Cryptographic Protocols
Solution to Exercise 8

8.1 Shamir Sharings

a) Suppose there is another polynomial \(f' \) of degree at most \(n - 1 \) with the property that \(f'(\alpha_i) = s_i \) for all \(i = 1, \ldots, n \). Then, the polynomial \(h := f - f' \) has \(n \) roots (namely \(\alpha_1, \ldots, \alpha_n \)). Since it has degree at most \(n - 1 \), \(h \) must be the all-zero polynomial. Thus, \(f = f' \).

b) For \(T \subseteq \{1, \ldots, n\} \) and \(s \in \mathbb{F} \), denote by \(S_{T,s} \) the distribution sampled as follows: Choose random coefficients \(R_1, \ldots, R_t \), compute \(S_i := p(\alpha_i) \) for \(p(x) := s + R_1 x + R_2 x^2 + \ldots + R_t x^t \) and set \(S_{T,s} := (S_i)_{i \in T} \). That is, \(S_{T,s} \) denotes the random variable corresponding to the vector of shares of the players \(P_i \) with \(i \in T \) when \(s \in \mathbb{F} \) is shared.

A sharing scheme reveals no information about \(s \) to up to \(t \) players if for every \(T \subseteq \{1, \ldots, n\} \) with \(|T| \leq t \),

\[
S_{T,s} \equiv S_{T,s'}
\]

for all \(s, s' \in \mathbb{F} \).

Consider now a second distribution \(\tilde{S}_{T,s} \), which is defined as \(S_{T,s} \) except that the sharing polynomial \(\tilde{p}(x) \) is obtained by choosing values \(\tilde{R}_1, \ldots, \tilde{R}_t \) of \(\tilde{p}(x) \) and interpolating the unique polynomial \(\tilde{p}(x) \) through the points \((\tilde{\alpha}_i, \tilde{R}_i) \) and \((0, s) \) for some \(t \) arbitrary distinct non-zero positions \(\tilde{\alpha}_i \). It is easily seen that \(S_{T,s} = \tilde{S}_{T,s} \) for all \(T \) and \(s \), since every choice of coefficients \(R_i = r_i \) uniquely determines a polynomial \(p(x) \), which in turn uniquely determines the values at the \(t \) positions \(\tilde{\alpha}_i \) and vice-versa.

Since the \(t \) arbitrary positions \(\tilde{\alpha}_i \) can be chosen as the \((\alpha_i)_{i \in T} \), \(\tilde{S}_{T,s} \equiv \tilde{S}_{T,s'} \) (both distributions are simply \(|T| \) uniformly random and independent field elements). This implies (1).

c) Denote by \(f(X) = a'X + a \) and \(g(X) = b'X + b \) the sharing polynomials of \(a \) and \(b \), respectively. In the following we create a system of equations that will allow \(P_2 \) to compute \(a \) and \(b \) from the values which he sees in the protocol:

\[
f(\alpha_2) = a_2 \iff 2a' + a = a_2
\]

\[
g(\alpha_2) = b_2 \iff 2b' + b = b_2
\]

Using the announced shares \(c_i \), one can compute the unique polynomial \(h \) of degree at most 2 that goes through these points, i.e., \(h(1) = c_1, h(2) = c_2 \) and \(h(3) = c_3 \):

\[
h(X) = h_1 + h_2 X + h_3 X^2
\]

for some coefficients \(h_1, h_2, \text{and} h_3 \), which can be computed, e.g., using Lagrange’s interpolation formula.
Because \(h \) corresponds to the polynomial resulting from the multiplication of \(f \) and \(g \), it should have the following form:

\[
h(X) = f(X) \cdot g(X) = (a + a'X) \cdot (b + b'X) = ab + (ab' + a'b)X + a'b'X^2 \quad (5)
\]

Because the coefficients in (4) and (5) should be the same

\[
ab = h_1 \\
ab' + a'b = h_2 \\
a'b' = h_3
\]

The above three equations, together with (2) and (3), form a system of 5 equations over GF(5) with 4 unknowns. Solving these equations \(P_2 \) can compute the factors \(a \) and \(b \).

d) The adversary can use its shares to interpolate a degree-(\(t - 1 \)) polynomial \(g' \neq g \), since the degree of the sharing polynomial \(g \) is exactly \(t \). Because \(g(\alpha_i) = g'(\alpha_i) \) for \(t \) indices \(i \in \{1, \ldots, n\} \), \(g(0) \neq g'(0) \) (since otherwise \(g' = g \)). Thus, the adversary can exclude \(g'(0) \) as the secret, which violates privacy.

8.2 Circuit Evaluation

a) Since the order of the multiplicative group of \(\mathbb{F} \) is \(p - 1 \), \(x^{p-1} = 1 \), which implies that \(x^{p-2} \cdot x = 1 \), hence \(x^{-1} = x^{p-2} \).\(^1\) Note that when \(x = 0 \), then the computed “inverse” equals 0.

b) Let \(c \in \{0, 1\} \). To execute the “if”-statement, compute

\[
z := (1 - c) \cdot x + c \cdot y.
\]

For an arbitrary \(c \in \mathbb{F} \), compute

\[
z := (1 - c^{p-1}) \cdot x + c^{p-1} \cdot y.
\]

This results in the correct value \(z \) since \(c^{p-1} = 1 \) if \(c \neq 0 \) and \(c^{p-1} = 0 \) if \(c = 0 \).

\(^1\)This can be implemented efficiently using the square-and-multiply method.