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Abstract. The number of cycles of length k£ that can be generated by g-ary n-stage feedback
shift-registers is studied. This problem is equivalent to finding the number of cycles of length &
in the natural generalization, from binary to g-ary digits, of the so-called de Bruijn-Good graphs
[2, 7]. The number of cycles of length k in the g-ary graph ngq) of order n is denoted by 39 (n, k).
Known results about 3(®) (n, k) are summarized and extensive new numerical data is presented.
Lower and upper bounds on 3(9)(n, k) are derived showing that, for large k, virtually all g-ary
cycles of length k are contained in G(HQ) for n > 2log, k, but virtually none of these cycles is

contained in G for n < 2 log, k — 2log,log, k. More precisely, if V,Eq) denotes the total number
of g-ary length k cycles, then for any function f(k) that grows without bounds as k — oo (e.g.
f(k) = log,log,log, k), the bounds obtained on B9 (n, k) are asymptotically tight in the sense
that they imply

B (n(k), k)

klgrgoT = 0 for n(k) = [2log, k —2log,log, k — f(k)]|, and
(2)

tim Z2ORLE) o (k) = (210, B+ F(R))

k— o0 V’Eq)

where |.| denotes the integer part of the enclosed number. Finally, some approximations for
B9 (n, k) are given that make the global behavior of 3(9) (n, k) more transparent.



1. Introduction

The n-th order g-ary de Bruijn-Good graph G'? [7, 11], sometimes in the literature also
simply called de Bruijn graph, is the graph of all states and all possible state transitions of a
g-ary n-stage feedback shift-register [12]. Gﬁf) is hence a directed graph on ¢™ vertices labelled
with g-ary n-tuples (bo, b1, --,bn_1), b; € {0,...,q—1}, with ¢"*! directed edges such that each
vertex (b, b1,...,bn—1) has g edges directed out to (b1,...,bnh—1,2), for z € {0,...,q—1}, and
g edges directed in from (y,bo,...,bn—2), for y € {0,...,¢g—1}. The de Bruijn-Good graphs are
not only of theoretical interest in graph theory and combinatorics, but investigating them seems
to be of practical use as well. The property that the number of edges leaving and entering a
vertex is constant for all vertices is of interest when the de Bruijn-Good graphs are considered as
interconnection networks. Another interesting property is that the diameter of G'? is minimal
and equal to n, i.e., there exists a (directed) path of length at most n from every vertex to
every other vertex. The powerful structure of the de Bruijn-Good graphs, together with the fact
that they admit simple routing strategies, suggest that they might be useful for the solution of
certain interconnection problems arising in communication networks and multiprocessor systems
[15]. Moreover, de Bruijn-Good graphs are of interest in other research areas, for instance in
cryptography [6, 10, 14, 24] where one of the problems considered is the generation of random-
looking pseudo-random sequences to be used as the keystream in so-called additive stream ciphers.
One popular way of generating these sequences is by the use of nonlinear feedback shift-registers
whose state transition diagram is for every particular feedback function a subgraph of the de
Bruijn-Good graph. This aim of this paper is to treat some structural aspects of these de Bruijn-
Good graphs. We remark that de Bruijn graphs are sometimes further generalized [8, 15] to
graphs having arbitrarily many vertices (not only powers of ¢), but such generalizations will not
be considered in this paper.

For the special case of binary de Bruijn-Good graphs (i.e., ¢ = 2), previous authors have
treated the problems of counting the number of Hamiltonian cycles of maximal length 2™ [7],
generating these maximal length cycles (called de Bruijn sequences) [10], counting the number
B3 (n, k) of cycles of a certain length k [2, 3, 23] and determining the maximal number of
disjoint cycles into which Gg) can be decomposed [12, 17, 21]. The binary case is of special
interest because it is best suited for implementations in digital electronics. When dealing with
binary graphs we will omit the superscript () and use the notations G, 3(n, k) and v}, consistent
with [2] instead. The graphs G1, G2, G3, G4, Gg3) and GgS) are shown in Figure 1.

In Section 2 we summarize some known results about G,,, generalize some of them to the g-ary
graphs Ggf), and present some extensive tables of 3(9)(n, k) and, in particular, of 8(n, k). [We
hope that these tables, which extend much beyond the tables previously available in the literature,
will be of use to researchers interested in the combinatorial problem of finding exact expressions
for B9 (n,k).] Section 3 introduces the main results of the paper, namely the asymptotically
tight, but for every k and n valid, lower and upper bounds on 5(9) (n,k). In Section 4 we give
some approximations for 39 (n, k).

