
Diss. ETH No. 17102

Approaches to Efficient and Robust
Cryptographic Protocols

A dissertation submitted to

ETH ZURICH

for the degree of
Doctor of Sciences

presented by

Bartosz Jan Przydatek
Dipl. Informatik-Ing. ETH

born on August 23, 1972, in Poland
citizen of Poland

accepted on the recommendation of

Prof. Dr. Ueli Maurer, examiner
Prof. Dr. Ronald Cramer, co-examiner

Dr. Martin Hirt, co-examiner

2007





Acknowledgments

I would like to thank my advisor, Ueli Maurer, not only for conveying
to me a passion for cryptography, but also for his guidance, patience,
and generosity. I am very grateful to Ronald Cramer and Martin Hirt for
agreeing to be co-referees of this thesis. The results presented here stem
from collaborations with Martin, Remo Meier, Jesper Nielsen, and Jürg
Wullschleger, and I would like to thank them for sharing their thoughts
and ideas with me. Furthermore, I would like to thank Danny Harnik
and Omer Reingold for encouraging comments on parts of this work.

During my graduate studies at CMU and at ETH I have greatly en-
joyed the pleasant atmosphere, stimulating discussions and continued
support also from many other collaborators, colleagues and friends, in-
cluding Yevgeniy Dodis, Stefan Dziembowski, Matthias Fitzi, Abie Flax-
man, Anya Goldenberg, Michelle Grant, Thomas Holenstein, Yan Karklin,
Robert König, Anton Likhodedov, Aria Llitjós, Rob Miller, Adrian Per-
rig, Krzysztof Pietrzak, Renato Renner, Peter Richter, Sanjit Seshia, Jo-
han Sjödin, Dawn Song, Reto Strobl, Stefano Tessaro, Douglas Wikström,
Stefan Wolf, Ke Yang, Oskar Ziȩta, Martin Zinkevich, and many others.
Special thanks go to Peter, Sanjit, and Rob, with whom I have shared
my office at CMU, and to Krzysztof and Johan, my office-mates at ETH.
Moreover, I owe many thanks to Manuel Blum, Ernst Specker, and Emo
Welzl, from whom I have learned a lot about science and about life.

I would like also to thank Christian Cachin, Jan Camenisch, and Rafi
Ostrovsky, for their hospitality and great mentoring during my intern-
ships at IBM Research and at DIMACS.

I am deeply grateful to my parents, to my sister, and to other members
of my family for their encouragement and unconditional support.

Finally, and above all, I would like to thank Drzach — for everything!

Zurich, in May 2007





Abstract

The growing influence of the Internet and other communication networks
on our daily lives and on the global economy shows clearly that the secu-
rity issues in such networks are of the uttermost importance. Motivated
both by the theoretical questions and by the potential real-world appli-
cations, in this dissertation we study problems of secure cooperation in
communication networks. In particular we focus on constructing effi-
cient and robust protocols for various cryptographic tasks.

In the first part of this thesis we study the problem of secure multi-
party computation (MPC), which allows a set of n players to evaluate an
agreed function of their inputs in a secure way, i.e., so that an adversary
corrupting some of the players cannot achieve more than controlling the
inputs and outputs of these players. The concept of MPC is very general
and powerful, since it allows to realize essentially any distributed compu-
tational task in a secure way. For that reason the MPC problem has been
studied extensively since its introduction by Yao in 1982. A major goal of
these studies is to design protocols with low communication complexity,
and two main research directions emerged over the time, with focus on
reducing round-, resp. bit-complexity. In this thesis we focus on the bit-
complexity, i.e., the number of bits communicated between the parties
during the computation, and we consider this problem in asynchronous
networks, which model pretty closely real-world networks. We propose
an MPC protocol, which is secure with respect to an active adversary
corrupting up to t < n/3 players (this is optimal in an asynchronous net-
work), and which is the most efficient protocol currently known. For our
constructions we develop several novel techniques, which were used also
in subsequent works on efficient MPC protocols.

In the second part of this thesis we turn to a problem which is com-
mon to all cryptographic research based on computational assumptions.



iv

In spite of considerable advances in theoretical computer science and
specifically in complexity theory, it is still not known whether there ex-
ist provably hard problems that could form a solid foundation for the
complexity-based cryptography. In particular, it is not clear which as-
sumptions are the best, and which are the most likely to hold in 10 or
20 years from now. Therefore, when implementing a cryptographic sys-
tem in a real-world setting we are confronted with the difficult problem
of choosing the most trustworthy assumptions. One way of dealing with
this problem is offered by the so-called robust combiners, i.e., constructions
which in a certain sense allow to build cryptographic systems based on
the best assumption possible, without actually being able to tell which as-
sumption is the best one. Roughly speaking, a robust combiner combines
several implementations of a primitive based on various assumptions, to
yield an implementation guaranteed to be secure if at least some of the un-
derlying assumptions (i.e. sufficiently many but not necessarily all) are
valid. We generalize the notion of robust combiners in several ways, and
propose constructions of combiners for various fundamental primitives,
like private information retrieval (PIR), oblivious transfer (OT) and obliv-
ious linear function evaluation (OLFE). Our constructions offer trade-
offs between applicability and efficiency, and are strictly stronger and/or
more efficient than the constructions known before. Moreover, we intro-
duce cross-primitive combiners, which can be viewed as a generalization
of reductions and combiners. Using this more general view we show a
separation between PIR and OT, ruling out certain types of reductions of
PIR to OT.



Zusammenfassung

Die wachsende Rolle des Internets und anderer Kommunikationsnetz-
werke im täglichen Leben und in der globalen Wirtschaft demonstriert
deutlich, dass die Sicherheitsgarantien in solchen Netzen von äusserst
grosser Bedeutung sind. Motiviert durch die theoretischen Fragestellung-
en und durch die potentielle Anwendungen werden in dieser Dissertati-
on verschiedene Probleme der Kooperation und des verteilten Rechnens
in den Kommunikationsnetzen studiert. Insbesondere konzentrieren wir
uns auf das Konstruieren von effizienten und robusten Protokollen für
ausgewählte kryptographische Aufgaben.

Im ersten Teil dieser Arbeit studieren wir das Problem vom siche-
ren Multi-Party Computation (MPC), das einer Menge von n Spielern er-
laubt eine beliebige, vereinbarte Funktion von ihren Inputs auf eine si-
chere Weise zu berechnen. Dabei werden insbesondere die Geheimhal-
tung und die Korrektheit garantiert: die Inputs der einzelnen Spieler blei-
ben geheim, und selbst ein Gegner, der einige der Spieler korrumpiert,
nicht mehr erreichen kann als die Inputs und die Outputs der korrum-
pierten Spieler zu manipulieren. Das Konzept von MPC ist sehr generell
und umfangreich, da es erlaubt im Wesentlichen jede verteilte Berech-
nung auf sichere Weise zu realisieren. Aus diesem Grund wurde das
MPC-Problem seit dessen Formulierung durch Yao im Jahr 1982 sehr
intensiv studiert. Ein Hauptziel von vielen Arbeiten auf diesem Gebiet
besteht darin, Protokolle mit niedriger Kommunikationskomplexität zu
entwerfen, wobei sich über die Zeit zwei Forschungsrichtungen etabliert
haben, die den Entwurf von Protokollen mit kleiner Runden- bzw. Bit-
Komplexität anstreben. In dieser Dissertation konzentrieren wir uns auf
die Bit-Komplexität, d.h. die Anzahl Bits, die zwischen den Spielern wäh-
rend der Berechnung kommuniziert werden. Dabei betrachten wir das
MPC-Problem in einem asynchronen Netzwerk, das ein realitätsnahes Mo-
dell von heutigen Kommunikationsnetzwerken darstellt. Wir entwerfen



vi

ein MPC-Protokoll, das zur Zeit das effizienteste bekannte Protokoll ist.
Das Protokoll garantiert Sicherheit gegen einen aktiven Gegner, der bis
zu den t < n/3 Spielern korrumpiert, was in einem asynchronen Netz-
werk optimal ist. Für unsere Konstruktionen entwickeln wir einige neue
Techniken, welche auch in den späteren Arbeiten über effiziente MPC-
Protokolle verwendet werden.

Im zweiten Teil dieser Dissertation betrachten wir ein Problem, das al-
le kryptographische Systeme betrifft, deren Sicherheit auf berechnungs-
mässigen Annahmen basiert. Trotz der beträchtlichen Fortschritte in der
theoretischen Informatik und insbesondere in der Komplexitätstheorie
ist nach wie vor nicht bekannt, ob es beweisbar schwierige Berechnungs-
probleme gibt, welche eine feste Grundlage für die komplexitätsbasierte
Kryptographie bilden könnten. Insbesondere ist es nicht klar, welche be-
rechenmässigen Annahmen am besten sind, und welche in etwa 10 oder
20 Jahren noch korrekt sein werden. Wenn man also ein kryptographi-
sches System implementieren möchte, wird man mit einer schwierigen
Frage konfrontiert: Welche Annahme ist am vertrauenwürdigsten? Ei-
ne Lösung dieses Dilemmas sind sog. robuste Combiner, d.h. Konstruk-
tionen von kryptographischen Systemen, deren Sicherheit im gewissen
Sinne auf den besten Annahmen basiert ist, ohne dass dabei entschieden
werden muss, welche Annahmen eigentlich am besten sind. Ein robuster
Combiner nimmt als Input mehrere Implementierungen einer Primitive,
die auf verschiedenen Annahmen basieren, und konstruiert eine Imple-
mentierung, die garantiert sicher ist, wenn mindestens einige (d.h. ge-
nug viele, aber nicht notwendigerweise alle) der Annahmen gültig sind.
Wir verallgemeinern und erweitern den Begriff von robusten Combiners,
und schlagen Combiner-Konstruktionen für verschiedene grundlegende
Primitive vor, wie z.B. Private Information Retrieval (PIR), Oblivious Trans-
fer (OT) und Oblivious Linear Function Evaluation. Unsere Konstruktionen
bieten Tradeoffs zwischen Anwendbarkeit und Effizienz an, und sind we-
sentlich stärker und/oder effizienter als die bereits bekanten Konstruk-
tionen. Ferner führen wir die sog. cross-primitive Combiners ein, die als
eine Verallgemeinerung von robusten combiners und von Reduktionen
gesehen werden können. Mit dieser Verallgemeinerung zeigen wir eine
Separation zwischen PIR und OT, welche gewisse Typen von Reduktio-
nen von PIR zu OT ausschliesst.



Contents

1 Introduction 1

1.1 Secure multi-party computation . . . . . . . . . . . . . . . . 3

1.2 Robust combiners . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Contributions of this thesis . . . . . . . . . . . . . . . . . . 7

1.3.1 Asynchronous multi-party computation . . . . . . . 7

1.3.2 Robust combiners of cryptographic primitives . . . 9

2 Asynchronous multi-party computation 11

2.1 Formal model and preliminaries . . . . . . . . . . . . . . . 12

2.1.1 Communication model . . . . . . . . . . . . . . . . . 12

2.1.2 The general MPC model . . . . . . . . . . . . . . . . 12

2.1.3 Efficiency measures . . . . . . . . . . . . . . . . . . . 14

2.2 Cryptographic primitives and protocols . . . . . . . . . . . 14

2.2.1 Homomorphic encryption with threshold decryption 15

2.2.2 Digital signatures . . . . . . . . . . . . . . . . . . . . 16

2.2.3 Threshold signatures . . . . . . . . . . . . . . . . . . 16

2.2.4 Byzantine Agreement . . . . . . . . . . . . . . . . . 17

2.2.5 Cryptographic assumptions & instantiations of tools 18

2.3 Kings & slaves: cryptographic MPC with optimal resilience 18

2.3.1 A high-level overview. . . . . . . . . . . . . . . . . . 19

2.3.2 Certificates . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.3 The circuit and the correctness invariant . . . . . . 24



viii Contents

2.3.4 Main protocol . . . . . . . . . . . . . . . . . . . . . . 26

2.3.5 Sub-protocols used by the main protocol . . . . . . 27

2.3.6 Security analysis . . . . . . . . . . . . . . . . . . . . 36

2.3.7 Circuits with multiple inputs . . . . . . . . . . . . . 40

2.3.8 Efficiency analysis . . . . . . . . . . . . . . . . . . . 40

2.4 Better efficiency via threshold signatures . . . . . . . . . . . 42

2.5 MPC with quadratic communication . . . . . . . . . . . . . 43

2.5.1 Reducing redundancy . . . . . . . . . . . . . . . . . 44

2.5.2 Generating random triples . . . . . . . . . . . . . . 46

2.6 Computing randomized functions . . . . . . . . . . . . . . 49

2.7 Computing functions with private outputs . . . . . . . . . 50

2.8 Providing inputs in asynchronous networks . . . . . . . . . 50

3 Robust combiners of cryptographic primitives 53

3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1.1 Primitives . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1.2 Robust combiners . . . . . . . . . . . . . . . . . . . . 58

3.1.3 Remarks on constructions of combiners . . . . . . . 60

3.1.4 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 Combiners for private information retrieval . . . . . . . . . 64

3.2.1 The basic scheme . . . . . . . . . . . . . . . . . . . . 64

3.2.2 PIR-combiners with lower communication . . . . . 67

3.3 Cross-primitive combiners . . . . . . . . . . . . . . . . . . . 69

3.3.1 PIR-to-BC combiner . . . . . . . . . . . . . . . . . . 70

3.3.2 PIR-to-OT combiner . . . . . . . . . . . . . . . . . . 72

3.4 Robuster combiners for oblivious transfer . . . . . . . . . . 76

3.4.1 Robuster combiners for two-party primitives . . . . 76

3.4.2 OT-combiners with secure majority . . . . . . . . . 78

3.4.3 OT-combiners based on the symmetry of OT . . . . 81

3.5 Robust combiners for OLFE . . . . . . . . . . . . . . . . . . 84

3.5.1 OLFE-combiner . . . . . . . . . . . . . . . . . . . . . 85

3.5.2 Uniform OLFE-combiner based on symmetry . . . 88



Contents ix

4 Conclusions 89

4.1 Asynchronous multi-party computation . . . . . . . . . . . 89

4.2 Robust combiners . . . . . . . . . . . . . . . . . . . . . . . . 90

Bibliography 93

Index 103





Chapter 1

Introduction

Traditionally cryptography was concerned mainly with confidentiality
and authenticity of information, ensured by the encryption and the au-
thentication of messages. While these basic tasks still belong to the core
of cryptography, in the 20th century this area has evolved into a rich dis-
cipline on the intersection of computer science and mathematics, and is
closely related to system security, computational complexity, number the-
ory and information theory. In particular, the past 30 years, since the sem-
inal paper of Diffie and Hellman [DH76], have been particularly fruitful
in cryptography, and have given a rise to a number of beautiful, and often
paradoxical, concepts and their realizations, like public-key cryptogra-
phy [DH76, Mer78, RSA78], zero-knowledge proofs [GMR89], or multi-
party computation [Yao82, GMW87, BGW88, CCD88]. These fundamen-
tal results combined with the rapid development and the growing popu-
larity of the Internet and other communication networks, have helped to
establish cryptography as an active research area, attracting both practi-
tioners and theoreticians.

On the practical side, it is fair to say that we are just at the beginning
of the information age, and our dependence on digital communication
and media will only grow. Therefore it is crucial to ensure the reliability
and the security of the digital world, especially since new possibilities
and opportunities come together with new dangers and risks. Of course,
for secure solutions to be relevant in practice, it is essential that they are
efficient in terms of the computation and the communication overhead.

On the other hand, there are also numerous theoretical impulses that
fuel the cryptographic research. Many new concepts and primitives give



2 Introduction

a rise to the questions about relationships between them, which in turn
call for a deeper study and understanding of the proposed ideas. More-
over, as in many areas of theoretical computer science, also in cryptogra-
phy the mere existence of a solution or feasibility in principle is often nei-
ther sufficient nor satisfactory, and the ultimate goal is to find solutions
that are as efficient as possible, and/or to prove the optimality of existing
solutions. In this sense showing the principal existence of a solution to a
problem is just the beginning rather than the end, and constitutes a major
driving force for further research on the problem.

Motivated both by the theoretical questions and by the potential real-
world applications, in this thesis we study problems of secure coopera-
tion in communication networks. In particular we focus on constructing
efficient and robust protocols for various cryptographic tasks.

In the first part of this thesis we study the problem of secure multi-
party computation (MPC), which allows a group of mutually mistrusting
players to compute any function of their private inputs, without disclos-
ing the inputs, while the privacy of the inputs and the correctness of the
outputs should be guaranteed even if some of the players cheat and do
not follow the protocol. Motivated by both theoretical and practical con-
siderations, we focus on the design of efficient solutions for this problem.
Even though the fundamental feasibility results for MPC were presented
almost 20 years ago [Yao82, GMW87, BGW88, CCD88], the area is far
from being closed. While the problem of finding the most efficient so-
lutions for various models is definitely important from the theoretical
point of view, it is also of interest from the practical side. In particular, if
provably secure and efficient solutions are available, they are more likely
to be implemented in real-world networks (instead of ad-hoc, seemingly
secure solutions).

In the second part we focus on dangers of a different kind. In spite of
considerable achievements in theoretical computer science, and in partic-
ular in complexity theory, it is still not known whether there exist prov-
ably hard problems that could form a solid foundation for the complexity-
based cryptography. In other words, modern cryptographic tools and
protocols, on which the bulk of today’s secure communication and e-
commerce is based, rely on various unproven assumptions which poten-
tially could be invalidated any time, for example through a discovery of
some ingenious algorithm (cf. recent attacks on Secure Hash Algorithm
(SHA) [WYY05b, WYY05a]). While there exist a few intensively stud-
ied and relatively well understood assumptions, it is definitely not clear
which assumptions are the best, and in particular which are the most



1.1 Secure multi-party computation 3

likely to hold in 10 or 20 years from now. Moreover, new concepts and
primitives come often together with new assumptions, allowing efficient
implementations but also introducing new risks. Therefore, when imple-
menting a cryptographic system in a real-life setting we are often con-
fronted with the problem of choosing the most trustworthy assumptions.

Possible ways of dealing with this problem include taking a guess
(maybe even an educated one), or using only information-theoretic cryp-
tography, which is not based on any assumptions. While the first way
is probably the most common in practice, it clearly fails if we have bad
luck. The second way is definitely secure, but it misses many of the most
exciting cryptographic tools and concepts, which are possible only with
the complexity-based cryptography.

In this thesis we pursue a different way, which in a certain sense al-
lows to construct cryptographic systems based on the best assumption
possible, without actually being able to tell which assumption is the best
one. Such constructions, so-called robust combiners, combine several im-
plementations of a primitive based on various assumptions, and yield an
implementation guaranteed to be secure if at least some assumptions (i.e.
sufficiently many but not necessarily all) are valid.

In the rest of this chapter we describe the studied problems in more
detail, and give an overview of the contributions of this thesis.

1.1 Secure multi-party computation

The goal of secure multi-party computation (MPC) is to allow a set of n
players to evaluate an agreed function of their inputs in a secure way,
where “secure” means that an adversary corrupting some of the play-
ers cannot achieve more than controlling the inputs and outputs of these
players. In particular, the adversary does not learn the inputs of the un-
corrupted players, and furthermore, she cannot influence the outputs of
the uncorrupted players except by selecting the inputs of the corrupted
players.

The problem of secure multi-party computation has been extensively
studied in a variety of models differing in many aspects, like for example
the underlying communication model (synchronous vs. asynchronous,
with vs. without broadcast channel), or the limitations of the adversary
(computationally bounded vs. unbounded, static vs. adaptive, threshold
vs. general).



4 Introduction

In this work we focus on asynchronous communication, i.e., the mes-
sages in the network can be delayed for an arbitrary amount of time (but
eventually all messages are delivered). As a worst-case assumption, we
give the ability of controlling the delay of messages to the adversary. The
asynchronous communication models many real-world networks, like
the Internet, much better than the synchronous communication. How-
ever, it turns out that MPC protocols for asynchronous networks are sig-
nificantly more involved than their synchronous counterparts. One rea-
son for this is that in an asynchronous network, when a player does not
receive an expected message, he cannot distinguish whether the sender
is corrupted and did not send the message, or the message was sent but
delayed in the network. This implies also that in a fully asynchronous
setting it is impossible to consider the inputs of all uncorrupted players
when evaluating the function. The inputs of some (potentially honest)
players have to be ignored, because waiting for them could turn out to
be endless [Bec54].

History and related work The MPC problem was first proposed by
Yao [Yao82] and solved by Goldreich, Micali, and Wigderson [GMW87]
for computationally bounded adversaries, and by Ben-Or, Goldwasser,
and Wigderson [BGW88], and independently by Chaum, Crépeau, and
Damgård [CCD88] for adversaries that are computationally unbounded.
All these protocols considered a synchronous network with a global clock.
The first MPC protocol for the asynchronous model (with unconditional
security) was proposed by Ben-Or, Canetti, and Goldreich [BCG93]. Ex-
tensions and improvements, still in the unconditional model, were pro-
posed in [BKR94, SR00, PSR02]. A great overview of asynchronous MPC
with unconditional security is given in [Can95].

Following the fundamental results on principal feasibility of MPC,
there has been a vast body of work on the efficiency of MPC protocols,
thus trying to enable their applicability in practice. As mentioned above,
usually the main efficiency bottleneck of distributed systems is the need
of interaction and communication between the participants, while the lo-
cal computations are relatively simple and inexpensive. Thus a major
goal in these efforts is to design protocols with low communication com-
plexity. In particular, a number of works focused on designing MPC pro-
tocols requiring only few rounds of communication (e.g. [BB89, BMR90,
BFKR90, CDI05]), or minimizing the bit complexity, i.e. the number of
bits communicated during the computation (e.g. [BFKR90, FY92, GRR98,
CDD+99, HMP00, SR00, CDN01, CDF01, HM01, PSR02, HN06]).



1.2 Robust combiners 5

The most efficient asynchronous protocols known previously are the
protocols of Srinathan and Rangan [SR00] and of Prabhu, Srinathan and
Rangan [PSR02]. The first one requires Ω(n2) invocations to the broad-
cast primitive for every multiplication, which makes the protocol very
inefficient when broadcast is realized with some asynchronous broadcast
protocol. The latter protocol is rather efficient, as it requires Ω(n4κ) bits
of communication per multiplication. However, it tolerates only t < n/4
corruptions, which is not optimal.

Other directions of research on MPC focus on the primitives and al-
gebraic structures sufficient for MPC. In particular, a line of work in-
vestigated the possibility of basing secure computation on secret shar-
ing (cf. [CDD00, CDM00, CDG+05]). More recently, Chen and Cramer
[CC06] showed how to base MPC on special types of codes, rather than
polynomials, which results in MPC based on fields of constant size, rather
then fiels of size linear in the number of players (see also [CCG+07]).

1.2 Robust combiners

Informally speaking, a robust combiner is a construction which protects
against wrong cryptographic implementations or assumptions. Consider
a scenario when two candidate implementations, C1 and C2, of some
cryptographic primitive are given, e.g., two encryption schemes or two
bit commitment schemes. Each implementation is based on some un-
proven computational assumption, a1 resp. a2, like for example the hard-
ness of factoring integer numbers or the hardness of computing discrete
logarithms. We would like to have an implementation C of the primi-
tive, which is as secure as possible given the current state of knowledge.
As it is often not clear, which of the assumptions a1, a2 is more likely to
be correct, picking just one of the implementations does not work — we
might bet on the wrong assumption! A better option would be to have an
implementation which is guaranteed to be secure as long as at least one of
the assumptions a1, a2 is correct. That is, given C1 and C2 we would like
to construct an efficient implementation C, which is secure whenever at
least one of the input implementations is. Such a construction is an ex-
ample of a (1; 2)-robust combiner, as it combines the input implementations
and is robust against situations when one of the two inputs is insecure.

In general, robust combiners can use more than two input schemes,
and aim at providing a secure implementation of the output primitive



6 Introduction

assuming that sufficiently many of the candidates are secure. More for-
mally, for A denoting a cryptographic primitive, like for example a one-
way function, a (k; m)-robust A-combiner is a construction which takes m
implementations ofA as input and yields an implementation ofA, which
is guaranteed to be secure as long as at least k input implementations are
secure.

The concept of robust combiners is actually not so new in cryptogra-
phy and many techniques are known for combining cryptographic prim-
itives to improve security guarantees, e.g., cascading of block ciphers.
However, a more formal and rigorous study of combiners was initiated
quite recently [Her05, HKN+05].

Robust combiners for some cryptographic primitives, like one-way
functions or pseudorandom generators, are rather simple, while for oth-
ers, e.g., for oblivious transfer (OT), the construction of combiners seems
to be considerably harder. In particular, in a recent work Harnik et al.
[HKN+05] show that there exists no “transparent black-box” (1; 2)-robust
OT-combiner. This is rather unfortunate, since oblivious transfer is a fun-
damental primitive on which many other cryptographic applications can
be based [Kil88].

In this thesis we explore in more depth the problem of combining
oblivious transfer, and also study the combiners of other cryptographic
primitives. Given the impossibility result for OT-combiners, it is partic-
ularly interesting to investigate the existence of combiners for (single-
database) private information retrieval (PIR), a primitive closely related,
yet not known to be equivalent, to oblivious transfer. Potential PIR-
combiners could lead to better understanding of relations between PIR,
OT, and other primitives. Moreover, constructions of PIR-combiners are
also of considerable practical interest, stemming from the fact that some
of the most efficient PIR protocols are based on relatively new compu-
tational assumptions (e.g., [CMS99, KY01]), which are less studied and
thus potentially more likely to be proved wrong.

History and related work As mentioned above, a more rigorous study
of robust combiners was initiated only recently, by Herzberg [Her05] and
by Harnik et al. [HKN+05]. In particular, Boneh and Boyen [BB06], and
Pietrzak [Pie07] studied the efficiency of combiners for collision resistant
hash functions. On the other hand, there are numerous implicit uses and
constructions of combiners in the literature (e.g., [AB81, EG85, MM93,
DK05, HL05]).



1.3 Contributions of this thesis 7

Private information retrieval was introduced by Chor et al. [CKGS98]
and has been intensively studied since then. The original setting of PIR
consists of multiple non-communicating copies of the database and guar-
antees information-theoretic privacy for the user. Later, Kushilevitz and
Ostrovsky [KO97] gave the first solution to the single-database PIR, in
which the privacy of the user is based on a computational assumption.
The first PIR protocol with communication polylogarithmic in the size of
the database was proposed by Cachin et al. [CMS99], and recently more
efficient constructions have been proposed (e.g. [Cha04, Lip05]). Further
information about PIR can be found in a survey by Gasarch [Gas04].

The relationships between PIR and other primitives have been stud-
ied intensively in the recent years. In particular, Beimel et al. [BIKM99]
proved that any non-trivial single-database PIR implies one-way func-
tions, and Di Crescenzo et al. [DMO00] showed that such a PIR im-
plies oblivious transfer. Kushilevitz and Ostrovsky [KO00] demonstrated
that one-way trapdoor permutations are sufficient for non-trivial single-
database PIR. On the negative side, Fischlin [Fis02] showed that there
is no black-box construction of one-round (i.e., two-message) PIR from
one-to-one trapdoor functions.

Techniques similar to the ones employed in the proposed robust PIR-
combiners were previously used by Di Crescenzo et al. [DIO01] in con-
structions of universal service-providers for PIR.

