Cryptographic Protocols
Notes for Lecture 3

Scribe: Sandro Coretti

About the notes: These notes serve as written reference for the topics not covered by the papers that are handed out during the lecture. The material contained therein is thus a strict subset of what is relevant for the final exam.

This week, the notes discuss the definition of (perfect) zero-knowledge and a proof that the three-move protocols we have encountered so far (graph isomorphism, Fiat-Shamir, Guillou-Quisqater, Schnorr) are perfectly zero-knowledge [Mau09, Theorem 2].

3.1 Definition of Zero-Knowledge

Intuitively, an interactive proof \((P, V)\) between a prover \(P\) and verifier \(V\) is zero-knowledge if after interacting with \(P\), any verifier \(V'\) has no more information than before executing the protocol. This is captured by the notion of a simulator \(S\) that reproduces \(V'\)'s view in the proof without actually communicating with \(P\).

More precisely, consider the following two random experiments:

1. Prover \(P\) interacts with \(V'\); let \(Z\) be the random variable corresponding to the resulting transcript and \(P_Z\) its distribution.

2. Simulator \(S\) interacts with \(V'\) and outputs a transcript; let \(Z'\) denote the corresponding random variable and \(P_{Z'}\) its distribution.

Definition 3.1. An interactive proof \((P, V)\) is (perfectly) zero-knowledge if for every efficient \(V'\) there exists an efficient simulator \(S\) (with access to \(V'\)) producing a transcript \(Z'\) that is distributed identically to the transcript \(Z\) in the actual interaction between \(P\) and \(V'\), i.e.,

\[
P_Z = P_{Z'}.
\]

The interactive proof is honest-verifier zero-knowledge (HVZK) if the simulator exists for (the honest) verifier \(V\).

In this course, when proving the zero-knowledge property, there will always be a single simulator \(S\) that works for all verifiers \(V'\). This is referred to as black-box simulation.

3.2 Honest-Verifier Zero-Knowledge and \(c\)-simulatability

The HVZK property is perhaps not very interesting per se, but it is a useful tool in proving (perfect) zero-knowledge. All three-move protocols in this course satisfy the even stronger
notion of c-simulatability.

Definition 3.2. A three-move protocol round of an interactive proof (P, V) with challenge space C is c-simulatable\(^1\) if for any value c one can efficiently generate a triple (t, c, r) with the same distribution as occurring in the protocol (between P and the honest V) conditioned on the challenge being c.

In other words, there has to exist an efficient algorithm that given any $c \in C$ produces values t and r with a distribution $\hat{P}_{TR} \mid C$ such that $\hat{P}_{TR} \mid C(t, r, c) = P_{TR} \mid C(t, r, c)$ for all t, c, r, where $P_{TR}(t, r, c)$ is the distribution occurring in the actual protocol conditioned on the challenge being c.

It is easily seen that c-simulatability implies HVZK: the honest-verifier simulator simply chooses $c \in C$ uniformly at random and generates t and r according to the c-simulatability.

3.3 Proving the Zero-Knowledge Property

In this section we show that an interactive proof (P, V) consisting of independent perfectly HVZK three-move rounds is perfectly zero-knowledge if, additionally, the challenge space C is not too large. To that end, we first show how to formalize the behavior of the algorithms P, and V' for said type of protocols.

3.3.1 Behaviors

The behavior of the prover algorithm is fully defined by specifying the distribution of the first message T and that of the response R given the first message T and the challenge C, i.e., by conditional probability distributions

$$p_P^T(t) \quad \text{and} \quad p_{R \mid TC}^P(r, t, c),$$

where $p_P^T(t)$ is the probability that the prover outputs t as its first message and $p_{R \mid TC}^P(t, c, r)$ is the probability that P outputs r as the response given that the first message and the challenge were t and c, respectively. Thus,

$$\sum_t p_P^T(t) = 1$$

and, for any t and c,

$$\sum_r p_{R \mid TC}^P(r, t, c) = 1.$$

Contrary to P, the verifier V' may not behave identically in every round, and the way it chooses the challenge c_i in the i^{th} round may depend on the entire transcript $u_{i-1} := (t_1, c_1, r_1, \ldots, t_{i-1}, c_{i-1}, r_{i-1})$ of rounds 1 to $i - 1$ and on the first message t_i in the i^{th} round. Therefore, its behavior is specified by a sequence of functions

$$p_{C_i \mid T_i U_{i-1}}^{V'}(c_i, t_i, u_{i-1}),$$

for $i = 1, 2, 3, \ldots$. Again, for any t_i and u_{i-1},

$$\sum_{c_i} p_{C_i \mid T_i U_{i-1}}^{V'}(c_i, t_i, u_{i-1}) = 1.$$
3.3.2 Perfect Zero-Knowledge

Theorem 3.1. An interactive proof \((P, V)\) consisting of \(k\) independent perfectly HVZK three-move rounds is perfectly HVZK. If, additionally, in every round \(V\) chooses the challenge uniformly at random from the same polynomially bounded challenge space \(C\), the protocol is perfectly zero-knowledge.

