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Abstract. Shannon entropy is a useful and important measure in in-
formation processing, for instance, data compression or randomness ex-
traction, under the assumption—which can typically safely be made in
communication theory—that a certain random experiment is indepen-
dently repeated many times. In cryptography , however, where a system’s
working has to be proven with respect to a malicious adversary, this
assumption usually translates to a restriction on the latter’s knowledge
or behavior and is generally not satisfied. An example is quantum key
agreement, where the adversary can attack each particle sent through
the quantum channel differently or even carry out coherent attacks,
combining a number of particles together. In information-theoretic key
agreement, the central functionalities of information reconciliation and
privacy amplification have, therefore, been extensively studied in the sce-
nario of general distributions: Partial solutions have been given, but the
obtained bounds are arbitrarily far from tight, and a full analysis ap-
peared to be rather involved to do. We show that, actually, the general
case is not more difficult than the scenario of independent repetitions—in
fact, given our new point of view, even simpler. When one analyzes the
possible efficiency of data compression and randomness extraction in the
case of independent repetitions, then Shannon entropy H is the answer.
We show that H can, in these two contexts, be generalized to two very
simple quantities—Hε

0 and Hε
∞, called smooth Rényi entropies—which

are tight bounds for data compression (hence, information reconcilia-
tion) and randomness extraction (privacy amplification), respectively. It
is shown that the two new quantities, and related notions, do not only
extend Shannon entropy in the described contexts, but they also share
central properties of the latter such as the chain rule as well as sub-
additivity and monotonicity.

Key words. Information-theoretic cryptography, entropy measures, data
compression, randomness extraction, information reconciliation, privacy
amplification, quantum key agreement.



1 Introduction, Motivation, and Main Results

1.1 Unconditional Cryptographic Security and Key Agreement

Unconditional cryptographic security does, in contrast to computational secu-
rity, not depend on any assumption on an adversary’s computing power nor on
the hardness of computational problems. This type of security is, therefore, not
threatened by potential progress in algorithm design or (classical and quantum)
computer engineering. On the other hand, cryptographic functionalities such as
encryption, authentication, and two- or multi-party computation can generally
not be realized in an unconditionally secure way simply from scratch. It is, there-
fore, a natural question under what circumstances—as realistic as possible—they
can be realized. In particular for encryption and authentication or, more specif-
ically, secret-key agreement, this question has been studied extensively: In [23]
and [9], unconditional secret key agreement is realized based on the existence
of noisy channels between the legitimate partners and the adversary, whereas
in [15], a scenario is introduced and studied where all parties have access to
pieces of information (e.g., generated by repeated realizations of a certain ran-
dom experiment). On the other hand, the possibility of information-theoretic
key agreement has also been studied between parties connected not only by a
classical, but also a quantum channel allowing for the transmission of quantum
states [22, 1]. Here, the security can be shown under the condition that the laws
of quantum physics are correct.

If, in a certain scenario, unconditional secret-key agreement is possible in
principle, then it is a natural question what the maximum length of the generated
secret key can be. To find the answer to this question has turned out to often
reduce to analyzing two functionalities that form important building blocks of
protocols for secret-key agreement (in any of the described settings), namely
information reconciliation and privacy amplification.

Information reconciliation (see, for instance [4]) means that the legitimate
partners generate identical shared strings from (possibly only weakly) correlated
ones by noiseless and authenticated but public communication, hereby leaking
to the adversary only a minimal amount of information about the original and,
hence, the resulting string. The generated common but potentially highly com-
promised string must then be transformed into a virtually secret key by privacy
amplification. On the technical level—but roughly speaking—, information rec-
onciliation is error correction, whereas privacy amplification is hashing, e.g., by
applying a universal hash function [13, 2] or an extractor [16] allowing for distill-
ing a weakly random string’s min-entropy H∞. When these two functionalities
are analyzed in a context where all pieces of information stem from many in-
dependent repetitions of the same random experiment, then the analysis shows
that the amount of information to be exchanged in optimal information rec-
onciliation is the conditional Shannon entropy of, say, one party Alice’s infor-
mation, given the other Bob’s; on the other hand, privacy amplification, in the
same independent-repetitions setting, allows for extracting a string the length
of which equals the conditional Shannon entropy of the shared string given the



adversary’s information. Hence, as often in information theory, Shannon entropy
turns out to be very useful in this asymptotic model. In a (classical or quan-
tum) cryptographic context, however, the assumption of independent repetitions
typically corresponds to a restriction on the adversary’s behavior, and cannot
realistically be made. It has been a common belief that in this case, the anal-
ysis of the described information-reconciliation and privacy-amplification pro-
tocols—and their combination—are quite involved and lead to rather complex
(functional) bounds on the (operational) quantities such as the key length. It is
the main goal of this paper to show that this is, actually, not the case.

1.2 Information Reconciliation and Privacy Amplification

Information reconciliation is error correction: Given that Alice and Bob
hold random variables X and Y , respectively, Alice wants to send a minimal
quantity of information C to Bob such that given Y and C, he can perfectly
reconstruct X with high probability. (More generally, protocols for information
reconciliation can use two-way communication. Such interactive protocols can
be computationally much more efficient than one-way protocols, but do not re-
duce the minimal amount of information to be exchanged [4].) To determine
the minimal amount of information to be sent from Alice to Bob such that the
latter can reconstruct Alice’s information with high probability reduces to the
following data-compression problem.

