Cryptographic Protocols

Exercise 5

5.1 Generic Zero-Knowledge Proofs of Knowledge

Construct zero-knowledge proofs of knowledge for the following settings:

a) Let m be an RSA modulus and $e_1, e_2 \in \mathbb{Z}_m$ such that $e_1 + e_2$ is prime. Let $z \in \mathbb{Z}_m^*$. Peggy wants to prove to Vic that she knows a pair $(x, y) \in \mathbb{Z}_m^* \times \mathbb{Z}_m^*$, such that $z = x^{e_1} y^{e_2}$.

b) Let H be a cyclic group of prime order q and let h_1, h_2, h_3 be three generators. Peggy wants to prove to Vic that for two values $z_1, z_2 \in H$ she knows values $x_1, x_2, x_3, x_4 \in \mathbb{Z}_q$ such that $z_1 = h_1^{x_3} h_2^{x_1}$ and $z_2 = h_1^{x_2} h_2^{x_4} h_3^{x_1}$.

5.2 RSA-Based Bit Commitments

Let $m = pq$ be an RSA modulus and e be a (publicly known) prime.

a) Let $x \in \{0, 1\}$ and consider the following protocol between two (polynomially bounded) parties P and V that consists of two phases:

- **COMMIT:** P, on input x, chooses $r \in \mathbb{Z}_m^*$ such that $\text{LSB}(r) = x$ (where $\text{LSB}(r)$ denotes the least significant bit of r), computes $c := r^e \in \mathbb{Z}_m^*$, and sends c to V.

- **OPEN:** P sends (r, x) to V, who verifies that $r^e = c$ and that $\text{LSB}(r) = x$.

Prove the following properties of the above protocol:

i) Show that after the COMMIT phase V, there exists $x' \in \{0, 1\}$ such that V will only accept pairs (r', x') in the OPEN phase.

ii) One can show that guessing the least significant bit of an RSA ciphertext (with probability substantially better than $1/2$) is as hard as computing the entire ciphertext. Use this fact to argue that V cannot guess which bit x was used by P in the COMMIT phase.

b) Let $\mu \in \mathbb{Z}_m^*$ be a public ciphertext for which P does not know the decryption. Consider the following protocol between two (polynomially bounded) parties P and V that consists of two phases:

- **COMMIT:** P, on input x, chooses $r \in \mathbb{Z}_m^*$, computes $c := r^e \mu^x$ in \mathbb{Z}_m^*, and sends c to V.

- **OPEN:** P sends (r, x) to V, who verifies that $c = r^e \mu^x$.

Prove the following properties of the above protocol:

i) Show that after the COMMIT phase V, there exists $x' \in \{0, 1\}$ such that V will only accept pairs (r', x') in the OPEN phase.

ii) Argue that V cannot guess which bit x was used by P in the COMMIT phase.
c) What happens in the above protocols if the factorization of n is known to P and what if it is known to V? What are the differences between the two protocols in terms of their security guarantees?