Smooth Rényi Entropy and Applications

Renato Renner ¹
Department of Computer Science
ETH Zürich, Switzerland
e-mail renner@inf.ethz.ch

Abstract — We introduce a new entropy measure, called smooth $R\acute{e}nyi$ entropy. The measure characterizes fundamental properties of a random variable Z, such as the amount of uniform randomness that can be extracted from Z or the minimum length of an encoding of Z.

I. Definition and Properties

For a probability distribution P and $\varepsilon \geq 0$, let $\mathcal{B}^{\varepsilon}(P) := \{Q : \delta(P,Q) \leq \varepsilon\}$ be the set of probability distributions which are ε -close to P, with respect to the variational distance δ .³

Definition I.1 Let P be a probability distribution with range \mathcal{Z} , let $\alpha \in [0, \infty]$, and let $\varepsilon \geq 0$. The ε -smooth Rényi entropy (of order α) of P is⁴

$$H_{\alpha}^{\varepsilon}(P) := \frac{1}{1-\alpha} \inf_{Q \in \mathcal{B}^{\varepsilon}(P)} \log_2 \left(\sum_{z \in \mathcal{Z}} Q(z)^{\alpha} \right) .$$

For a random variable Z with probability distribution P_Z , $H^{\varepsilon}_{\alpha}(P_Z)$ is also denoted as $H^{\varepsilon}_{\alpha}(Z)$.

The smooth Rényi entropy H_{α}^{ε} inherits many of its properties from conventional Rényi entropy H_{α} as introduced in [4]. E.g., for any $\varepsilon \geq 0$,

$$H_{\alpha}^{\varepsilon}(Z) \ge H_{\beta}^{\varepsilon}(Z)$$
 (1)

if $\alpha < \beta \le 1$ or $1 < \alpha \le \beta$. Moreover, for the case of a great number of i.i.d. random variables, the smooth Rényi entropy (of any order α) approaches the Shannon entropy.

Lemma I.2 Let $Z^n := (Z_1, \ldots, Z_n)$ be an n-tuple of independent random variables Z_i distributed according to P_Z . Then, for any $\alpha \in [0, \infty]$,

$$\lim_{\varepsilon \to 0} \lim_{n \to \infty} \frac{H^\varepsilon_\alpha(Z^n)}{n} = H(Z) \ .$$

The following lemma, together with (1), implies that the smooth Rényi entropy $H^{\varepsilon}_{\alpha}(Z)$ of a random variable Z, for any order $\alpha \in [0, \infty]$, is—up to an additive constant—determined by $H^{\varepsilon}_{0}(Z)$ and $H^{\varepsilon}_{\infty}(Z)$. We will see in Section II that these two entropy measures also characterize many natural properties of Z (e.g., the amount of extractable randomness or the encoding length). This yields a new interpretation of the Shannon entropy H(Z) which is the common value of these (natural) quantities, for the special case where Z consists of many independent repetitions (cf. Lemma I.2).

Lemma I.3 Let Z be a random variable and let $\varepsilon > 0$. Then,

$$H_{\infty}^{\varepsilon}(Z) \ge H_{\alpha}(Z) - \frac{1}{\alpha - 1} \log(1/\varepsilon) \qquad \text{for } \alpha > 1$$
$$H_{0}^{\varepsilon}(Z) \le H_{\alpha}(Z) + \frac{1}{1 - \alpha} \log(1/\varepsilon) \qquad \text{for } \alpha < 1 \ .$$

and

Stefan Wolf²

Département d'Informatique et R.O. Université de Montréal, Canada

e-mail: wolf@iro.umontreal.ca

II. Applications

A fundamental property of a random variable Z is the amount of (almost) uniform randomness that can be extracted from Z (see, e.g. [2] and [1]) by application of a randomly chosen function F (called extractor [3]).⁵ For a set \mathcal{P} of probability distributions, the ε -extractable uniform randomness of \mathcal{P} is defined as the amount of randomness that can be extracted from a random variable Z with any probability distribution $P_Z \in \mathcal{P}$, where the actual distribution P_Z does not have to be known. Formally,⁶

$$H^\varepsilon_{\mathrm{ext}}(\mathcal{P}) := \max_{U} \left(\log_2 |U|\right) \,,$$

where the maximum ranges over all uniform random variables U such that there exists a random function F satisfying the following: For any random variable Z with $P_Z \in \mathcal{P}$, the pair (F(Z), F) is ε -close to the pair (U, F).