Question 1. Given a distribution PXY and ε > 0, what is the minimum length
Hε

enc(X|Y ) of a binary string C = e(X, R), computed from X and some addi-
tional independent randomness R, such that there exists an event Ω with proba-
bility at least 1−ε such that given Ω, X is uniquely determined by C, Y , and R?

Privacy amplification is randomness extraction: Given that Alice and Bob
both know X and an adversary knows Y , Alice wants to send a message R to
Bob such that from X and R, they can compute a (generally shorter) common
string S about which the adversary, knowing Y and R but not X, has no in-
formation except with small probability. More specifically, privacy amplification
deals with the following randomness-extraction problem.

Question 2. Given a distribution PXY and ε > 0, what is the maximum length
Hε

ext(X|Y ) of a binary string S = f(X, R), where R is an additional random
variable, such that there exists a uniformly distributed random variable U that
is independent of (Y,R) together with an event Ω with probability at least 1− ε
such that given Ω, we have S = U?

The problems of determining Hε
enc(X|Y ) and Hε

ext(X|Y ) have been studied
by several authors. Note, first of all, that in the case where the distribution
in question is of the form PXnY n = (PXY )n, corresponding to n independent



repetitions of the random experiment PXY , we have, for ε > 0,

lim
ε→0

lim
n→∞

Hε
enc(X

n|Y n)
n

= lim
ε→0

lim
n→∞

Hε
ext(X

n|Y n)
n

= H(X|Y ) .

Interestingly, the two—a priori very different—questions have the same answer
in this case. We will show that in general, this is not true.

Unfortunately, the assumption that the distribution has product form is gen-
erally unrealistic in a cryptographic context: In quantum key agreement, for
instance, it corresponds to the assumption that the adversary attacks every par-
ticle individually, independently, and in exactly the same way. But what if she
does not?

It is fair to say that the problem of optimizing privacy amplification and
“distribution uniformizing” has been studied intensively in the general case and
considered to be quite involved (see, for instance, [5], [6], [7], and references
therein). It is our goal to show that this belief is, both for information reconcil-
iation and privacy amplification, in fact unjustified.

An example of a previous result is that Hε
ext(X|Y ) is bounded from be-

low by the minimum, over all y ∈ Y, of the so-called collision entropies or
Rényi entropies of order 2, H2(X|Y = y) (see below for a precise definition) [2].
However, this bound is not tight: For instance, the adversary can be given addi-
tional knowledge that increases the H2-entropy from her viewpoint. In fact, such
“spoiling-knowledge” arguments do not only show that the H2-bound is arbitrar-
ily far from tight, but also that the quantity H2 has some very counter-intuitive
properties that make it hard to handle.

We define two quantities that can be computed very easily and that represent
tight bounds on Hε

enc and Hε
ext, respectively. In a nutshell, we show that the

general case is as easy as the special independent-repetitions scenario—or even
easier when being looked at it in the right way. We also observe that, in general,
the answers to Questions 1 and 2 above are not at all equal.

1.3 Two New Quantities: Conditional Smooth Rényi Entropies and
Their Significance

For a distribution PXY and ε > 0, let3

Hε
0(X|Y ) := min

Ω
max

y
log

∣∣{x : PXΩ|Y =y(x) > 0}
∣∣ (1)

Hε
∞(X|Y ) := max

Ω
min

y
min

x

(
− log PXΩ|Y =y(x)

)
, (2)

where the first minimum/maximum ranges over all events Ω with probability
Pr[Ω] ≥ 1− ε.

First, we observe that these quantities are defined with respect to PXY in a
very simple way and are very easy to compute. Indeed, the involved optimiza-
tion problems can easily be solved by eliminating the smallest probabilities and
3 All logarithms in this paper are binary. PXΩ(x) is the probability that Ω occurs and

X takes the value x.



by cutting down the largest probabilities, respectively. On the other hand, they
provide the answers to Questions 1 and 2 (Section 3).

Answer to Question 1. For ε1 + ε2 = ε, we have

Hε
0(X|Y ) ≤ Hε

enc(X|Y ) ≤ Hε1
0 (X|Y ) + log(1/ε2) .

Answer to Question 2. For ε1 + ε2 = ε, we have

Hε1
∞(X|Y )− 2 log(1/ε2) ≤ Hε

ext(X|Y ) ≤ Hε
∞(X|Y ) .

We can say that—modulo a small error term—these results provide simple
functional representations of the important and natural operationally defined
quantities Hε

enc and Hε
ext. In a way, Hε

0 (i.e., Hε
enc) and Hε

∞ (Hε
ext) are two

natural generalizations of Shannon entropy to a cryptographic setting with an
adversary potentially not following any rules. In particular, both Hε

0 and Hε
∞

fall back to Shannon entropy if the distribution is of the form (PXY )n for large
n (Section 2.3). An example of an application of our results is the possibil-
ity of analyzing quantum key-agreement protocols or classical protocols based
on correlated information. For instance, our results allow for deriving a sim-
ple tight bound on the efficiency of key agreement by one-way communication4

(Section 3.3).