2. Known Results and New Numerical Data

A g-ary semi-infinite sequence s = sq, 81, ..., with s; € {0,...,¢—1}, is said to be periodic with
period k if k is the smallest positive integer for which s; = s;4 for i > 0. In the following, we shall
call a semi-infinite sequence simply a “sequence” when no confusion is possible. With every se-

quence s with period k, one can associate the set {(So, 1, ---,Sk—1), (51,82, +»8k—1,80)5 - - > (Sk—1,50;- - -, Sk—2) }

of k distinct k-tuples obtained by shifting a window of length k along the sequence. This set is a
g-ary cycle of length k£ and will be denoted by any one of its elements written in square brackets,
e.g., by [so,...,sk—1]- Note that every cyclic shift of [so,...,s—1] denotes the same cycle, i.e.,



for example, [01011] = [10110]. The total number u,(cq) of g-ary length k cycles is given recursively
by

1
W = 2= Y (1)
d|k,d#k

since the set of kl/,(cq) k-tuples associated with all cycles of length k is the set of all ¢* k-tuples
reduced by those that have a divisor of k¥ as subperiod. The first ten terms of the binary so-
called “necklace sequence” vy, are 2,1,2,3,6,18,30,56,99, 186. The recursive equation (1) can be
transformed by the Moebius transform (see for example [22], chapter 20) into the non-recursive
form 1

W = 23" ulk/d) o' (2)

dk

where u(.) is the Moebius function and is defined by u(1) = 1, u(n) = 0 if n is divisible by a
square, and pu(n) = (—1)* if n is the product of k distinct primes.

In the following we denote the length of a cycle ¢ by T'(¢). We define the recursive complexity
D(s) of a g-ary sequence (finite or infinite periodic) s = sg, 1, 82, ... as the length of the shortest
feedback shift-register that can generate it [16, 24], or, more precisely, as the smallest integer d
such that there exists a function f : {0,...,¢q—1}¢ — {0,...,¢—1} such that

S; = f(si,d,...,sifl) for 1> d. (3)

Similarly, we define the recursive complexity of a g-ary cycle ¢, denoted by D(c), as the recursive
complexity of any one of the k corresponding sequences with period k or, equivalently, as the
smallest integer n such that ¢ is contained in Gﬁf). Obviously, the sequence s has recursive
complexity greater than d if and only if s contains two identical d-tuples with distinct successor
digits since then there exists no function f that generates both digits according to (3). The
recursive complexity of s is hence the least integer d such that s contains no two (d + 1)-tuples
that agree in the first d digits but disagree in the last, i.e., that disagree in the last digit only.
The recursive complexity of a cycle ¢ = [sog,...,sk—1] of length k is thus the least integer d
such that there exist no two integers v and v with 0 < u < v < k — 1 such that sy4i = Syp44
fori =0,1,...,d — 1 but Sytd # Suv4+d4, Where all indices are reduced modulo k. For example
D([0001011]) = 3 because the 3-tuples 010 and 011 differ in the last digit only and there exist
no two 4-tuples in 00010110001011000... that differ in the last digit only. Other examples are
D([0010011]) = 5 and D([0101011]) = 6. B(9) (n, k) can thus be defined as

B (n,k) = #{c:T(c) = k,D(c) <n}. 4)

The basic problem treated in de Bruijn’s 1946 paper [7], which introduced the binary graphs
G, is the determh}%tion of the number of Hamiltonian cycles of length 2". de Bruijn proved
that B(n,2") = 22"~ —". His result can be generalized [10] to

-1 n—1

BD(n,q") = [(@-D7" ¢ ™ (5)

One can further show that

B (n,q"~1) = —qﬁlﬂ@(n,q").