1.3 Contributions of this thesis

The scope and the contributions of this thesis can be divided in two parts.
In the first part we study the problem of secure multi-party computation
in asynchronous networks, and focus on the bit complexity. We propose
protocols for MPC, which are significantly more efficient than the solu-
tions known so far, and achieve optimal resilience. In the second part
we construct robust combiners for various fundamental cryptographic
primitives, and we use the insights from these constructions to study the
relationship between the primitives. Short summaries of contributions
from each part are described in the subsections below.

1.3.1 Asynchronous multi-party computation

We study the problem of MPC in asynchronous networks and propose a
number of new protocols for this problem. First we present a basic pro-



8 Introduction

tocol, following the paradigm of MPC based on a threshold homomor-
phic encryption scheme, as introduced by Franklin and Haber [FH96]
and made robust by Cramer, Damgård and Nielsen [CDN01]. We adapt
this paradigm to asynchronous networks, to obtain a conceptually sim-
ple and relatively efficient MPC protocol. Then we propose a number
of transformations and improvements, which lead to the most efficient
protocol known to date.

The proposed protocols are for the cryptographic model, in which
it is assumed, that the adversary is computationally bounded, and they
are secure with respect to an active adversary corrupting up to t < n/3
players, which is optimal in an asynchronous network [Tou84, BT85].

As mentioned above, our focus is on achieving low bit complexity.
Once the inputs are distributed, the final proposed protocol with a secu-
rity parameter κ needs only O(cMn2κ) bits of communication to evalu-
ate a circuit with cM multiplication gates. This is only by a factor O(n)
worse than the bit complexity of the most efficient protocol known for
synchronous networks, due to Hirt and Nielsen [HN06]. Moreover, the
proposed protocol improves on the communication complexity of the
most efficient optimally-robust asynchronous MPC protocol, due to Sri-
nathan and Pandu Rangan [SR00], by a factor of Ω(n2). In contrast to
the protocol of [SR00], our protocol uses broadcast only in a very limited
manner: the number of broadcast invocations is independent of the size
of the circuit. This nice property is also achieved in [PSR02], but this pro-
tocol is non-optimal (it tolerates only t < n/4) and requires Ω(n2) times
more communication than ours.

In the asynchronous MPC, the agreed function can be evaluated only
on a subset of the inputs, i.e., some (potentially honest) player cannot
provide their input into the computation. However, the presented proto-
col can easily be extended to consider the input of each (honest) party, at
the cost of few rounds of synchronous communication during the input
stage. We believe that this hybrid model is quite a realistic one, and mim-
ics the real world even more closely than the fully asynchronous model.
After all, even though the networks like the Internet are asynchronous,
synchronization succeeds in daily lives, e.g. by using also other means of
communication like telephones.

In our constructions we employ some novel techniques, which can be
of independent interest. In fact, some of the techniques proposed in this
work were recently used to construct the most efficient MPC protocol for
synchronous networks, with linear communication cost per multiplication
gate [HN06].



1.3 Contributions of this thesis 9

The results on asynchronous MPC presented in this thesis are a joint
work with Martin Hirt and Jesper Buus Nielsen [HNP05, HNP06].

1.3.2 Robust combiners of cryptographic primitives

The results of our study of robust combiners fall into two main categories,
definitional and constructional. The first category contains new defini-
tions of combiners, which are more general and/or stronger than the def-
initions used previously. The second category encompasses numerous
constructions of robust combiners of specific cryptographic primitives,
for both the old definitions and the newly proposed ones.

The primitives which we consider in the context of robust combin-
ers include private information retrieval (PIR), oblivious transfer (OT),
and bit commitment (BC). In particular, we propose a (1; 2)-robust PIR-
combiner, i.e. combiner which given two implementations of PIR yield
an implementation of PIR which is secure if at least one of the input im-
plementations is secure. We also describe various techniques and op-
timizations based on properties of existing PIR protocols, which yield
PIR-combiners with better efficiency and applicability.

Furthermore, we introduce a notion of “cross-primitive” combiners,
which can be viewed as a generalization of combiners and reductions.
More formally, for A and B denoting cryptographic primitives, a (k; m)-
robust A-to-B combiner is a construction which takes m implementations
of A as input and yields an implementation of B, which is guaranteed
to be secure as long as at least k input implementations are secure. We
present (1; 2)-robust PIR-to-BC and PIR-to-OT combiners, which are the
first proposed cross-primitive combiners. While interesting in their own
right, such combiners also offer insights into relationships and reductions
between cryptographic primitives. In particular, our PIR-to-OT combiner
together with the impossibility result of [HKN+05] rule out certain types
of reductions of PIR to OT.

Moreover, we take a closer look at the notion of combiners and sug-
gest a more fine-grained approach to the design of such constructions.
That is, we argue that in order to obtain combiners as efficient as pos-
sible, the constructions may take into account that some properties of
the input candidates are proved to hold unconditionally, and hence can-
not fail even if some computational assumption turns out to be wrong.
Therefore, keeping in mind the original motivation for combiners, i.e.
protection against wrong assumptions, a more fine-grained approach to



10 Introduction

design of robust combiners exploits the unconditionally secure properties
and focuses on the properties which hold only under given assumptions.

This change in the approach yields sometimes immediately trivial
constructions of combiners (as observed by Harnik et al. [HKN+05] for
OT and BC), yet in many cases the resulting problems are still interesting
and challenging. Motivated by these observations, we propose a new,
stronger, and more general definition of robust combiners for two-party
primitives. The new definition captures scenarios where in the candidate
implementations the security of Alice is based on an assumption differ-
ent from the assumption underlying Bob’s security, or where the security
of one party is unconditional. This finer distinction can then be exploited
in constructions of combiners.

For this new definition we propose OT-combiners yielding secure OT
when the total number of candidates’ failures on side of either party is
strictly smaller than the number of candidates. In particular, we propose
an OT-combiner which guarantees secure OT even when only one can-
didate is secure for both parties and each of the remaining candidates
is insecure for one of the parties. Furthermore, we present a combiner
for oblivious linear function evaluation (OLFE), a primitive which can be
viewed as a generalization of oblivious transfer. The proposed construc-
tion is optimal both with respect to the robustness and in terms of the use
of the input candidates. Finally, we propose also efficient uniform combin-
ers for OT and OLFE, i.e. constructions which are secure simultaneously
for a wide range of candidates’ failures.

We show the optimal robustness of the proposed combiners by prov-
ing a very simple, yet stronger impossibility result for OT-combiners. While
the impossibility proof in [HKN+05] only proves the non-existence of
transparent black-box combiners, our proof excludes all types of combiners.
Moreover, since our definition is stronger than the previous definition, all
constructions satisfy also the latter, and we obtain tight bounds also for
the previous definition.

The results on robust combiners presented in this thesis are a joint
work with Remo Meier and Jürg Wullschleger [MP06, MPW07, PW06].



Chapter 2

Asynchronous multi-party
computation

In this chapter we consider the problem of secure multi-party computa-
tion (MPC) in asynchronous networks. We present a number of protocols
for this problem, achieving an optimal resilience against an active ad-
versary and a very low communication complexity. Since we focus on
asynchronous networks, the proposed protocols can actually be directly
implemented in real-world networks like the Internet.

In the presented protocols we follow the paradigm of MPC based on
a threshold homomorphic encryption scheme, as introduced by Franklin
and Haber [FH96], who presented a protocol secure in the honest-but-
curious model. Later Cramer, Damgård and Nielsen [CDN01] proposed
an efficient protocol resilient also against an active adversary. However,
this protocol uses synchronous communication in an essential manner.

This chapter is organized as follows. After presenting the model and
describing the tools we use in our constructions, we show how to remove
the dependence on synchronous communication present in the previ-
ously proposed protocols, by introducing a technique to relax the require-
ments of player cooperation — every player leads the computation on his
own, and requests help of other players only when necessary. This results
in an asynchronous protocol, which however is less efficient than the syn-
chronous counterparts. In the subsequent sections we propose improve-
ments, which allow to reduce the communication overhead, yielding the
currently most efficient MPC protocol with optimal resilience. Finally, we



12 Asynchronous multi-party computation

discuss various extensions to the model and the protocols, which lead to
solutions applicable to many real-world situations. The results presented
in this chapter are a joint work with Martin Hirt and Jesper Buus Nielsen
[HNP05, HNP06].

2.1 Formal model and preliminaries

Notation. Throughout this chapter we use n to denote the number of
players (i.e., parties) participating in the MPC protocol, we use P1, . . . , Pn

to denote the players, and we use P to denote the set of all players. For
an integer m > 0 we write [m] to denote the set {1, . . . ,m}. Our construc-
tions are parametrized by a security parameter κ.

2.1.1 Communication model

Motivated by the current real-world communication networks, like the
Internet, we consider a model in which the communication takes place
over an asynchronous, public network, which enables the participating
parties access to point-to-point authenticated channels, but without guar-
anteed delivery of messages.

More formally, an n-player protocol is a tuple π = (P1, . . . , Pn, init),
where each Pi is a probabilistic interactive Turing machine, and init is
an initialization function, used for the usual set-up tasks, like initialization
of the players, setting up cryptographic keys and public parameters, etc.
The players communicate over an asynchronous network, in which the
delay between sending and delivery of a message is unbounded. More
precisely, when a player sends a message, this message is added to the set
of messages already sent but not yet delivered, Msg = {(i, j, m)}, where
(i, j, m) denotes a message m from Pi to Pj . The delivery of the messages
is scheduled by the adversary (see below).

2.1.2 The general MPC model

We use the model of security of asynchronous protocols proposed by
Canetti [Can00]. Formally our model for running a protocol will be the
hybrid model with a functionality for distributing some initial crypto-
graphic keys between the parties using some function init. The ideal func-
tionality that we wish to realize is given by a circuit Circ, which consists



2.1 Formal model and preliminaries 13

of input gates augmented by the party to supply the input, linear and
multiplication gates defining the actual computation, and output gates
augmented by the party to see the output. The circuit Circ is defined over
some ring M, which is a public parameter resulting from the initializa-
tion function init.

Adversary. We consider an adversary which is bounded by a polyno-
mial in the security parameter κ. The adversary controls the delivery of
all messages and can corrupt up to t parties. A corrupted party is under
full control of the adversary, which sees all incoming messages, and de-
termines all outgoing messages. The adversary schedules the delivery of
the messages arbitrarily, by picking a message (i, j, m) ∈ Msg and deliver-
ing it to the recipient. The adversary doesn’t see the contents of messages
exchanged between honest (i.e., not corrupted) parties, and any message
from an honest party to an honest party is eventually delivered. In most
cases we require that t < n/3, but will sometimes consider other thresh-
olds. The set of parties to be corrupted is specified by the adversary before
the execution of the protocol, i.e., we consider static security.

Execution of a protocol. Before the protocol starts, an initialization
function init is evaluated on random input r ∈ {0, 1}∗ to generate a tuple
(sv1, . . . , svn,pv) = init(1κ, r) of secret values svi and a public value pv,
where 1κ is an unary encoding of the security parameter. Each party Pi

is initialized with (1κ, svi,pv). At the beginning of the protocol execu-
tion, every party Pi receives its input value xi from the environment, and
produces some initial messages (i, ·, ·) which are added to the set Msg.
The adversary is given the public value pv, the values (xj , svj) for each
corrupted party Pj , and the control over the set Msg. Subsequently the
protocol is executed in a sequence of activations. In each activation the
adversary picks a message (i, j, m) ∈ Msg and delivers it to Pj . Upon
delivery of a message, party Pj performs some computation based on its
current state, updates its state and produces some messages of the form
(j, ·, ·), which are added to the set Msg. In some activation the parties
can produce the output to the environment and terminate. The adver-
sary determines the inputs xi and all messages of corrupted parties. The
adversary and the environment can communicate with each other.

Security. The security of a protocol is defined relative to an ideal eval-
uation of the circuit by requiring that for any adversary attacking the



14 Asynchronous multi-party computation

execution of the protocol there exists a simulator which can simulate the
attack of the adversary to any environment given only an ideal process
for evaluating the circuit. In the ideal process the simulator has very re-
stricted capabilities: It sees the inputs of the corrupted parties. Then it
specifies a subset W ⊆ [n] of the parties to be the input providers, un-
der the restriction that |W | ≥ n − t. The set W determines which parties
provide inputs to the computation of a circuit Circ, and the adversary
specifies the input values of the corrupted parties. The input gates of
Circ belonging to the parties from W are assigned the inputs of the cor-
responding parties, and the remaining input gates are assigned default
input values. Then Circ is evaluated and the outputs of the corrupted
parties are shown to the simulator.

Given these capabilities the simulator must then simulate to the en-
vironment the entire view of an execution of the protocol, including the
messages sent and the possible communication between the environment
and the adversary.

2.1.3 Efficiency measures

As mentioned in Chapter 1, usually the main efficiency bottleneck of
distributed systems is the need of communication between the parties.
Therefore, our goal is to design protocols with low communication com-
plexity, while ensuring also their computational efficiency. More pre-
cisely, we focus on bit complexity, i.e. the number of bits communicated
between the parties during the computation. The round complexity1 of
the proposed solutions is linear in the depth of the circuit Circ.

2.2 Cryptographic primitives and protocols

In the proposed MPC protocols we employ a number of standard prim-
itives and sub-protocols. We first introduce the required notation and
tools with their essential properties, and then point to the literature to ex-
ample implementations. We stress that all the needed implementations
can be realized based on standard cryptographic assumptions, without
use of the random-oracle methodology [BR93, CGH98, MRH04].

1 Intuitively, the round complexity of a protocol in an asynchronous network is defined
as the maximal round complexity of a protocol execution, where the round complexity of an
execution is equal to the total time of the execution as measured by an imaginary external
clock, divided by the longest delay of a message in the execution [CR93].



2.2 Cryptographic primitives and protocols 15

2.2.1 Homomorphic encryption with threshold decryption

We assume the existence of a semantically secure probabilistic public-
key encryption scheme, which additionally is homomorphic and enables
threshold decryption, as specified below.

Encryption and decryption. For an encryption key e and a decryption
key d, let Ee : M × R → C denote the encryption function mapping
a plaintext x ∈ M and a randomness r ∈ R to a ciphertext X ∈ C,
and let Dd : C → M denote the corresponding decryption function. We
require that M is a ring ZM for some M > 1, and we use "·" to denote
multiplication in M. We often use capital letters to denote encryptions
of the plaintexts denoted by the corresponding lower-case letters. When
keys are understood, we write E and D instead of Ee resp. Dd, and we
frequently omit the explicit mention of the randomness in the encryption
function E .

Homomorphic property. We require that there exist (efficiently com-
putable) binary operations +, ∗, and ⊕, such that (M,+), (R, ∗), and
(C,⊕) are algebraic groups, and that Ee is a group homomorphism, i.e.

E (a, ra)⊕ E (b, rb) = E (a + b, ra ∗ rb) .

We use A	B to denote A⊕ (−B), where −B denotes the inverse of B in
the group C. For an integer a and B ∈ C we use a ? B to denote the sum
of B with itself a times in C.

Ciphertext re-randomization. For X ∈ C and r ∈ R we let Re(X, r) =
X⊕Ee(0, r). We use X ′ = Re(X) to denote X ′ = Re(X, r) for a uniformly
random r ∈ R. We call X ′ = Re(X) a re-randomization of X . Note that
X ′ is a uniformly random encryption of Dd(X).

Threshold decryption. We require that there exists a threshold func-
tion sharing of decryption Dd among n parties. More precisely, we as-
sume that for a construction threshold tD = t + 1, there exists a sharing
(d1, . . . , dn) of the decryption key d (where di is intended for party Pi),
satisfying the following conditions. Given the decryption shares xi =
Di,di

(X) for tD distinct decryption-key shares di, it is possible to effi-
ciently compute x such that x = Dd(X). Furthermore, the encryption



16 Asynchronous multi-party computation

scheme should be still semantically secure against chosen plaintext at-
tack when the adversary is given tD − 1 decryption-key shares. Finally,
we require that given a ciphertext X , plaintext x = Dd(X), and a set of
tD − 1 decryption-key shares {di}, it is possible to compute all n decryp-
tion shares xj = Dj,dj (X), j = 1, . . . , n. When keys are understood, we
write Di(X) to denote the function computing decryption share of party
Pi for ciphertext X , and x = D(X, {xi}i∈I) to denote the process of com-
bining the decryption shares {xi}i∈I to a plaintext x.

Robustness. To efficiently protect against cheating servers we require
that there exists an efficient two-party zero-knowledge protocol for prov-
ing the correctness of a decryption share. For this purpose each share di

of the decryption key d comes with a related public verification key vi.
The required zero-knowledge proof of correctness of a decryption share
xi = Di,di(X) takes (e, vi, X, xi) as instance, and (i, di) and random-
ness r as witness. We require also that there exists an efficient two-party
zero-knowledge protocol for proving the knowledge of a plaintext, given
(e,X) as instance and the corresponding plaintext x and randomness r
as witness. Finally, we require an efficient two-party zero-knowledge
“proof of correct multiplication” (cf. [CDN01]): given a triple of cipher-
texts (R,U, X), with r, u, x denoting the corresponding plaintexts, one
shows that U is a re-randomized encryption of the product u = r · x. We
require that all these protocols communicate O(κ) bits per proof.

2.2.2 Digital signatures

We assume the existence of a digital signature scheme unforgeable against
an adaptive chosen message attack. For a signing key s and a verification
key v, let Signs : {0, 1}∗ → {0, 1}κ denote the signing function, and let
Verv : {0, 1}∗ × {0, 1}κ → {0, 1} denote the verification function, where
Verv(x, σ) = 1 indicates that σ is a valid signature on the message x. We
write Signi/Veri to denote the signing/verification operation of party Pi.

2.2.3 Threshold signatures

We assume the existence of a threshold signature scheme, which is un-
forgeable against an adaptive chosen message attack. For a signing key s
and a verification key v, let Ss : {0, 1}∗ → {0, 1}κ denote the signing



2.2 Cryptographic primitives and protocols 17

function, and let Vv : {0, 1}∗ × {0, 1}κ → {0, 1} denote the verification
function, where Vv(m,σ) = 1 indicates that σ is a valid signature on m.

Threshold signing. We require that there exists a threshold function
sharing of Ss among n parties. That is, we assume that for a given sign-
ing threshold tS, 1 < tS ≤ n, there exists a sharing (s1, . . . , sn) of the
signing key s (where si is intended for party Pi), such that given signa-
ture shares σi = Si,si

(x) for tS distinct signing-key shares si, it is possible
to efficiently compute a valid signature σ, satisfying Vv(x, σ) = 1. We will
always have tS = n − t. The threshold signature scheme should be still
unforgeable against adaptive chosen message attack when the adversary
is given (tS − 1) signing-key shares. Finally, we require that given a sig-
nature σ on x, and (tS − 1) signing-key shares {si}i∈I , it is possible to
compute all n signature shares σj = Sj,sj

(x), j = 1, . . . , n. When keys
are understood, we use Si(x) to denote the function computing a signa-
ture share of party Pi for the message x, and σ = S (x, {σi}i∈I) to denote
the process of combining the signature shares {σi}i∈I to a signature σ.

Robustness. To protect against cheating servers we require that there
exists an efficient two-party zero-knowledge protocol for proving the cor-
rectness of a signature share σi = Si,si(m), given (v,m, σi) as instance
and given (i, si) as witness. We require that this protocol communicates
O(κ) bits per proof.

2.2.4 Byzantine Agreement

We require the existence of a Byzantine Agreement (BA) protocol, i.e. a
protocol in which the input of every party Pi is a bit vi ∈ {0, 1}, the
output of every Pi is a bit wi ∈ {0, 1}, and which satisfies the following
properties. If all honest parties enter the BA, then the BA eventually ter-
minates (termination). Upon termination the outputs of all honest players
are equal, i.e. wi = w for some w ∈ {0, 1} (consistency; we say then that
BA terminated with output w). If the BA terminates with output w, then
some honest party Pi entered the BA with input vi = w (validity). In par-
ticular, if all honest parties have the same input vi = v, then the output
of the BA is w = v.



18 Asynchronous multi-party computation

2.2.5 Cryptographic assumptions & instantiations of tools

The security of our constructions is based on decisional composite residu-
osity assumption (DCRA) [Pai99]. Alternatively, it could be based also on
QRA and strong RSA. We stress, that our constructions are in the plain
model. In particular, our constructions do not make use of random ora-
cles [BR93, CGH98, MRH04].

Homomorphic encryption with threshold decryption. An example of
an encryption scheme satisfying all required properties is Paillier’s cryp-
tosystem [Pai99] enhanced by threshold decryption as in [FPS00, DJ01].
In this schemeM = ZN for an RSA modulus N . Another example can be
based on the QR assumption and the strong RSA assumption [CDN01].

Digital signatures. As our digital signature scheme we use RSA-based
signatures [RSA78], like for example Probabilistic Signature Scheme (PSS)
by Bellare and Rogaway [BR96].

Threshold signatures. As an example we can use the threshold signa-
ture scheme by Shoup [Sho00]. The security of the threshold signature
scheme in [Sho00] is based on the assumption that standard RSA sig-
natures are secure. As presented in [Sho00] the zero-knowledge proofs
are non-interactive but for the random-oracle model. The protocol can
be modified to be secure in the plain (random oracle devoid) model by
using interactive proofs (cf. [Nie02]).

Byzantine Agreement. In our protocols we employ the efficient Byzan-
tine Agreement protocol of Cachin et al. [CKS00], which has expected
constant round complexity, and expected bit complexity of O(n2κ). As
presented in [CKS00] the security proof of the protocol needs the random-
oracle methodology (for the above mentioned threshold signatures). This
protocol also can be modified to be secure in the plain model [Nie02].

2.3 Kings & slaves: cryptographic MPC with op-
timal resilience

Our protocols follow the paradigm of multi-party computation based on
threshold homomorphic encryption scheme [FH96, CDN01]. In such pro-



2.3 Kings & slaves: cryptographic MPC with optimal resilience 19

tocols an encryption key of a public-key encryption scheme is publicly
known, while the corresponding decryption key is shared among all the
players, so that only the authorized subsets of the players can decrypt
any ciphertext (by cooperating in a decryption protocol).

Given such a setup the evaluation of a circuit proceeds as follows.
First the parties provide their inputs as ciphertexts of the encryption
scheme. Then they cooperate to evaluate the circuit gate-by-gate: given
encryptions of inputs of a gate, parties compute an encryption of the
corresponding output of the gate, while maintaining privacy of the in-
termediate values (due to the homomorphic property of the encryption
in use, linear gates can be evaluated locally, without any cooperation or
communication). Finally, after an encryption of the output gate is com-
puted, parties decrypt this encryption to learn the output.

To achieve robustness against corrupted parties one could use gen-
eral zero-knowledge proofs, with which each party would prove the cor-
rectness of its actions. However, the resulting protocols would be too
inefficient to be used in practice. Cramer et. al. [CDN01] employed
special-purpose zero-knowledge proofs to obtain an efficient protocol for
synchronous communication model. Below we describe how to imple-
ment this paradigm in an asynchronous network, achieving simultane-
ously communication efficiency and optimal resilience. Formally, the
main result of this section is summarized in the following theorem.

Theorem 1 Assuming the existence of homomorphic public-key encryption and
digital signatures (cf. Sections 2.2.1 and 2.2.2), there exists a protocol allowing
n parties connected by an asynchronous network to securely evaluate any circuit,
even in the presence of a computationally bounded adversary actively corrupting
up to t < n/3 parties.

The bit complexity of the protocol is O(cIn
3κ + (cM + cO)n4κ), where cI ,

cM , cO denote the number of input, multiplication, and output gates, respec-
tively, and κ is a security parameter. The round complexity of the protocol is
linear in the depth of the circuit.

2.3.1 A high-level overview.

The protocol proceeds in three stages, an input stage, an evaluation stage,
and a termination stage. In the following, we briefly summarize the goal
of each stage.



20 Asynchronous multi-party computation

• Input stage: Every player provides an encryption of his input to ev-
ery other player, and the players jointly agree on a subset of players
who have correctly provided their inputs.

• Evaluation stage: Every player independently evaluates the circuit
on a gate-by-gate basis, with help of the other players. The circuit
consists of linear gates, multiplication gates, and output gates.

• Termination stage: In parallel to the evaluation stage every player
runs also the termination stage, in which it is ensured that every
player eventually receives the output(s), and hence every player
who is still in the evaluation stage can safely abort it.

By having every player evaluate the circuit on his own, we bypass
the inherent problems of the asynchronous model. We denote the player
that evaluates the circuit as the king, and all other players as slaves (who
support the king). Note that every player acts in parallel once as a king,
and n times as a slave, once for every king. In particular, each player
acts also as a slave for his own king. The kings are not synchronized
among each other; it can happen that one king has almost completed the
evaluation of the circuit, while another king is still at the very beginning.
However, each slave is synchronized with his king. As soon as the first
king completes the evaluation and provably reveals all outputs, all other
kings (and their slaves) can safely truncate their own evaluation.

Strictly speaking, the presented protocol is limited to the evaluation of
deterministic circuits only. Suitable modifications extending the approach
to randomized circuits are pretty straightforward and are described shortly
afterwards, in Section 2.6.

2.3.2 Certificates

In order to achieve robustness we must require every party to prove (in
zero-knowledge) the correctness of essentially every value she provides
during the protocol execution. To implement this process efficiently we
introduce certificates, which are used for certifying the truth of claims.
Any party can verify the correctness of a certificate locally, without any
interaction. Moreover, a certificate should provide no other information
than the truth of the claim. Finally, since a certificate is just a bit-string, a
party can convince any other party about the truth of the corresponding
claim by sending the certificate to the other party, i.e. a certificate can be
used to transfer conviction about the truth of a claim.



2.3 Kings & slaves: cryptographic MPC with optimal resilience 21

Below we describe the certificates in more detail, but we intention-
ally omit a fully formal treatment of this notion. We use certificates as a
shorthand and a presentation tool, to allow for an intuitive, yet precise
and succinct descriptions of the protocols. Later, in the analysis and se-
curity proofs, we consider in each case the corresponding particular im-
plementation of the certificates, which reintroduces the necessary level of
formalism.

We say that a bit-string α is a certificate for claim m if there exits a pub-
licly known, efficiently computable verification procedure V , such that
the following conditions are satisfied, except with negligible probability:
if V (α, m) = 1 then claim m is true (soundness), and α gives no other
information than the truth of the claim m (zero-knowledge). Moreover
we require (limited2) completeness, i.e. the ability of generating certifi-
cates for true claims needed in our protocols. Typical claims used in the
proposed protocols include:

(i) «Pi knows the plaintext of Xi»

(ii) «the plaintext of Xi is from the set {0, 1, 2}»

(iii) «at least n − t parties have received Xi»

(iv) «Xi is the unique input of Pi»

If X is some value, and α is a certificate for some claim m about X
(e.g., claim (ii) above), then we say that X is a value certified (by α) for
claim m. Since a certificate is just a bit-string, it is transferable: if a party
has constructed or obtained a certificate, she can convince any other party
non-interactively of the validity of the claim, by just forwarding the cer-
tificate to the other party, who can then locally verify its validity.

