((x'_1, x'_2, x'_3, x'_4)).$$

Let $C \subseteq \mathbb{Z}_q$. For $z \in H^2$, let $u := (0, 0, 0, 0)$ and $\ell := q$. Then,

1. ℓ is prime, and thus $\gcd(c_1 - c_2, \ell) = 1$ for all $c_1, c_2 \in C$, and
2. $\phi(u) = \phi(0, 0, 0, 0) = (1, 1) = z^q = z^{\ell}$.

6.2 Perfectly Binding/Hiding Commitments

We consider perfectly correct commitment schemes with a non-interactive COMMIT phase. Such a commitment scheme can be characterized by a function $C : \mathcal{X} \times \mathcal{R} \rightarrow \mathcal{B}$ that maps a value $x \in \mathcal{X}$ and a randomness string r from some randomness space \mathcal{R} to a blob $b = C(x, r)$ in some blob space \mathcal{B}. The OPEN phase simply consists of the prover’s sending (x, r) to the verifier, who checks that $C(x, r) = b$.

In the following, denote by $\mathcal{B}_x := \text{im}C(x, \cdot)$ for $x \in \mathcal{X}$.

a) Let $x \neq x'$. Perfectly binding means that $\mathcal{B}_x \cap \mathcal{B}_{x'} = \emptyset$, whereas perfectly hiding means that $C(x, R)$ and $C(x', R)$ are identically distributed random variables for $R \in_R \mathcal{R}$.

This requires in particular that $\mathcal{B}_x = \mathcal{B}_{x'}$, which contradicts $\mathcal{B}_x \cap \mathcal{B}_{x'} = \emptyset$.

b) Subtasks b) and c) are discussed simultaneously in c).
c) Note that in all cases, the combined scheme is a string commitment \(C(x, (r_1, r_2)) \).

1. **Completeness:** The computational hiding property of \(C_B \) cannot be broken by additionally adding the blob of the perfectly hiding scheme \(C_H \).

 Binding: As \(C_B \) is perfectly binding, this is also true for the combined scheme \((C_H(x, r_1), C_B(x, r_2)) \), since \(C(x, (r_1, r_2)) = C(x', (r'_1, r'_2)) \) implies that \(C(x, r_1) = C(x', r'_2) \).

2. **Soundness:** Clearly, the scheme is perfectly hiding as \(C_H(C_B(x, r_1), r_2) \) perfectly hides \(C_B(x, r_1) \) and thereby \(x \).

 Binding: Assume for contradiction one could efficiently come up with \(x \neq x' \), \((r_1, r_2)\), and \((r'_1, r'_2)\) such that \(C(x, (r_1, r_2)) = C(x', (r'_1, r'_2)) \). Then, by the fact that \(C_B \) is perfectly binding, \(y := C_B(x, r_1) \neq C_B(x', r'_1) =: y' \), one can efficiently come up with \(y \neq y', r_2 \), and \(r'_2 \) such that \(C_H(y, r_2) = C_H(y', r'_2) \), which breaks the (computational) binding property of \(C_H \).

3. **Hiding:** Clearly, the scheme is perfectly hiding as \(C_H(x, r_1) \) perfectly hides \(x \).

 Binding: Assume for contradiction one could efficiently come up with \(x \neq x' \), \((r_1, r_2)\), and \((r'_1, r'_2)\) such that \(C(x, (r_1, r_2)) = C(x', (r'_1, r'_2)) \). Then, by the fact that \(C_B \) is perfectly binding, \(y := C_H(x, r_1) = C_H(x', r'_1) =: y' \), one can efficiently come up with \(x \neq x', r_1 \), and \(r'_1 \) such that \(C_H(x, r_1) = y = C_H(x', r'_1) \), which breaks the (computational) binding property of \(C_H \).

6.3 **Graph Coloring**

The protocol is a proof of statement, it shows that \(G \) has a 3-coloring. Let \(V = \{1, \ldots, n\} \), and the 3-coloring be defined as a function \(f : V \rightarrow \{1, 2, 3\} \).

<table>
<thead>
<tr>
<th>Peggy</th>
<th>Vic</th>
</tr>
</thead>
<tbody>
<tr>
<td>knows a 3-coloring (f) for (G := (V, E))</td>
<td>knows (G)</td>
</tr>
<tr>
<td>choose a random permutation of the colors (\pi)</td>
<td></td>
</tr>
<tr>
<td>let (f' = \pi \circ f)</td>
<td></td>
</tr>
<tr>
<td>(\forall i \in V, \text{ commit to } f'(i) \text{ as } C_i)</td>
<td>(C_1, \ldots, C_n)</td>
</tr>
<tr>
<td>((i, j))</td>
<td>((i, j) \in_R E)</td>
</tr>
<tr>
<td>open colors of vertices (i) and (j)</td>
<td>(d_i, d_j)</td>
</tr>
<tr>
<td>check if (f'(i), f'(j) \in {1, 2, 3}) and (f'(i) \neq f'(j))</td>
<td></td>
</tr>
</tbody>
</table>

Completeness: It is easily verified that if \(G \) has a 3-coloring, then Vic always accepts. Peggy can answer all the Vic’s queries correctly such that Vic is convinced as long as the commitment scheme is binding.

Soundness: The scheme has soundness \(\frac{1}{|E|} \): if \(G \) does not have a 3-coloring, a cheating prover must commit to a coloring that has at least one edge whose vertices have the same color, or to colors that are not in \(\{1, 2, 3\} \). Hence, with probability \(\frac{1}{|E|} \), the verifier catches him, assuming the commitments are perfectly binding. When doing \(n|E| \) sequential repetitions of the protocol, the soundness error is down to \((1 - \frac{1}{|E|})^{n|E|} \leq e^{-n} \).

Zero-Knowledge: The protocol is c-simulatable: Given \((i, j)\), choose random colors \(\sigma_i, \sigma_j \), and compute the commitments \(C_i, C_j \). Since \(|E|\) is polynomially large the protocol is zero-knowledge., assuming that the commitments are perfectly hiding.

\(^1\)Formally, this would have to be proved via a reduction.