It is obvious that 39 (n,k) = 0 for k > ¢" and that 89 (n, k) < B9 (n + 1,k), i.e., that every
cycle contained in ngq) also appears in GS:IJ)FI. One can easily show that 3(@) (n, k) = V,(cq) for
n > k—1,1i.e., that ngq) contains all cycles of length n + 1 or less, and that 3(9 (n, k) < u,(cq) for

n < k — 1. Bryant and Everett [3] proved that 8(k — 2, k) = vy, — @r, where ¢4, is Euler’s totient
function and equals the number of positive integers less than or equal to k¥ and relatively prime



to k. Bryant and Christensen [2] also proved that, for k > 5, B(k — 3,k) = vi — 2¢x,2 + 2, where
¢r,r is defined to be the number of integers | < k satisfying (k,l) < r, where (.,.) denotes the
greatest common divisor of the two enclosed integers. They further conjectured that 8(k—4,k) =
v — 4¢rs — 2(k,2) + 10 for k > 8, B(k — 5,k) = vi, — 8¢ra — (k,3) + 19 for k > 11, and
B(k—6,k) = v, —16¢r 5 —4(k,2) — 2(k,3) + 48 for k > 15. These conjectures were proved correct
by Wan, Xiong and Yu [23] who proved a more general result characterizing the number of cycles
of length k < 2(n+ 1) in G,,, namely, if n < k < 3(n + 1), then

k—n—2k—n—i—2

Bnk) =ve =28 P = Y D > p(g) - 259%, (6)
i=1

J=0  2<q<1+(k—n—(k,i)—j)/i

where p(.) is the Moebius function defined earlier and where e; = 0if j = 0 and ¢; = j — 1 if
j > 0. The fact that this expression is quite complicated already for cycle lengths close to the
order n of the de Bruijn-Good graph suggests that for %(n + 1) < k < 2™ the expression would
be even more complicated. Therefore, and because we are interested in the global behavior of
B(n, k) and 59 (n, k) more than in the exact numbers, we derive lower and upper bounds on
649 (n, k) in the following section.

The fact that there exists a primitive polynomial of every positive degree over every finite
field (see [19]) allows one to prove, by arguments similar to those used in [4], that for ¢ a prime

power there exist cycles of every length k£ < ¢™ in GS’), i.e., that
BD(n,k) >0 for 1<k<q" (7)

Essentially, one has to prove that the cycle of (for linear feedback maximal) length ¢ —1 generated
by a linear feedback shift register with a primitive feedback polynomial [19] can be shortened to
any length between 1 and ¢™ — 1 by modifying only 2 entries in the function table of the linear
feedback function. This follows from the fact that the digitwise sum of any two phases of such
a linear maximal-period sequence is again another phase of the same sequence. We conjecture,
but yet are unable to prove, that (7) holds for every ¢ > 2, not only for prime powers.

In order to assist those working on the difficult combinatorial problem of counting cycles in
the de Bruijn-Good graphs Ggf), and as a reference for later work on the subject, we present
some tables of 3(n,k) and $(?)(n,k) which extend much beyond the tables given in [2]. The
compilation of these tables required several dozen hours of computation time by an optimized
program on a VAX-8600 computer. In particular, the complete lists of the number of cycles of
all lengths are given for Gi — Gg (tables Ia-Id), G§3) - G?’ (tables Ila and IIb), Gg4) (table

III) and Gg5) (table IV). It seems to be computationally completely infeasible to compute (and
mathematically too difficult to derive) the complete list for any other de Bruijn-Good graph.
Some of the entries in table Ib are taken from [5], where 8(n, k) is tabulated for k < 26 and
n < 26. Table Ia is given below, all remaining tables are summarized in Appendix B. Horizontal
(vertical) arrows indicate that all remaining entries in that row (column) are constant and take
on the value of the table entry the arrow points away from.



k|123456 7 8 910 11 12 13 14 15 16 17 18

n

1 2100

2 |1 12100 0 0 —

3 123234200 0 0 0 0 0 0 -

4 1367 81214 17 14 13 12 20 32 16 0 0
5 l 6912 20 32 57 78 113 154 208 300 406 538 703
6 1 9 18 26 46 73 124 217 348 574 944 1528 2456 4000
7 1 18 30 50 85 154 271 482 877 1502 2638 4618 8105
8 1 30 56 95 168 309 552 1009 1826 3370 6066 11071
9 1 56 99 176 325 590 1083 1996 3718 6872 12874
10 1 99 186 331 608 1119 2102 3894 7282 13690
11 | 186 335 618 1139 2142 3986 7496 14106
12 | 335 630 1155 2168 4038 7600 14342
13 1 630 1161 2174 4058 7654 14436
14 1 1161 2182 4072 7680 14482
15 | 2182 4080 7694 14510
16 | 4080 7710 14526
17 1 7710 14532
18 | 14532
19 !

