10.1 Information-Theoretic Commitment Transfer Protocol

a) In protocol COMMIT the state of the dealer D consists of commit polynomial g, where the committed value is $g(0) = s$. Every player P_i stores the commit-share $s_i = g(\alpha_i)$.

b) The commitment transfer protocol CTP allows to transfer a commitment from a player P to a player P'. The protocol works as follows:
 1. P sends the polynomial g to P'.
 2. Each P_i sends s_i to P'.
 3. P' checks that all but at most t of the received s_i's lie on g. If so, he accepts $g(0)$ as value for s, otherwise he assumes that he did not receive any value for s.

The above protocol is secure for $t < n/3$:

Privacy: Straight-forward as only P' receives values in the protocol and he only obtains the values which he is supposed to receive.

Correctness: This can be argued along the lines of the correctness of the protocol OPEN from the lecture notes: Assume that P sends P' some wrong polynomial $g' \neq g$. Then, at most t of the commit shares can lie on polynomial g'. Hence the commit shares of at least $n - t$ players do not lie on g'. As at most t of those players might be corrupted, there are at least $n - 2t > t$ players who will send commit shares that do not lie on g' to P', and therefore P' will not accept $g(0)$ as value for s.

In the case that P' did not receive a valid value for s, he can accuse P via broadcast and the whole protocol is repeated, using broadcast instead of sending values.

10.2 Information-Theoretic Commitment Multiplication Protocol

In the following we will use f_a and f_b to denote the polynomials used in the commitment sharing protocol (CSP) to share the values a and b, respectively. Furthermore, let $f_c := f_a \cdot f_b$.

a) We show that correctness and privacy are satisfied:

Privacy: In steps 1-2, privacy is guaranteed by the privacy of the CSP, i.e., no information on a, b, and c is revealed in these steps. In step 3, the players only see values they already know, namely $c_i = a_i \cdot b_i$, hence again no information is revealed. Finally, the commitments to some a_i, b_i, and c_i are opened only if D or the player P_i is corrupted, which means that the adversary already knows them.

Correctness: Any dealer who is not disqualified must successfully complete the CSP for values a and b. Thus, every player P_i ends up with shares a_i on f_a and b_i on f_b. Suppose, D commits to a value $c' \neq c$ and shares it using a polynomial
\[f_{c'} \neq f_c = f_a \cdot f_b \] in protocol CSP. Since both \(f_c \) and \(f_{c'} \) have degree at most \(2t \), they can have at most \(2t \) points in common. Thus, there exists at least one honest player \(P_i \) for which \(c'_i \neq a_i b_i \), where \(c'_i \) is his share of \(c' \). This player will accuse the dealer and prove that he is corrupted by opening \(a_i, b_i, \) and \(c_i \).

b) Let \(n = 3t \), and assume that the players \(P_1, \ldots, P_t \) are corrupted, where \(P_1 \) plays the role of \(D \). In order to achieve that at the end of the protocol the players accept a false \(c' \neq ab \), the corrupted players have the following strategy:

1. In step 0, \(D \) chooses \(c' \) (instead of \(c \)) and is committed to it.
2. Step 1 is executed normally, i.e., \(D \) invokes the CSP for \(a \) and \(b \).
3. In step 2, \(D \) invokes the CSP for \(c' \), with the (unique) degree-\(2t \) polynomial \(f_{c'}(x) \), such that \(f_{c'}(0) = c' \) and

\[
f_{c'}(\alpha_i) = f_a(\alpha_i) \cdot f_b(\alpha_i)
\]

for \(i = t + 1, \ldots, n \).
4. The corrupted players do not complain in step 3.

As \(f_{c'}(x) \) is chosen such that it satisfies the consistency check for all honest players, no player will complain and the commitment to \(c' \) will be accepted.

\(^1\)Note that the dealer cannot share \(c' \) using \(f_c \) as can easily be seen by inspecting the CSP.

\(^2\)The condition \(t < n/3 \) implies that there are at least \(2t + 1 \) honest players.