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Abstract

This paper is concerned with information-theoretic reductions of 1-
out-of-2 chosen string oblivious transfer to other primitives that are as
weak as possible. At Eurocrypt '97, Brassard and Crépeau presented a
reduction to so-called generalized bit oblivious transfer, a primitive in
which the sender inputs a pair of bits of which the receiver can choose
to obtain at most one bit of deterministic information (e.g., one of the
two bits, the XOR or AND function of the bits, and so on). It was
stated as an open problem how this can be generalized to probabilistic
information (where the receiver for instance obtains noisy versions of
the bits). We show that the most optimistic answer to this question
is the correct one: Whenever the so-called universal oblivious transfer
is such that Bob does not obtain full information about the bits sent,
then string oblivious transfer can be reduced to it in linear time, where
an exponentially small failure probability must be tolerated. The new
technique applied in the analysis uses specific side information provided
to the receiver by an oracle and allows to simplify the argumentation.

Keywords. Cryptography, oblivious transfer, universal oblivious trans-
fer, reductions among primitives.

1 Introduction

This paper deals with information-theoretic reductions between fundamental
cryptographic primitives. Examples of such primitives are oblivious trans-
fer, secret two-party computation, or secret-key agreement. In [8], the more



general term information-theoretic primitive (or IT-primitive for short) was
introduced which includes for example also the concepts of noisy communi-
cation channels or joint randomness. The reason why efficient information-
theoretic reductions among such primitives are of interest is that the primi-
tives that can easily be achieved (or exist in reality, such as a noisy channel)
are probably not the same as the ones that one is interested in (e.g., for
using it as a building block of a cryptographic protocol). Many authors have
studied relationships between such primitives (see for example [8] and the
references given therein).

An important special case are the various versions of so-called oblivious
transfer (OT). The standard bit OT between two parties Alice and Bob
corresponds to a binary erasure channel with erasure probability 1/2 and
works as follows. The sender Alice’s input is a bit b, which Bob learns with
probability 1/2, whereas otherwise, Bob obtains no information about b.
Alice on the other hand obtains no information about the fact whether Bob
received the bit or not.

In the more important 1-out-of-2 chosen bit OT ((3) OT for short) Alice
sends two one-bit messages to Bob, exactly one of which Bob can choose to
read (remaining completely ignorant about the other one) such that Alice
does not get any information about which message Bob chose. In 1-out-of-2
chosen k-bit-string OT ((%) k-bit-string OT) the messages are k-bit strings
instead of single bits. One reason for the importance of OT is that it allows
for carrying out any secret two-party computation.

Many results, lower as well as upper bounds, have been proven on in-
formation-theoretic reductions of such OT primitives to others [5], [4], [6],
[7]. It is a particularly interesting problem to realize OT (e.g., chosen string
OT) from primitives that are as weak as possible [6]. It is the purpose of
this paper to perform another step into this direction.

2 Bit-, String-, and Generalized OT: Definitions
and Previous Results

Many approaches have been taken for reducing string OT to bit OT. Such a
reduction can be based on so-called zig-zag functions or on self-intersecting
codes (see [3] and the references therein). The drawback of these approaches
is that the number of required bit-OT realizations cannot be made smaller
than about 3.538k, where k is the length of the strings. The privacy-
amplification method, presented in [3], achieves roughly 2k, but the resulting
string OT must be tolerated to fail with a certain probability.



Privacy amplification was first considered in the context of information-
theoretic secret-key agreement [2] and is the technique of transforming a
partially secret into a highly secret string. Equivalently, privacy amplifica-
tion can be seen as “distribution uniformizing.” A good technique for privacy
amplification was shown to be universal hashing. In this case, the length of
the highly secret key that can be extracted is roughly equal to the Rényi
entropy of the original string [1].

The reduction of string- to bit OT by privacy amplification can be done
by the following protocol of [3]. Note that privacy amplification means here
applying a random linear function. The protocol reduces (f) k-bit-string OT
of the k-bit messages mg and m; to n realizations of (f) OT with some failure
probability. A discussion of the parameters is given below. Let lin(2",2")
denote the set of linear functions mapping n-bit strings to r-bit strings, and
let €, stand for the random choice of an element out of a set according to
the uniform distribution. Let furthermore a’ denote the i-th coordinate of
the vector a.

