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A New Measure for Conditional Mutual Information and its Properties

Renato Renner!

Abstract — We propose a new conditional mutual
information measure, called the reduced intrinsic in-
formation, and show its significance in the context of
determining the number of secret-key bits that can
be extracted from distributed information by public
communication.

I. THE REDUCED INTRINSIC INFORMATION

The secret-key rate S(X;Y||Z) of a tripartite probability
distribution Pxyz is the rate at which two parties, knowing
realizations of X and Y, respectively, can generate, by pub-
lic communication, common bits about which a third party,
who has access to Z, remains almost completely ignorant [1].
It is a fundamental problem to express S(X;Y||Z) in terms
of Pxyz. In [2], the intrinsic information I(X;Y | Z) :=
ianZ‘Z(I(X; Y|Z)) was shown to be an upper bound on
S(X;Y||Z). (Here, the infimum is taken over all possible ways
the third party Eve can process her information Z.)

The following facts were shown in [3] and imply that this
bound is, however, not tight: First, we have for all Pxy zy that
S(X;Y||ZU) > S(X;Y||Z) — H(U) holds, whereas, secondly,
the intrinsic information does not have this property which we
will call smoothness (and which the usual mutual information
I(X;Y|Z) clearly has). Intuitively speaking, I(X;Y|Z) fails
to be smooth since additional side information U can also
help the adversary to use the previous information Z more
effectively, thereby reducing the information shared by the
legitimate partners by more than just H(U).

These observations lead to a stronger upper bound on
S(X;Y||Z), namely the largest smooth lower bound on the
intrinsic information, which we call reduced intrinsic informa-
tion.

Definition 1. The reduced intrinsic information between X
andY, given Z, is

I(X;Y]|2) = i‘nf (mf (I(X;Y|Z))+H(U)>
U|XYZ Z|ZzU

II. PROPERTIES

According to the above discussion, the reduced intrinsic
information measure is an upper bound on the secret-key rate,

S(X;Y2) < I(X3Y]1Z) .

As sketched already, it can be strictly smaller than the pre-
vious bound I(X;Y | Z) because possible refinements, using
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some side information U, of Eve’s strategy for minimizing the
correlation shared by the other parties are taken into account.
It is important to note, however, that Eve, knowing Z but
not U, cannot actually apply these strategies; their mere ex-
istence, however, allows for improving the bound.

Theorem 1. Let Pxyz be a distribution, and let
E1,E2,...,En be disjoint events with probabilities Prob [£;] =
pi such that Y. pi = 1. Then

I(X;Y112) <Y pil(X;YLZ|€) + H([p1,pas -, pal) -
=1

In order to derive, from Theorem 1, the mentioned fact
that I(X;Y || Z) can be strictly smaller than I(X;Y | Z),
we consider the special case where Pxyz is composed in a
certain way by two distributions—for which Eve’s strategies
of minimizing the information are a priori different. Then,
I1(X;Y]] Z) takes “adaptive” strategies, i.e., separate mini-
mization, into account, whereas I(X; Y] Z) only allows for one
global minimization, i.e., one single channel Pz z-

Corollary 2. Let Pxyz be a distribution, let X and ) be the
ranges of X and Y, respectively, let X = Xo U X1 (where Xo
and X1 are disjoint) and analogously Y = Yo U V1, such that
Pxyz(z,y,2) =0 if x € Xy and y € V1 or vice versa, and
let p = Prob [z € Xp]. We denote by PYy; = Pxoyozo the
distribution Pxy z|e,, and analogously for £1. Then we have

I(X;Y|lZ) < p- _inf (I(XO;Y°|7°)>+
70|20
(1=p)- inf (1(X5Y'(ZY)) +h(p) -
Zliz1

Based on the bound of Corollary 2 it is not difficult to find
distributions for which I(X;Y|| Z) < I(X;Y] Z) holds [3].
In combination with another result of [3], stating that the
intrinsic information I(X;Y | Z) is a lower bound on the
rate at which secret-key bits are required to generate a secret
correlation Pxyz by pubic communication, the gap between
I(X;Y]Z) and I(X;Y] | Z) implies that some distributions do
not allow for the extraction of the same number of secret-key
bits as are needed to generate them (in fact, these quanti-
ties can differ by an arbitrarily large factor). Interestingly, a
similar phenomenon is already well-known for mixed bipartite
quantum states.
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