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Abstract — This paper gives a simplified treatment
of, and new results on, information-theoretic lower
bounds on an opponent’s cheating probability in an
authentication system with a given key entropy.

I. INTRODUCTION

Authentication theory is concerned with providing evidence
to the receiver of a message that it was sent by a specified le-
gitimate sender, even in the presence of an opponent with un-
limited computing power who can intercept and modify mes-
sages sent by the legitimate sender or send fraudulent mes-
sages to the receiver. Authenticity (like confidentiality) can
be achieved by cryptographic coding when sender and receiver
share a secret key.

Compared to Shannon’s theory of secrecy, authentication
theory is more subtle and involved. After some purely com-
binatorial results on authentication theory had been derived
[1], Simmons [4] initiated a sequence of research activities on
information-theoretic lower bounds in authentication theory
(e.g., see [2], [3], [5], [6]).

II. DESCRIPTION OF THE AUTHENTICATION MODEL

Consider a scenario in which a sender and a receiver share
a secret key Z. The sender wants to send a sequence of mes-
sages X1, X2,...,Xn, at some independent time instances, in
an authenticated manner to the receiver. Each message X; is
authenticated separately by sending an encoded message Y;
which depends (possibly probabilistically) on Z, X;, and pos-
sibly also on the previous messages Xi,...,X;—1. Based on
Y:, Y1,...,Y;_1 and Z the receiver decides to either reject the
message or accept it as authentic and, in case of acceptance,
decodes Y; to a message X;.

An opponent can use either of two different strategies for
cheating. In an impersonation attack at time ¢, the oppo-
nent waits until he has seen the encoded messages Y1,...,Y;—1
(which he lets pass to the receiver) and then sends a fraudu-
lent message Y; which he hopes to be accepted by the receiver
as the ith message. In a substitution attack at time ¢, the
opponent lets pass messages Yi,...,Y;_1, intercepts Y; and
replaces it by a different message Y; which he hopes to be ac-
cepted by the receiver and decoded to a message different from
the one sent by the sender. There are three possible goals an
opponent might persue in either of these two attacks:

o The receiver accepts Y; as a valid message.

o The receiver accepts Y; and decodes it to a message X;
known to the opponent. In other words, an opponent
is only considered successful if he also guesses the re-
ceiver’s decoded message X; correctly.

o The receiver accepts Y; and decodes it to a particular
message X; = x chosen by the opponent. Hence this
type of attack depends on a particular value x.
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We will denote the maximal possible probabilities of success,
for the three described scenarios, by P;(i), Pr(i) and P; (i, z),
respectively, for an impersonation attack at time ¢, and by
Ps(i), Ps(i) and Ps(i, z), respectively, for a substitution at-
tack at time <.

I1I. INFORMATION-THEORETIC BOUNDS

The literature on information-theoretic bounds in authenti-
cation theory is quite diverse because various different models
are considered. Generally, the proofs are quite complicated
and valid only for a restricted model while the results could
actually be proven for a general model. For instance, some
proofs only hold for deterministic encoding, for single (rather
than a sequence of) messages, for a sequence of messages but
with the restrictions that the encoding rule be the same for
each message and that consecutive messages be distinct, or
that the encoding rules do not depend on previous messages.

The goal of this paper is to derive various bounds in a
coherent, more general setting, but by a simpler proof tech-
nique than those used before. In particular, we consider all
three scenarios described above and our results could be gen-
eralized to a scenario where, for the sake of a smaller cheating
probability, also a specified maximal probability of a decoding
error for a correct message can be tolerated.

Some of the derived bounds are stated below. The first two
bounds were also derived in [5] in a slightly less general form.

151(1) > 9~ I(Yi;Z|Y1...Yi—1)
135(2) > 9—H(Z|Y1..Y;)
151(1) > 9= I(Yi;Z|Y1-- Yi_1Xs)
135(2) > 2—H(Z|Y1...YiX,-)
151(17m) > 2—I(n;z|yl...1q_1,xi:w)
As(z,x) > 2_H(z|y1._.Y,-,X,-=m)
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