Table Ia: B(n,k) for 1 <k <18 and 1 <n < 19.

3. Asymptotically-Tight Lower and Upper Bounds on 3 (n, k)

As mentioned earlier, every g-ary cycle of length k corresponds to a set of k g-ary k-tuples.
According to the definition, a necessary and sufficient condition for a k-tuple (so,s1,.-.,86-1)
to correspond to a cycle ¢ = [sq, 81, .- ., Sk—1] with recursive complexity D(c) > n is that there
exist two integers u and v with 0 < u < v < k — 1 such that syy; = Sp4i for 0 < i <n —1 but
Sutn # Svtn, where all indices are reduced modulo k. The above condition, with Sytn # Sv4n
removed, is a necessary but not sufficient condition for a k-tuple to correspond to a cycle ¢ with
recursive complexity D(c) > n. For each of the (%) choices for u and v there exist exactly ¢~ k-
tuples satisfying this condition since k—n digits of the k-tuples can be chosen arbitrarily while the
remaining n digits are then completely determined. Hence there exist at most (5)g*~™ k-tuples
that can possibly correspond to a cycle of recursive complexity greater than n and thus the total
number of cycles with recursive complexity greater than n, I/,(cq) — 849 (n, k), is upperbounded by

((5)¢"~™)/k. Using (¥) < k?/2 now gives the following theorem.
Theorem 1: For every k> 1 andn > 1,
BD(n,k) > vi? — Lkgk. ®)
For n = 8, this bound is shown in Figure 2 as a dotted line. The following corollary illustrates
that virtually all cycles of length k have recursive complexity less than 2log, k + = where z is a

small constant.

Corollary to Theorem 1: For every k > 1 and for every real number x > 0,



(@ ([2log, k + 2],k -
B[ g(q) 1, k) S 1o q - o)
vyt 2(1 - kq )

Here [.] denotes the smallest integer greater or equal to the enclosed number. Note that kg */? ~
0 already for moderate k. The left side of (9) approaches 1 exponentially fast with increasing .

Proof: By letting n = [2log, k + x| in (8) we obtain

k—z
BO([2l0g, k +a],k) > vf—Lhgt~T2l8a kel > (0 Lgh-2log, ke — 104

L. (10)

Furthermore, by using (2), (1) =1 and p(n) > —1 for n > 1, ku,iq) can be lower bounded by

kv = S uk/d)g? > ¢ = Y ¢t 2 ¢ = Y ¢ > ¢F - kg (11)
d|k d|k,d<k d|k,d<k

The corollary follows by dividing both sides of (10) by V,Sq), replacing the resulting term kl/,(cq) in
the denominator by ¢* — kq¢*/? and dividing numerator and denominator by ¢*. m]

We now turn to the problem of upper bounding 59 (n,k). A necessary condition for a
k-tuple s = sg,...,8k_1 to correspond to a cycle with recursive complexity less than n, i.e.,
D([so,--.,8k-1]) < m, is that no two of the |k/n| n-tuples, resulting by cutting s into non-
overlapping n-tuples (so, ..., 8,-1) UP t0 (S(|k/n|—1)n>- - -1 S|k/njn—1) and & “tail” 8|t /n|n,- - > Sk—1,
disagree in the last digit only. Note that the n-tuples need not necessarily be distinct. Here |.]
denotes the greatest integer smaller or equal to the enclosed number. Let R(?(n,t) be defined
as the number of sequences of ¢ g-ary n-tuples that satisfy the condition (in the sequel called
condition C') that no two n-tuples disagree in the last digit only. Then the number of g-ary k-
tuples satisfying the above condition is given by ¢*~**R(%)(n, |k/n]) since the length of the tail
is k — tn and the tail digits can be chosen arbitrarily. Hence the number of cycles with recursive
complexity less than n, i.e., less or equal to n — 1, is upper bounded by

FOm-1,K) < 2a*"RO(n, [k/n]). (12

In order to derive an upper bound on R(® (n,t), we partition the set of sequences of ¢ n-tuples
satisfying condition C' into ¢t subsets according to the number of distinct n-tuples they contain.
Let }_B(q) (n,t,7) be the number of sequences of ¢ g-ary n-tuples that satisfy condition C' and that
contain exactly r distinct n-tuples. Then, obviously,

RO(m,t) = SSR”(m,t,7). (13)

r=1

In the sequel a recursive equation for R(q)

upper bound on R(9 (n,t).