Hε
0 and Hε

∞ are special cases of smooth Rényi entropies. In Section 2.1 we give
the general definition of conditional and unconditional smooth Rényi entropies
of any order α, and in Section 2.2 we show that, roughly speaking, Hε

α is, for any
α (6= 1), equal to either Hε

0 (if α < 1) or Hε
∞ (α > 1) up to an additive constant.

Unconditional smooth Rényi entropy has been introduced in [19], applied in [18],
and is, implicitly, widely used in the randomness-extraction literature (see, e.g.,
[21]). We will show, however, that the conditional quantities, introduced in this
paper, are the ones that prove particularly useful in the context of cryptography.

If we have concluded that Hε
0 and Hε

∞ generalize Shannon entropy, then this
is, in addition, true because they have similar properties (Section 2.4). We sum-
marize the most important ones in a table. (Let ε, ε′, ε1, and ε2 be nonnegative
constants. The approximation “/” holds up to log(1/(ε− ε1 − ε2)).)

4 Our results thus also apply to fuzzy extractors [10] which are technically the same as
one-way secret-key agreement schemes (where the generation and the reproduction
procedures correspond to the algorithms of Alice and Bob, respectively).



Shannon entropy H New entropies Hε
0 and Hε

∞

Hε+ε′

0 (XY )−Hε′
0 (Y ) ≤ Hε

0(X|Y )
/ Hε1

0 (XY )−Hε2
∞ (Y )

chain rule H(X|Y ) = H(XY )−H(Y )
(Lemmas 4 and 5) Hε1

∞ (XY )−Hε2
0 (Y ) / Hε

∞(X|Y )

≤ Hε+ε′
∞ (XY )−Hε′

∞(Y )

Hε+ε′

0 (XY ) ≤ Hε
0(X) + Hε′

0 (Y )
sub-additivity H(XY ) ≤ H(X) + H(Y )

(Lemma 6) Hε
∞(XY ) ≤ Hε+ε′

∞ (X) + Hε′
0 (Y )

Hε
0(X) ≤ Hε

0(XY )
monotonicity H(X) ≤ H(XY )
(Lemma 7) Hε

∞(X) ≤ Hε
∞(XY )

Hence, all important properties of Shannon entropy also hold for the new
quantities generalizing it. In contrast, note that the important chain rule, for
instance, does not hold for the original, “non-smooth” Rényi entropies H0, H2,
and H∞. In fact, this drawback is one of the reasons for the somewhat limited
applicability of these quantities.

The proofs of the above properties of the new, more general, quantities
are—just as are their definitions—in fact simpler than the corresponding proofs
for Shannon entropy; they only apply counting arguments (instead of, for in-
stance, the concavity of the logarithm function and Jensen’s inequality). Since,
on the other hand, Shannon entropy is simply a special case of the new quantities
(for many independent repetitions), we obtain simpler proofs of the correspond-
ing properties of Shannon entropy for free.

Note that although we state that all smooth Rényi entropies come down to
either Hε

0 or Hε
∞, we give general definitions and statements on Hε

α for any
α. This can be convenient in contexts in which the entropies have a natural
significance, such as H2 in connection with two-universal hashing [2].

2 Smooth Rényi Entropy: Definition and Properties

2.1 Definition

We start by briefly reviewing the notion of smooth Rényi entropy [19] and then
generalize it to conditional smooth Rényi entropy.

Let X be a random variable on X with probability distribution PX . We
denote by Bε(PX) the set of non-negative functions QX with domain X such
that QX(x) ≤ PX(x), for any x ∈ X , and

∑
x∈X QX(x) ≥ 1 − ε. The ε-smooth



Rényi entropy of order α, for α ∈ (0, 1) ∪ (1,∞) and ε ≥ 0, is defined by5

Hε
α(X) :=

1
1− α

log rε
α(X) ,

where
rε
α(X) := inf

QX∈Bε(PX)

∑
x∈X

QX(x)α .

For α = 0 and α =∞, smooth Rényi entropy is defined by the limit values, i.e.,
Hε

0(X) := limα→0 Hε
α(X) and Hε

∞(X) := limα→∞Hε
α(X).

It follows directly from the definition that, for α < 1,

ε ≥ ε′ ←→ Hε
α(X) ≤ Hε′

α (X)

holds and, similarly, for α > 1,

ε ≥ ε′ ←→ Hε
α(X) ≥ Hε′

α (X) .

Moreover, for ε = 0, smooth Rényi entropy H0
α(X) is equal to “conventional”

Rényi entropy Hα(X) [20]. Similarly to conditional Shannon entropy, we define
a conditional version of smooth Rényi entropy.

Definition 1. Let X and Y be random variables with range X and Y, respec-
tively, and joint probability distribution PXY . The conditional ε-smooth Rényi
entropy of order α of X given Y , for α ∈ (0, 1)∪ (1,∞) and ε ≥ 0, is defined by

Hε
α(X|Y ) :=

1
1− α

log rε
α(X|Y )

where
rε
α(X|Y ) := inf

QXY ∈Bε(PXY )
max
y∈Y

∑
x∈X

QX|Y =y(x)α ,

and where QX|Y =y(x) := QXY (x, y)/PY (y), for any x ∈ X and y ∈ Y (with the
convention QX|Y =y(x) = 0 if PY (y) = 0).6 For α = 0 and α = ∞, we define
Hε

0(X|Y ) := limα→0 Hε
α(X|Y ) and Hε

∞(X|Y ) := limα→∞Hε
α(X|Y ).