Protocol BC97

Alice Bob
zg,z1 €, GF(2") ce{0,1}
(?) OT (ab, 1)
zl 22, ...

ho, h1 (SIS lin(?n, 27')
Yo := mo & ho(zo)
Y1 :=m1 ® hi(z1)
h07 hla Yo, Y1

me = hc(mc) @D ye

It was shown in [3] that for n > 2k+s, Protocol BC97 works with a failure
probability of 27% (more precisely, there exists after the protocol execution,
with probability at least 1 — 27°, a bit ¢ such that Bob has no information
at all about the message mi_., even when given m,).



More generally, the same was even shown to be true when G) OT is
replaced by so-called (f) XOT (bo,b1), where Bob can not only choose to
obtain the bits by or bi, but also by := bg @ b;. The primitive XOT was
further extended to generalized OT (GOT) allowing, besides the unbiased
functions

O(bo,bl) = by,
1(b0,b1) = by,
®(b0,b1) = b@

(and their negations) also the biased binary functions V, A, —, < (and their
negations) of two bits as possible choices of Bob. The price that has to be
paid for this generalization is a reduced efficiency of the reduction. Let us
first give a definition of the security of string OT with failure probability.

Definition 1 A (f) k-bit-string OT with security s has the property that
there exists an event A with probability at least 1 — 27, taken over all
possible choices of Bob and over all the coin tosses of Alice, such that given
that A occurs, the receiver Bob obtains no information about one of the
k-bit strings, even when given the other.

Remark. Note that string OT with security s means here that Bob obtains
no information at all about at least one of the strings with high probabil-
ity. In [3], the corresponding definition was somewhat weaker and required
that with probability at least 1 — 27°, Bob will find himself in a situation
where he knows at most 27° Shannon bits about one of the two strings,
given the other. By the side-information argumentation needed in the proof
of Lemma 2 below one can generally show that the two definitions are equiv-
alent in principle.

The reduction of (%) k-bit-string OT with security s to the new primitive of
GOT was shown in [3] to require O(k + s) executions of GOT.

3 The Power of Universal OT

The most general (i.e., weakest) primitive in the described context appears
to be the so-called universal OT proposed in [3]. Here, Bob is allowed to
choose any type of information, in particular probabilistic information, about
the bits sent by Alice, not exceeding a certain bound on Shannon entropy.
Obviously, this primitive is much more general than GOT. For instance, Bob



can choose here to receive slightly noisy versions of both bits by and by (with
some arbitrarily small error probability ¢).

Definition 2 Let a < 2. A wuniversal oblivious transfer with parameter o
(a-UOT for short) is a cryptographic primitive involving two parties Al-
ice (called sender) and Bob (the receiver). The sender Alice’s input is a
pair of bits (bp,b1). The receiver Bob on the other hand inputs a (possibly
probabilistic) function  which must satisfy

H((Bo, B1) | 2(Bo, B1)) > B

(where 8 := 2 — ). Furthermore, the receiver obtains Q(By, Bi), but no
additional information about (By, B1). Finally, Alice does not learn anything
about Bob’s choice of the function .

It was stated as an open problem in [3] whether this primitive is as strong
as string OT, i.e., whether it is also possible to efficiently reduce (f) k-bit-
string OT to general UOT. Theorem 1 shows that the answer to this question
is yes, and that the number of required realizations of a-UOT (for any fixed
a < 2) is of order O(k+s). The proof of Theorem 1 given below is somewhat
simpler than the analysis of the GOT reduction in [3].

Theorem 1 Protocol BC97 reduces (f) k-bit-string OT with security s ton
realizations of a-UOT for every

n> [(s—l—Zk) : 2ln2-‘ ,
Pe

where pe 1s the unique solution (< 1/2) to the equation
h(z)+zlog3=2—-a=:03.