(n,t,r) is derived that will be used later to derive an

Given a sequence of t—1 n-tuples satisfying condition C' and containing exactly ¢ distinct
n-tuples(1 <14 < t—1), a sequence of ¢ n-tuples still satisfying condition C' can be obtained either
by adding an n-tuple that already occurred (i possibilities), or by adding an n-tuple that does
not agree with any of the t—1 n-tuples in the first n—1 digits. For this second case there are
(q"~1—1i)q possibilities since the number of choices for the first n—1 digits and for the last digit
are ¢"'—i and g, respectively. In the first case the number of distinct n-tuples remains constant,

but in the second case it is increased by 1 to i+1. R(q) (n,t,r) is thus given recursively as

B t,r) = r-RO(m,t—1,1) + [¢"—q(r—1)]- B (n,t—1,r—1) (14)



with the trivial initial condition B\" (n,t,1) = ¢" for n > 1 and ¢ > 1 and with the convention

that R(q) (n,t,r) =0 for r <0 and r > t. It is proved in appendix A that the solution of this
recursion satisfies the following upper bound.

Lemma 1: For1<r<tandn >1, B (n,t,r) is upper bounded by

t2(t—7‘) qrn

R (n,t,r) < s exp{—3r(r—1)g "'}, (15)

The following lemma is also proved in appendix A by application of Lemma 1 and equation
(13).

Lemma 2: Forn>1andt>1,

R9D(n,t) < ¢ exp {—%q*"“t(t—l) + %tzq’"e’tq_nﬂ} . (16)

Theorem 2 is now an immediate consequence of inequality (12), applied to 8(9) (n, k) instead
of (9 (n—1, k), and of Lemma 2, for which the terms in the exponent expression are reordered.

Theorem 2: For every k> 1 andn > 1,
k
BD(n, k) < T exp {—%tzq_" [1 —eta" /q] + %tq_"} (17)
k
wheret = |k/(n+1)].

The aim in applying Theorem 2 is to choose n such that tg~" ~ 0 but t?¢~" is substantially
greater than 0. The choice n = [2log, k—2log,log, k—2] guarantees that

(log, k)2 o . (log, k) )
o A T (18)
k—n-1 k k k
ith - - = < that 1
and wit n+1 w1 TS Lle = n+1 a (19)
tg k (log, k)*
q 2log, k — 2log,log, k —x + 1 2z ¢
1 k 2 x
_ (log, k)*q o0
k(2log, k — 2log log, k —z + 1)
and £2g " > (F 2108k —2logglog k-2 —1 ? (log, k)*
2log, k — 2log,log, k —z + 2 k2
_ L, (1= (2log k—2log,log, k —z —1)/k ’ (21)
= 24 1 — (2log,log, k +x —2)/(2log, k)

Note that for a fixed z (and fixed q), if ¥ — oo (which implies that n — oo as well), then tg~™ — 0,
e " — 1 and t?¢”™ — 1¢®~! which by Theorem 2 together with limj_,c q’“/(ku,(cq)) =1
(which follows from (11) and kl/lgq) < ¢*) implies the first inequality of the following theorem.

The second inequality is a direct consequence of the Corollary to Theorem 1 and the fact that
limy_, o0 kg~ */? = 0.



Theorem 3: For every positive real number z,

B9 ([21og, k—2log,log, k—z], k)

likm_gp o) < exp{-3¢" '(1-1/g)} (22)
k
(9 (12log, k + z], k
and limint © ([2log, k + 21, k) > 1-4¢ " (23)
k—o0 I/ng)

In particular, for every positive-valued function f(k) with limy_, f(k) = oo (e.g. f(k) =
log,log,log, k),

(9)
lim FOmk). k) _ 0 for n(k) = [2log, k —2log,log, k — f(k)], and

k—o00 V]E;q)

(9)
tim Z0ORLE) o k) = (210, k + £(R).
k— o0 V]E:q)

Theorem 3 demonstrates that the recursive complexity of virtually all of the u,(cq) g-ary cycles

of length k is within a very small interval of width roughly 2log,log, k¥ and located close to
2log, k.