For α = 0 and α =∞, Definition 1 reduces to (1) and (2), respectively. Note
that the infimum is in fact a minimum which is obtained by cutting away the
smallest probabilities or cutting down the largest, respectively.

5 The definition given here slightly differs from the original definition in [19]. However,
it turns out that this version is more appropriate for our generalization to conditional
smooth Rényi entropy (Definition 1).

6 Since
P

x QXY (x, y) is generally smaller than PY (y), the distribution QX|Y =y(·) :=
QXY (·, y)/PY (y) is not necessarily normalized.



2.2 Basic Properties

We will now derive some basic properties of smooth Rényi entropy. In particular,
we show that the smooth Rényi entropies can be split into two classes: It turns
out that for any value α < 1, Hε

α(X|Y ) is, up to an additive constant, equal to
Hε

0(X|Y ). Similarly, Hε
α(X|Y ), for α > 1, is essentially Hε

∞(X|Y ).
For this, we need a generalization, to the smooth case, of the fact that

α ≤ β ←→ Hα(X) ≥ Hβ(X) (3)

holds for any α, β ∈ [0,∞].

Lemma 1. Let X and Y be random variables. Then, for ε ≥ 0 and for α ≤ β <
1 or 1 < α ≤ β,

Hε
α(X|Y ) ≥ Hε

β(X|Y ) .

Proof. For any probability distribution Q on X , the right hand side of (3) can
be rewritten as

1−α

√∑
x∈X

Q(x)α ≥ 1−β

√∑
x∈X

Q(x)β . (4)

It is easy to verify that this inequality also holds for any (not necessarily nor-
malized) nonnegative function Q with

∑
x∈X Q(x) ≤ 1.

As mentioned above, the infimum in the definition of rε
α is actually a mini-

mum. Hence, there exists QXY ∈ Bε(PXY ) such that for any y ∈ Y,

rε
α(X|Y ) ≥

∑
x∈X

QX|Y =y(x)α

holds. When this is combined with (4), we find

1−α
√

rε
α(X|Y ) ≥ 1−α

√∑
x∈X

QX|Y =y(x)α ≥ 1−β

√∑
x∈X

QX|Y =y(x)β .

Because this holds for any y ∈ Y, we conclude

1−α
√

rε
α(X|Y ) ≥ 1−β

√
rε
β(X|Y ) .

The assertion now follows from the definition of smooth Rényi entropy. ut

Lemma 2 is, in some sense, the converse of Lemma 1. Since it is a straight-
forward generalization of a statement of [19]7, we omit the proof here.

Lemma 2. Let X and Y be random variables. Then, for ε ≥ 0, ε′ ≥ 0, and
α < 1, we have

Hε+ε′

0 (X|Y ) ≤ Hε
α(X|Y ) +

log(1/ε′)
1− α

and for α > 1,

Hε+ε′

∞ (X|Y ) ≥ Hε
α(X|Y )− log(1/ε′)

α− 1
.

7 The result of [19] corresponds to the special case where Y is a constant.



When Lemmas 1 and 2 are combined, we obtain the following characterization
of smooth Rényi entropy Hε

α(X|Y ), for α < 1, in terms of smooth Rényi entropy
of order 0:

Hε+ε′

0 (X|Y )− log(1/ε′)
1− α

≤ Hε
α(X|Y ) ≤ Hε

0(X|Y ) .

Similarly, for α > 1,

Hε+ε′

∞ (X|Y ) +
log(1/ε′)

α− 1
≥ Hε

α(X|Y ) ≥ Hε
∞(X|Y ) .

If ε = 0, this leads to an approximation of the (conventional) Rényi entropy
Hα, of any order α, in terms of the smooth Rényi entropies Hε

0 and Hε
∞. For

example, the collision entropy H2(X) cannot be larger than Hε
∞(X) + log(1/ε)

(whereas H2(X) ≈ 2H∞(X), for certain probability distributions PX).

2.3 Smooth Rényi Entropy as a Generalization of Shannon Entropy

Interestingly, one obtains as an immediate consequence of the asymptotic equipar-
tition property (AEP) (cf. [8]) that, for many independent realizations of a ran-
dom experiment, smooth Rényi entropy is asymptotically equal to Shannon en-
tropy. (Note that the same is not true at all for the usual Rényi entropies.)

Lemma 3. Let (X1, Y1), . . . , (Xn, Yn) be n independent pairs of random vari-
ables distributed according to PXY . Then we have, for any α 6= 1,

lim
ε→0

lim
n→∞

Hε
α(Xn|Y n)

n
= H(X|Y ) ,

where H(X|Y ) is the conditional Shannon entropy.

For a proof as well as a more detailed (non-asymptotic) version of this state-
ment, we refer to [12].

2.4 Shannon-like Properties of Smooth Rényi Entropy

Smooth Rényi entropy shares basic properties with Shannon entropy—this is
in contrast to the usual Rényi entropies, which do not have these properties.
Therefore, the smooth versions are much more natural and useful quantities in
many contexts, as we will see.