Note that Theorem 3.1 is a slightly more general than Theorem 2 in [Mau09] in that it works for any HVZK protocol and not only for c-simulatable ones.

Proof. The interactive proof \((P, V)\) is easily seen to be HVZK.

Consider now a potentially dishonest verifier \(V'\). The simulator \(S\) has black-box rewinding access to \(V'\). This means that \(S\) cannot see the code of \(V'\) (hence, it uses it as a black-box), but \(S\) may rewind \(V'\) at any point to an earlier state in its computation.

Simulator \(S\) creates a transcript in the following round-by-round fashion. Assume triples \(u_{i-1} = (t_1, c_1, r_1, \ldots, t_{i-1}, c_{i-1}, r_{i-1})\) for the first \(i - 1\) rounds have already been generated and that \(V'\) is in the corresponding state. For the \(i^{th}\) round, \(S\) proceeds as follows:

1. Generate a triple \((t'_i, c'_i, r'_i)\) according to the HVZK simulation.
2. Pass \(t'_i\) to \(V'\) and receive the challenge \(c''_i\) for the \(i^{th}\) round.
3. If \(c''_i = c'_i\), store the triple \((t_i, c_i, r_i) := (t'_i, c'_i, r'_i)\). Otherwise, rewind \(V'\) to the point before it received \(t'_i\) and repeat the simulation attempt.

The expected number of trials for every round is \(|C|\), which is polynomial by assumption.

In both the random experiment corresponding to the actual interaction between \(P\) and \(V'\) as well as that corresponding to the simulation, denote by \((T_i, C_i, R_i)\) the random variables corresponding to the transcript triples and let \(U_i := (T_1, C_1, R_1, \ldots, T_{i-1}, C_{i-1}, R_{i-1})\).

It remains to prove that the distribution \(P_{U_k}\) of the transcript in the actual interaction between \(P\) and \(V'\) is the same as the distribution \(\hat{P}_{U_k}\) of the simulated transcript. The proof is by induction on the number of rounds. The basis \(i = 1\) is trivial. Assume \(P_{U_{i-1}} = \hat{P}_{U_{i-1}}\). Clearly, it is sufficient to prove that

\[
P_{T_iC_iR_i|U_{i-1}} = \hat{P}_{T_iC_iR_i|U_{i-1}}.
\]

Hence, for the remainder of the proof, fix a \(u := u_{i-1}\) with non-zero probability \(P_{U_{i-1}}(u_{i-1})\).

Consider first the actual interaction between \(P\) and \(V'\) and note that

\[
P_{T_iC_iR_i|U_{i-1}}(t, c, r, u) = P_{T_i|U_{i-1}}(t, u) \cdot P_{C_i|T_iU_{i-1}}(c, t, u) \cdot P_{R_i|C_iT_iU_{i-1}}(r, c, t, u)
\]

\[= p^P_T(t) \cdot p^{V'}_{C_i|T_iU_{i-1}}(c, t, u) \cdot p^P_{R_i|TC}(r, t, c)
\]

for any \((t, c, r)\).

In the simulation, any candidate triple \((T'_i, C'_i, R'_i)\) (in isolation) in the \(i^{th}\) round is distributed according to

\[
\hat{P}_{T'_iC'_iR'_i}(t, c, r) = \frac{1}{|C|} \cdot p^P_T(t) \cdot p^P_{R_i|TC}(r, t, c),
\]

since it is generated via the perfect HVZK simulation. Moreover,

\[
\hat{P}_{T'_iC'_iR'_i}(t, c, r) \cdot p^{V'}_{C_i|T_iU_{i-1}}(c, t, u) = \frac{1}{|C|} \cdot P_{T_iC_iR_i|U_{i-1}}(t, c, r)
\]

is the probability that \(t, c, r\) is chosen as candidate triple and \(V'\) chooses (the same) \(c\) as the challenge, where the equality follows using (1) and (2).
Denote by J_i (the random variable corresponding to) the number of candidate triples that need to be sampled in the i^{th} round. Then, by total probability,

$$
\hat{P}_{T,C,R_i|U_{i-1}}(t,c,r,u) = \sum_j \hat{P}_{T,C,R_i|J_i,U_{i-1}}(t,c,r,j,u) \cdot \hat{P}_{J_i|U_{i-1}}(j,u) \quad (4)
$$

for any t,c,r. Note that for each j, $\hat{P}_{T,C,R_i|J_i,U_{i-1}}(t,c,r,j,u)$ is the probability that the i^{th} simulated triple is (t,c,r) conditioned on there being j simulation attempts in the i^{th} round (and on u). Hence, using (3),

$$
\hat{P}_{T,C,R_i|J_i,U_{i-1}}(t,c,r,j,u) = \frac{1}{|C|} \frac{1}{|R_i|} P_{T,C,R_i|U_{i-1}}(t,c,r,u) = P_{T,C,R_i|U_{i-1}}(t,c,r,u)
$$

for every j. Inserting this into (4) concludes the proof.

\[\square\]

References