In addition to the above conditions, in many cases we require that the
certificates for correctness/validity of some data X imply also uniqueness
of the data, i.e. that it is not possible to obtain two valid certificates for
two different values for the same claim. This can be easily achieved by
assigning in advance unique identifiers to every gate, every wire and ev-
ery step in the protocols, and requiring that the identifiers are parts of
the claims, e.g. «Xi is input of Pi for wire id», and that parties participate in
construction of at most one certificate for a particular claim. The iden-
tifiers can depend on the targeted application of the data, or on party
Pi generating it. Occasionally, to clarify the issues, we explicitly specify

2The completeness is limited, since we don’t require ability of creating certificates for
every true claim, but just for the claims we need in our constructions.



22 Asynchronous multi-party computation

the use of identifiers, and we emphasize the dependence of id on some
parameter(s) x, y, . . . by writing id(x, y, . . .). However, for simplicity we
often omit the details from the description of the protocols.

Constructing certificates. For many claims (e.g. (i) and (ii) above) the
corresponding certificates could easily be constructed in the random-
oracle model [BR93] (by using Fiat-Shamir heuristics [FS86]), but this
would be at the costs of a non-standard model. However, there are other
useful claims (e.g. some “global” claims like (iii) and (iv) above), which
are not directly provable using 2-party interactive proofs, and so obtain-
ing a certificate for them, even in the random-oracle model, is not so
straightforward. We therefore follow another approach, which both is
realizable in the standard model and allows us to construct certificates
for any claim needed in our protocols.

A simple implementation of certificates can be obtained from any sig-
nature scheme (Sign,Ver): a certificate α for claim m is just a set of at least
n − t correct signatures: α := {σi}i∈I , where |I| ≥ n − t and each σi is a
signature of party Pi on message m, i.e., σi = Signi(m). The verification
procedure V of such a certificate checks all the signatures:

V ({σi}i∈I ,m) =
{

1 if |I| ≥ n− t and ∀i ∈ I : Veri(m,σi) = 1
0 otherwise

Depending on the context and the claim to be certified, we’ll use two
methods of generating certificates:

bilateral proofs: when a party Pi needs a certificate for knowledge of
some secret value, or for validity of some NP-statement (cf. ex-
amples (i) and (ii) above, respectively), we will use two-party zero-
knowledge proofs. First Pi bilaterally proves the claim m in zero-
knowledge to every party Pj , who then, upon successful comple-
tion of the proof, sends to party Pi a signature σj = Signj(m). Party
Pi constructs then a certificate αi as a set of n − t such valid sig-
natures stemming from different parties. In this case we say that
“Pi constructs certificate αi for «some claim» by bilateral, zero-knowledge
proofs”, denoted as

αi := certifyzkp(«some claim») .

protocol-driven: For other claims, like the “global” examples (iii) and (iv)
above, Pi will also construct a certificate αi as a set of n− t individ-
ual signatures σj , but this time party Pj sends σj not in response



2.3 Kings & slaves: cryptographic MPC with optimal resilience 23

to a bilateral proof, but based on the current context of execution,
as required by the protocol. In this case we just say “Pi constructs
certificate αi for «some claim» ” and write

αi := certify(«some claim») .

Note that in a concrete implementation the signed messages can be
different from the actual claim being certified. For example, each
player Pj could sign the message «I have seen Xi», and n − t such
signatures can be interpreted as a certificate for (iii).

To get some intuition why this approach fulfills the requirements,
note that an adversary corrupting up to t players can never obtain suf-
ficiently many signatures: In the method based on bilateral proofs an
honest party never signs an incorrect claim, hence the adversary can col-
lect at most t < n − t signatures. Also, by the zero-knowledge property
of bilateral proofs, no additional information is leaked. In the other case,
when the construction of a certificate is protocol-driven, the soundness
depends on the actual claim being certified, but it will be clear from the
context.

In principle, for some claims a threshold smaller than n − t could be
sufficient to guarantee soundness, e.g. t+1 signatures would be sufficient
for ensuring that example (i) is true. However, we choose the threshold
n− t to guarantee also uniqueness of the certified claims: since n ≥ 3t + 1,
a threshold of n−t−1 or less would be insufficient, as an adversary could
easily obtain n − t − 1 signatures for two different claims. For example
if n = 3t + 1 holds, an adversary could obtain from the honest parties t
signatures for claim m, and t signatures for claim m′ 6= m, which together
with the signatures from the corrupted parties would yield 2t = n− t− 1
signatures for m, and 2t signatures for m′. On the other hand, with a
threshold of n − t (and n = 3t + 1) at most one claim can be certified:
If an adversary obtains n − t = 2t + 1 signatures for some claim m, then
at least t + 1 of these signatures come from honest parties. Hence at most
n − t − (t + 1) = t honest parties will sign a different claim m′, which
means that the adversary obtains in total at most 2t signatures for m′,
which is less than the required threshold of n− t.

For simplicity, we use this basic signatures-based implementation of
certificates in the MPC protocol presented in this section. Later, in Sec-
tion 2.4 we describe an alternative implementation of certificates, based
on threshold signatures, which results in a better efficiency of the entire
protocol.



24 Asynchronous multi-party computation

When presenting the protocols in the subsequent sections we keep in
mind the above construction of certificates, but omit the details from the
descriptions and use the shorthands certify(. . . ) and certifyzkp(. . . ) instead.
Naturally, we do include the corresponding sub-protocols and their bit
complexities in the analysis of the proposed solution (cf. Section 2.3.8).

2.3.3 The circuit and the correctness invariant

To enable a precise description of the new protocol, we first formally
model the circuit to be computed, and then give the invariant that is
satisfied during the whole computation. For the clarity of presentation
we assume in the following that every party provides exactly one input
value and that there are only outputs which are to be disclosed to all par-
ties (i.e., the final outputs are public). This is without loss of generality
for the case with public outputs, and protocols for the general case with
multiple input values can be derived by straightforward modifications
(cf.Section 2.3.7). However, the issue of providing private outputs is more
involved, and we discuss it in Section 2.7.

Circuit. We assume that the function to be computed is given as a circuit
Circ over the plaintext space M of the homomorphic encryption scheme
in use. The circuit is a set of labeled gates, where each label is a unique bit-
string G ∈ {0, 1}∗, used to identify the gate. The full description of a gate
is given by a tuple (G, . . .), consisting of a label and further parameters,
depending on the type of the gate and its position in the circuit. We use
G to denote the set of all gate labels of the circuit Circ. In the following
we let v : G → M ∪ {⊥} be a map from the labels into the the plaintext
space, where v(G) denotes the value of the gate G. Each gate (G, . . .) can
have one of the following types:

input gate: (G), consisting only of its label G = (Pi, input), where v(G) is
equal to xi, the input value provided by player Pi.

linear gate: (G, linear, a0, a1, G1, . . . , al, Gl), where l ≥ 0, a0, . . . , al ∈ M
are constants, and v(G) = a0 +

∑l
j=1 aj · v(Gj).

multiplication gate: (G, mul, G1, G2), where v(G) = v(G1) · v(G2).

output gate: (G, output, G1), where v(G) = v(G1) is an output value of the
circuit.



2.3 Kings & slaves: cryptographic MPC with optimal resilience 25

Dictionary. Throughout the computation each party Pi maintains a data
structure containing the views of each party Pj on the intermediate val-
ues in the circuit. More precisely, Pi holds a dictionary Γi, which for each
party Pj maps labels G to encryptions computed by the King Pj ,

Γi : [n]× G → C ∪ {⊥} .

Initially Γi(j,G) =⊥ for all labels and all j ∈ [n]. If Γi(j, G) = X 6=⊥,
then from Pi’s point of view gate G was completed by Pj , and X is a
ciphertext encrypting the value v(G). We say that X is the encryption of
v(G) reported by Pj to Pi, and that Pi has accepted X from Pj .

Correctness Invariant. The protocol guarantees, that if an honest party
Pi accepts a ciphertext X reported by Pj , then X is an encryption of a
correct value for gate G. Moreover, any two honest parties who accept an
encryption of any party Pl for a gate G agree on the encryption. Formally,
we have the following definition.

Definition 1 (Correctness Invariant) The correctness invariant consists of
the following four properties:

1. (Agreement on input providers) There exists a set W ⊆ [n] with
|W | ≥ n − t, such that for every honest party Pi which has decided on a
set of input providers {Pj : j ∈ Wi}, it holds that Wi = W .

2. (Agreement on input encryptions) For every two honest parties Pi, Pj ,
and for all k, l,m ∈ [n] the following is true: if Γi(k, (Pm, input)) 6=⊥
and Γj(l, (Pm, input)) 6=⊥, then

Γi(k, (Pm, input)) = Γj(l, (Pm, input)) =: Xm .

Furthermore, if Pm is honest, then if m ∈ W holds, D(Xm) is the initial
input xm of Pm, and if m 6∈ W holds, then D(Xm) is equal to the default
value for Pm’s input.

3. (Correct gate encryption) For every honest party Pi, if for any G ∈ G we
have that Γi(i, G) = X 6=⊥, then D(X) is identical to the value of gate
G obtained by decrypting the input encryptions held by Pi and evaluating
the circuit on the plaintexts.

4. (Agreement on encryptions of gates by the same king) For every
two honest parties Pi and Pj , for any king Pk ∈ P and any G ∈ G, if
Γi(k,G) = X 6=⊥ and Γj(k,G) = X ′ 6=⊥, then X = X ′.



26 Asynchronous multi-party computation

This invariant is propagated from the initial input stage until the output
stage is reached. Hence, a threshold decryption of the encrypted output
value is guaranteed to yield correct computation results.

The basis of the correctness invariant. The correctness invariant is es-
tablished in the input stage, which determines the values of all input
gates. Due to the security properties of the input-stage protocol, these
values are guaranteed to be correct in the sense that the each party pro-
viding input knows the actual value hidden in the encryption, and that
this value is a valid input to the function to be computed.

2.3.4 Main protocol

The main protocol first invokes the input stage, then the evaluation stage,
and finally the termination stage. At the end of the input stage parties
agree on the set of parties that provide input to the computation, and
on the (encrypted) values provided by these parties. In the evaluation
stage the actual computation of the desired functionality takes place. For
this purpose, every party starts one instance of the king protocol for the
evaluation stage, and n instances of the slave protocol — one slave for
every king. Each king runs for each gate G of the circuit the king sub-
protocol for G, and each slave runs the corresponding slave sub-protocol
for G helping its king. Concurrently to these gate-protocols a termination
protocol is executed, which allows all the parties to eventually terminate.
Summing up, the top-level code for every player Pi with input xi pro-
ceeds as follows:

1. Run the input stage code.

2. Wait until the input stage is completed, resulting in an initialized
dictionary Γi. Then concurrently execute for each linear, multipli-
cation, or output gate G ∈ G the corresponding protocols for com-
puting G:

• run the king protocol for G, to compute Γi(i, G)
• for each k ∈ [n] run the slave protocol for G, to help each king

Pk in computation Γk(k,G) (and so to compute Γi(k,G))

3. Concurrently to the evaluation of the circuit run the termination
code.

The corresponding sub-protocols are described in the next section.



2.3 Kings & slaves: cryptographic MPC with optimal resilience 27

Input stage code for Pi: given an input xi ∈M do the following:

1. compute Xi := E (xi) and construct

αi := certifyzkp(«Xi is Pi’s valid input») .

(every party Pj helps to construct at most one αi, for each Pi ∈ P)

2. enter execution of select protocol with input (Xi, αi).

3. output value(s) returned by select .

Figure 2.1: The input stage code for Pi holding input xi ∈M.

2.3.5 Sub-protocols used by the main protocol

To complete the presentation of the proposed MPC protocol we have to
describe sub-protocols used at the various stages of the main protocol
(cf. Sect. 2.3.4). Below we give intuitive descriptions of the sub-protocols,
and present them in more detail in the corresponding figures.

2.3.5.1 Input stage

The goal of the input stage is to define an encryption of the input of each
party. To ensure independence of the inputs, the parties are required to
prove plaintext knowledge for their encryptions. In a synchronous net-
work we could simply let the parties broadcast their encryptions. How-
ever, in an asynchronous setting with an active adversary we cannot
guarantee that each party contributes an input value, since it is impos-
sible to distinguish between a slow honest party and a corrupted party
not sending anything. Therefore a protocol is used which selects inputs
from at least (n− t) so-called input providers. These are the parties, whose
private inputs will be used in the actual computation of the circuit, and
for the remaining inputs the default values will be used. The protocol
will guarantee, that all honest parties obtain the correct inputs of input
providers, and so will be able to perform the computation.

The input stage consists of two main steps, as shown in Fig. 2.1. In
the first step, each party Pi encrypts its input value xi to obtain a cipher-
text Xi, and constructs a certificate αi = certifyzkp(«Xi is Pi’s valid input»),



28 Asynchronous multi-party computation

using bilateral zero-knowledge proofs and digital signatures. The cer-
tificate αi certifies that Xi is a valid value to be used for select pro-
tocol (see below). In particular, it implies that Pi knows the encrypted
value, that the encrypted value is from the valid range, and that Xi is
Pi’s unique possible input encryption to the circuit.

In the second step, parties run select protocol which allows them
to select the inputs of at least n− t players, and guarantees agreement on
the selected values. Finally, the players output the values returned by the
execution of select protocol.

Before we argue about the security and correctness of the input stage,
we describe select in more detail. Since we are going to use this proto-
col also in other situations, we present it as a stand-alone protocol with
appropriate parameters. In general, select is parametrized by a con-
dition ϕ, which has to be satisfied for each input to the protocol, and
certified by an appropriate certificate. For example, in the input stage the
condition for Pi’s input Xi is «Xi is Pi’s valid input», and the correspond-
ing certificate αi was generated in the first step, as described above. We
require that ϕ implies uniqueness, i.e., that every party can obtain a corre-
sponding certificate valid for ϕ for at most one input value used in any
execution of select .

The protocol proceeds as follows: First Pi distributes its input (Xi, α)
to all parties, and then constructs and distributes a certificate of distribu-
tion βi, which proves that Pi has distributed (Xi, αi) to at least n− t par-
ties. When a party collects n − t certificates of distribution, she knows
that at least n− t parties have their certified inputs distributed to at least
n− t parties. So, at least n− t parties had their certified inputs distributed
to at least (n − t) − t ≥ t + 1 honest parties. Hence, if all honest par-
ties echo the certified inputs they saw and collect n − t echoes, then all
honest parties will end up holding the certified input of the n− t parties,
which had their certified inputs distributed to at least t+1 honest parties.
These n − t parties will eventually be the input providers. To determine
who they are, n Byzantine Agreements are run. The protocol for select-
ing input providers is given in more detail in Fig. 2.2. In this protocol Pi

keeps track of arriving inputs and certificates with help of three auxiliary
sets Ai,Ai, Ci, where Ai collects the indexes of the parties from which
Pi has received certified inputs, Ai holds the corresponding inputs and
certificates (valid for the condition ϕ(i)), and Ci collects the indexes of
the parties from which Pi has received certificates of distribution.



2.3 Kings & slaves: cryptographic MPC with optimal resilience 29

Protocol select (ϕ), code for Pi: given input Xi with a certificate αi valid
for condition ϕ(i) initialize sets Ai,Ai, Ci as empty, then execute the fol-
lowing rules concurrently:

DISTRIBUTION:

1. send (Xi, αi) to all parties.

2. construct and send to all parties βi := certify(«we hold Pi’s input Xi»)

GRANT CERTIFICATE OF DISTRIBUTION:

1. upon first (Xj , αj) from Pj with αj valid for ϕ(j): add j to Ai, add
(Xj , αj) to Ai, and send σi :=Signi(«we hold Pj ’s input Xj») to Pj .

ECHO CERTIFICATE OF DISTRIBUTION:

1. upon (Xj , βj) with βj valid for «we hold Pj ’s input Xj» and j 6∈ Ci:
add j to Ci and send (Xj , βj) to all parties.

SELECTION:

If |Ci| ≥n−t, stop executing all above rules and proceed as follows:

1. send (Ai,Ai) to all parties.

2. collect a set {(Aj ,Aj)}j∈J of (n− t) well-formed (Aj ,Aj);
let Bi :=

⋃
j∈J Aj and Bi :=

⋃
j∈J Aj

3. enter n Byzantine Agreements (BAs) with inputs v1, . . . , vn ∈ {0, 1},
where vj = 1 iff j ∈ Bi.

4. let w1, . . . , wn be the outputs of the BAs; let W := {j ∈ [n]| wj = 1}.

5. ∀ j ∈ Bi ∩W: send (Xj , αj) ∈ Bi to all parties.

6. collect and output (W, {(Xj , αj)}j∈W ).

Figure 2.2: Protocol select (ϕ): code for Pi holding input
(Xi, αi), where αi certifies that Xi satisfies ϕ(i).



30 Asynchronous multi-party computation

Lemma 1 (Properties of select (ϕ)) If there are at most t < n/3 corrupted
parties and every honest party Pi enters select (ϕ) with input (Xi, αi), where
ϕ implies uniqueness and αi is valid for ϕ(i), then the following conditions are
satisfied:

Termination: All honest parties eventually terminate the protocol.

Agreement on output: There exists a set W ⊆ [n] with |W | ≥ n − t, such
that every honest party Pi outputs (W, {(Xj , αj)}j∈W ), where each αj is
valid for ϕ(j).

Proof. (sketch) As the first step in the proof we argue that if all honest
parties start running the protocol in Fig. 2.2, then some honest party will
eventually trigger the rule SELECTION. Consider namely a dead-locked
execution where this did not happen. In such an execution all honest par-
ties are still executing all rules. So, by the rule GRANT CERTIFICATE OF
DISTRIBUTION all honest parties complete Step 2 in the rule DISTRIBU-
TION. So, by the rule ECHO CERTIFICATE OF DISTRIBUTION, the set Ci

eventually grew to size n− t at all honest parties, and so the rule SELEC-
TION was eventually triggered by all honest parties, a contradiction.

Now consider any execution where at least one honest party, Pi, trig-
gered SELECTION. This party has |Ci| ≥ n − t, and therefore has sent at
least n − t certificates βj to all other parties in the rule ECHO CERTIFI-
CATE OF DISTRIBUTION. Therefore all honest parties Pl will eventually
have |Cl| ≥ n − t and trigger SELECTION. It is then clear that all honest
parties will eventually reach Step 6 in SELECTION and start waiting for
(Xj , αj) for each j ∈ W . So to prove Termination it is sufficient to ar-
gue that all (Xj , αj) eventually arrive in Step 6. To see this, observe that
if j ∈ W holds, then at least one honest party Pl had j ∈ Bl in Step 3.
This Pi will eventually reach Step 5 and send (Xj , αj) to all parties, and
(Xj , αj) will thus eventually arrive.

Now we argue Agreement on output. Let W to be the set defined
in Step 4 by the first honest party. The agreement on W follows from
the fact that W is defined by running Byzantine Agreements. It remains
to argue that |W | ≥ n − t. Since |Ci| ≥ n − t for all honest parties Pi

reaching Step 4 in SELECTION, it is sufficient to show a stronger claim,
that (

⋃
i∈H Ci) ⊆ W , where H denotes the set of honest parties reach-

ing Step 4. To see this, notice that if j ∈ Ci, then Pi saw βj valid for
«we hold Pj ’s input Xj». This means that at least (n− t)− t ≥ t + 1 honest
parties Pl issued a signature on «we hold Pj ’s input Xj» in GRANT CER-
TIFICATE OF DISTRIBUTION, and added (Xj , αj) to Al. This was done



2.3 Kings & slaves: cryptographic MPC with optimal resilience 31

Slave Pi helping king Pk in evaluation of (G, linear, a0, a1, G1, . . . , al, Gl):

1. wait until Γi(k, Gu) 6=⊥, for all u = 1 . . . l.

2. compute Γi(k,G) := A0 ⊕
(⊕l

u=1(au ? Γi(k, Gu))
)

.

Figure 2.3: Code for Pi helping king Pk to evaluate a linear gate.

before Pl reached Step 1 in SELECTION (at which point Pl stops executing
rules other than SELECTION). So, (Xj , αj) is in the set Al of at least t + 1
honest parties at Step 1 in SELECTION. Since (t + 1) + (n − t) > n, this
means that every honest party Pm reaching Step 3 will have (Xj , αj) in Bl

and will enter the Byzantine Agreement with vj = 1. Hence, all parties
will have wj = 1 and so j ∈ W holds, as desired.

Finally, we prove that honest parties agree also on the values in set
{(Xj , αj)}j∈W . If Pi’s output contains (Xj , αj), then αj is valid for ϕ(j).
Since the parties agree on W, it is enough to argue that there exists a
unique such value (Xj , αj). Clearly, this follows from the assumption
that ϕ(j) implies uniqueness. �

Since the output of the input stage is just the output of select pro-
tocol, Lemma 1 implies directly that after termination of the input stage
the first two properties of the correctness invariant, i.e. agreement on cir-
cuit and agreement on input encryptions, are satisfied. The remaining
two properties of the invariant are satisfied as well, but before we show
it, we complete the presentation of the MPC protocol by describing the
required sub-protocols.

2.3.5.2 Computing linear gates

Due to the homomorphic property of encryption, linear gates can be com-
puted locally, without interaction. That is, if a slave Pi has accepted Pk’s
encryptions of inputs to a linear gate (G, linear, a0, G1, a1, . . . , Gl, al), i.e.
when Γi(k, Gu) 6=⊥, for u = 1 . . . l, then Pi computes locally Γi(k, G) :=

A0 ⊕
(⊕l

u=1(aj ? Γi(k,Gu))
)

, where A0 is a “dummy” encryption of a0,
computed using a fixed, publicly-known bit-string as randomness. The
code for slave Pi helping king Pk is summarized in Fig. 2.3. The code for
the king is empty in the case of linear gates, since the slave code run by Pi

helping king Pi (i.e., for i = k) performs all the necessary computation.



32 Asynchronous multi-party computation

King Pk evaluating a multiplication gate (G, mul, G1, G2):

1. wait until Γk(k, G1) = C1 6=⊥ and Γk(k,G2) = C2 6=⊥

2. generate a randomizer (R,U, α) for G, and send it to all parties:

(a) collect a set S := {(Rj , Uj , σj , βj)}j∈J , with |J | ≥ t + 1, where

σj =Signj(«(Rj , Uj) : part of Pk’s randomizer for G»)

βj =certifyzkp(«Pj knows rj in Rj ; Uj is a randomization of rj ?C1»)

(b) send S to all parties

(c) compute R :=
⊕

j∈J Rj , and U :=
⊕

j∈J Uj

(d) construct α := certify(«(R, U) : Pk’s randomizer for G»)

3. collect a set V = {(zj , γj)}j∈J′ , with |J ′| ≥ tD, where each zj is Pj ’s
decryption share for Z = C2 ⊕R, and γj certifies zj ’s validity

4. send V to all parties

Figure 2.4: Code for king Pk evaluating a multiplication gate.

2.3.5.3 Computing multiplication gates

The protocol for computation of multiplication gates is more involved.
Roughly speaking, the idea is that each king Pk leads the computation of
the encrypted product in his instance of the evaluation protocol for each
particular multiplication gate. That is, given a gate (G, mul, G1, G2) such
that Γk(k, G) =⊥, Γk(k, G1) = C1, and Γk(k, G2) = C2, with C1, C2 6=⊥,
the king Pk leads all the players (who act as slaves) through the following
computation.

Let c1, c2 denote the values hidden in the ciphertexts C1, C2, respec-
tively. First a randomizer (R,U, α) is generated, where R is a threshold
encryption of a random element r ∈ M (unknown to the parties and the
adversary), U = R(r ? C1), i.e., U is a random threshold encryption of
rc1, and α is a certificate of the encryptions’ correctness. Then Pk sends
the randomizer to all parties, and waits until the parties answer with de-
cryption shares of the ciphertext Z = C2 ⊕ R, which is an encryption of
z = c2 + r. Once sufficiently many (i.e., at least tD) decryption shares
arrive, Pk sends them to all parties, which allows each Pi to decrypt z,
and compute an encryption of the product c1c2, using the homomorphic



2.3 Kings & slaves: cryptographic MPC with optimal resilience 33

Slave Pi helping king Pk in evaluation of (G, mul, G1, G2):

1. wait until Γi(k, G1) = C1 6=⊥ and Γi(k,G2) = C2 6=⊥

2. help to generate a randomizer (R,U, α) for G:

(a) pick a random value ri ∈ M, then compute and send to king Pk

the tuple (Ri, Ui, σi, βi), where Ri := E (ri), Ui := R(ri ? C1),
σi :=Signi(«(Ri, Ui) : part of Pk’s randomizer for G»), and
βi :=certifyzkp(«Pi knows ri in Ri; Ui is a randomization of ri?C1»)

(b) wait for set S = {(Rj , Uj , σj , βj)}j∈J from Pk, with |I| ≥ t + 1

(c) compute R :=
⊕

j∈J Rj , and U :=
⊕

j∈J Uj

(d) compute ρi :=Signi(«(R, U) :Pk’s randomizer for G»); send ρi to Pk

3. wait for (R,U, α) from Pk, with α valid for «(R, U) :Pk’s randomizer for G»;
compute and send to Pk tuple (zi, γi), where zi is Pi’s decryption
share for Z := C2 ⊕R, and γi := certifyzkp(«zi is valid»)

4. wait for decryption shares V from Pk, with |V | ≥ tD

5. decrypt z := D(Z, V ) and compute Γi(k,G) := (z ? C1)	 U

Figure 2.5: Code for slave Pi helping king Pk to evaluate a mul-
tiplication gate.

property of the encryption, and the fact that c1c2 = (c2 + r)c1 − rc1. That
is, Pi computes Γi(k, G) := (z ? C1)	 U .

A detailed description of the multiplication procedure for a king and
for a slave is given in Figures 2.4 and 2.5, respectively. Note that when
computing a certificate βi for the claim

«Pi knows ri in Ri; Ui is a randomization of ri?C1»

the variables Pi, Ri, Ui, and C1 are replaced by the actual values they
stand for (as it is also the case for all the variables in all other claims in
this protocol), while ri stays in the claim as a literal, since it is just a name
for the plaintext hidden in the ciphertext Ri.



34 Asynchronous multi-party computation

King Pk evaluating an output gate (G, output, G1):

1. wait until Γk(k, G1) = C 6=⊥

2. collect a set T = {(cj , δj)} of tD decryption shares for C,
with corresponding validity certificates δj

3. compute c := D(C, T ); send T to all parties

4. construct and send to all parties ζG = certify(«Pk’s value of G is c»)

Figure 2.6: Code for king Pk evaluating an output gate.

Slave Pi helping king Pk in evaluation of (G, output, G1):

1. wait until Γi(k, G1) = C 6=⊥

2. compute a decryption share ci := Di(C) and a certificate
δi := certifyzkp(«ci is valid»); send (ci, δi) to Pk

3. wait for decryption shares T = {(cj , δj)} from Pk;
compute c := D(C, T ),

4. help Pk to compute a certificate ζG valid for «Pk’s value of G is c»;
wait for ζG from Pk

5. set v(G) = c; mark G as decrypted

Figure 2.7: Code for Pi helping Pk to evaluate an output gate.