The statement of Theorem 1 is meant in the sense that it also holds if the
receiver chooses the new function () adaptively after each step.

Before proving Theorem 1, we need the following lemma which intu-
itively implies that among all possible types of partial information about
a bit with a fixed error probability about this bit, the particular informa-
tion that is obtained by sending the bit over a symmetric erasure channel
provides the largest amount of Shannon information about the bit. Even
stronger than that, we show that for every other type of information, there
exists side information V' (that can be thought of as being provided by an
oracle) such that given this information in addition, the situation perfectly



corresponds to information obtained from an erasure channel. Note that
this side-information argumentation leads to a partial order on all possible
types of side information about a random variable in a very strict sense: the
“stronger” side information is “more powerful” than the weaker one in every
respect because the stronger information contains the weaker one.

Lemma 2 Let B be a symmetric binary random variable, and let U be a
random variable such that B and U have joint distribution Ppy. Let p be
the average error probability of guessing B when given U, using the optimal
guessing strategy. Then there exists a random variable V. with the following
properties:

1. v={0,1,A},
2. Py(A)=2p,
3. for every u € U, we have
Ppiy—u,v=a(0) = Ppy=u,y=a(l) .

Proof. Let u € U, and assume that a = Pgjyy—,(0) > Ppjy—u(1) = b. Let V
be defined by

Pyip—oy—u(0) = (a—b)/a,
Pyp—oy=u(A) = b/a,

Pyip1y—u(d) = 1.
Note that Pyjy—y(A) = 2b, i.e., twice the error probability for guessing B
when given U = u. This concludes the proof. O

Proof of Theorem 1. Let n be the length of the strings x¢ and z; in Pro-
tocol BC97. According to Fano’s inequality, the expected error probability,
given ;(z, %), about the pair of bits (¥, z?) is at least p., where p, stands
for the unique solution (< 1/2) to the equation h(z) + z-log3 = 3 (h is the
binary entropy function). This means that about at least two of the bits z}),
zl, a:lé (:= z{ ® x!), the expected error probability is at least p./2.

Let g(-,-) be a linear function mapping [GF(2)"]? to GF(2) depending
non-trivially on both inputs (i.e., it is not true that either g(z,y) = g(z',y)
or g(z,y) = g(z,y’) holds for all z,z',y,y’ € GF(2)"). We consider the
probability that Bob can bias the bit

g(ho(zo), ha(z1)) - (1)



For every 1 = 1,...,n, the bit (1) can be written as

agxé @ alx’i @ Ri(:c(l], e ,a:ffl,:vf]ﬂ, e ,a:g,x%, e ,:c’fl,:v’f'l, ces@])
where ag,a; € {0,1} are independent and random (given that g depends
non-trivially on both input strings and that hg and h; are independent and
random), and where R; is a linear function mapping to a bit.

We conclude from the above that with probability at least 1 —(1/4+3/4-
1/3) = 1/2, Bob’s expected error probability about the bit agz{ ® a1z} he
needs is at least pe/2, hence his total expected error probability is at least
Pe/4. As Lemma 2 shows, the worst case (for Alice) is when Bob has full
information about the required bit with conditional probability 1—p./2, and
no information otherwise. Thus Bob will in this case have no information at
all about g(ho(zo), h1(x1)) with probability

1-— (1—pe/2)n .

Hence the probability Prob [€] of the event £ that there exists a non-trivial
bilinear function g such that g(ho(zo), h1(z1)) can be non-trivially biased by
Bob is, by the union bound, bounded by

Prob [£] < 22%(1 — p./2)" .

It is not difficult to see that, given the event A := £ that £ does not occur,
we have that Sy and S7 are statistically independent, and that at least one
of them is perfectly uniformly distributed (see [3] for a result implying that
if every non-trivial linear function of a string is unbiased then the string is
perfectly uniform).

Therefore, about one of the resulting strings, Bob has no information at
all with probability at least

1-2%(1 - p./2)" , (2)
given the other string. Expression (2) is at least 1 — 2~ ° for all

0> [(s+2k)-2ln2-| |
De

and this concludes the proof. m|
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