Chain Rule We first prove a property corresponding to the chain rule H(X|Y ) =
H(XY )−H(Y ) of Shannon entropy. More precisely, Lemmas 4 and 5 below are
two different inequalities, which, combined, give a chain rule for smooth Rényi
entropies of any order α.



Lemma 4. Let X and Y be random variables and let ε ≥ 0, ε′ ≥ 0, ε′′ ≥ 0.
Then, for α < 1 < β, we have

Hε+ε′+ε′′

α (X|Y ) < Hε′

α (XY )−Hε′′

β (Y ) +
β − α

(1− α)(β − 1)
log(1/ε) ,

and, similarly, for α > 1 > β,

Hε+ε′+ε′′

α (X|Y ) > Hε′

α (XY )−Hε′′

β (Y )− α− β

(α− 1)(1− β)
log(1/ε) .

Proof. It is easy to verify that the assertion can be rewritten as

log rε+ε′+ε′′

α (X|Y ) < log rε′

α (XY ) +
1− α

β − 1
log rε′′

β (Y ) +
β − α

β − 1
log(1/ε) . (5)

By the definition of rε′

α (XY ) there exists an event Ω1 with probability Pr[Ω1] =
1− ε′ such that rε′

α (XY ) =
∑

x∈X ,y∈Y PXY Ω1(x, y)α. Similarly, one can find an
event Ω2 such that Pr[Ω2] = 1 − ε′′ and rε′′

β (Y ) =
∑

y∈Y PY Ω2(y)β . Hence, the
event Ω := Ω1 ∩Ω2 has probability Pr[Ω] ≥ 1− ε′ − ε′′ and satisfies∑

x∈X ,y∈Y
PXY Ω(x, y)α ≤ rε′

α (XY )

as well as ∑
y∈Y

PY Ω(y)β ≤ rε′′

β (Y ) .

For any y ∈ Y, let r̄y :=
∑

x∈X PXΩ|Y =y(x)α. Since inequality (5) is independent
of the labeling of the values in Y, we can assume without loss of generality that
these are natural numbers, Y = {1, . . . , n}, for n := |Y|, and that the values r̄y

are arranged in increasing order, r̄y > r̄y′ −→ y > y′. Let ȳ ∈ Y be the minimum
value such that Pr[Y > ȳ, Ω] ≤ ε holds. In particular,

Pr[Y ≥ ȳ, Ω] = Pr[Y > ȳ − 1, Ω] > ε . (6)

Let Ω′ be the event that Y ≤ ȳ holds, i.e., we have Pr[Ω′, Ω] ≤ ε and,
consequently,

Pr[Ω′, Ω] = 1− Pr[Ω]− Pr[Ω′, Ω] ≥ 1− ε− ε′ − ε′′ .

Hence, since PXΩΩ′|Y =y(x) = 0 holds for any x ∈ X and y > ȳ, we have

rε+ε′+ε′′

α (X|Y ) ≤ max
y∈Y

∑
x∈X

PXΩΩ′|Y =y(x)α ≤ max
y≤ȳ

r̄y ≤ r̄ȳ .

Therefore, it remains to be proven that

log r̄ȳ < log
( ∑

x∈X ,y∈Y
PXY Ω(x, y)α

)
+

1− α

β − 1
log

(∑
y∈Y

PY Ω(y)β

)
− β − α

β − 1
log ε .

(7)



Let s :=
∑n

y=ȳ PY (y)α. Then,

r̄ȳ · s =
n∑

y=ȳ

r̄ȳPY (y)α ≤
n∑

y=ȳ

r̄yPY (y)α ≤
n∑

y=1

r̄yPY (y)α , (8)

where the first inequality follows from the fact that r̄y ≥ r̄ȳ holds for all y ≥ ȳ.
When the definition of r̄y is inserted into inequality (8), we get

r̄ȳ ≤
1
s

∑
x∈X ,y∈Y

PXY Ω(x, y)α

i.e.,

log r̄ȳ ≤ log
( ∑

x∈X ,y∈Y
PXY Ω(x, y)α

)
− log s . (9)

In order to find a bound on s, let py := PY Ω(y), p := β−α
β−1 , q := β−α

1−α , and

γ := α(β−1)
β−α , i.e., γp = α and (1 − γ)q = β. We then have 1

p + 1
q = 1 and can

apply Hölder’s inequality, yielding

p
√

s · q

√∑
y∈Y

PY Ω(y)β ≥ p

√√√√ n∑
y=ȳ

(py)α · q

√√√√ n∑
y=ȳ

(py)β

= p

√√√√ n∑
y=ȳ

(
(py)γ

)p · q

√√√√ n∑
y=ȳ

(
(py)1−γ

)q

≥
n∑

y=ȳ

(py)γ(py)1−γ =
n∑

y=ȳ

py = Pr[Y ≥ ȳ, Ω] > ε .

Hence,

log s > p log ε− p

q
log

(∑
y∈Y

PY Ω(y)β

)
.