2.3.5.4 Output stage

When Pi notices that the computation of an output gate (G, output, G1) is
completed by some king Pk (i.e. Γi(k,G) = C 6=⊥), but the gate has not
been decrypted so far, then Pi sends a decryption share ci of C to Pk along
with a certificate that the decryption share is correct. King Pk collects
sufficiently many certified decryption shares, and sends them to all the
slaves. Every slave Pi decrypts the output using the received decryption
shares. Subsequently the parties construct a certificate ζG, which certifies
that the decrypted output value is correct. With such a certificate any
party Pi can convince any other party about the correctness of the output.
As we describe in the next section, this property will be useful in the
termination protocol.



2.3 Kings & slaves: cryptographic MPC with optimal resilience 35

During the protocol each party executes concurrently the following rules,
where GO denotes the set of all output gates:

RULE 1:

1. wait until every output gate G ∈ GO is marked decrypted

2. send to all parties {(G, v(G), ζG)}G∈GO
, where every ζG is a

certificate valid for «Pj ’s value of G is v(G)» for some j ∈ [n]

3. terminate

RULE 2:

1. wait for a message {(G, v(G), ζG)}G∈GO
, where every ζG is a

certificate valid for «Pj ’s value of G is v(G)» for some j ∈ [n]

2. mark every output gate G ∈ GO as decrypted

Figure 2.8: The code for terminating Pi.

2.3.5.5 Termination

As described above each king will eventually learn the value of the out-
put gate. However, to guarantee that every king completes the evaluation
led by him, it is necessary that the slaves run by every party Pi keep run-
ning even after the king run by Pi has finished and learned the output
values. To allow to terminate also the slaves, the parties execute a ter-
mination protocol. In fact, the termination protocol allows a party Pi to
terminate even its king process before completing the entire circuit, for
example when some other king has completed the computation and Pi

has received all the outputs with the corresponding certificates.

More precisely, when a party Pi collects certified output values for all
output gates (cf. previous section), either through its own king process,
or as a slave from the other kings, or directly from some other party as
a part of the termination code, then Pi is ready for terminating. For this
purpose Pi sends to all parties the complete set of collected certified out-
put values, and terminates. This echoing of output values ensures that
every honest party eventually receives all output values and terminates.
The code for terminating Pi is summarized in Fig. 2.8.



36 Asynchronous multi-party computation

2.3.6 Security analysis

Our protocol can be proved secure in the model described in Section 2.1.
A formal proof that the protocol can be simulated can be given along the
lines of the proof in [CDN01], using two helping lemmas. In this section,
we first present the helping lemmas and sketch their proofs, and then we
discuss how the lemmas allow to give a proof along the lines of [CDN01].
We stress, that the proposed constructions are in the plain model, without
making use of the random-oracle methodology.

2.3.6.1 Helping lemmas

Lemma 2 (The correctness invariant) If there are at most t < n/3 corrupted
parties, then the correctness invariant (Definition 1) is satisfied at any point in
the protocol.

Proof. (sketch) Recall the properties of the correctness invariant (cf. Def. 1):

1. Agreement on input providers.

2. Agreement on input encryptions.

3. Correct gate encryption.

4. Agreement on encryptions of gates by the same king.

As mentioned previously, the first two properties follow directly from the
agreement on output of select (ϕ) (cf. Lemma 1). More precisely, until
the first honest party reaches Step 4 in SELECTION in Fig. 2.2 we can take
W to be any subset of size n−t. After that we take W to be the set defined
in Step 4 by the first honest party. As shown in proof of Lemma 1, it holds
that |W | ≥ n− t and all honest parties agree on W and on {(Xj , αj)}j∈W ,
as required. Furthermore, the agreement on input encryptions follows
from the fact that the corresponding condition implies uniqueness, since
during the input stage (Fig. 2.1) each honest party helps to construct at
most one αi for each i ∈ [n], i.e issues at most one signature on a message
of the form « · is Pi’s valid input». To construct two different certificates
valid for statements of the form « · is Pi’s valid input» a total of 2(n − t)
signatures are needed. So, to certify two different messages at least 2(n−
t) − n = n − 2t ≥ t + 1 parties must sign more than one message of this
form. If there are at most t corrupted parties and honest parties sign only
one message of the specified form, clearly at most one value is certified.



2.3 Kings & slaves: cryptographic MPC with optimal resilience 37

We now argue that the third property, correct gate encryption, is an
invariant. Clearly it holds for all input gates of Pk. Furthermore, if it
holds for the encryptions Γi(k,Gu) for u = 1, . . . , l in Step 1 of the proto-
col for evaluating linear gates (Fig. 2.3), then it clearly holds for the result
Γi(k,G), by the homomorphic properties of the encryption scheme. We
then consider the multiplication protocol (Fig. 2.4 and 2.5). Assume first
that it holds for (R,U) in Step 2(c) that D(U) = D(R) · D(C1), and that
Step 4 in slave’s protocol terminates. In that case, by the homomorphic
properties, z = D(C2) + D(R), and thus

D(Γi(k, G)) = [D(C2)+D(R)]·D(C1)−D(R)·D(C1) = D(C1)·D(C2),

as desired. Therefore it is sufficient to argue that D(U) = D(R) · D(C1).
This follows directly from the distributive law in the plaintext space M,
and from the fact that the certificates βi in Step 2(a) guarantee that (except
with negligible probability) D(Ui) = D(Ri) ·D(C1), for all i ∈ I .

Finally we argue that the last property, agreement on encryptions of
gates by the same king, is an invariant. We proceed by induction. For
input encryptions, it follows from the second property. Furthermore, it
is clearly preserved by linear gates. Hence it remains to consider the
protocol for multiplication gates. Assume that Pi and Pj agree on the
inputs of Pk to a multiplication, i.e. that in Step 1 of the multiplication
protocol (Fig. 2.5) the following holds

Γi(k,G1) = Γj(k,G1) 6=⊥ and Γi(k, G2) = Γj(k, G2) 6=⊥ .

We have to argue that if Γi(k,G) and Γj(k,G) become defined in Step 5,
then Γi(k,G) = Γj(k, G) holds. Since ? and 	 are functions, and since Pi

and Pj compute the gate’s output Γi(k,G) resp. Γj(k, G) as (z ? C1)	 U ,
it is sufficient to demonstrate that Pi and Pj agree on z, C1 and U . This
in turn follows from the agreement on Z, C1 and U , since the decryp-
tion in Step 5 is correct (except with a negligible probability).3 Since ⊕
is a function and Z is equal to C2 ⊕ R, it is enough to argue the agree-
ment on C2, R, C1 and U . We have an agreement on C1 and C2 by
assumption. To see that Pi and Pj must agree on (R,U) observe that
each of them saw in Step 3 a certificate α valid for a message of the form
«(·, ·) : Pk’s randomizer for G». By an argument like the one used for the
second property, it follows that α guarantees uniqueness, so there is at
most one certified message of this form, hence Pi and Pj have the same
certified randomizer (R,U). �

3Recall that the decryption shares sent in V come along with correctness certificates.



38 Asynchronous multi-party computation

Lemma 3 (Termination) If there are at most t < n/3 corrupted parties and all
honest parties start running the protocol, then all honest parties will eventually
terminate the protocol.

Proof. (sketch) It is clear that the first step of the input stage protocol
(Fig. 2.1) eventually terminates. Hence by the termination property of
select (Lemma 1) it follows that if all honest parties start the input
stage, then all honest parties eventually terminate this stage.

Assume first that at least one honest party, say Pi, terminates, i.e.
reaches Step 3 in RULE 1 in Fig. 2.8. This means that Pi has obtained
a certified output value for every output gate in the circuit, i.e. for ev-
ery output gate G party Pi has a tuple (G, v(G), ζG) with ζG valid for
«Pj ’s value of G is v(G)», for some party Pj ∈ P . Note that it doesn’t mat-
ter, which party Pj was the king computing the certificate for an output
value v(G): by the correctness invariant, and by the soundness of the cer-
tificates, any party Pj can obtain a certificate only for the unique value of
v(G) implied by the inputs.

Since just before terminating Pi forwards all these tuples to all par-
ties, every honest party eventually receives all certified output values,
and becomes ready for termination. We have hence established, that if at
least one honest party terminates, then all honest parties terminate. To
complete the argument, we have to show that at least one honest party
indeed terminates.

Assume now that all parties terminated the input stage, that no party
reached Step 3 in RULE 1 in Fig. 2.8, and that the protocol is dead-locked.
This means that from the point where the input stage terminated and
throughout the execution each party was running for each gate a copy of
the king code and a n copies of the slave code. Since no king or slave ever
waits for more than n−t parties, and there are n−t honest parties (none of
which terminated, by assumption), this guarantees that no honest party
dead-locked in a king or slave code for any gate. In particular, all honest
parties reached Step 4 in king’s output gate protocol (Fig. 2.6), for every
output gate G. This implies that all n − t honest parties have sent the
certified output values to all parties, which in turn implies that every
honest party eventually obtains a certified value of every output gate. But
this means that every honest party eventually reaches Step 3 in RULE 1 in
Fig. 2.8. A contradiction. �



2.3 Kings & slaves: cryptographic MPC with optimal resilience 39

2.3.6.2 Security argument

As mentioned previously, the proof of security of our protocol goes along
the lines of [CDN01]. Below we sketch the main argument, highlighting
the points where Lemmas 2 and 3 are used.

By Property 1 (agreement on input providers) a set of at least n−t par-
ties have their inputs considered, as required by the model. Furthermore,
by Property 3 (correct gate encryption), the output c, obtained by Pi when
decrypting the output ciphertext in Step 3 of the output-gate code, will be
correctly defined from the plaintexts of the input ciphertexts held by Pi.
Since all honest parties agree on the input ciphertexts (Property 2), all
honest parties Pi will agree on the output c in Step 3 of the output-gate
code. By the soundness of the certificates and the fact that they guarantee
uniqueness, this implies that all honest parties terminate the protocol in
Fig. 2.8 with the output being the common value v(G) = c, as no other
value can get a suitable certificate when there are at most t corrupted par-
ties. Since c is the result of evaluating the circuit on the plaintexts of the
input ciphertexts and, by Property 2, the input ciphertext Xl of honest
party Pl contains the correct input xl, the result c can indeed be obtained
by restricting the set of input providers to a set of size at least n − t and
then changing only the inputs of the corrupted parties.

The privacy of the protocol (formally defined by the simulator only
being given the inputs of the corrupted parties in the simulation) follows
mainly from the fact that all inputs are encrypted using a semantically
secure encryption scheme and that all proofs are zero-knowledge. So, the
only knowledge leaked about the inputs of the honest parties is through
decryptions of ciphertexts.

The decryptions take place only in Step 5 of multiplication-gate code
(Fig. 2.5), and in Step 3 of output-gate code (Figs. 2.6 and 2.7). By the
correctness of the protocol the knowledge leaked in Step 3 of output-gate
is the result of the computation, which is allowed to leak by the model.
So it remains to argue that no knowledge is leaked in Step 5 of multipli-
cation. To see this, observe that the value revealed by the decryption is
z = c2 +

∑
j∈J rj , which has a potential of leaking knowledge about c2

(which possibly is to be kept secret). Since each term rj from an honest
party is chosen uniformly at random and all rj are chosen independently
(this is the purpose of having all parties, in particular the corrupted par-
ties, prove plaintext knowledge of their ri in Step 2(a)), it is sufficient to
show that each revealed value z = c2 +

∑
j∈J rj contains at least one

honest value rj which did not enter another revealed value.



40 Asynchronous multi-party computation

First observe that since |J | ≥ t+1, at least one rj came from an honest
party. Observe also that each of the randomizers rj is associated uniquely
to one (Pk, G) by the signature σj (issued in Step 2(a) and checked in
Step 2(c)). Therefore rj only enters values z = c2 +

∑
j∈J rj leaked in

decryptions in Step 5 of the multiplication-gate protocol for the specific
(Pk, G) in consideration. It is therefore sufficient to show that for each
(Pk, G) there is only one value z for which knowledge is leaked. This
follows from the uniqueness guaranteed by the certificates α and from
Lemma 2. More precisely, by the uniqueness of α there exists at most one
value (R,U) with a certificate valid for «(R, U) : Pk’s randomizer for G».
Furthermore, since the honest parties agree on the gate encryptions of Pk

(cf. Lemma 2, Property 4), there exists at most one value Z = C2 ⊕ R for
which honest parties issue decryption shares in Step 3 for a given choice
of (Pk, G). Therefore each value z = c2 +

∑
j∈J rj on which knowledge

is leaked through decryption shares from honest parties, at least one ri

came from an honest party and did not enter another value on which
knowledge was leaked, as desired.

2.3.7 Circuits with multiple inputs

So far we assumed that every party provides exactly one input value.
This is essentially without loss of generality, since the modifications nec-
essary for the general case with multiple inputs are straightforward, as
described below.

If a party Pi has ` > 1 input values, xi,1, . . . , xi,`, then in the input
stage (Fig. 2.1) Pi computes corresponding ciphertexts Xi,1, . . . , Xi,`, and
using bilateral zero-knowledge proofs obtains a certificate αi certifying
the correctness and knowledge of all corresponding plaintexts. Then Pi

defines its input for the select protocol as (Xi = (Xi,1, . . . , Xi,`), αi)
and proceeds as previously.

2.3.8 Efficiency analysis

In this section we consider the communication complexity of the pro-
tocol. We omit computational complexity from the analysis, since it is
clearly polynomial, and the bottleneck of distributed computing is in the
communication overhead. Moreover, since it is not hard to see that the
round complexity is linear in the depth of the circuit, in the rest of this
section we focus on bit complexity, i.e. the number of bits communicated
between the parties.



2.3 Kings & slaves: cryptographic MPC with optimal resilience 41

Conventions and notation. We assume that all encryptions, all signa-
ture shares, all signatures and all pairwise proofs communicateO(κ) bits,
and that the bit complexity of a Byzantine Agreement is O(n2κ) [CKS00].
For completeness, we consider the case with multiple inputs per party
and multiple public outputs. We use cI , cM , and cO to denote the total
number of input-, multiplication- and output gates, respectively. More-
over, we use π to denote the size of a certificate constructed by certifyzkp(·)
or certify(·). Since a certificate consists just of n− t signatures, each of size
O(κ), we have that π = O(nκ).

Input stage. In the input protocol (Fig. 2.1) for every input value two
certificates are constructed and echoed by all parties, causing O(n2π)
bits of communication. Additionally, the echoing of the encrypted val-
ues costs O(n2κ) bits. Finally, the n Byzantine Agreements executed
during the input stage cause an overall of O(n3κ) bits of communica-
tion. Therefore the total bit complexity of the input stage is bounded by
O(cI(n2π + n2κ) + n3κ).

Evaluation stage. In the king’s protocol the dominating values sent are
the sets S and V in the multiplication protocol (Fig. 2.4), and the set T
in the output-gate protocol (Fig. 2.6). These sets have size O(nκ + nπ)
and are sent to all n slaves. This gives a communication complexity of
O(n(nκ + nπ)) each time a set is sent, which results in a bit complexity
of O((cM + cO)n(nκ + nπ)) for running the protocols in Figs. 2.4 and 2.6.
These protocols are run by all n kings, yielding a total bit complexity of
O((cM + cO)n2(nκ + nπ)).

In the slave’s protocol the construction and sending of the values in
Steps 2(a) and 3 of the multiplication gate (Fig. 2.5), and in Step 2 of the
output gate protocol (Fig. 2.7) all use O(nκ + π) bits of communication,
and these are the dominating instructions. Each construction of a cer-
tificate is done at most once for each gate for each king being helped.
This yields a total of O((cM + cO)n(nκ + π)) bits for running the slave’s
protocol. Since the protocol is run by all n slaves, this yields a total bit
complexity of O((cM + cO)n2(nκ + π)).

Termination stage. It is easy to verify that the total bit complexity of the
terminating protocol in Fig. 2.8 is O(cOn2(π + κ)).



42 Asynchronous multi-party computation

Total communication. Summing all terms we get bit complexity of

O(cI(n2π + n2κ) + cOn2π + (cM + cO)n2(nκ + nπ) + n3κ). (2.1)

Using π = O(nκ) bits, and assuming that cO ≥ 1 holds, we obtain, that
the total bit complexity of the proposed MPC protocol is bounded by
O(cIn

3κ + (cM + cO)n4κ). That is, O(n4κ) bits are communicated per
multiplication or output gate, and O(n3κ) bits per input gate.

2.4 Better efficiency via threshold signatures

A closer look at the bit complexity (2.1) of the protocol from the previous
section shows that the dominating factor is determined by the cost of
sending certificates. Since a certificate for «some claim» is a collection of
sufficiently many (i.e., at least n− t) signatures σi = Signi(«some claim»),
the size of one certificate is O(nκ) bits. Here we describe an alternative
construction of certificates, which results in certificates of size O(κ) bits
only. Plugging-in this new construction into the MPC protocol yields a
protocol with the overall bit complexity reduced by a factor of n.

To create short certificates we employ a threshold signature scheme
(S ,V ) with a threshold tS = n − t, in which the ability to compute sig-
natures is shared among the parties (cf. Sect. 2.2.3). To construct a certifi-
cate α valid for «some claim», i.e. a threshold signature for «some claim»,
a party must collect tS correct signature shares from different parties, where
each share is computed as σj = Sj(«some claim»). Then the signature
shares are combined4 to a single signature using the algorithm S :

α := S («some claim», {σj}j∈J), where |J | ≥ tS .

Any party knowing the corresponding public verification key v can ver-
ify correctness of the resulting signature using algorithm V , i.e. α is valid
for «some claim» if and only if Vv(«some claim», α) = 1, where v is the pub-
lic verification key corresponding to the secret shared signing key.

4Note that to enable efficient combination of the shares, a party must know which signa-
ture shares are correct. This was not a problem for certificates based on (regular) signatures,
since by definition everyone can check their correctness. In the case of threshold signatures
parties use efficient two-party zero-knowledge protocol for proving the correctness of sig-
nature shares (cf. Sect. 2.2.3): when a party Pj provides a signature share σj , she also proves
to the recipient the correctness of σj .



2.5 MPC with quadratic communication 43

Like the implementation of certificates based on the regular signa-
tures, this new implementation also enables two methods of generat-
ing certificates: by bilateral proofs, denoted α := certifyzkp(«. . . »), and
protocol-driven, denoted α := certify(«. . . »). Therefore, the changes in the
described protocols are minimal: whenever originally a party was help-
ing to generate a certificate valid for «some claim» by providing a signa-
ture on «some claim», she now provides a signature share on «some claim»
(and proves bilaterally to the recipient the correctness of the share). Also
the changes in the security argument are straightforward, so we omit
them and proceed to the complexity analysis.

Since a threshold signature has size of only O(κ) bits, replacing the
original constructions of certifyzkp(«. . . ») and certify(«. . . ») from the pro-
tocol of Sect. 2.3 by the above threshold-signatures based counterparts
results in an MPC protocol with total bit complexity O(cIn

2κ + (cM +
cO)n3κ). That is, we obtain a protocol communicating O(n3κ) bits per
multiplication or output gate, and O(n2κ) bits per input gate.

Summarizing, we obtain the following theorem.

Theorem 2 Assuming the existence of homomorphic public-key encryption,
digital signatures, and threshold signatures (cf. Sections 2.2.1, 2.2.2, and 2.2.3),
there exists a protocol allowing n parties connected by an asynchronous net-
work to securely evaluate any circuit, even in the presence of a computationally
bounded adversary actively corrupting up to t < n/3 parties.

The bit complexity of the protocol is O(cIn
2κ + (cM + cO)n3κ), where cI ,

cM , cO denote the number of input, multiplication, and output gates, respec-
tively, and κ is a security parameter. The round complexity of the protocol is
linear in the depth of the circuit.

2.5 MPC with quadratic communication

While the protocol presented in the previous section is significantly more
efficient than the previous protocols for optimally resilient asynchronous
MPC (cf. [BCG93, BKR94, SR00, PSR02]), it falls short of matching the
bit complexity of currently most efficient MPC protocols for synchronous
networks. In particular, Hirt and Nielsen [HN06] have recently proposed
a protocol for synchronous MPC, which communicates only O(nκ) bits
per multiplication gate (plus O(n) of broadcasts, independent of the size
of the circuit being evaluated).



44 Asynchronous multi-party computation

In this section we present a different protocol for asynchronous MPC,
which communicates only O(n2κ) bits per multiplication gate and thus
narrows the gap between synchronous and asynchronous protocols. This
new protocol results from a combination of the general approach to MPC
based on threshold encryption with a segmentation of the circuit and a
circuit-randomization technique of Beaver [Bea91]. The main result of
this section is summarized in the following theorem.

Theorem 3 Assuming the existence of homomorphic public-key encryption,
digital signatures, and threshold signatures (cf. Sections 2.2.1, 2.2.2, and 2.2.3),
there exists a protocol allowing n parties connected by an asynchronous net-
work to securely evaluate any circuit, even in the presence of a computationally
bounded adversary actively corrupting up to t < n/3 parties.

The bit complexity of the protocol is O(cIn
2κ + (cM + cO)n2κ), where cI ,

cM , cO denote the number of input, multiplication, and output gates, respec-
tively, and κ is a security parameter. The round complexity of the protocol is
linear in the depth of the circuit.

2.5.1 Reducing redundancy

The complexity of Ω(n3κ) bits per multiplication of the protocol from
Section 2.4 stems from the high redundancy of the protocol — to achieve
robustness we let every party play the role of the king (with n slaves help-
ing him), which results in a duplication of substantial amount of work,
since essentially the necessary computation is performed n times. Note
that with a passive adversary it would be sufficient to have just one king,
but with an active adversary we cannot rely on any particular party to
correctly play the role of the king.

Below we describe how to use the work of the parties in a more eco-
nomic way. The idea is to partition the circuit, so that different kings are
responsible for different (multiplication) gates — in this way we avoid
redundancy in the performed computation. This however has to be done
in a robust way, so that adversary controlling some of the parties cannot
prevent progress of computation by “blocking” the gates assigned to the
corrupted parties.

The key to achieving robustness in an efficient way is the so-called
circuit-randomization technique due to Beaver [Bea91]. Using this tech-
nique a multiplication of two secret values is performed with help of a
pre-generated random product triple, which in our case is just a triple of



2.5 MPC with quadratic communication 45

Let A,B and U, V,W be ciphertexts known to all parties, containing
plaintexts a, b, u, v, w ∈M respectively, such that u, v, w are random sub-
ject to u · v = w. To compute a ciphertext C of c = a · b, every party Pi

proceeds according to the following instructions:

1. compute X := A⊕ U and Y := B ⊕ V

2. compute decryption shares and corresponding validity proofs:

xi := Di(X) βi := certifyzkp(«xi is valid»)
yi := Di(Y ) γi := certifyzkp(«yi is valid»)

3. send (xi, βi) and (yi, γi) to all parties

4. collect sets X := {(xj , βj)} and Y := {(yj , γj)}, each containing tD
correct decryption shares, with corresponding validity proofs.

5. compute plaintexts x := D(X,X ) and y := D(Y,Y).

6. compute Z := E (x · y, r0) for some constant r0, and output

C := Z 	 (x ? V )	 (y ? U)⊕W .

Figure 2.9: Randomization technique of Beaver [Bea91] for mul-
tiplication of encrypted values (code for party Pi).

ciphertexts (U, V,W ) containing secret random plaintext values u, v, w ∈
M, such that u · v = w holds. Given such a triple and two ciphertexts
A,B containing plaintexts a, b, we can compute a ciphertext C of c = a · b
by publicly decrypting A + U and B + V , and by using the homomorphic
property of the encryption and the following identity

a · b = ((a + u)− u) · ((b + v)− v)
= (a + u) · (b + v)− (a + u) · v − u · (b + v) + u · v
= (a + u) · (b + v)− (a + u) · v − u · (b + v) + w .

The corresponding protocol is given in Fig. 2.9. It is easy to see that this
protocol uses O(n2κ) bits of communication: essentially, we need two
threshold decryptions, where every player sends his decryption share to
all players, together with a certificate of correctness, for which we use
threshold signatures (cf. Sect. 2.4). Therefore to obtain an overall O(n2κ)



46 Asynchronous multi-party computation

communication per multiplication gate it remains to generate random
product triples using O(n2κ) bits of communication per triple. The de-
sign of an appropriate protocol is the main topic of the next section.
Given such a protocol, we obtain the desired result, i.e. an asynchronous
MPC protocol with O(n2κ) bits of communication per gate (cf. Theo-
rem 3).

2.5.2 Generating random triples

A random triple is a tuple of three ciphertexts (U, V,W ) containing secret
plaintexts u, v, w ∈ M, respectively, which are chosen uniformly at ran-
dom, subject to u · v = w. Since we are considering an active adversary,
our protocol for generating random triples will provide additionally a
certificate for the correctness of each generated triple. This certificate
will be a threshold signature on the message «(U, V, W ): a correct triple id»,
where id is a unique identifier assigned according some pre-agreed con-
vention.

Before we describe in detail the proposed protocol for generating ran-
dom triples, we give an intuitive overview of its structure. First we need
a protocol one-triple allowing a party Pk (playing the role of a king) to
generate its own random certified triple (U (k), V (k),W (k);σ(k)). Further-
more, we need a protocol select , to which each party Pi provides its
own random triple (U (i), V (i),W (i);σ(i)) as input, and which yields a set
of at least n− t valid triples as output, on which all (honest) parties agree.
Given these two sub-protocols, the high-level structure of gen-triples
protocol is the following:

1. Every party Pk starts an instance of one-triple (id, k) protocol to
generate a certified random triple (U (k), V (k),W (k);σ(k)) (all parties
Pj play roles of slaves to help Pk)

2. All parties start select , where party Pi uses as its input the triple
(U (i), V (i),W (i);σ(i)) generated in the previous step. When select
terminates, parties have agreed on a set of at least n− t valid triples
{(U (j), V (j),W (j))}j∈J .

Protocol select was presented already in Section 2.3.5.1, where we used
it to select inputs to the computation (Fig. 2.2). The starting point for
select is a scenario where each party Pi has some input value Xi and



2.5 MPC with quadratic communication 47

To generate for Pk a certified random ciphertext (U,α), with α valid for
«U : 1st part of triple id(k)» parties proceed as follows:

GENERATION: code for every Pi:

1. pick random ui ∈M and compute Ui := E (ui)

2. construct βi = certifyzkp(«Pi knows ui in Ui»)

3. compute σi := Signi(«Ui : component of 1st part of triple id(k)»)

4. send (Ui, βi, σi) to Pk:

CONSTRUCTION: code for Pk:

1. collect a set Sid(k) := {(Ui, βi, σi)}i∈Iid(k) , |Iid(k)| ≥ t + 1,
with each βi valid for «Pi knows ui in Ui»,
and each σi valid for «Ui : component of 1st part of triple id(k)».

2. send Sid(k) to all parties; each Pi computes U :=
⊕

i∈Iid(k)
Ui,

and helps to construct α in the next step.

3. construct α := certify(«U : 1st part of triple id(k)»).

4. output (U,α).

Figure 2.10: Protocol random (id, k): The code for generating
a certified random value with id(k) for king Pk .

a corresponding validity certificate βi. The goal of select is distribu-
tion and agreement on a subset of at least n − t individual inputs. See
Figure 2.2 for details.

