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Abstract — We introduce a new entropy measure,

called smooth Rényi entropy. The measure character-

izes fundamental properties of a random variable Z,

such as the amount of uniform randomness that can

be extracted from Z or the minimum length of an

encoding of Z.

I. Definition and Properties

For a probability distribution P and ε ≥ 0, let Bε(P ) :=
{Q : δ(P, Q) ≤ ε} be the set of probability distributions which
are ε-close to P , with respect to the variational distance δ.3

Definition I.1 Let P be a probability distribution with range

Z, let α ∈ [0,∞], and let ε ≥ 0. The ε-smooth Rényi entropy
(of order α) of P is4

Hε
α(P ) :=

1

1 − α
inf

Q∈Bε(P )
log2

 

X

z∈Z

Q(z)α

!

.

For a random variable Z with probability distribution PZ ,

Hε
α(PZ) is also denoted as Hε

α(Z).

The smooth Rényi entropy Hε
α inherits many of its proper-

ties from conventional Rényi entropy Hα as introduced in [4].
E.g., for any ε ≥ 0,

Hε
α(Z) ≥ Hε

β(Z) (1)

if α < β ≤ 1 or 1 < α ≤ β. Moreover, for the case of a great
number of i.i.d. random variables, the smooth Rényi entropy
(of any order α) approaches the Shannon entropy.

Lemma I.2 Let Zn := (Z1, . . . , Zn) be an n-tuple of indepen-

dent random variables Zi distributed according to PZ . Then,

for any α ∈ [0,∞],

lim
ε→0

lim
n→∞

Hε
α(Zn)

n
= H(Z) .

The following lemma, together with (1), implies that the
smooth Rényi entropy Hε

α(Z) of a random variable Z, for any
order α ∈ [0,∞], is—up to an additive constant—determined
by Hε

0 (Z) and Hε
∞(Z). We will see in Section II that these

two entropy measures also characterize many natural prop-
erties of Z (e.g., the amount of extractable randomness or
the encoding length). This yields a new interpretation of the
Shannon entropy H(Z) which is the common value of these
(natural) quantities, for the special case where Z consists of
many independent repetitions (cf. Lemma I.2).

Lemma I.3 Let Z be a random variable and let ε > 0. Then,

Hε
∞(Z) ≥ Hα(Z) −

1

α − 1
log(1/ε) for α > 1

and Hε
0 (Z) ≤ Hα(Z) +

1

1 − α
log(1/ε) for α < 1 .
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3δ(P, Q) := (

P

z |P (z) − Q(z)|)/2.
4If α = 0 or α = ∞, Hε

α(P ) is defined by the continuous exten-
sion, Hε

α(P ) := limβ→α Hε
β
(P ). For α = 1, set Hε

1(P ) := H(P ).

II. Applications

A fundamental property of a random variable Z is the
amount of (almost) uniform randomness that can be extracted
from Z (see, e.g. [2] and [1]) by application of a randomly cho-
sen function F (called extractor [3]).5 For a set P of probabil-
ity distributions, the ε-extractable uniform randomness of P
is defined as the amount of randomness that can be extracted
from a random variable Z with any probability distribution
PZ ∈ P, where the actual distribution PZ does not have to be
known. Formally,6

Hε
ext(P) := max

U

`

log2 |U |
´

,

where the maximum ranges over all uniform random variables
U such that there exists a random function F satisfying the
following: For any random variable Z with PZ ∈ P, the pair
(F (Z), F ) is ε-close to the pair (U, F ).

Smooth Rényi entropy quantifies the amount of extractable
uniform randomness, up to some small additive constant.

Theorem II.1 For any set P of probability distributions with

range Z and ε, ε1, ε2 ∈ R
+ with ε1 + ε2 = ε,

min
P∈P

`

Hε1

∞ (P )
´

− 2 log(1/ε2) ≤ Hε
ext(P) ≤ min

P∈P

`

Hε
∞(P )

´

.

In particular, it follows from Lemma I.3 that the conven-
tional Rényi entropy minP∈P(Hα(P )), for any α > 1, is a
lower bound for Hε

ext(P) (up to some additive constant).
Another basic property of a random variable Z is the min-

imum length to which one can compress Z. The ε-encoding

length Hε
enc(P) is defined as the number of bits needed for

encoding a random variable Z distributed according to any
PZ ∈ P—where the encoding is independent of PZ—such that
Z can be recovered with probability at least 1− ε. Then, sim-
ilarly as in Theorem II.1, the smooth Rényi entropy of order
0, maxP∈P(Hε

0(P )), can be shown equal to Hε
enc(P), up to

some small additive constant. Thus, again by Lemma I.3, the
(conventional) Rényi entropy of order α, for any α < 1, yields
an upper bound for the encoding length.
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5In a cryptographic context, randomness extraction is also
known as privacy amplification.

6|U | denotes the size of the range of U .