Combining this with (9) implies (7) and, thus, concludes the proof. ut

Lemma 5. Let X and Y be random variables and let ε ≥ 0, ε′ ≥ 0. Then, for
any α < 1, we have

Hε+ε′

α (XY ) ≤ Hε
α(X|Y ) + Hε′

α (Y ) ,

and, similarly, for α > 1,

Hε+ε′

α (XY ) ≥ Hε
α(X|Y ) + Hε′

α (Y ) .

Proof. Let Ω be an event with Pr[Ω] ≥ 1− ε such that

max
y

∑
x∈X

PXΩ|Y =y(x)α ≤ rε
α(X|Y ) .



Similarly, let Ω′ be an event with Pr[Ω′] ≥ 1 − ε′ such that Ω′ ↔ Y ↔ (X, Ω)
is a Markov chain and ∑

y∈Y
PY Ω′(y)α ≤ rε

α(Y ) .

Since Pr[Ω,Ω′] ≥ 1− ε− ε′ holds, we have

rε+ε′

α (XY ) ≤
∑

x∈X ,y∈Y
PXY ΩΩ′(x, y)α .

The assertion thus follows from∑
x∈X ,y∈Y

PXY ΩΩ′(x, y)α =
∑

x∈X ,y∈Y
PY Ω′(y)αPXΩ|Y =y(x)α

≤
( ∑

y∈Y
PY Ω′(y)α

)(
max
y∈Y

∑
x∈X

PXΩ|Y =y(x)α

)
. ut

It is easy to see that the statements of Lemma 4 and Lemma 5 still hold if
all entropies are conditioned on an additional random variable Z. For example,
the statement of Lemma 5 then reads, for α < 1,

Hε+ε′

α (XY |Z)−Hε′

α (Y |Z) ≤ Hε
α(X|Y Z) (10)

and for α > 1,

Hε+ε′

α (XY |Z)−Hε′

α (Y |Z) ≥ Hε
α(X|Y Z) . (11)

Sub-Additivity The Shannon entropy H(XY ) of a pair of random variables
X and Y cannot be larger than the sum H(X)+H(Y ). The following statement
generalizes this sub-additivity property to smooth Rényi entropy. The proof of
this statement is straightforward and, in fact, very similar to the (simple) proof
of Lemma 5.

Lemma 6. Let X and Y be random variables and let ε ≥ 0. Then, for any
α < 1,

Hε+ε′

α (XY ) ≤ Hε
α(X) + Hε′

0 (Y )

holds. Similarly, for α > 1, we have

Hε
α(XY ) ≤ Hε+ε′

α (X) + Hε′

0 (Y ) .

Monotonicity The uncertainty on a pair of random variables X and Y cannot
be smaller than the uncertainty on X alone. This is formalized by the following
lemma. The proof is again similar to Lemma 5.

Lemma 7. Let X and Y be random variables and let ε ≥ 0. Then, for α 6= 1,
we have

Hε
α(X) ≤ Hε

α(XY ) .

In particular, the smooth Rényi entropy does not increase when a function
is applied:

Hε
α(f(X)) ≤ Hε

α(X) . (12)



Independence, Conditional Independence, and Markov Chains Condi-
tioning on independent randomness cannot have any effect on the entropy.

Lemma 8. Let X and Y be independent random variables and let ε ≥ 0, ε′ ≥ 0.
Then, for any α 6= 1, we have

Hε
α(X|Y ) = Hε

α(X) .

This statement can be generalized to random variables X, Y , and Z such
that X ↔ Z ↔ Y is a Markov chain:

Hε
α(X|Y Z) = Hε

α(X|Z) .

When this is combined with inequalities (10) and (11), we obtain, for α < 1,

Hε+ε′

α (XY |Z) ≤ Hε
α(X|Z) + Hε′

α (Y |Z)

and, for α > 1,
Hε+ε′

α (XY |Z) ≥ Hε
α(X|Z) + Hε′

α (Y |Z) .

3 Smooth Rényi Entropy in Cryptography

3.1 Randomness Extraction and Privacy Amplification

The problem of extracting uniform randomness from a non-uniform source has
first been studied in [3, 13], and later been defined explicitly in [16]. Today,
randomness extraction is a well-known and widely-used concept in theoretical
computer science and, in particular, cryptography. A (strong) extractor is a
function f which takes as input a random variable X and some additional uni-
formly distributed randomness R and is such that if X satisfies a certain entropy
condition, the output S := f(X, R) is almost independent of R and uniformly
distributed.

For two random variables Z and W with joint distribution PZW , we define
the distance from uniform by d(Z|W ) := 1

2δ(PZW , PU × PW ) where PU is the
uniform distribution on the range of Z and where δ(·, ·) denotes the statistical
distance.8

Definition 2. A strong (τ, κ, ε)-extractor on a set X is a function with domain
X × R (for a set R) and range U of size |U| = 2τ such that, for any random
variable X on X satisfying H∞(X) ≥ κ and R uniformly distributed over R,
d(f(X, R)|R) ≤ ε holds.

The following result has originally been proven in [13] based on two-universal
hashing (where the randomness R is used to select a function from a two-
universal9 class of functions.). Later, similar statements have been shown in [2]
and [11].10

8 The statistical distance between two probability distributions P and Q is defined by
δ(P, Q) := 1

2

P
v |P (v)−Q(v)|.