In our construction of one-triple we need to generate certified,
encrypted random values, so first we present a sub-protocol random
(Fig. 2.10), which achieves exactly that. More precisely, random allows
a party Pk, acting as a king, to generate a ciphertext U with a certificate
α, where the plaintext hidden in U is random and unknown to any party,
and α certifies this fact. Given (U,α), king Pk can extend it to a random
triple using one-triple , as presented in Fig. 2.11. Note that this pro-
tocol works similarly to the protocol for generating a randomizer during
the multiplication step (cf. Figs. 2.4 and 2.5). In particular, when comput-



48 Asynchronous multi-party computation

To generate for Pk a certified random ciphertext (U, V,W ;β), with β valid
for «(U, V, W ): correct triple id(k)» parties proceed as follows:

REQUEST: code for Pk:

1. run random (id, k) to generate a tuple (U,α), with α valid for
«U : 1st part of triple id(k)», and send (U,α) to all parties.

REPLY: code for every Pi:

1. wait for (U,α) from Pk

2. compute Vi := E (vi) and Wi = R(vi ? U) for a random vi ∈M

3. construct
βi := certifyzkp(«Pi knows vi in Vi, and Wi is a randomization of vi ? U»)

4. compute σi := Signi(«(Vi, Wi) : part of triple id(k)»)

5. send (Vi,Wi;βi, σi) to Pk

CONSTRUCTION: code for Pk:

1. collect Tid(k) := {(Vi,Wi;βi, σi)}i∈Iid(k) , |Iid(k)| ≥ t + 1, with each
βi valid for «Pi knows vi in Vi, and Wi is a randomization of vi ? U» and
each σi valid for «(Vi, Wi) : part of triple id(k)».

2. send Tid(k) to all parties; each Pi computes V :=
⊕

i∈Iid(k)
Vi,

W :=
⊕

i∈Iid(k)
Wi, and helps to construct β in the next step.

3. construct β := certify(«(U, V, W ): correct triple id(k)»).

4. output (U, V,W ;β).

Figure 2.11: Protocol one-triple (id, k) for generating a certi-
fied random triple (U, V,W ) with id(k) for king Pk.

ing a certificate βi for the claim

«Pi knows vi in Vi, and Wi is a randomization of vi ? U»

the variables Pi, Vi, Wi, and U are replaced by the actual values they
stand for, while vi stays in the claim as a literal, since it is just a name for
the plaintext hidden in the ciphertext Vi.



2.6 Computing randomized functions 49

On the use of Byzantine Agreement. A closer look at gen-triples
protocol reveals one disturbing property. Recall that to implement mul-
tiplication of encrypted values via circuit randomization (cf. Fig. 2.9), we
need one (agreed upon) random triple per multiplication gate. If we dis-
tribute and select the triples in batches of (n − t) as described above, we
would need in total dcM/(n − t)e runs of gen-triples , which implies
that we would need about cM runs of Byzantine Agreement, since the
protocol gen-triples executes select , which in turn uses n Byzan-
tine Agreements. This means that the number of required Byzantine
Agreements would depend on the size of the circuit. One can avoid this
by applying to gen-triples the same trick as we used in the case of
multiple inputs per player (cf. Section 2.3.7): In the first step each Pk runs
` > 1 instances of one-triple , to generate ` certified random triples,
where ` = dcM/(n − t)e. Then in the second step each party Pi uses all
` triples as its input to select . Since protocol select returns a set of at
least (n − t) inputs, we obtain an agreement on cM random triples with
only n Byzantine Agreements, which is independent of the circuit size.

2.6 Computing randomized functions

As mentioned in Section 2.3.1, the MPC protocols presented so far are
restricted to the evaluation of deterministic circuits only. However, the
modifications enabling the evaluation of randomized circuits are pretty
straightforward: we introduce additional "random gates"and generate
random values using an approach as for generating random triples. More
precisely, a random gate G is specified as (G, random) and the value v(G)
of the gate is equal to a random value generated jointly by the players,
as described below. Then at the beginning of the protocol every party
generates a batch of certified random values, using the protocol random
(Fig. 2.10), and subsequently parties agree on the random values from at
least n − t parties, using the protocol select (Fig. 2.2). The resulting
certified random values are assigned to the random gates in some pre-
agreed deterministic way.

If each party Pi enters select with a batch of dcR/(n − t)e certified
random values, where cR is the total number of random gates in the cir-
cuit, then we obtain agreement on cR random values with just n Byzan-
tine Agreements, which is independent of the circuit size. The communi-
cation cost per one random gate is O(n2κ).



50 Asynchronous multi-party computation

2.7 Computing functions with private outputs

To simplify the presentation, until now we considered circuits with pub-
lic outputs only, i.e., every party learns the output(s) of the circuit. In
the following, we present an extension that allows for outputs that are
delivered only to an authorized party, say Pj .

A standard way of dealing with this problem in the synchronous model
is the following: For every secret output value party Pj provides an addi-
tional secret random input value, which is added to the output-ciphertext
(using the homomorphic property of the encryption scheme) to blind the
secret output before decryption. Since only Pj knows the random blind-
ing input, the decrypted blinded value gives no information to any party
except Pj , who nevertheless can easily unblind the secret output. Unfor-
tunately, this trick doesn’t work in the asynchronous setting, as we cannot
guarantee that the inputs provided by Pj (including the blinding value)
are considered by the parties during the computation (cf. Sect. 2.3.5.1).

The intuition of the protocol is that the decryption shares are not sent
to the king, but rather directly to Pj . Every decryption share must go
along with a proof of validity. This proof must not be interactive with Pj

(the parties cannot wait for messages of Pj), and the proof must not be
given to other parties (this would violate the privacy of the output proto-
col). Therefore, we have every slave Pi blind his decryption share ci with
a random value ri, i.e., c′i = ci + ri, encrypt ri with randomness ρi, i.e.,
Ri = E (ri, ρi), and prove interactively towards every player Pl knowl-
edge of ri such that ri encrypts to Ri and c′i − ri is a valid decryption
share. Upon accepting the proof, every player Pl hands a signature share
for «(c′

i, Ri) is a good decryption share for slave Pi» to Pi, who then sends c′i,
ri, ρi to Pj . Given this information from at least n − t players, Pj picks
the valid decryption shares and decrypts his private output.

We note that a similar technique has been recently used, but for a
different purpose, by Schoenmakers and Tuyls [ST04].

2.8 Providing inputs in asynchronous networks

A fully asynchronous MPC protocol inherently cannot consider the input
of every honest party; once n− t inputs are ready, the protocol must start.
This is a serious drawback which makes the fully asynchronous model
unusable for many real-world applications. We show that with only few



2.8 Providing inputs in asynchronous networks 51

rounds of synchronization we can consider the input of every honest party
participating in the computation.

This model seems very reasonable in the real-world: the parties would
wait for other parties to have their input ready, and if not, use other
means of communication (email, phone, fax, etc) to synchronize. How-
ever, the MPC protocol itself should run asynchronously to comply with
the properties of existing networks, namely that the delay of messages is
hard to predict. Note that asynchronous protocols can be looked as “best
effort” protocols where the progress in the protocol is as fast as possible
with the available network, in contrast to synchronous protocols whose
progress is limited by the assumed worst-case delay of the network.

The following slight modification of select protocol (cf. Fig. 2.2),
which is the main part of the input-stage protocol, achieves the desired
effect using only four synchronous rounds: Every player Pi moves to the
last stage (SELECTION) only when either |Ci| = n, or the synchronous
rounds have elapsed. More precisely, parties generate their certified in-
puts, and then send them to all parties using the synchronous commu-
nication. If during the generation of certified inputs efficient Σ-protocols
are used (cf. [CDN01]), this will cost in total five synchronous rounds.

Note that given a few synchronous rounds at disposal one could in
principle use a general synchronous constant-round MPC protocol, e.g.
the one due to Beaver, Micali and Rogaway [BMR90]. However, such a
solution would be rather inefficient in practice, since the known constant-
round MPC protocols have a relatively high bit complexity.



52 Asynchronous multi-party computation



Chapter 3

Robust combiners of
cryptographic primitives

Many cryptographic schemes are based on unproven assumptions about
the difficulty of some computational problems. While there exist assump-
tions whose validity is supported by decades of research (e.g., factoring
or discrete logarithm), many new assumptions offering new possibilities
are being proposed in the literature, and it is unclear how to decide which
assumptions are trustworthy. Therefore, given multiple implementations
of some cryptographic primitive, all based on different assumptions, it is
often difficult to decide which implementation is the most secure one.

Robust combiners offer a method of coping with such difficulties:
they take as input multiple candidate schemes based on various assump-
tions, and construct a scheme whose security is guaranteed if at least
some candidates are secure. That is, the resulting scheme is secure as long
as sufficiently many of the assumptions underlying the input candidates
are valid. This provides tolerance against wrong assumptions since even
a breakthrough algorithm for breaking one (or some) of the assumptions
doesn’t necessarily make the combined scheme insecure.

More formally, a (k; n)-robustA-combiner is a construction which takes
as input n implementations of a primitive A, and yields an implemen-
tation of A which is guaranteed to be secure as long as at least k input
implementations are secure. Robust combiners for some primitives, like
one-way functions or pseudorandom generators, are rather simple, while



54 Robust combiners of cryptographic primitives

for others, e.g., for oblivious transfer (OT), the construction of combin-
ers seems considerably harder. In particular, in a recent work Harnik
et al. [HKN+05] show that the so-called transparent black-box (1; 2)-robust
OT-combiners are impossible. That is, they prove that (1; 2)-robust OT-
combiners restricted to the on-line use of the input candidates, do not
exist (cf. Def. 5 in Section 3.1.2). In the same paper the authors propose
also a very simple and efficient transparent black-box (2; 3)-robust OT-
combiner.

In general, the candidates input to the combiner do not have to be
necessarily implementing the same primitive, and the goal of a combiner
may be a construction of a primitive different from the primitives given at
the input. That is, a robust combiner can be viewed as a robust reduction
of the output primitive to the input primitive(s).

Overview. In this chapter we consider robust combiners for private in-
formation retrieval (PIR), bit commitment (BC), oblivious transfer (OT)
and oblivious linear function evaluation (OLFE). In particular, in Sec-
tion 3.2 we present a (1; 2)-robust PIR-combiner, i.e., a combiner which
given two implementations of PIR yields an implementation of PIR which
is secure if at least one of the input implementations is secure. We also
describe various techniques and optimizations based on the properties of
existing PIR protocols, which yield PIR-combiners with better efficiency
and wider applicability.

In Section 3.3, we construct so-called A-to-B combiners, i.e. cross-
primitive combiners, which given multiple implementations of a prim-
itive A yield an implementation of some other primitive B, where the
resulting implementation is guaranteed to be secure assuming that suffi-
ciently many of the input implementations of A are secure. Specifically,
we construct (1; 2)-robust PIR-to-BC and PIR-to-OT combiners. To the
best of our knowledge these are the first combiners of this type. In ad-
dition to being interesting in their own right, such combiners offer also
insights into relationships and reductions between cryptographic primi-
tives. In particular, our PIR-to-OT combiner together with the impossi-
bility result of [HKN+05] rule out certain types of reductions of PIR to
OT. While a reduction of OT to PIR has been demonstrated a while ago
[DMO00], no reduction in the opposite direction is known so far. The
presented separation gives a partial explanation why this reverse reduc-
tion is missing, and implies that a successful reduction would have to
make an off-line use of the given OT (cf. Definition 5 in Section 3.1.2 and
Corollary 5 in Section 3.3.2)



55

In Section 3.4 we suggest a more fine-grained approach to the design
of robust combiners. We argue that in order to obtain combiners as effi-
cient as possible, the constructions may take into account that some prop-
erties of the input candidates are proved to hold unconditionally, and
hence cannot fail even if some computational assumptions turn out to be
wrong. Therefore, keeping in mind the original motivation for combin-
ers, i.e., the protection against wrong assumptions, we propose stronger
and more general definitions of robust combiners for two-party primi-
tives, which enable a more fine-grained approach to the design of com-
biners. In particular, the new definitions capture scenarios where in the
candidate implementations the security of one party is based on an as-
sumption different from the assumption underlying the security of the
other party, or where the security of one party is unconditional. This
finer distinction can then be exploited in constructions of combiners.

For these new definitions we propose OT-combiners yielding secure
OT when the total number of candidates’ failures on side of either party
is strictly smaller than the number of candidates. In particular, we pro-
pose an OT-combiner which guarantees secure OT even when only one
candidate is secure for both parties, and all the remaining candidates are
insecure for one of the parties. Moreover, we propose also an efficient
uniform OT-combiner, i.e. a single combiner which is secure simultane-
ously for a wide range of candidates’ failures. We show optimal robust-
ness of the proposed combiners by proving a very simple, yet stronger im-
possibility result for OT-combiners. Whereas the impossibility proof in
[HKN+05] only proofs the non-existence of transparent black-box combin-
ers, our proof excludes all types of combiners. This is another nice conse-
quence of our stronger definitions. Since our new definition is stronger
than the previous definition, all proposed constructions satisfy also the
latter, and we obtain tight bounds also for the previous definition.

Finally, we propose combiners for oblivious linear function evalua-
tion (OLFE), a primitive which is a generalization of OT (cf. Sect. 3.1.1).
The first presented OLFE-combiner has several advantages over some of
the OT-combiners. In particular, it is perfect (its error probability is equal
zero), and it uses any candidate instance only once, which is optimal.
Additionally, an interesting feature of this combiner is that it makes use
of secret sharing techniques inspired by multi-party computation. The
second proposed construction uses techniqes used for OT-combiners to
yield an uniform OLFE-combiner.

The results presented in this chapter are a joint work with Remo Meier
and Jürg Wullschleger [MP06, MPW07, PW06].



56 Robust combiners of cryptographic primitives

3.1 Preliminaries

We first review shortly the primitives relevant in this chapter, and for
more formal definitions we refer to the literature. Then we recall defini-
tions of robust combiners. The parties participating in the protocols and
the adversary are assumed to be probabilistic polynomial time Turing
machines (PPTMs).

Notation. If x is a bit-string, |x| denotes its length, and we write x‖y to
denote the concatenation of the bit-strings x, y. For an integer m > 0 we
write [m] to denote the set {1, . . . ,m}. We use F to denote an arbitrary
finite field, and Fq to denote the finite field with k elements. We use
regular capital letters to denote a primitive, and sans-serif capital letters
to denote an instance, i.e., a concrete implementation of a primitive. For
example, PIR denotes the primitive of private information retrieval, and
PIR1, PIR2 denote two instances of PIR.

3.1.1 Primitives

Private Information Retrieval. Private Information Retrieval (PIR) is a
protocol between two parties, a server holding an m-bit database x =
(x1‖ . . . ‖xm), and a user holding an index i ∈ [m]. The protocol allows
the user to retrieve bit xi without revealing i to the server, i.e. it pro-
tects user’s privacy. The original notion of PIR, introduced by Chor et
al. [CKGS98], makes use of multiple servers holding the database and
guarantees information-theoretic security for the user, assuming that af-
ter the initial set-up the servers don’t communicate with each other. In
this work we consider only single-database PIR, introduced by Kushile-
vitz and Ostrovsky [KO97], where there is only one server holding the
database and where the security of the user is based on a computational
assumption. Of interest are only non-trivial protocols, in which the to-
tal server-side communication (i.e. communication from the server to the
user) is less than m bits. Moreover, of special interest are 2-message pro-
tocols, in which only two messages are sent: a query from the user to the
server and a response from the server to the user.

Oblivious Transfer. Oblivious Transfer (OT), originally introduced by
Rabin [Rab81], is also a two-party primitive, and in the literature many



3.1 Preliminaries 57

variants of OT have been defined and studied. The variant described
here and used in this work is more precisely denoted as 1-out-of-2 bit-OT,
and it was introduced by Even et al. [EGL85]. It is a protocol between
a sender holding two bits b0 and b1, and a receiver holding a choice-bit
c. The protocol allows the receiver to obtain the bit bc so that the sender
does not learn any information about receiver’s choice c, and the receiver
does not learn any information about the bit b1−c. Some other variants of
OT include Rabin’s OT, 1-out-of-m bit-OT, or 1-out-of-m string-OT, but all
are known to be equivalent [Rab81, Cré87, CK88].

Weak Oblivious Transfer. Weak Oblivious Transfer ((p, q)-WOT) is an
oblivious transfer with relaxed privacy guarantees for the participants
[DKS99]: with probability at most p a cheating sender learns which bit the
receiver has chosen to receive, and with probability q a cheating receiver
learns both input bits of the sender.

Oblivious Linear Function Evaluation. Oblivious Linear Function
Evaluation (OLFE) over a finite field F is a natural generalization of obliv-
ious transfer for domains larger than one bit. In OLFE over F the sender’s
input is a linear function f(x) = a1x + a0, where a0, a1, x ∈ F, and the
receiver’s input is an argument c ∈ F. The goal of OLFE is that the re-
ceiver learns the value of sender’s function at the argument of his choice,
i.e. he learns y = f(c) (and nothing else), and the sender learns nothing.
To see that oblivious transfer is indeed a special case of OLFE, consider
OLFE over F2: it can be easily verified, that the output bit bc of oblivious
transfer with inputs (b0, b1) and c respectively, can be interpreted as the
evaluation of a linear function f(c) = a1 · c + a0 over F2, since

bc = (b0 + b1)︸ ︷︷ ︸
≡a1

· c + b0︸︷︷︸
≡a0

.

Bit Commitment. Bit Commitment (BC) [Blu81, Blu82] is a two-phase
protocol between two parties Alice and Bob. In the commit phase Alice
commits to a bit b without revealing it, by sending to Bob a bit-string e,
which is an “encrypted” representation of b. Later, in the decommit phase,
Alice sends to Bob a decommitment string d, allowing Bob to “open” e
and obtain b. In addition to the correctness, a bit commitment scheme
must satisfy two properties: hiding, i.e., Bob does not learn the bit b be-
fore the decommit phase, and binding, i.e., Alice cannot come up with two



58 Robust combiners of cryptographic primitives

decommitment strings d, d′ which lead to opening the commitment e as
different bits. We consider also weak bit commitment, i.e. BC with weak
binding property: Alice might be able to cheat, but Bob catches her cheat-
ing with noticeable probability [BIKM99].

3.1.2 Robust combiners

The following definition is a generalization of the definition of combin-
ers given in [HKN+05], and it can be viewed also as a generalization of
a reduction of a primitive B to a primitive A. Note that a A-to-B com-
biner can be simply realized by first running an A-combiner, and then
constructing an instance of B from the instance of A resulting from the
combiner. However, this more general approach has some potential ad-
vantages. First, it might be more efficient to directly combine instances
of A to an instance of B, instead of going sequentially through an A-
combiner and a reduction. Second, it might be possible to combine A-to-
B directly even when no reduction of B to A is known or possible (and
hence the simple approach cannot be applied).

Definition 2 ((k; n)-robust A-to-B combiner) LetA and B be cryptographic
primitives. A (k; n)-robust A-to-B combiner is a PPTM which gets n candi-
date schemes implementing A as inputs, and implements B while satisfying the
following two properties:

1. If at least k candidates securely implement A, then the combiner securely
implements B.

2. The running time of the combiner is polynomial in the security parameter
κ, in n, and in the lengths of the inputs to B.1

An A-to-A combiner is called an A-combiner.

For completeness we recall three definitions from [HKN+05], which will
be useful in our constructions. These definitions introduce several types
of restricted combiners, in particular so-called black-box combiners and
their variants, imposing limitations on how a combiner can use the can-
didate implementations and on the methods of proving the security of
the combiner. Note that the three notions of black-box combiners are

1Here an implicit assumption is made, that the candidates themselves run in polynomial
time (cf. Sect. 3.1.3)



3.1 Preliminaries 59

equivalent for non-interactive primitives, like for example one-way func-
tions. However, in the case of interactive primitives there are significant
differences between them, as we explain below.

Definition 3 (Black-box combiner) A (1; 2)-robust combiner is called
a (fully) black-box combiner if the following two conditions hold:

BLACK-BOX IMPLEMENTATION: The combiner is an oracle PPTM given ac-
cess to the candidates via oracle calls to their implementation function.

BLACK-BOX PROOF: For every of the two candidates input to the combiner
there exists an oracle PPTM R�, such that if an adversary A breaks the
combiner, then RA breaks the candidate.2

Definition 4 (Third-party black-box combiner) A third-party black-box
combiner is a black-box combiner where the input candidates behave like trusted
third parties. The candidates give no transcript to the players but rather take
their inputs and return outputs.

Definition 5 (Transparent black-box combiner) A transparent black-box
combiner is a black-box combiner for an interactive primitive where every call
to a candidate’s next message function is followed by this message being sent to
the other party.

There are several reasons for introducing the above distinctions. First
note that an unrestricted combiner could totally ignore the input candi-
dates and implement the output primitive directly, from scratch. The no-
tion of black-box combiners excludes this possibility and captures combin-
ers yielding implementations whose security relies on the security guar-
antees of the input candidates. Moreover, we would like to have com-
biners as simple as possible, and the defined types allow for an objective
comparisons between different constructions. Finally, the classification of
combiners to the corresponding types partially explains which properties
and parameters of the studied primitives are significant in the design of
combiners for them.

Third-party black box combiners are most desirable, since they rely
only on the functionality and security of the primitives, ignoring all im-
plementation details (including the protocol messages). This is quite a se-
rious limitation, as it is impossible to construct a one-way function from

2In the case of a (k; n)-robust combiner the corresponding requirement states that at least
n − k + 1 candidates can be broken in this way. Since we focus on (1; 2)-robust combiners,
we omit the details for general k, n.



60 Robust combiners of cryptographic primitives

a third-party implementation of OT [HKN+05]. Transparent black-box
combiners allow the use of the transcript of the protocols, but only in
an on-line fashion, where the protocol messages generated by the oracles
implementing the input primitives must be always transferred to the re-
ceiver as specified by the input protocol. A (fully) black-box combiner
is additionally allowed an unlimited off-line access to the oracles imple-
menting the input protocols. This gives the combiner the most power,
but might be less desirable in practice. For example, if some two-party
primitive is given as two physical devices, one for each party, an off-line
access to the primitive would require an off-line access to both devices,
which might be hard to realize in practice.

As mentioned previously, anA-to-B combiner can be viewed as a gen-
eralization of a reduction of a primitive B to a primitiveA. In other words,
a reduction of a primitive B to a primitive A, i.e. a construction of B from
A, is just a (1; 1)-robustA-to-B combiner. Therefore, the above definitions
also include notions like a transparent black-box reduction or a third-party
black-box reduction.

3.1.3 Remarks on constructions of combiners

Security vs. functionality. As pointed out by Harnik et al. [HKN+05],
cryptographic primitives are mainly about security, while functionality
issues are often straightforward. For example, a PIR protocol has to satis-
fy a security property, i.e., the privacy of the user, and functionality prop-
erties: efficiency, completeness, and non-triviality. Usually3 the privacy
of the user of a PIR scheme is based on some cryptographic assumption,
and the remaining properties hold unconditionally. Moreover, in some
cases a possible way of dealing with unknown implementations of the
primitives is to test them for the desired functionality. That is, even if the
candidate input primitives are given as black-boxes, one can test them be-
fore applying a combiner (for a more detailed discussion of these issues
see Section 3.1 in [HKN+05]).

For the above reasons we assume that the candidates used as input
by the combiners are guaranteed to have the desired functionality. For
example, we assume that candidate PIR-schemes satisfy efficiency, com-
pleteness, and non-triviality, and that explicit bounds on running time
and on communication complexity are given as parts of the input to the

3We are not aware of any (single-database) PIR protocol not conforming to this charac-
terization.



3.1 Preliminaries 61

combiner. Thus, the task of a combiner is to protect against wrong com-
putational assumptions. This approach is especially relevant in the con-
text of private information retrieval, since some of the most efficient PIR
protocols are based on new computational assumptions (e.g., [CMS99,
KY01]), which are less studied and so potentially more likely to be bro-
ken (cf. recent attack of Bleichenbacher et al. [BKY03] on [KY01]).

Efficiency considerations. Recall that the basic definition of robust com-
biners (Def. 2) is not very demanding in terms of efficiency — it is only
required, that the running time of a combiner, hence also its space and
communication complexities, are polynomial in the adequate parame-
ters, and no other restrictions are imposed. Obviously, the lower the total
complexity the better, but the total complexity of a combiner depends on
the complexities of the candidates. For example, the total running time
of a combiner can change dramatically when the roles of candidates with
significantly different running times are switched.

Therefore, sometimes instead of considering the total running time or
communication complexity of a (black-box) combiner, we measure the
efficiency of a combiner by considering its computation or communica-
tion "outside"the candidates and by counting the number (and possibly
the size) of calls to the candidates. In other words, it is desirable that
a combiner uses the input candidates only few times and on relatively
small inputs4, and we use this criterion as a guideline in constructions of
combiners.

On the other hand, it is clear that a black-box (1; n)-robust combiner
must use every input candidate at least once: if some candidate, say the
j-th one, is ignored by combiner, then the combiner will fail on inputs
where only the j-th candidate is a secure implementation of the input
primitive. This implies that in many cases the best we can hope for is
that the time complexity of an implementation resulting from a combiner
is proportional to the sum of the complexities of the candidates.

3.1.4 Tools

In this section we describe shortly two tools used in our constructions:
Shamir’s secret sharing scheme via polynomials [Sha79], and two special-
purpose combiners for oblivious transfer, offering protection against in-
secure implementations for one party only [HKN+05].

4This condition is important only for primitives with inputs of variable lengths, like PIR.



62 Robust combiners of cryptographic primitives

Shamir’s secret sharing. Secret sharing [Bla79, Sha79] allows a party to
distribute a secret among a group of parties, by providing each party
with a share, such that only authorized subsets of parties can collectively
reconstruct the secret from their shares. We say that a sharing among
n parties is a k-out-of-n secret sharing, if any k correct shares are suffi-
cient to reconstruct the secret, but any subset of less than k shares gives
no information about the secret. A simple method for k-out-of-n secret
sharing was proposed by Shamir [Sha79]: a party P having secret value
s ∈ Fq where q > n, picks a random polynomial f(x) over Fq, such that
f(0) = s and the degree of f(x) is (at most) k − 1. A share for party
Pi is then computed as si := f(zi), where z1, . . . , zn are fixed, publicly
known, distinct non-zero values from Fq. Since the degree of f(x) is at
most k − 1, any k shares are sufficient to reconstruct f(x) and compute
s = f(0) (via Lagrange interpolation). On the other hand, any k − 1 or
fewer shares give no information about s, since they can be consistently
completed to yield a sharing of any arbitrary s ∈ F [q], and the number of
possible completions is the same for every s.

Special-purpose OT-combiners. Harnik et al. [HKN+05] proposed two
special-purpose combiners for oblivious transfer, R and S, which aim
at protecting the security of one party only. These combiners are based
on techniques of Crépeau and Kilian [CK88], and were used as building
blocks in a construction of a (2; 3)-robust OT-combiner. For completeness,
we recall these combiners below, in a slightly generalized version.

The combiner R takes as input n candidates for OT, and combines
them into an OT protocol, while maintaining the security of the receiver.
That is, the resulting OT protocol is guaranteed to be secure for the re-
ceiver as long as at least one of the candidates is secure for the receiver.
If any candidate is insecure for the sender, the resulting OT is insecure for
the sender. Given the inputs (b0, b1) for the sender and c for the receiver,
the combiner R works as follows:

R(OT1, . . . ,OTn)(b0, b1; c):

1. The sender picks random bits r0
1, r

0
2, . . . , r

0
n, s.t. b0 = r0

1⊕r0
2⊕· · ·⊕r0

n,
and sets r1

i := r0
i ⊕ b0 ⊕ b1, for every i = 1 . . . n.