Smooth Rényi entropy quantifies the amount of extractable uniform randomness, up to some small additive constant.

Theorem II.1 For any set \mathcal{P} of probability distributions with range \mathcal{Z} and $\varepsilon, \varepsilon_1, \varepsilon_2 \in \mathbb{R}^+$ with $\varepsilon_1 + \varepsilon_2 = \varepsilon$,

$$\min_{P \in \mathcal{D}} (H_{\infty}^{\varepsilon_1}(P)) - 2\log(1/\varepsilon_2) \le H_{\text{ext}}^{\varepsilon}(\mathcal{P}) \le \min_{P \in \mathcal{D}} (H_{\infty}^{\varepsilon}(P)).$$

In particular, it follows from Lemma I.3 that the conventional Rényi entropy $\min_{P\in\mathcal{P}}(H_{\alpha}(P))$, for any $\alpha>1$, is a lower bound for $H_{\mathrm{ext}}^{\varepsilon}(\mathcal{P})$ (up to some additive constant).

Another basic property of a random variable Z is the minimum length to which one can compress Z. The ε -encoding length $H_{\mathrm{enc}}^{\varepsilon}(\mathcal{P})$ is defined as the number of bits needed for encoding a random variable Z distributed according to any $P_Z \in \mathcal{P}$ —where the encoding is independent of P_Z —such that Z can be recovered with probability at least $1-\varepsilon$. Then, similarly as in Theorem II.1, the smooth Rényi entropy of order 0, $\max_{P \in \mathcal{P}}(H_0^{\varepsilon}(P))$, can be shown equal to $H_{\mathrm{enc}}^{\varepsilon}(\mathcal{P})$, up to some small additive constant. Thus, again by Lemma I.3, the (conventional) Rényi entropy of order α , for any $\alpha < 1$, yields an upper bound for the encoding length.

References

- C. Cachin Smooth entropy and Rényi entropy. In Adv. in Cryptology — EUROCRYPT '97, vol. 1233 of Lecture Notes in Computer Science, pp. 193–208. Springer-Verlag, 1997.
- [2] R. Impagliazzo, L. A. Levin, and M. Luby. Pseudo-random generation from one-way functions. In Proc. of the Twenty-First Annual ACM Symp. on Theory of Computing, pp. 12–24, 1989.
- [3] N. Nisan and D. Zuckerman. Randomness is linear in space. Journal of Computer and System Sciences, 52:43–52, 1996.
- [4] A. Rényi. On measures of entropy and information. In Proc. of the 4th Berkeley Symp. on Math. Statistics and Prob., vol. 1, pp. 547–561. Univ. of Calif. Press, 1961.

¹Supported by SNF No. 20-66716.01.

²Supported by Canada's NSERC.

 $^{{}^{3}\}delta(P,Q) := (\sum_{z} |P(z) - Q(z)|)/2.$

⁴If $\alpha = 0$ or $\alpha = \infty$, $H_{\alpha}^{\varepsilon}(P)$ is defined by the continuous extension, $H_{\alpha}^{\varepsilon}(P) := \lim_{\beta \to \alpha} H_{\beta}^{\varepsilon}(P)$. For $\alpha = 1$, set $H_{1}^{\varepsilon}(P) := H(P)$.

 $^{^5{\}rm In}$ a cryptographic context, randomness extraction is also known as privacy amplification.

 $^{^{6}|}U|$ denotes the size of the range of U.