9 A two-universal class of functions from Z toW is a family F of functions f : Z 7→ W
such that for any z 6= z′ and for f chosen at random from F , Pr[f(z) = f(z′)] ≤ 1

|W| .
10 For a simple proof of Lemma 9, see, e.g., [14], p. 20.



Lemma 9 (Leftover hash lemma). For any κ > τ , there exists a strong
(τ, κ, 2−(κ−τ)/2)-extractor.

The following measure is closely related to smooth entropy as defined in [7]
and [5]. For a distribution PXY , it quantifies the amount of uniform randomness,
conditioned on Y , which can be extracted from X.

Definition 3. Let X and Y be random variables and let ε ≥ 0. The ε-extractable
randomness of X conditioned on Y is

Hε
ext(X|Y ) := max

U : ∃f∈Γ ε
XY (X→U)

log |U| ,

where Γ ε
XY (X → U) denotes the set of functions f from X × R (for some set

R) to U such that d(f(X, R)|Y R) ≤ ε holds, for R independent of (X, Y ) and
uniformly distributed on R.

As mentioned in the introduction, smooth Rényi entropy equals the amount
of extractable uniform randomness, up to some small additive constant. Here,
the lower bound follows directly from the leftover hash lemma and the definition
of Hε

∞. The upper bound, on the other hand, is a special case of the bound on
one-way key agreement derived in Section 3.3.

Theorem 1. Let X and Y be random variables and let ε ≥ 0, ε′ ≥ 0. Then we
have

Hε
∞(X|Y )− 2 log(1/ε′) ≤ Hε+ε′

ext (X|Y ) ≤ Hε+ε′

∞ (X|Y ) .

Using Lemma 2, we can, in particular, conclude that Rényi entropy of order
α, for any α > 1, is a lower bound on the number of uniform random bits that
can be extracted, i.e.,

Hα(X|Y )− log(1/ε)
α− 1

− 2 log(1/ε′) ≤ Hε+ε′

ext (X|Y ) .

3.2 Data Compression, Error Correction, and Information
Reconciliation

Another fundamental property of a probability distribution P is the minimum
length of an encoding C = E(X) of a random variable X with PX = P such
that X can be retrieved from C with high probability. (A similar quantity can be
defined for a set P of probability distributions.) As a motivating example, con-
sider the following setting known as information reconciliation [4].11 An entity
(Alice) holds a value X which she wants to transmit to another (Bob), using τ
bits of communication C. Clearly the minimum number τ of bits needed depends
on the initial knowledge of Bob, which might be specified by some additional
random variable Y (not necessarily known to Alice). From Bob’s point of view,
11 In certain cryptographic applications, (one-way) information reconciliation schemes

are also called secure sketches [10] (where Bob’s procedure is the recovery function).



the random variable X is thus initially distributed according to PX|Y =y for some
y ∈ Y. Consequently, in order to guarantee that Bob can reconstruct the value of
X with high probability, the error correcting information C sent by Alice must
be useful for most of the distributions PX|Y =y.

For the following, note that any probabilistic encoding function E corre-
sponds to a deterministic function e taking as input some additional randomness
R, i.e., E(X) = e(X, R).

Definition 4. A (τ, κ, ε)-encoding on a set X is a pair of functions (e, g) to-
gether with a random variable R with range R where e, the encoding function, is
a mapping from X ×R to C, for some set C of size |C| = 2τ , and g, the decoding
function, is a mapping from C × R to X such that, for any random variable X
with range X satisfying H0(X) ≤ κ, Pr[g(e(X, R), R) 6= X] ≤ ε holds.

The following result has originally been shown in the context of information
reconciliation [4].

Lemma 10. For any τ > κ, there exists a (τ, κ, 2−(τ−κ))-encoding.

For a distribution PXY , the measure defined below quantifies the minimum
length of an encoding C = e(X, R) of X such that X can be reconstructed from
C, Y , and R (with high probability).

Definition 5. Let X and Y be random variables and let ε ≥ 0. The ε-encoding
length of X given Y is

Hε
enc(X|Y ) := min

C: ∃e∈Λε
XY (X→C)

log |C|

where Λε
XY (X → C) denotes the set of function e from X ×R (for some set R)

to C such that there exists a decoding function g from Y × C ×R to X such that
Pr[g(Y, e(X, R), R) 6= X] ≤ ε holds, for R independent of (X, Y ) and uniformly
distributed on R.

Similarly to the amount of extractable randomness, smooth Rényi entropy
can also be used to characterize the minimum encoding length.

Theorem 2. Let X and Y be random variables and let ε ≥ 0, ε′ ≥ 0. Then we
have

Hε+ε′

0 (X|Y ) ≤ Hε+ε′

enc (X|Y ) ≤ Hε
0(X|Y ) + log(1/ε′) .

3.3 A Tight Bound for Key Agreement by One-Way Communication

As an application of Theorems 1 and 2, we prove tight bounds on the maximum
length of a secret key that can be generated from partially secret and weakly
correlated randomness by one-way communication.