2. The receiver picks random bits c1, c2, . . . , cn, s.t. c = c1⊕c2⊕· · ·⊕cn.

3. For every i = 1 . . . n parties run OTi(r0
i , r1

i ; ci). From i-th execution
the receiver obtains output rci

i .



3.1 Preliminaries 63

4. The receiver outputs bc computed as the XOR of his outputs from
all executions, i.e.

bc = rc1
1 ⊕ rc2

2 ⊕ · · · ⊕ rcn
n .

It is easy to verify the correctness of the above construction. For the
security of the receiver observe that his choice bit c is encoded as XOR of
n random bits, c1 ⊕ c2 ⊕ · · · ⊕ cn, so as long as at least one OTi is secure
for the receiver, the value of c remains unknown to the sender. Note
also, that the combiner preserves the security of the sender — when all n
candidates are secure for the sender, so is the resulting OT protocol.

The combiner S takes as input n candidates for OT and combines
them into an OT protocol, while maintaining the security of the sender.
That is, the resulting OT protocol is guaranteed to be secure for the sender
as long as at least one of the candidates is secure for the sender. If any
candidate is insecure for the receiver, the resulting OT is insecure for the
receiver. Given the inputs (b0, b1) for the sender and c for the receiver, the
combiner S works as follows:

S(OT1, . . . ,OTn)(b0, b1; c):

1. The sender picks random bits r0
1, r

0
2, . . . , r

0
n, and r1

1, r
1
2, . . . , r

1
n, such

that

b0 = r0
1 ⊕ r0

2 ⊕ · · · ⊕ r0
n and b1 = r1

1 ⊕ r1
2 ⊕ · · · ⊕ r1

n .

2. For every i = 1 . . . n parties run OTi(r0
i , r1

i ; c). From i-th execution
the receiver obtains output rc

i .

3. The receiver outputs bc computed as the XOR of his outputs from
all executions, i.e.

bc = rc
1 ⊕ rc

2 ⊕ · · · ⊕ rc
n .

As previously, it is straightforward to verify the correctness of this
construction. The security of the sender follows by an analogous ar-
gument, since every input bit bi is encoded as XOR of n random bits,
ri
1 ⊕ ri

2 ⊕ · · · ⊕ ri
n. Therefore, if at least one OTi is secure for the sender,

the value of at least one bi remains unknown to the receiver. Finally note
that when all n candidates are secure for the receiver, so is the resulting
OT protocol.



64 Robust combiners of cryptographic primitives

3.2 Combiners for private information retrieval

In this section we assume that two (non-trivial) private information re-
trieval schemes are given, PIR1 and PIR2, where PIR1 is a two-message PIR
protocol with a query q = Q1(i) and a response r = R1(q, (x1‖ . . . ‖xm)),
and where PIR2 is an arbitrary (possibly multi-round) PIR protocol. We
use cs,1(m) and cs,2(m) to denote the server-side communication com-
plexities of the PIR-schemes, and cu,1(m) and cu,2(m) to denote the corre-
sponding user-side complexities5. Without loss of generality we assume
that these complexities give the exact number of communicated bits and
are not just upper bounds.

First we describe a basic scheme for a (1; 2)-robust PIR-combiner, and
then present some variations of the scheme, resulting in better efficiency.
Our constructions are black-box combiners, but not transparent black-box
combiners because they require an off-line access to one of the candidates.

3.2.1 The basic scheme

Our basic PIR-combiner works as follows: to enable the retrieval of the
i-th bit from a database x = (x1‖ . . . ‖xm), the server first defines m aux-
iliary databases y1, ..., ym, where yj is just a copy of x rotated by (j − 1)
positions, i.e.

yj = (xj‖ . . . ‖xm−1‖xm‖x1‖ . . . ‖xj−1).

The user picks a random t ∈ [m] and sends to the server PIR1-query
q = Q1(t). For each database yj , j ∈ [m], the server computes the corre-
sponding response rj = R1(q, yj), but instead of sending the responses
back to the user, he stores them in a new database x′ = (r1‖ . . . ‖rm).6

Note that the new database x′ contains a PIR1-response for each bit xj of
the original database x, but with the positions rotated by (t − 1). Finally
the user retrieves bit-by-bit the response rk for k = ((i− t) mod m) + 1,
by running cs,1(m) instances of PIR2, and computes xi from rk. Figure 3.1
presents the combiner in more detail, and the following theorem summa-
rizes the properties of the combiner.

5In particular, cs,1(m) = |R1(q, (x1‖ . . . ‖xm))| and cu,1 = |Q1(i)|
6 A similar technique was used in [DIO01] for universal service-providers for PIR.



3.2 Combiners for private information retrieval 65

SERVER’S INPUT: m-bit string x = (x1‖ . . . ‖xm)

USER’S INPUT: i ∈ [m]

INPUT PIR PROTOCOLS:
PIR1: 2-message, with query Q1(j) and response R1(Q1(j), x)
PIR2: arbitrary

Phase I:
1. server defines m databases, yj for each j ∈ [m], where

yj = (xj‖ . . . ‖xm−1‖xm‖x1‖ . . . ‖xj−1)

2. user sends to server a PIR1-query q = Q1(t), for a random t ∈ [m]

3. server computes m PIR1-responses rj = R1(q, yj) for each j ∈ [m]

Phase II:
1. user computes k = ((i− t) mod m) + 1

2. user retrieves from server response rk bit-by-bit, by running |rk|
instances of PIR2 with x′ = (r1‖r2‖ . . . ‖rm) as server’s input

3. user computes xi from the PIR1-response rk

Figure 3.1: The basic (1; 2)-robust PIR-combiner.

Theorem 4 There exists a black-box (1; 2)-robust PIR-combiner for input can-
didates PIR1 and PIR2, where PIR1 is a 2-message protocol, and where the can-
didates’ server-side communication complexities satisfy

cs,1(m) · cs,2 (m · cs,1(m)) < m . (3.1)

The user-side communication of the resulting PIR scheme equals

cu,1(m) + cs,1(m) · cu,2 (m · cs,1(m)) .

Proof. Consider the construction presented in Figure 3.1. It is clear, that
this an efficient construction with a black-box implementation. Let PIR
denote the resulting PIR. We have to argue correctness, security, and non-
triviality.

The correctness is given by the correctness of the candidates PIR1,
PIR2, and the fact that the response string rk retrieved in the second phase



66 Robust combiners of cryptographic primitives

corresponds to yk
t , i.e. the t-th bit of yk. Since

yk = (xk‖xk+1‖xk+2‖ . . . ‖xm‖x1‖ . . . ‖xk−1),

it holds that

yk
t = x[(k+t−2) mod m]+1 = x[(((i−t) mod m)+1+t−2) mod m]+1 = xi .

To show that the construction is a (1; 2)-robust combiner, we have to
argue that it yields a secure PIR whenever at least one candidate is secure.
We first give an intuitive explanation why it is the case, and then we
formally prove it.

Since private information retrieval protects only the privacy of the
user, only dishonest servers have to be considered. Given that one candi-
date is secure, the privacy is guaranteed because a dishonest server learns
at most either the index t or k, but never both. Having only one index
yields no information about i. More precisely, if PIR1 is insecure, server
learns the random index t. However, as in this case PIR2 remains secure,
the server obtains no information about index k when the user retrieves
the response rk, and so does not gain information about the index i. On
the other hand, if PIR2 is insecure, then the server learns index k, but
as PIR1 is now secure, the server gets no information about t. Since t is
randomly chosen, the knowledge of k also does not give any information
about the index i.

To prove the security more formally (cf. Def. 3), for every of the two in-
put candidates PIR1, PIR2 we present a corresponding oracle PPTMs R�

1

resp. R�
2 , such that if an adversary A breaks the combiner, then RA

1 breaks
PIR1, and RA

2 breaks PIR2. We describe only RA
1 explicitely, since RA

2 can
be constructed analogously.

Roughly speaking, to break PIR1 the algorithm RA
1 simulates to A an

execution of the combiner with input candidates PIR1, PIR2, and during
the simulation RA

1 executes PIR2 on a randomly selected index k. When
the adversary A returns a prediction about the index i requested in the
simulated combiner, RA

1 uses i and k to compute the unknown index t
requested in the execution of PIR1.

More precisely, when RA
1 receives a PIR1-query q1 = Q1(t) for some

unknown index t, it forwards q to A as the message of a user in the first
phase of the combiner. Then in the second phase RA

1 uses PIR2 to retrieves
rk for a random k ∈ [m]. After the simulation of the combiner is com-
pleted, the adversary A returns its prediction about the index i requested



3.2 Combiners for private information retrieval 67

in the combiner. Given i, k, and the identity k = ((i− t) mod m) + 1, the
attacker RA

1 computes and returns t. Clearly, RA
1 is successful in breaking

PIR1 whenever A is successful in breaking the combiner. As mentioned
above, RA

2 breaking PIR2 is constructed analogously.

Finally, we argue the non-triviality condition: it is easy to verify that
the server-side communication of PIR is

cs(m) = cs,1(m) · cs,2 (m · cs,1(m)) ,

and the user-side communication is

cu(m) = cu,1(m) + cs,1(m) · cu,2 (m · cs,1(m)) .

Thus if cs(m) < m holds, i.e. if Condition (3.1) is satisfied, then PIR is
non-trivial. �

3.2.2 PIR-combiners with lower communication

The basic combiner presented in the previous section is conceptually sim-
ple and works well for a wide range of candidate PIR-protocols, but
leaves some space for improvements. In this section we describe some
variations and optimizations of this basic combiner, which yield signifi-
cant improvements in the communication efficiency of the resulting PIR-
schemes. This results in combiners applicable to a wider range of input
candidates.

First we describe how to reduce the cost of querying x′ by using sev-
eral databases in parallel. Then we discuss possible improvements in
situations when the candidates support the retrieval of entire blocks of
bits, instead of single bits.

Reducing overall communication. In the second phase of the basic PIR-
combiner the user retrieves rk bit-by-bit by running |rk| = cs,1(m) in-
stances of PIR2 with server’s input x′ of length m ·cs,1(m). An alternative
way of retrieving rk is the following: we arrange all responses r1, . . . , rn

into l = |rk| databases x′1, . . . , x
′
l, each of length m, where x′j contains the

j-th bits of all responses r1, . . . , rm. Then the user obtains rk by retrieving
the k-th bits from the databases x′1, . . . , x

′
l. That is, the user and the server

run |rk| instances of PIR2, where in the j-th instance server’s input is x′j
and user’s input k. Thus we obtain the following corollary.



68 Robust combiners of cryptographic primitives

Corollary 1 There exists a black-box (1; 2)-robust PIR-combiner for input can-
didates PIR1 and PIR2, where PIR1 is a 2-message protocol, and where the can-
didates’ server-side communication complexities satisfy

cs,1(m) · cs,2(m) < m .

The user-side communication of the resulting PIR scheme equals

cu,1(m) + cs,1(m) · cu,2(m) .

Note that if PIR2 is also a 2-message PIR protocol, then only one query
must be sent in the second phase of the combiner (for which cs,1(m) PIR2-
responses will be sent), thus reducing the user-side communication of the
resulting PIR scheme even further, to merely cu,1(m)+cu,2(m). Moreover,
the resulting PIR is also a 2-message protocol, since the user can send his
PIR2-query already in the first phase, together with the PIR1-query, and
the server can send all the PIR2-responses as one message. The following
corollary summarizes the above observations.

Corollary 2 There exists a black-box (1; 2)-robust PIR-combiner for 2-message
input candidates PIR1 and PIR2, where the candidates’ server-side communica-
tion complexities satisfy

cs,1(m) · cs,2(m) < m .

The resulting PIR scheme is also a 2-message protocol, and its user-side commu-
nication equals

cu,1(m) + cu,2(m) .

Further optimizations and variations. If PIR2 retrieves entire blocks
rather than single bits (for example, the basic PIR protocol of [KO97] does
exactly that), than the retrieval of rk can be substantially sped-up, as it
can proceed block-by-block rather than bit-by-bit. Moreover, if |rk| is not
larger than the size of blocks retrieved by PIR2, than just one execution of
PIR2 is sufficient.

Corollary 3 There exists a black-box (1; 2)-robust PIR-combiner for input can-
didates PIR1 and PIR2, where PIR1 is a 2-message protocol, PIR2 retrieves blocks
of size at least cs,1(m), and where the candidates’ server-side communication
complexities satisfy

cs,2(m · cs,1(m)) < m .

The user-side communication of the resulting PIR scheme equals

cu,1(m) + cu,2(m · cs,1(m)) .



3.3 Cross-primitive combiners 69

Another simple optimization is possible when PIR1 supports block-
wise retrieval, i.e., when each PIR1-response rj allows retrieval of `-bit
blocks. In such a case it is sufficient to store in x′ a subset of dm/`e re-
sponses, so that the corresponding blocks cover the entire database —
then in Phase II user simply retrieves the block containing the desired
bit xi.

Finally, when the user-side communication of the candidate PIRs is
much higher than the server-side communication, it is possible to bal-
ance the load better between the two parties with the so called balancing
technique, which was introduced in the context of information-theoretic
PIR [CKGS98], and which can be viewed as a simulation of block-wise re-
trieval: server partitions the database to u databases of size dm/ue. User
provides then a single query for some index j ∈ [dm/ue], which is an-
swered for each of u databases, yielding a block of u bits.

Clearly, one can use multiple optimizations together (if applicable) to
obtain the most efficient construction for the given candidate PIR proto-
cols.

3.3 Cross-primitive combiners

The constructions of robust combiners presented so far focused mainly
on combining candidate instances of a given primitive A to yield a se-
cure instance ofA. In this section we describe robust combiners of a more
general type, combining instances of primitive A to an instance of primi-
tive B. These cross-primitive combiners can be viewed as a combination of
robust combiners and reductions between primitives in one construction.

As mentioned in Section 3.1, a A-to-B combiner can be simply real-
ized by first running an A-combiner, and then constructing an instance
of B from the instance of A resulting from the combiner. However, this
simple approach works only if both the A-combiner and the reduction
of B to A are known. Thus a main reason to study cross-primitive com-
biners is that it might be possible to construct an A-to-B combiner even
when no reduction of B toA is known or possible (indeed, our PIR-to-OT
combiner, presented in Sect. 3.3.2, is such an example). Moreover, a direct
A-to-B combiner might be also more efficient than the application of an
A-combiner followed by a reduction.

First we consider the problem of combining PIR protocols to obtain a
bit commitment scheme, and present a third-party black-box (1; 2)-robust



70 Robust combiners of cryptographic primitives

PIR-to-BC combiner. Then we turn to the problem of combining PIR to
oblivious transfer, and present a black-box (1; 2)-robust PIR-to-OT com-
biner. The existence of such a combiner is somewhat surprising, given the
impossibility result of [HKN+05] and the fact that PIR and OT are very
closely related. In fact, this combiner leads to a better understanding of
the relation between these two primitives (cf. Corollary 5).

3.3.1 PIR-to-BC combiner

It is well-known that single-database private information retrieval im-
plies one-way functions (OWFs) [BIKM99], which in turn are sufficient
to construct computationally hiding and statistically binding bit commit-
ments schemes [Nao91]. It follows immediately that there exists a generic
combiner going through these reductions and an OWF-combiner. How-
ever, such a combiner is quite inefficient, and it is not a third-party black-
box combiner.

In this section we present a more efficient, third-party black-box PIR-
to-BC combiner, which is basically a slight variation of the reduction
of bit commitment to private information retrieval due to Beimel et al.
[BIKM99]. In contrast to the generic combiner described above, the BC-
scheme resulting from the proposed combiner is statistically hiding and
computationally binding. We describe only a construction for weak bit
commitment, which can then be strengthened by using multiple inde-
pendent commitments to the same bit [BIKM99]. A detailed description
of the combiner is presented in Figure 3.2.

Theorem 5 There exists a third-party black-box (1; 2)-robust PIR-to-BC com-
biner yielding a statistically hiding BC, for input candidates PIR1 and PIR2 with
server-side communication complexities satisfying

cs,1(n) + cs,2(n) ≤ n/2 . (3.2)

Proof. As mentioned above, it is sufficient to show a combiner from PIR
to weak bit commitment. Consider the construction presented in Fig. 3.2.
It is clear, that the construction is efficient, and it is easy to verify the com-
pleteness of the scheme: if both parties play honestly, then Bob accepts,
since

c⊕ IP(x, y) = b⊕ IP(x, y)⊕ IP(x, y) = b .

The hiding property is satisfied because the candidate PIR protocols
do not transmit enough bits during the commit phase to allow Bob to



3.3 Cross-primitive combiners 71

ALICE’S INPUT: bit b

BOB’S INPUT: (none)

INPUT PIR PROTOCOLS: PIR1, PIR2

commit phase:
1. Alice picks two independent, unif. random strings x, y ∈R {0, 1}κ

Bob picks two independent, unif. random indices i1, i2 ∈R [κ],
where κ is a security parameter.

2. Alice and Bob execute PIR protocols PIR1(x; i1) and PIR2(x; i2),
with Alice as server with database x, and Bob retrieving bit with
index i1 resp. i2.

3. Alice sends to Bob y and c = b⊕ IP(x, y)
(where IP denotes inner product over F2)

decommit phase:
1. Alice sends to Bob x as decommitment string

2. Bob verifies that x is consistent with the bits retrieved during the
commit phase, and if verification is successful, he accepts and out-
puts b = c⊕ IP(x, y), otherwise he rejects.

Figure 3.2: A (1; 2)-robust PIR-to-(weak)BC combiner.

reconstruct b. More precisely, y is chosen uniform at random and not
used in any way by the PIR protocols. It is therefore not possible for a
cheating Bob to obtain IP(x, y) in the second step of the commit phase.
After Bob learns y in the third step, he has too little information about x
to be able to compute IP(x, y) with a noticeable advantage. This follows
from the assumed bounds on the (server-side) communication complex-
ity of the PIR-protocols and from the lower bounds on the communica-
tion complexity of inner product, proved by Chor and Goldreich [CG88]
(see [BIKM99] for details).

The weak binding property of the resulting commitment scheme fol-
lows from the privacy of PIR candidates. Since it is a (1; 2)-robust com-
biner, we can assume that at least one candidate is secure. If Alice wants
to cheat, she has to change at least one bit of x before sending it to Bob
in the decommit phase. However, she does not know at least one of the
indices i1, i2, as the privacy of one PIR candidate is guaranteed. Bob will



72 Robust combiners of cryptographic primitives

therefore catch a cheating Alice with probability at least 1/κ. A more
formal proof proceeds similarly to the proof of Theorem 4. For each
of the input candidates PIR1, PIR2 we construct a corresponding oracle
PPTMs R�

1 resp. R�
2 , such that if an adversary A breaks the weak binding

property of the resulting bit commitment, then RA
1 breaks PIR1, and RA

2

breaks PIR2. Roughly speaking, to break PIR1 the algorithm RA
1 simulates

with A an execution of the combiner with input candidates PIR1, PIR2,
where RA

1 executes PIR2 on a randomly selected index i2. By assump-
tion, after the commitment phase the adversary A can cheat by comming
up with two different decommitment strings x and x′ with probability
significantly higher than 1/κ. Thus, RA

1 learns that the bits in x′ that dif-
fer from the corresponding bits in x are less likely queried by the user in
PIR1 than the bits that are equal. This information clearly compromises
the privacy of PIR1. The machine RA

2 can be constructed analogously.

Summarizing, the construction in Figure 3.2 is a (1; 2)-robust PIR-to-
BC combiner, since it is efficient and satisfies completeness, the hiding
property, and the weak binding property. Moreover, it is a third-party
black-box combiner, since it relies only on the functionality of the input
PIR protocols and since any adversary breaking the security of the com-
biner can be used in a black-box way to break the PIR candidates. �

Obviously, the bound n/2 in (3.2) is not tight. Since the focus in this work
is on existence of efficient combiners, and since many practical PIR proto-
cols have polylogarithmic communication bounds (which clearly satisfy
(3.2)), we do not attempt to optimize this bound. Moreover, the PIR-to-
OT combiner presented in the next section implies an alternative, efficient
(1; 2)-robust PIR-to-BC combiner (cf. Corollary 4).

3.3.2 PIR-to-OT combiner

The PIR-to-BC combiner presented in the previous section can be viewed
as a variation of the general approach to construct (1; 2)-robust PIR-to-
BC combiners: first use a construction of an unconditionally hiding BC
from a single-database PIR to obtain BC1 resp. BC2, and then combine the
two BC protocols using the fact that both are unconditionally secure for
Alice and at most one not binding (if the corresponding PIR protocol is
insecure). As we show in this section, a similar approach works for PIR-
to-OT combiners.7 That is, our proposed PIR-to-OT combiner first con-

7Note that unlike in the case of PIR-to-BC combiners, it is unclear whether there exists
(1; 2)-robust PIR-to-OT combiner based on combiners for one-way functions: while it is



3.3 Cross-primitive combiners 73

structs OT protocols OT1 and OT2 based on candidates PIR1 resp. PIR2,
and then combines OT1 and OT2 using the fact that both these protocols
are unconditionally secure for the sender.

For completeness, Figure 3.3 presents the construction of OT (uncon-
ditionally secure for the sender) based on single-database PIR [DMO00].
Intuitively, this protocol is secure for the receiver because PIR protects
the privacy of his inputs in Step 1. Therefore the sender cannot tell which
indices were used in PIR protocols in Step 1, and which were picked
in Step 2. The privacy of the sender is unconditional, since it follows
from the non-triviality of PIR — the receiver obtains too little informa-
tion about the random input strings x1, . . . , xη to be able to decode both
b0 and b1. Note however that in the described protocol the privacy of the
sender holds only against honest-but-curious receiver. It can however be
transformed into a protocol resilient against arbitrary (possibly dishon-
est) parties [DMO00].

Using the construction from Fig. 3.3, our proposed (1; 2)-robust PIR-
to-OT combiner works as follows: given two PIR protocols, PIR1 and
PIR2, we use this construction to obtain OT protocols OT1 and OT2, re-
spectively. Now, as both resulting OTs are unconditionally secure for
the sender, we can combine them by using a combiner which guaran-
tees the privacy of the receiver as long as at least one of the two input
OTs is secure. For this purpose we use the combiner R from [HKN+05]
(cf. Sect. 3.1.4). Figure 3.4 presents the proposed PIR-to-OT combiner in
full detail, and we obtain the following theorem.

Theorem 6 There exists a black-box (1; 2)-robust PIR-to-OT combiner. In the
case of honest-but-curious parties it is a third-party black-box combiner.

Proof. Consider the construction presented in Figure 3.4, and let OT de-
note the resulting OT scheme. Recall that the construction of OT from
PIR ([DMO00], cf. Fig. 3.3) yields an OT protocol with unconditional se-
curity for the sender from any non-trivial single-database PIR. Therefore
OT1 and OT2 are well defined, and it is easy to verify the correctness,
efficiency and completeness of OT. Moreover, since OT1 and OT2 are un-
conditionally secure for the sender, the combiner R guarantees that also
OT is unconditionally secure for the sender. The security of the receiver

known that non-trivial PIR implies one-way functions [BIKM99], it is unlikely that OT can
be constructed from one-way functions only [IR89] (the most general assumptions known
to be sufficient for OT are the existence of enhanced [EGL85, Gol04] or dense [Hai04] one-way
trapdoor permutations).



74 Robust combiners of cryptographic primitives

SENDER’S INPUT: two bits b0, b1

RECEIVER’S INPUT: choice bit c

COMMON INPUTS:
PIR protocol, security param. κ, a param. η polynomial in κ

1. Sender and Receiver execute η runs of PIR,
with Sender as PIR-server and Receiver as PIR-user:

for each run j = 1 . . . η they pick independent, unif. random inputs:
Sender a string xj ∈R {0, 1}κ, Receiver an index ij ∈R [κ].

(after this step Receiver knows bits x1(i1), . . . , xη(iη),
where xj(i) denotes the i-th bit of xj).

2. Receiver sets (i1c , ..., i
η
c ) :=(i1, ..., iη),

and picks random (i11−c, ..., i
η
1−c)∈R [κ]η

3. Receiver sends (i10, ..., i
η
0) and (i11, ..., i

η
1) to Sender.

4. Sender computes

z0 := b0 ⊕ x1(i10)⊕ ...⊕ xη(iη0)
z1 := b1 ⊕ x1(i11)⊕ ...⊕ xη(iη1)

and sends z0, z1 to Receiver.

5. Receiver computes his output bc := zc ⊕ x1(i1)⊕ ...⊕ xη(iη).

Figure 3.3: Construction of (honest receiver) OT from single-
database PIR [DMO00].

in OT follows from the assumption that at least one of the input PIR pro-
tocols is secure and from the robustness of R.

Note that for honest-but-curious parties the construction in Fig. 3.3
uses only the inputs and outputs of the underlying PIR scheme. The
combiner is therefore third-party black-box for honest-but-curious par-
ties. On the other hand, for a dishonest receiver, the construction has to
be strengthened by standard techniques based on commitments schemes
and zero-knowledge proofs for NP-complete languages. Since any non-
trivial PIR implies one-way functions [BIKM99] and one-way functions



3.3 Cross-primitive combiners 75

SENDER’S INPUT: two bits b0, b1

RECEIVER’S INPUT: choice bit c

INPUT PIR PROTOCOLS: PIR1, PIR2

1. parties construct OT protocols OT1, OT2 from PIR1 resp., PIR2

(using the construction from [DMO00]).

2. parties use the special-purpose OT-combiner R with input candi-
dates OT1, OT2, i.e., they run R(OT1,OT2)(b0, b1; c).

Figure 3.4: A (1; 2)-robust PIR-to-OT combiner.

imply bit commitment [Nao91], the required bit commitments can be con-
structed from the given PIR-candidates. The known reductions access the
transcript of the candidates and consequently cannot be used by third-
party combiners. �

Since the OT protocol resulting from the above combiner is uncon-
ditionally secure for the sender, we can use it to construct a statistically
hiding BC scheme, hence we get the following corollary.

Corollary 4 There exists a black-box (1; 2)-robust PIR-to-BC combiner yielding
a statistically hiding BC.

Furthermore, recall that a reduction of a primitive B to a primitive A
can be viewed as a (1; 1)-robust A-to-B combiner, hence a notion of trans-
parent black-box reduction is well-defined. Since in the case of honest-but-
curious parties the proposed PIR-to-OT combiner is even a third-party
black-box combiner, a combination of Theorem 6 with the impossibil-
ity result for (1; 2)-robust transparent black-box OT-combiners [HKN+05]
leads to the following corollary, which rules out certain types of reduc-
tions of PIR to OT. To the best of our knowledge, this is the first result
showing a separation between PIR and OT. In particular, the corollary
implies that a black-box construction of PIR out of OT working in an on-
line way is impossible, i.e., any potential black-box reduction of PIR to
OT would have to make off-line use of the given OT.

Corollary 5 There exists no transparent black-box reduction of single-database
private information retrieval to oblivious transfer, even for honest-but-curious
parties.



76 Robust combiners of cryptographic primitives

3.4 Robuster combiners for oblivious transfer

In this section we present new, stronger definitions of robust combiners
of two-party primitives, which allow for a more fine-grained approach
to the design of combiners. These definitions are motivated by the fact
that in many implementations of cryptographic primitives various secu-
rity properties are based on different, often independent, computational
assumptions, or even hold unconditionally, and cannot be broken. In
particular, we propose combiners for oblivious transfer and for oblivious
linear function evaluation. In addition to leading to combiners which are
strictly stronger than the constructions known before, the new definitions
allow also for easier impossibility proofs.

3.4.1 Robuster combiners for two-party primitives

If the primitive for which one wishes to construct a combiner is a two-
party primitive between Alice and Bob (like for example oblivious trans-
fer or bit commitment), we can make a finer characterization of the se-
curity required from the candidates. That is, we can distinguish cases
when in the candidate implementations the security of Alice is based on
an assumption different from the assumption underlying Bob’s security,
or when the security of one party is unconditional. For such candidates
breaking one assumption doesn’t necessarily imply total loss of security
(for both parties) and this property can be exploited for the construction
of combiners.

Definition 6 ((α, β; n)-robust A-combiner) Let A be a cryptographic primi-
tive for two parties Alice and Bob. A (α, β; n)-robust A-combiner is a PPTM
which gets n candidate schemes implementing A as inputs and implements A
while satisfying the following two properties:

1. If at least α candidates implement A securely for Alice, and at least β
candidates implement A securely for Bob, then the combiner securely im-
plements A.

2. The running time of the combiner is polynomial in the security parameter
κ, in n, and in the lengths of the inputs to A.8

8As in Def. 2, we make an implicit assumption that the candidates themselves run in
polynomial time (cf. Sect. 3.1.3)



3.4 Robuster combiners for oblivious transfer 77

Note that a (k; n)-robust combiner is a special case of a (k, k; n)-robust
combiner, but they are not equivalent. For example, a (2, 2; 3)-robust com-
biner tolerates input candidates C1,C2,C3, where the candidate C1 is se-
cure for Alice only, C2 is secure for Bob only, and C3 is secure for both par-
ties, while a (2; 3)-robust combiner can fail for such candidates. In other
words, the notion of a (α, β; n)-robust combiner is strictly stronger then
that of (k; n)-robust combiner, and hence provides better security guaran-
tees.

Another difference between (k; n)-robust and (α, β; n)-robust combin-
ers is that for the new definition it is possible to have “non-uniform”
constructions with explicit dependence on α, β. This motivates an even
stronger notion of uniform combiners. For example, even if there exists a
(α, β; n)-robust combiner for every α, β ≥ 0 satisfying α + β ≥ δ, where
δ is some threshold, it might be the case that the combiner makes explicit
use of the values α, β, and thus works differently for every particular
values of α, β. In such a scenario more desirable would be a uniform con-
struction, i.e. a single combiner that is secure under the sole assumption
that α + β ≥ δ. In particular, such a combiner wouldn’t obtain the values
of α, β as parameters. The desired properties of a uniform combiner are
summarized in the following definition.

Definition 7 ({δ, n}-robust uniform A-combiner) Let A be a two-party
primitive. We say that an A-combiner is a {δ, n}-robust uniform A-combiner
if it is an (α, β; n)-robust A-combiner, simultaneously for all α and β satisfy-
ing α + β ≥ δ .

Notice that the parameter δ is a bound on the sum of the number of
candidates secure for Alice and the number of candidates secure for Bob,
hence given n candidates δ is from the range 0 . . . 2n. As an example
consider a {4, 3}-robust uniform combiner. Such a combiner is a (regu-
lar) (2; 3)-robust combiner, but at the same time it is also a (3, 1; 3)-robust
combiner and a (1, 3; 3)-robust combiner, i.e. it tolerates input candidates
C1,C2,C3, where one candidate is secure for both parties, and the remain-
ing two candidates are secure only for Alice resp. only for Bob. Further-
more, it is not difficult to see that not every (k; n)-robust combiner is auto-
matically also a {δ, n}-robust uniform combiner with δ = 2k. In particular,
the elegant (2; 3)-robust OT-combiner from [HKN+05] breaks on inputs
of the type described above for (3, 1; 3)-robust combiner.



78 Robust combiners of cryptographic primitives

3.4.2 OT-combiners with secure majority

The impossibility of transparent black-box (1; 2)-robust OT-combiners im-
plies directly the impossibility of transparent black-box (n; 2n)-robust OT-
combiners, as from the existence of the latter would follow the existence
of the former. Similarly, it implies also the impossibility of transpar-
ent black-box (α, β; n)-robust combiners for α + β ≤ n. However, since
(k, k; n)-robust combiners are stronger than (k; n)-robust combiners, we
can show very simple impossibility results, which essentially exclude
(α, β; n)-robust OT-combiners of any type9 that would work for α+β ≤ n:
in Lemma 4 we prove that there are no black-box OT-combiners with such
robustness, and in Lemma 5 we show that constructing an OT-combiner
of any type (for α + β ≤ n) is at least as hard as constructing an OT pro-
tocol without any assumptions.

As mentioned previously, these results are not directly comparable
with the impossibility result from [HKN+05]: on one hand our results
are stronger, since they go beyond transparent black-box combiners, but on
the other hand they are weaker, since they exclude a primitive which is
stronger then the one considered in [HKN+05].

Lemma 4 There does not exist a black-box (α, β; n)-robust OT-combiner for
α, β, n satisfying α + β ≤ n.

Proof. Assume that such a combiner exists, for some values α, β, and n,
such that α + β ≤ n holds. Let OT1 be a trivial instance of OT where the
sender sends both values to the receiver, and let OT2 be a trivial instance
where the receiver sends his choice bit to the sender, who sends back
to the receiver the requested value. Observe that OT1 is information-
theoretically secure for the receiver, and OT2 is information-theoretically
secure for the sender.

Consider calling the combiner with input consisting of β instances of
OT1 and n − β ≥ α instances of OT2, and let OT denote the resulting
OT protocol. By assumption, OT is secure for both parties. Since it is
impossible to construct an OT protocol information-theoretically secure
for both the sender and the receiver, there exists an adversary A (possibly
inefficient), which breaks the protocol OT. By the definition of a black-
box combiner, it follows that given oracle access to A one can break 2n−
α − β + 1 > n “sides” of the candidates. However, since one side of

9I.e., not only transparent black-box combiners.



3.4 Robuster combiners for oblivious transfer 79

each candidate is information-theoretically secure, we can break at most
n sides. A contradiction. �

Lemma 5 Any (α, β; n)-robust OT-combiner for α + β ≤ n implies the exis-
tence of OT.

Proof. Assume that such a combiner exists, for some values α, β, and n
such that α + β ≤ n. Let OT1 and OT2 be trivial instances of OT, as in the
proof of Lemma 4. Calling the combiner using β instances of OT1 and
n− β ≥ α instances of OT2 as input yields a secure OT protocol without
any assumption. �

We will now show that the bound of Lemmas 4 and 5 is tight, by present-
ing constructions of (α, β; n)-robust OT-combiners for any α, β, and n
satisfying α + β > n. First we describe a combiner, which is very simple
but not fully satisfactory, as it is not efficient.10

Lemma 6 For every α ≥ 0, β ≥ 0 and α + β > n there exists an inefficient
third-party black-box (α, β; n)-robust OT-combiner.

Proof. The combiner is a straightforward generalization of the (2; 3)-
robust OT-combiner from [HKN+05], which uses two special-purpose
OT-combiners, combiner R for protecting the receiver, and combiner S
for protecting the sender (cf. Section 3.1.4).

The (α, β; n)-robust combiner works in two phases: in the first phase
subsets of the candidates of size α are combined using the combiner R,
resulting in n′ =

(
n
α

)
OT schemes. Each resulting instance is secure for the

receiver and at least one is secure for both parties. In the second phase
the n′ OTs are combined using the combiner S to yield a final scheme
protecting both the sender and the receiver. �

The combiner presented in the above proof is perfect in the sense that
it does not introduce any additional error. However, it is inefficient in
n, since the value of n′, i.e., the number of OTs resulting from the first
phase, would be superpolynomial in n. Lemma 8 presents a combiner
that is not perfect, but efficient in n and other parameters, as required
in Definition 6. In the construction we use a third-party combiner for
bit commitment, which is an adaptation to our setting of a BC-combiner
based on secret-sharing, due to Herzberg [Her05]. As this may be of in-
dependent interest, we describe it separately.

10Due to its inefficiency, this is strictly speaking not a robust combiner (cf. Def. 6). In a
slight abuse of terminology, we call it an inefficient combiner.



80 Robust combiners of cryptographic primitives

Lemma 7 For every n ≥ 2 and for every α, β > 0 satisfying α + β > n there
exists a third-party black-box (α, β; n)-robust BC-combiner.

Proof. We describe a string commitment that allows a sender to com-
mit to a value s ∈ {0, 1}m, for an arbitrary m satisfying 2m > n, using
n candidate implementations of bit-commitment from which at least α
are hiding and at least β are binding.

The sender computes11 an `-out-of-n Shamir’s secret sharing of s over
F2m , for ` := n−α+1, resulting in shares s1, . . . , sn. Then the sender uses
the n instances of bit-commitment to commit to the shares si bit-by-bit,
for each i ∈ [n]. In the opening phase the sender opens the commitments
to all the shares, and the receiver reconstructs the secret s.

To see that this commitment is hiding, notice that at least α shares are
guaranteed to be hidden from the receiver, since at least α candidate bit-
commitments are hiding. Hence before the opening phase the receiver
sees at most n−α < ` shares, which give no information about the secret.
On the other hand, since at least β candidates of the bit-commitments
are binding, the sender is indeed committed to at least β shares. Since
we have α + β > n, i.e., β > n − α, the sharing polynomial, which has
degree at most n − α, is uniquely determined by these β shares, and so
the commitment to s is also binding. �

Lemma 8 For every n ≥ 2 and for every α, β > 0 satisfying α + β > n there
exists a third-party black-box (α, β; n)-robust OT-combiner.

Proof. First assume that the sender and the receiver have a common ran-
dom string r at their disposal. Later we describe how this additional
assumption can be dropped.

Using r, the combiner works as follows: it simulates (p, q)-WOT with
p + q ≤ 1 − 1/n by picking each time an input OT-candidate uniformly
at random. This is possible, since we are having n candidates, α of which
are secure for the sender and β are secure for the receiver, with α + β ≥
n + 1. By picking one candidate at random we obtain a probability p ≤
(n − β)/n that the sender learns the receiver’s choice, and a probability
q ≤ (n−α)/n that the receiver learns both bits input by the sender, hence
p+q ≤ ((n−α)+(n−β))/n = (2n−α−β)/n ≤ 1−1/n, as required. Given
such a (p, q)-WOT, use the (efficient) amplification algorithm of Damgård
et al. [DKS99] to obtain a secure OT.

11In this computation we view bit-strings from {0, 1}m as elements of F2m .



3.4 Robuster combiners for oblivious transfer 81

To complete the argument, we have to show how the sender and the
receiver can generate a common random string r. It is well-known that
OT implies bit-commitment [Cré87], and bit-commitment implies coin-
toss [Blu82]. Therefore, we can convert our n candidate implementation
of OT into n candidate implementations of bit-commitment, and then use
the bit-commitment-combiner of Lemma 7 to obtain a secure implemen-
tation of bit-commitment, provided that α + β > n. This implementation
can then be used to implement a coin-toss, i.e., the parties can generate
a common random string r using the input candidates only, without ad-
ditional assumptions. Finally, it is easy to verify that all the described
protocols use the candidates in a third-party black-box manner, and that
the combiner is efficient. �

From Lemmas 4 and 8, we get immediately the following theorem about
(α, β; n)-robust combiners of oblivious transfer.

Theorem 7 There exists a black-box (α, β; n)-robust OT-combiner if and only
if α + β > n holds. The construction is third-party black-box and efficient.

Furthermore, the impossibility result from [HKN+05] together with
Lemma 8 yield the following corollary about (k; n)-robust OT-combiners.

Corollary 6 There exists a transparent black-box (k; n)-robust OT-combiner if
and only if 2k > n. The construction is third-party black-box and efficient.

3.4.3 OT-combiners based on the symmetry of OT

A closer look at the combiners from the proofs of Lemmas 6 and 8 shows
that these are “non-uniform” combiners (cf. Sect. 3.4.1). Namely, the
proofs show that for given α, β > 0 with α+β > n there exists a (α, β; n)-
robust combiner, i.e., the actions of the combiner are different for dif-
ferent values α, β. (For Lemma 6 it is explicit in the construction, and
for Lemma 8 it is due to the fact that the amplification algorithm from
[DKS99] makes explicit use of parameters p, q.) More desirable would be
an uniform construction, which would have a switched order of quanti-
fiers, i.e., we would like a single combiner that is secure for every α, β > 0
with α + β > n, and would therefore be strictly stronger than any of the
special combiners. In this section we show how to construct such a com-
biner by exploiting the symmetry of OT, i.e., the fact that given OT with
sender Alice and receiver Bob, we can perfectly logically reverse it to ob-
tain OT with receiver Alice and sender Bob [CS91, OVY93, WW06].



82 Robust combiners of cryptographic primitives

Our construction is based on a simple trick, which is somehow non-
standard, yet plausible in many scenarios: we require that the parties
can swap their roles when executing candidate protocols, i.e., any input
candidate OTi can be executed in such a way that the sender (of the main
OT-protocol) plays the role of receiver in OTi, and the receiver plays the
role of sender in OTi. Such a swapping of the roles in an execution of a
protocol can be viewed as a physical reversal of the protocol.

Moreover, we require that we have at our disposal multiple copies of
each candidate implementation (in particular, our protocols use the candi-
dates both in the original setting as well in the swapped configuration).
For example, if the input candidates are given as software packages, these
requirements are not a problem, as it means only calling different func-
tions, but if a candidate is given as a pair of physical devices implement-
ing the primitive, the swapping operation can be problematic, as it may
require real physical swap of the corresponding devices. However, it is
difficult to come up with primitive that cannot be swapped or duplicated
in principle. Such a primitive would need to make use of some kind of a
physical phenomenon, only available to one of the parties, but not to the
other.

We use the swapping of the roles in OT, i.e., a physical reversal of
OT, together with a logical reversal of OT [WW06] to obtain an OT in
the original direction (from the original sender to the original receiver),
but with swapped security properties. More precisely, let swap be this two-
step process, that is a physical swap followed by a logical reversal, and
consider an implementation OT and its swapped-and-reversed version,
OT∗ = swap(OT). If OT is a correct OT-protocol, then so is OT∗. More-
over, if in OT the security of the sender is based on some assumption A,
and the security of the receiver is based on some assumption B, then in
OT∗ we have the opposite situation: the security of the sender relies on
assumption B, and the security of the receiver relies on assumption A.
In particular, if OT is an implementation unconditionally secure for the
sender, then OT∗ is an implementation unconditionally secure for the re-
ceiver.

As a first application of this swapping trick we show a {3, 2}-robust
uniform OT-combiner, i.e., a combiner which is simultaneously (α, β; 2)-
robust for any α, β satisfying α + β ≥ 3. Recall that if it is known in
advance that the security of one party is guaranteed (e.g. α = 2), then the
corresponding combiner is very simple [HKN+05]. However, the com-
biner for the case α = 2 is quite different from the combiner for the case
β = 2, hence these simple combiners are not uniform.



3.4 Robuster combiners for oblivious transfer 83

SENDER’S INPUT: two bits b0, b1

RECEIVER’S INPUT: choice bit c

INPUT OT PROTOCOLS: OT1, OT2

Note: The combiners R and S are described Sect. 3.1.4.

1. Parties apply swap to obtain

OT∗1 := swap(OT1) and OT∗2 := swap(OT2) .

2. Parties define OT′ := R(OT1,OT2) and OT′′ := R(OT∗1,OT∗2).

3. Parties invoke S(OT′,OT′′)(b0, b1; c).

Figure 3.5: A {3, 2}-robust uniform OT-combiner.

The idea behind our uniform combiner is to use both, the two candi-
date OT1, OT2, and their swapped counterparts OT∗1 = swap(OT1) and
OT∗2 = swap(OT2). Since α + β ≥ 3, at least two of OT1, OT2, OT∗1, OT∗2
are secure for both parties, at most one is insecure for the sender, and
at most one is insecure for the receiver. This is sufficient to implement
a secure OT. The construction makes use of the two special-purpose OT-
combiners from [HKN+05], namely combiner S for protecting the sender,
and combiner R, which protects the receiver (cf. Sect. 3.1.4). Figure 3.5
presents the entire construction in more detail, and the following theorem
summarizes its properties.

Theorem 8 There exists a third-party black-box {3, 2}-robust uniform OT-
combiner using the swap-operation.

Proof. (sketch) Consider the protocol in Figure 3.5. Let OT denote the re-
sulting OT protocol. OT has to satisfy correctness, privacy for the sender,
and privacy for the receiver. Correctness is trivially given due to correct-
ness of the candidates OT1, OT2, the symmetric schemes OT∗1, OT∗2, and
the combiners R and S. Given the symmetry of OT, if the privacy of one
party is compromised for one candidate, then the privacy of the other
party is compromised for the corresponding swapped candidate. Com-
bining OT1, OT2, respectively OT∗1, OT∗2, with R ensures that receiver’s
privacy is protected in both OT′ and OT′′, and sender’s privacy in at least



84 Robust combiners of cryptographic primitives

one of them. Hence S(OT′,OT′′) protects the sender from a possible se-
curity break of one of the input candidates. Finally, is easy to verify that
this is a third-party black-box combiner. �

The next lemma gives a general construction for obtaining a uniform
combiner from a non-uniform one. This construction makes use of the
swap-operation, and can be used for combiners of any symmetric two-
party primitive.

Lemma 9 If there exists a (k, k; 2n)-robust OT-combiner, then there exists a
{k, n}-robust uniform OT-combiner using the swap-operation.

Proof. (sketch) The {k, n}-robust uniform OT-combiner works as follows:
given n candidate instances of OT, satisfying α + β ≥ k, we duplicate all
instances, and apply the swap-operation to the duplicates. In this way
we obtain 2n candidate instances, and at least k of them are secure for
the sender, and at least k are secure for the receiver. Now we can apply
the (k, k; 2n)-robust OT-combiner to these 2n instances, and get a secure
implementation of OT. �

Lemma 9 together with Theorem 7, give us the following theorem.

Theorem 9 For any n ≥ 2 and δ > n, there exists a third-party black-box
{δ, n}-robust uniform OT-combiner using the swap-operation.

3.5 Robust combiners for OLFE

In this section, we propose two constructions of robust combiners for
oblivious linear function evaluation (OLFE), a primitive which is a general-
ization of oblivious transfer (cf. Sect. 3.1.1). In particular, we present a
(α, β; n)-robust OLFE-combiner works for any α + β > n. The proposed
construction achieves optimal robustness and is much more efficient than
the most efficient OT-combiners with the same robustness [MPW07]: it
uses any candidate instance only once, which is optimal, and therefore
might be preferable in some scenarios. For example, if we have a proto-
col for secure function evaluation based on OLFE, a protocol for OLFE
based on OT, and three implementations of OT from which we assume
two to be correct, it will be more efficient to use the OLFE-combiner we
present in this section than any known OT-combiner: the construction



3.5 Robust combiners for OLFE 85

would only require only half as many calls to each OT-instance. Further-
more, the construction is perfect (its error probability is equal zero). In
the second construction presented in this section we exploit the symme-
try of OLFE to obtain an efficient uniform OLFE-combiner.

3.5.1 OLFE-combiner

Recall that OLFE is a primitive defined over some finite field Fq, where
the sender’s input is a linear function f(x) = a1x+a0, with a0, a1, x ∈ Fq,
and the receiver’s input is an argument c ∈ Fq. The receiver learns only
the value of the function on his input, y = f(c), and the sender learns
nothing.

In our OLFE-combiner we use Shamir secret sharing scheme [Sha79]
for both players at the same time, to protect the privacy of their inputs.
Given inputs f(x) := a1x + a0 resp. c ∈ Fq, the sender and the receiver
proceed as follows. The sender picks two random polynomials A0(z)
of degree n − 1 and A1(z) of degree n − α, such that A0(0) = a0 and
A1(0) = a1. The receiver picks a random polynomial C(z) of degree n−β,
such that C(0) = c. Then the parties evaluate locally these polynomials
for n distinct non-zero values z1, . . . , zn ∈ Fq, and use the resulting values
as input to the instances of OLFE.

More precisely, we can view the two polynomials of the sender, A0(z)
and A1(z) as parts of a two-dimensional polynomial F (x, z) of degree 1
in x and degree n− 1 in z:

F (x, z) := A1(z) · x + A0(z) ,

which satisfies
F (x, 0) = f(x) .

Note that for any constant zi ∈ Fq, the polynomial fi(x) := F (x, zi) =
A1(zi)x + A0(zi) is just a linear function. Furthermore we define a poly-
nomial h(z)

h(z) := F (C(z), z) = A1(z) · C(z) + A0(z) ,

which clearly satisfies
h(0) = f(c) ,

i.e., h(0) is the value the receiver should obtain. Hence the goal is now
to allow the receiver to learn h(0). To achieve this, the parties run OLFE



86 Robust combiners of cryptographic primitives

Protocol OLFE-rc

SENDER’S INPUT: linear function f(x) := a1x + a0, with a0, a1 ∈ Fq

RECEIVER’S INPUT: evaluation point c ∈ Fq

INPUT OLFE PROTOCOLS: OLFE1, . . . ,OLFEn

parameters: n < q;α, β; distinct non-zero constants z1, . . . , zn ∈ Fq

1. Sender picks two random polynomials:

A0(z) of degree n− 1 such that A0(0) = a0, and

A1(z) of degree n− α such that A1(0) = a1.

2. Receiver picks a random polynomial C(z) of deg. n−β, s.t. C(0) = c.

3. ∀i ∈ [n] the parties run OLFEi, with sender holding input
fi(x) = A1(zi)x + A0(zi), and receiver holding input ci = C(zi).

4. Receiver uses the values {(z1, f1(c1), . . . , (zn, fn(cn))} to interpolate
a polynomial h̃(z) of degree n− 1, and outputs y = h̃(0).

Figure 3.6: OLFE-rc : (α, β; n)-robust OLFE-combiner for α+β>n.

candidates, through which the receiver obtains sufficiently many points
on h(z) to enable its interpolation and the computation of h(0). To eval-
uate the polynomial h(z) through OLFEi at any particular value zi ∈ Fq,
the sender’s input is fi(x) := F (x, zi), and the receiver’s input is C(zi).

Intuitively, the privacy of the users in this construction is protected
by the degrees of the polynomials we use. Since we have to be prepared
that in worst case only α of the n input OLFE-protocols are secure for the
sender, and only β are secure for the receiver, the polynomials A0(z) and
A1(z) must have degree at least n− α, and the degree of C(z) must be at
least n− β.

On the other hand, note that h(z) is of degree max{deg(A0),deg(A1)+
deg(C)} = max{n−1, 2n−α−β}. Since we’re using n evaluation points,
this degree must be at most n− 1, otherwise interpolation is not possible.
This implies, that α + β > n must be satisfied. Indeed, this construction
works for any α, β with α + β > n, which is optimal. Figure 3.6 presents
the combiner in full detail, and its formal analysis is given below.



3.5 Robust combiners for OLFE 87

Lemma 10 Protocol OLFE-rc is correct if α + β > n.

Proof. By construction, we have f(x) = F (x, 0) and c = C(0). Hence
f(c) = F (C(0), 0) = h(0). Further, we have yi := fi(ci) = f(g(zi), zi) =
h(zi). Since h has degree max{n − 1, 2n − α − β} < n, the interpolation
from yi’s will result in a polynomial h̃(z) identical to h(z). Therefore, we
have y = h̃(0) = h(0) = f(c). �

Lemma 11 Protocol OLFE-rc is secure against a malicious sender if at least β
input instances of OLFE are secure against a malicious sender.

Proof. Note that the values ci form a (n − β + 1)-out-of-n secret sharing
of c, hence a malicious sender that sees at most (n−β) values of ci (of his
choice) does not get any information about c. �

Lemma 12 Protocol OLFE-rc is secure against a malicious receiver if at least
α input instances of OLFE are secure against a malicious receiver.

Proof. It is sufficient to prove that the receiver does not get any informa-
tion about a1. The receiver will use arbitrary values ci and obtain fi(ci).
Additionally, he will receive sender’s entire input in at most n − α runs
of OLFE, namely for those instances of OLFEj whose security is broken.
Since he has already received one value on each fi(z), this is equivalent
to providing him additionally with A1(zj) for at most n − α values of
j ∈ [n]. We will show that for any value a1, there exists exactly one possi-
ble sharing of the values consistent with the receivers view, which proves
that he does not get information. Given a1 and the values A1(zj), we can
interpolate the unique polynomial A1(z) of degree n−α, and for the val-
ues fi(ci) − A1(z)ci, we can interpolate the unique polynomial A0(z) of
degree n− 1. �

From the above lemmas, and from lower bounds on robustness of OT-
combiners presented in the previous section we obtain the following the-
orem:

Theorem 10 For every n > 1 and α, β satisfying α + β > n there exists an
efficient third-party black-box (α, β; n)-robust combiner for OLFE over Fq with
q > n. The combiner is perfect, achieves optimal robustness, and uses only one
run of each candidate instance of OLFE, which is also optimal.



88 Robust combiners of cryptographic primitives

3.5.2 Uniform OLFE-combiner based on symmetry

Recall that by using the symmetry of OT we were able to construct ef-
ficient construct efficient universal OT-combiners (cf. Sect. 3.4.3). Such
combiners are based on an observation that a physical reversal of a sym-
metric primitive followed by a logical reversal yields an implementation
with swapped security properties. Recall also, that by swap we denote
this two-step process, i.e. a physical swap followed by a logical rever-
sal. Since OLFE is also symmetric [WW06], we obtain immediately the
following theorem.

Theorem 11 For any n > 1 and any δ > n there exists a third-party black-box
{δ, n}-robust uniform combiner for OLFE over Fq with q > 2n, using the swap-
operation. The combiner is perfect and uses only two runs of each candidate
instance of OLFE.



Chapter 4

Conclusions

4.1 Asynchronous multi-party computation

In the first part of this thesis we have proposed a secure multi-party com-
putation protocol which advances both theory and practice in this field.
From a theoretical point of view, the protocol is optimally resilient, fully
asynchronous, and has asymptotically lower communication complexity
than any previous asynchronous MPC protocol. The protocol communi-
cates only O(n2κ) bits per multiplication gate, which is only by a factor
O(n) worse than the most efficient known protocol for synchronous net-
works [HN06]. Moreover, the proposed protocol requires very few invo-
cations of the broadcast primitive (independent of the size of the com-
puted circuit).

From a practical point of view, the new protocol is designed for real-
world networks with unknown message delay, allows every party to pro-
vide his input under a very reasonable assumption (few rounds of syn-
chronization), and achieves best-possible resilience against cheating (up
to a third of the parties may misbehave). Furthermore, the protocol is
very efficient, the constant communication overhead is minimal, and the
constants hidden in the O(·)-notation are small. The effective evaluation
of the circuit takes less than 20 n2κ bits of communication per multipli-
cation, which makes the protocol applicable for reasonably sized circuits
among small sets of parties. The key set-up (for the threshold decryp-
tion and threshold signatures) is more communication-intensive; how-
ever, this can be performed long in advance.