Let X, Y , and Z be random variables. For ε ≥ 0, define

Mε(X;Y |Z) := sup
V↔U↔X↔(Y,Z)

Hε
∞(U |ZV )−Hε

0(U |Y V ) . (13)



Note that this is equivalent to12

Mε(X;Y |Z) = sup
(U,V )↔X↔(Y,Z)

Hε
∞(U |ZV )−Hε

0(U |Y V ) . (14)

Consider now a setting where two parties, Alice and Bob, hold information
X and Y , respectively, while the knowledge of an adversary Eve is given by Z.
Additionally, they are connected by a public but authenticated one-way commu-
nication channel from Alice to Bob, and their goal is to generate an ε-secure key
pair (SA, SB). Let Sε(X → Y ||Z) be the maximum length of an ε-secure key that
can be generated in this situation. Here, ε-secure means that, except with prob-
ability ε, Alice and Bob’s keys are equal to a perfect key which is uniformly dis-
tributed and independent of Eve’s information. Note that, if Pr[SA 6= SB ] ≤ ε1

and d(SA|W ) ≤ ε2, where W summarizes Eve’s knowledge after the protocol
execution, then the pair (SA, SB) is ε-secure, for ε = ε1 + ε2.

Theorem 3. Let X, Y , and Z be random variables. Then, for ε ≥ 0 and ε′ =
Θ(ε), we have

Mε′(X;Y |Z)−O(log(1/ε′)) ≤ Sε(X → Y ||Z) ≤Mε(X;Y |Z) .

Proof. We first show that the measure Mε′(X;Y |Z) is a lower bound on the
number of ε-secure bits that can be generated. To see this, consider the following
simple three-step protocol.

1. Pre-processing: Alice computes U and V from X. She sends V to Bob and
keeps U .

2. Information reconciliation: Alice sends error-correcting information to Bob.
Bob uses this information together with Y and V to compute a guess Û of
U .

3. Privacy amplification: Alice chooses a hash function F and sends a descrip-
tion of F to Bob. Alice and Bob then compute SA := F (U) and SB := F (Û),
respectively.

It follows immediately from the analysis of information reconciliation and
privacy amplification that the parameters of the protocol (i.e., the amount of
error correcting information and the size of the final keys) can be chosen such
that the final keys have length Mε′(X;Y |Z) and the key pair (SA, SB) is ε-
secure.

On the other hand, it is easy to see that any measure Mε(X;Y |Z) is an
upper bound on the amount of key bits that can be generated if the following
conditions, which imply that the quantity cannot increase during the execution
of any protocol, are satisfied:
12 To see that the measure defined by (14) is not larger than the measure defined

by (13), observe that the entropies on the right-hand side of (14) do not change
when the random variable U is replaced by U ′ := (U, V ). This random variable U ′

then satisfies V ↔ U ′ ↔ X ↔ (Y, Z).



1. Mε(X;Y |Z) ≥Mε(X ′;Y |Z) for any X ′ computed from X.
2. Mε(X;Y |Z) ≥Mε(X;Y ′|Z) for any Y ′ computed from Y .
3. Mε(X;Y |Z) ≥Mε(X;Y C|ZC) for any C computed from X.
4. Mε(X;Y |Z) ≤Mε(X;Y |Z ′) for any Z ′ computed from Z.
5. Mε(SA;SB |W ) ≥ n if the pair (SA, SB) is ε-secure with respect to an ad-

versary knowing W .

The measure Mε(X;Y |Z) defined by (13) does in fact satisfy these properties. It
is thus an upper bound on the length of an ε-secure key which can be generated
by Alice and Bob.

Property 1 holds since any pair of random variables U and V that can be
computed from X ′ can also be computed from X.

Property 2 follows from Hε
0(A|BC) ≤ Hε

0(A|B).
Property 3 holds since Mε(X;Y C|ZC) can be written as the supremum over

U and V ′ of Hε
∞(U |ZV ′) −Hε

0(U |Y V ′), where V ′ is restricted to values of
the form V ′ = (V,C).

Property 4 follows from Hε
∞(A|BC) ≤ Hε

∞(A|B).
Property 5 follows from Mε(SA;SB |Z) ≥ Hε

∞(SA|Z)−Hε
0(SA|SB), Hε

∞(SA|Z) ≥
n, and Hε

0(SA|SB) = 0.
ut

4 Concluding Remarks

We have analyzed data compression and randomness extraction in the crypto-
graphic scenario where the assumption, usually made in classical information and
communication theory, that the pieces of information stem from a large number
of repetitions of a random experiment, has to be dropped. We have shown that
Shannon entropy—the key quantity in independent-repetitions settings—then
generalizes, depending on the context, to two different entropy measures Hε

0 and
Hε
∞. These new quantities, which are tight bounds on the optimal length of the

compressed data and of the extracted random string, respectively, are very sim-
ple—in fact, simpler than Shannon information. Indeed, they can be computed
from the distribution simply by leaving away the smallest probabilities or cut-
ting down the largest ones, respectively. Moreover, the new quantities share all
central properties of Shannon entropy.

An application of our results is the possibility of a simple yet general and tight
analysis of protocols for quantum (see, e.g., [17]) and classical key agreement,
where no assumption on an adversary’s behavior has to be made. For instance, we
give a simple tight bound for the possibility and efficiency of secret-key agreement
by one-way communication.

It is conceivable that the new quantities have further applications in cryp-
tography and in communication and information theory in general. We suggest
as an open problem to find such contexts and applications.
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