90 Conclusions

At the first sight the existence of the gap between the bit complexities
of the proposed MPC protocol and the recent protocol of [HN06] may
seem unsatisfactory, but we stress that our protocol works in the asyn-
chronous model, which is a better model for real-world networks. More-
over, the synchronous protocol was proposed only very recently, and in
fact uses some of the techniques proposed in this thesis. This gives some
hope that further reduction of communication complexity might be pos-
sible also in the asynchronous case. Indeed, we believe, that one can
obtain linear asynchronous communication, but it seems that such a pro-
tocol will require some new idea(s). One difficulty in a adapting the ideas
of [HN06] to the asynchronous model stems from the fact, that the pro-
tocol of [HN06] makes use of the player elimination technique [HMP00],
which relies on synchronization.

Another drawback of our protocol is its limitation to static adver-
saries. Although there is no (obvious) adaptive attack and the limitation
is more due to the lack of formal simulatability in presence of an adap-
tive adversary, it would be nice (at least for theoretical reasons) to have a
provably adaptively secure protocol.

4.2 Robust combiners

In the second part of this thesis we studied the possibility of increasing
robustness of cryptographic protocols by using robust combiners. From
the practical side, such constructions can be viewed as a generic way
of basing security of cryptographic systems on multiple assumptions,
and offer protection against wrong assumptions about the difficulty of
computational problems. From the theory point of view, combiners can
be considered as generalized reductions, and serve as a tool for study-
ing relations between primitives. In particular, we have presented con-
structions of (1; 2)-robust PIR-combiners, and also cross-primitive com-
biners: PIR-to-BC and PIR-to-OT. The existence of simple and efficient
PIR-combiners is somewhat surprising given the impossibility result for
OT-combiners. Moreover, the proposed PIR-to-OT combiner rules out
certain types of reductions of PIR to OT.

A closer look at the PIR-to-BC and PIR-to-OT combiners reveals a
common theme — we use a reduction of the target primitive to the input
primitive, and exploit additional security properties guaranteed by the
reduction to obtain an efficient combiner. Motivated by this observation,



4.2 Robust combiners 91

we proposed stronger definitions for robust combiners for two-party pro-
tocols, which yield robuster, more general combiners for oblivious trans-
fer and other primitives. Specifically, we presented uniform combiners for
OT and OLFE, which tolerate a wide spectrum of insecure input candi-
dates.

As we mentioned earlier, despite of many implicit applications of
combiners in the literature, a more formal study of such constructions
has been initiated quite recently, which indicates that many questions in
this area haven’t been explored yet. We close this section with a few ex-
amples of open problems closely related to the presented work:

• While the basic PIR-combiner we propose is applicable to many PIR
protocols described in the literature, it is not universal in the sense
that it does not work for any non-trivial PIR schemes — the com-
biners requires one two-message PIR and some bounds on commu-
nication complexities. It would be interesting to either find an uni-
versal combiner that does not need such assumptions or to further
optimize the current combiner while maintaining its applicability.

• An intermediate step towards universal (1; 2)-robust PIR-combiners
might be a construction of an universal (2; 3)-robust PIR-combiner.
Oblivious transfer and bit commitment, primitives considered to be
hard to combine with (1; 2)-robust combiners, do have very efficient
universal (2; 3)-robust combiners.

• With regard to cross-primitive combiners, we have argued that there
exists a PIR-to-BC combiner which yields statistically hiding bit
commitment, and that there exists one yielding statistically binding
bit commitment. However, for the later only an inefficient, generic
construction via a combiner for one-way functions is known. It
would be interesting to find a more efficient, direct PIR-to-BC com-
biner yielding a statistically binding bit commitment scheme.

• Although the proposed uniform OT-combiner works with all OT
protocols described in the literature, it would be interesting to know
whether the used role-swapping technique can be dropped. In ad-
dition, there is currently a trade-off between perfect security and ef-
ficiency: we don’t know whether there is an efficient (in the number
of candidates) perfect uniform OT-combiner.



92 Conclusions



Bibliography

[Note: the numbers after each item denote pages, on which the item was referenced.]

[AB81] C.A. Asmuth and G.R. Blakely. An effcient algorithm for con-
structing a cryptosystem which is harder to break than two
other cryptosystems. Computers and Mathematics with Applica-
tions, 7:447–450, 1981. 6

[BB89] Judit Bar-Ilan and Donald Beaver. Non-cryptographic fault-
tolerant computing in a constant number of rounds of inter-
action. In Proc. 8th ACM PODC, pages 201–210, 1989. 4

[BB06] Dan Boneh and Xavier Boyen. On the impossibility of ef-
ficiently combining collision resistant hash functions. In
Proc. CRYPTO ’06, pages 570–583, August 2006. 6

[BCG93] Michael Ben-Or, Ran Canetti, and Oded Goldreich. Asyn-
chronous secure computation. In Proc. 25th ACM STOC, pages
52–61, 1993. 4, 43

[Bea91] Donald Beaver. Efficient multiparty protocols using circuit
randomization. In Proc. CRYPTO ’91, pages 420–432, 1991.
44, 45

[Bec54] Samuel Beckett. Waiting for Godot. New York: Grove Press,
1954. 4

[BFKR90] Donald Beaver, Joan Feigenbaum, Joe Kilian, and Phillip Rog-
away. Security with low communication overhead (extended
abstract). In Proc. CRYPTO ’90, pages 62–76, 1990. 4



94 Bibliography

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Com-
pleteness theorems for non-cryptographic fault-tolerant dis-
tributed computation. In Proc. 20th ACM STOC, pages 1–10,
1988. 1, 2, 4

[BIKM99] Amos Beimel, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin.
One-way functions are essential for single-server private in-
formation retrieval. In Proc. ACM STOC, pages 89–98, 1999.
7, 58, 70, 71, 73, 74

[BKR94] Michael Ben-Or, Boaz Kelmer, and Tal Rabin. Asynchronous
secure computations with optimal resilience. In Proc. 13th
ACM PODC, pages 183–192, 1994. 4, 43

[BKY03] Daniel Bleichenbacher, Aggelos Kiayias, and Moti Yung. De-
coding of interleaved Reed-Solomon codes over noisy data.
In Proc. ICALP 2003, pages 97–108, 2003. 61

[Bla79] George R. Blakley. Safeguarding cryptographic keys. In
Proceedings of the National Computer Conference, pages 313–
317. American Federation of Information Processing Soci-
eties, 1979. 62

[Blu81] Manuel Blum. Coin flipping by telephone. In
Proc. CRYPTO ’81, pages 11–15, 1981. 57

[Blu82] Manuel Blum. Coin flipping by telephone - a protocol for
solving impossible problems. In COMPCON, Proc. Twenty-
Fourth IEEE Computer Society International Conference, pages
133–137, 1982. 57, 81

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The
round complexity of secure protocols (extended abstract). In
Proc. 22nd ACM STOC, pages 503–513, 1990. 4, 51

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are
practical: A paradigm for designing efficient protocols. In
Proc. ACM Conference on Computer and Communications Secu-
rity, pages 62–73, 1993. 14, 18, 22

[BR96] Mihir Bellare and Phillip Rogaway. The exact security of
digital signatures — How to sign with RSA and Rabin. In
Proc. EUROCRYPT ’96, pages 399–416, 1996. 18



Bibliography 95

[BT85] Gabriel Bracha and Sam Toueg. Asynchronous consensus and
broadcast protocols. Journal of the ACM, 32(4):824–840, 1985.
8

[Can95] Ran Canetti. Studies in Secure Multiparty Computation and Ap-
plications. PhD thesis, Weizmann Institute of Science, Rehovot
76100, Israel, June 1995. 4

[Can00] Ran Canetti. Security and composition of multiparty crypto-
graphic protocols. Journal of Cryptology, 13(1):143–202, 2000.
12

[CC06] Hao Chen and Ronald Cramer. Algebraic geometric secret
sharing schemes and secure multi-party computations over
small fields. In Proc. CRYPTO ’06, pages 521–536, 2006. 5

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multi-
party unconditionally secure protocols (extended abstract). In
Proc. 20th ACM STOC, pages 11–19, 1988. 1, 2, 4

[CCG+07] Hao Chen, Ronald Cramer, Shafi Goldwasser, Robbert
de Haan, and Vinod Vaikuntanathan. Secure computa-
tion from random error correcting codes. In Proc. EURO-
CRYPT ’07, 2007. to appear. 5

[CDD+99] Ronald Cramer, Ivan Damgård, Stefan Dziembowski, Mar-
tin Hirt, and Tal Rabin. Efficient multiparty computations se-
cure against an adaptive adversary. In Proc. EUROCRYPT ’99,
pages 311–326, 1999. 4

[CDD00] Ronald Cramer, Ivan Damgård, and Stefan Dziembowski. On
the complexity of verifiable secret sharing and multiparty
computation. In Proc. 32nd ACM STOC, pages 325–334, 2000.
5

[CDF01] Ronald Cramer, Ivan Damgård, and Serge Fehr. On the cost
of reconstructing a secret, or vss with optimal reconstruction
phase. In Proc. CRYPTO ’01, pages 503–523, 2001. 4

[CDG+05] Ronald Cramer, Vanesa Daza, Ignacio Gracia, Jorge Jiménez
Urroz, Gregor Leander, Jaume Martí-Farré, and Carles Padró.
On codes, matroids and secure multi-party computation from
linear secret sharing schemes. In Proc. CRYPTO ’05, pages
327–343, 2005. 5



96 Bibliography

[CDI05] Ronald Cramer, Ivan Damgård, and Yuval Ishai. Share con-
version, pseudorandom secret-sharing and applications to se-
cure computation. In Proc. TCC ’05, pages 342–362, 2005. 4

[CDM00] Ronald Cramer, Ivan Damgård, and Ueli M. Maurer. Gen-
eral secure multi-party computation from any linear secret-
sharing scheme. In Proc. EUROCRYPT ’00, pages 316–334,
2000. 5

[CDN01] Ronald Cramer, Ivan Damgård, and Jesper B. Nielsen. Multi-
party computation from threshold homomorphic encryption.
In Proc. EUROCRYPT ’01, pages 280–300, 2001. 4, 8, 11, 16,
18, 19, 36, 39, 51

[CG88] Benny Chor and Oded Goldreich. Unbiased bits from sources
of weak randomness and probabilistic communication com-
plexity. SIAM J. Comput., 17(2):230–261, 1988. 71

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random
oracle methodology, revisited. In Proc. 30th ACM STOC, pages
209–218, 1998. 14, 18

[Cha04] Yan-Cheng Chang. Single database private information re-
trieval with logarithmic communication. In Proc. Information
Security and Privacy: 9th Australasian Conference, ACISP 2004,
pages 50–61, 2004. 7

[CK88] Claude Crépeau and Joe Kilian. Achieving oblivious transfer
using weakened security assumptions (extended abstract). In
Proc. IEEE FOCS ’88, pages 42–52, 1988. 57, 62

[CKGS98] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu
Sudan. Private information retrieval. J. ACM, 45(6):965–981,
1998. 7, 56, 69

[CKS00] Christian Cachin, Klaus Kursawe, and Victor Shoup. Random
oracles in Constantinopole: Practical asynchronous Byzan-
tine agreement using cryptography. In Proc. 19th ACM PODC,
pages 123–132, 2000. 18, 41

[CMS99] Christian Cachin, Silvio Micali, and Markus Stadler. Compu-
tationally private information retrieval with polylogarithmic
communication. In Proc. EUROCRYPT ’99, pages 402–414,
1999. 6, 7, 61



Bibliography 97

[CR93] Ran Canetti and Tal Rabin. Fast asynchronous byzantine
agreement with optimal resilience. In Proc. 25th ACM STOC,
pages 42–51, 1993. 14

[Cré87] Claude Crépeau. Equivalence between two flavours of obliv-
ious transfers. In Proc. CRYPTO ’87, pages 350–354, 1987. 57,
81

[CS91] Claude Crépeau and Miklós Sántha. On the reversibility of
oblivious transfer. In Proc. EUROCRYPT ’91, pages 106–113.
Springer, 1991. 81

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in
cryptography. IEEE Transactions on Information Theory, IT-
22(6):644–654, 1976. 1

[DIO01] Giovanni Di Crescenzo, Yuval Ishai, and Rafail Ostrovsky.
Universal service-providers for private information retrieval.
Journal of Cryptology, 14(1):37–74, 2001. 7, 64

[DJ01] Ivan Damgård and Mads Jurik. A generalisation, a simplifi-
cation and some applications of Paillier’s probabilistic public-
key system. In Proc. 4th PKC, pages 110–136, 2001. 18

[DK05] Yevgeniy Dodis and Jonathan Katz. Chosen-ciphertext secu-
rity of multiple encryption. In Proc. TCC ’05, pages 188–209,
2005. 6

[DKS99] Ivan Damgård, Joe Kilian, and Louis Salvail. On the
(im)possibility of basing oblivious transfer and bit commit-
ment on weakened security assumptions. In Proc. EURO-
CRYPT ’99, pages 56–73, 1999. 57, 80, 81

[DMO00] Giovanni Di Crescenzo, Tal Malkin, and Rafail Ostrovsky.
Single database private information retrieval implies oblivi-
ous transfer. In Proc. EUROCRYPT ’00, pages 122–138, 2000.
7, 54, 73, 74, 75

[EG85] Shimon Even and Oded Goldreich. On the power of cascade
ciphers. ACM Trans. Comput. Syst., 3(2):108–116, 1985. 6

[EGL85] Shimon Even, Oded Goldreich, and Abraham Lempel. A ran-
domized protocol for signing contracts. Communications of the
ACM, 28(6):637–647, 1985. 57, 73



98 Bibliography

[FH96] Matt Franklin and Stuart Haber. Joint encryption and
message-efficient secure computation. Journal of Cryptology,
9(4):217–232, 1996. 8, 11, 18

[Fis02] Marc Fischlin. On the impossibility of constructing non-
interactive statistically-secret protocols from any trapdoor
one-way function. In Proc. CT-RSA, pages 79–95, 2002. 7

[FPS00] Pierre-Alain Fouque, Gouillaume Poupard, and Jacques
Stern. Sharing decryption in the context of voting or lotter-
ies. In Proc. Financial Cryptography ’00, 2000. 18

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Prac-
tical solutions to identification and signature problems. In
Proc. CRYPTO ’86, pages 186–194, 1986. 22

[FY92] Matthew K. Franklin and Moti Yung. Communication com-
plexity of secure computation. In Proc. 24th ACM STOC,
pages 699–710, 1992. 4

[Gas04] William I. Gasarch. A survey on private information retrieval
(column: Computational complexity). Bulletin of the EATCS,
82:72–107, 2004. 7

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The
knowledge complexity of interactive proof systems. SIAM J.
Comput., 18(1):186–208, 1989. 1

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to
play any mental game — a completeness theorem for proto-
cols with honest majority. In Proc. 19th ACM STOC, pages
218–229, 1987. 1, 2, 4

[Gol04] Oded Goldreich. The Foundations of Cryptography, volume II,
Basic Applications. Cambridge University Press, 2004. 73

[GRR98] Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simpli-
fied VSS and fast-track multiparty computations with appli-
cations to threshold cryptography. In Proc. 17th ACM PODC,
1998. 4

[Hai04] Iftach Haitner. Implementing oblivious transfer using collec-
tion of dense trapdoor permutations. In Proc. TCC’04, pages
394–409, 2004. 73



Bibliography 99

[Her05] Amir Herzberg. On tolerant cryptographic constructions. In
CT-RSA, pages 172–190, 2005. full version on Cryptology
ePrint Archive, eprint.iacr.org/2002/135. 6, 79

[HKN+05] Danny Harnik, Joe Kilian, Moni Naor, Omer Reingold, and
Alon Rosen. On robust combiners for oblivious transfer and
other primitives. In Proc. EUROCRYPT ’05, pages 96–113,
2005. 6, 9, 10, 54, 55, 58, 60, 61, 62, 70, 73, 75, 77, 78, 79,
81, 82, 83

[HL05] Susan Hohenberger and Anna Lysyanskaya. How to securely
outsource cryptographic computations. In Proc. TCC ’05,
pages 264–282, 2005. 6

[HM01] Martin Hirt and Ueli Maurer. Robustness for free in uncondi-
tional multi-party computation. In Proc. CRYPTO ’01, pages
101–118, August 2001. 4

[HMP00] Martin Hirt, Ueli Maurer, and Bartosz Przydatek. Efficient se-
cure multi-party computation. In Proc. ASIACRYPT ’00, pages
143–161, December 2000. 4, 90

[HN06] Martin Hirt and Jesper Buus Nielsen. Robust multiparty
computation with linear communication complexity. In
Proc. CRYPTO ’06, Lecture Notes in Computer Science, Au-
gust 2006. 4, 8, 43, 89, 90

[HNP05] Martin Hirt, Jesper Buus Nielsen, and Bartosz Przydatek.
Cryptographic asynchronous multi-party computation with
optimal resilience (extended abstract). In Proc. EURO-
CRYPT ’05, pages 322–340, 2005. 9, 12

[HNP06] Martin Hirt, Jesper Buus Nielsen, and Bartosz Przydatek.
Asynchronous multi-party computation with quadratic com-
munication, 2006. manuscript in preparation. 9, 12

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the prov-
able consequences of one-way permutations. In Proc. ACM
STOC, pages 44–61, 1989. 73

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In
Proc. 20th ACM STOC, pages 20–31, 1988. 6



100 Bibliography

[KO97] Eyal Kushilevitz and Rafail Ostrovsky. Replication is not
needed: Single database, computationally-private informa-
tion retrieval. In Proc. IEEE FOCS ’00, pages 364–373, 1997.
7, 56, 68

[KO00] Eyal Kushilevitz and Rafail Ostrovsky. One-way trapdoor
permutations are sufficient for non-trivial single-server pri-
vate information retrieval. In Proc. EUROCRYPT ’00, pages
104–121, 2000. 7

[KY01] Aggelos Kiayias and Moti Yung. Secure games with polyno-
mial expressions. In Proc. ICALP 2001, pages 939–950, 2001.
6, 61

[Lip05] Helger Lipmaa. An oblivious transfer protocol with log-
squared communication. In Proc. Information Security, 8th In-
ternational Conference, ISC 2005, pages 314–328, 2005. 7

[Mer78] Ralph C. Merkle. Secure communications over insecure chan-
nels. Commun. ACM, 21(4):294–299, 1978. 1

[MM93] Ueli Maurer and James L. Massey. Cascade ciphers: The im-
portance of being first. Journal of Cryptology, 6(1):55–61, 1993.
preliminary version in Proc. IEEE Symposium on Information
Theory, 1990. 6

[MP06] Remo Meier and Bartosz Przydatek. On robust combiners
for private information retrieval and other primitives. In
Proc. CRYPTO ’06, pages 555–569, August 2006. 10, 55

[MPW07] Remo Meier, Bartosz Przydatek, and Jürg Wullschleger. Ro-
buster combiners for oblivious transfer. In Proc. TCC ’07,
pages 404–418, 2007. 10, 55, 84

[MRH04] Ueli Maurer, Renato Renner, and Clemens Holenstein. Indif-
ferentiability, impossibility results on reductions, and appli-
cations to the random oracle methodology. In Proc. TCC ’04,
pages 21–39, 2004. 14, 18

[Nao91] Moni Naor. Bit commitment using pseudorandomness. J.
Cryptology, 4(2):151–158, 1991. 70, 75

[Nie02] Jesper B. Nielsen. A threshold pseudorandom function con-
struction and its applications. In Proc. CRYPTO ’02, pages
401–416, 2002. 18



Bibliography 101

[OVY93] Rafail Ostrovsky, Ramarathnam Venkatesan, and Moti Yung.
Fair games against an all-powerful adversary. In Advances in
Computational Complexity Theory, volume 13 of AMS DIMACS
Series in Discrete Mathematics and Theoretical Computer Science,
pages 155–169. AMS, 1993. 81

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite
degree residuosity classes. In Proc. EUROCRYPT ’99, pages
223–238, 1999. 18

[Pie07] Krzysztof Pietrzak. Non-trivial black-box combiners
for collision-resistant hash-functions don’t exist. In
Proc. EUROCRYPT ’07, 2007. To appear, available at
eprint.iacr.org/2006/348. 6

[PSR02] B. Prabhu, K. Srinathan, and C. Pandu Rangan. Asyn-
chronous unconditionally secure computation: An efficiency
improvement. In Proc. Indocrypt 2002, pages 93–107, 2002. 4,
5, 8, 43

[PW06] Bartosz Przydatek and Jürg Wullschleger. Error-tolerant com-
biners for oblivious primitives, 2006. Submitted manuscript.
10, 55

[Rab81] Michael O. Rabin. How to exchange secrets by oblivious
transfer., 1981. Tech. Memo TR-81, Aiken Computation Lab-
oratory, available at eprint.iacr.org/2005/187. 56, 57

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A
method for obtaining digital signatures and public-key cryp-
tosystems. Commun. ACM, 21(2):120–126, 1978. 1, 18

[Sha79] Adi Shamir. How to share a secret. Commun. ACM,
22(11):612–613, 1979. 61, 62, 85

[Sho00] Victor Shoup. Practical threshold signatures. In Proc. EURO-
CRYPT ’00, pages 207–220, 2000. 18

[SR00] K. Srinathan and C. Pandu Rangan. Efficient asynchronous
secure multiparty distributed computation. In Proc. Indocrypt
2000, pages 117–129, 2000. 4, 5, 8, 43

[ST04] Berry Schoenmakers and Pim Tuyls. Practical two-party
computation based on the conditional gate. In Proc. ASIA-
CRYPT ’04, pages 119–136, 2004. 50



102 Bibliography

[Tou84] Sam Toueg. Randomized byzantine agreements. In
Proc. 3rdACM PODC, pages 163–178, 1984. 8

[WW06] Stefan Wolf and Jürg Wullschleger. Oblivious transfer is sym-
metric. In Proc. EUROCRYPT ’06, pages 222–232, 2006. 81,
82, 88

[WYY05a] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding col-
lisions in the full SHA-1. In Proc. CRYPTO ’05, pages 17–36,
2005. 2

[WYY05b] Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient col-
lision search attacks on SHA-0. In Proc. CRYPTO ’05, pages
1–16, 2005. 2

[Yao82] Andrew C. Yao. Protocols for secure computations. In
Proc. 23rd IEEE FOCS, pages 160–164, 1982. 1, 2, 4



Index

A-to-B combiner, 58
asynchronous network, 12, 50

bit complexity, 14
bit commitment, 57, 70

combiner, 80
Byzantine Agreement, 17, 18, 29,

48

C (ciphertext space), 15
certificate, 20

from signatures, 22
from threshold signatures, 42
uniqueness, 21

certify, 23
certifyzkp, 22
circuit, 24
circuit randomization, 44
combiner, see robust combiner
communication complexity, 14
correctness invariant, 25

D (decryption), 15
dictionary, 25

E (encryption), 15

Γi, 25
gate

input, 24
linear, 13, 20, 24, 31
multiplication, 13, 20, 24, 32
output, 13, 20, 24

king, 20, 32

M (message space), 15
MPC, see multi-party computa-

tion
multi-party computation, 2, 3

adversary, 13
asynchronous, 4, 8, 11
efficiency, 4, 14
private outputs, 50
randomized functions, 49
security, 13

oblivious linear function evalua-
tion, 10, 57

combiner, 85
uniform combiner, 88
vs. oblivious transfer, 84

oblivious transfer, 56
combiner, see OT-combiner
construction from PIR, 74
weak (WOT), 57

OLFE, see oblivious linear func-
tion evaluation

OT, see oblivious transfer
OT-combiner

{3, 2}-robust uniform, 83
{k, n}-robust uniform, 84
inefficient, 79
not perfect, 80
R, 62
S, 63



104 Index

special-purpose, 62, 75, 79,
83

with secure majority, 78

PIR, see private information re-
trieval

PIR-combiner
basic (1; 2)-robust, 64
for 2-message PIRs, 68
for block-retrieving PIRs, 68
reduced communication, 67

PIR-to-BC combiner, 70, 75
PIR-to-OT

combiner, 73
reduction, 75

private information retrieval, 6,
56

combiner, see PIR-combiner
non-trivial, 56
reduction to OT, 75

protocol
input stage, 27
linear gate, 31
multiplication gate (king), 32
multiplication gate (slave), 33
multiplication via circuit ran-

domization, 45
OLFE-rc , 86
one-triple , 48
output gate (king), 34
output gate (slave), 34
random , 47
select , 29
termination, 35

public-key encryption
homomorphic, 15, 18
threshold decryption, 15

R (randomness space), 15
R (OT-combiner), 62
R (re-randomization), 15

random triple, 46
re-randomization, 15
reduction, 60

PIR-to-OT, 75
reversal

logical, 81, 82, 88
physical, 82, 88

robust combiner, 5, 53, 58
(1; 2)-robust for PIR, see PIR-

combiner
(α, β; n)-robust, 76
black-box, 59
cross-primitive, 9, 54, 58
{δ, n}-robust uniform, 77
(k; n)-robust, 58
PIR-to-BC, 70, 75
PIR-to-OT, 73
third-party, 59
transparent, 59
uniform, 10, 77

robuster combiner, 76
round complexity, 14

S (threshold signing), 16
S (OT-combiner), 63
secret sharing, 62, 80
Sign (signing), 16
signatures, 16, 18
slave, 20
swap, 82, 84, 88

threshold decryption, 15
threshold signatures, 16, 18

V (threshold verification), 17
Ver (verification), 16

WOT, see oblivious transfer

zero-knowledge, 16, 17, 22


	Introduction
	Secure multi-party computation
	Robust combiners
	Contributions of this thesis
	Asynchronous multi-party computation
	Robust combiners of cryptographic primitives


	Asynchronous multi-party computation
	Formal model and preliminaries
	Communication model
	The general MPC model
	Efficiency measures

	Cryptographic primitives and protocols
	Homomorphic encryption with threshold decryption
	Digital signatures
	Threshold signatures
	Byzantine Agreement
	Cryptographic assumptions & instantiations of tools

	Kings & slaves: cryptographic MPC with optimal resilience
	A high-level overview.
	Certificates
	 The circuit and the correctness invariant
	Main protocol
	Sub-protocols used by the main protocol
	Security analysis
	Circuits with multiple inputs
	Efficiency analysis

	Better efficiency via threshold signatures
	MPC with quadratic communication
	Reducing redundancy
	Generating random triples

	Computing randomized functions
	Computing functions with private outputs
	Providing inputs in asynchronous networks

	Robust combiners of cryptographic primitives
	Preliminaries
	Primitives
	Robust combiners
	Remarks on constructions of combiners
	Tools

	Combiners for private information retrieval
	The basic scheme
	PIR-combiners with lower communication

	Cross-primitive combiners
	PIR-to-BC combiner
	PIR-to-OT combiner

	Robuster combiners for oblivious transfer
	Robuster combiners for two-party primitives
	OT-combiners with secure majority
	OT-combiners based on the symmetry of OT

	Robust combiners for OLFE
	OLFE-combiner
	Uniform OLFE-combiner based on symmetry


	Conclusions
	Asynchronous multi-party computation
	Robust combiners

	Bibliography
	Index