4. Approximations for 5 (n, k)

For investigating the global behaviour of 8(n, k) it is advantageous to use a logarithmic scale.
The plots of log, vi, and log, B(n, k) for 3 < n < 8 are shown in Figure 2. From the fact that the
curves in Figure 2 are close to linear in certain ranges it is obvious that for n > 5 the following
approximation holds for wide ranges of k-values: log, 3(n, k) =~ 2log, 8(n, k—1) —log, B(n, k—2)
which is equivalent to
Bn,k=1)
Bn,k—2) "
For almost all values of k, this approximation is slightly greater than the actual value, which
means that the curves k — log, 3(n, k) are almost everywhere concave, with exceptions at both
ends of the interval [1,2"].

Another good approximation for n > 5 for the range 2n < k < 2™ is log, B(n, k) =~
Lllog, B(n—1,k) + v;] which is equivalent to

Bn, k) = (24)

Bn,k) ~ /Bn=1,k) v . (25)

These approximations for 8(n, k) also hold for 3(? (n, k) as can be verified by inspection of
tables Ila, ITb and III.

5. Conclusions

The problem of enumerating the number 39 (n, k) of cycles of length k in the generalized
de Bruijn-Good graphs G%q) has been treated by an approach that is more statistical than com-
binatorial. Asymptotically-tight lower and upper bounds on 39 (n, k) have been derived that
imply that the recursive complexity of virtually all cycles of length k is very close to 2log, k,
where the recursive complexity of a cycle is defined as the length of the shortest feedback shift-
register that can generate it or, equivalently, as the smallest order n of a de Bruijn-Good graph



ngq) in which it occurs. Similar asymptotically-tight lower and upper bounds as given in Theo-
rem 3 can be derived [20] for the number of finite g-ary sequences of length k having recursive
complexity less than [2log, k—2log,log, k—x]| or greater than [2log, k + z], respectively.
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Appendix A: Proofs of Lemmas 1 and 2

Proof of Lemma 1: We first prove by induction that for ¢ > r,

20— 1

sy 1@ (26)

=0

B (n,t,r) <

As the basis of the induction we note that for r = 1 inequality (26) holds for all ¢, namely

—(a) t2(t71) (t2/2)t71
1) = ¢" < 0————q" = L2 g 2
————
>1 for t>1

Assuming that (26) holds for RY (n,t—1,r) and R (n,t—1,r—1) we show by application of
(14) that (26) holds for B (n, t,r):

B t,r) = r-Rmt-1,7) + [ —ar-1)]- B (n,t-1,r—1)
(t 1 2(t—r—1) T 1 (t_l)Q(t_r) r—2 o
S e e s § L
= [2r(t—r)(t—1)2<f—’“—1> +(t—1)%~ ﬂ] = ,H q"—iq) (28)

T
It remains to show that T < t*¢—"), Forr =t, T =1 =t>*""), For r < t—1,

2-r) [(t 4 1]2(t—r)

(t — l)z(t—r) + (2(t1—r)) (t— 1)2(t7r)—1 + (2(t2—r))(t . l)g(t,ﬂ,z
(t—1)2) 4 [2(t —r)(t— 1)+ (t—r)(2t — 2r — 1)] (t — 1)1
(t— 1)) 4 (48— 2r — 3)(t — r)(t — 1)2¢ 7D

N——

>2r for r<t—1

Forr <t—1(ie,t>r+1),4—2r—3>4(r+1)—2r—3 =2r+1 > 2r, which, by comparison
with T, implies T < #2¢=7) for r <t — 1 and together with (28) proves (26).



The second step of the proof of Lemma, 1 is to show that

r—1 r—1
M@ i) = ¢ [0 —ig ") < ¢ exp{—4r(r—1)g~"+'}. (29)
=0 =1

For » > ¢q" !, the product on the left is zero and hence the inequality is trivially satisfied.
For r < g™, all the terms in the product are positive. Let oo = ¢+, Using the fact that
In(1 — z) < —z for x < 1 we obtain

r—1 r—1 r—1
1
In [ -ig™) = > In(1—ia) < =D ia = —5r(r=Da.
=1 =1 i=1

The inequality in (29) follows immediately. O

Proof of Lemma 2: Application of Lemma 1 and equation (13) yields

t
t2(t7r)
R(q)(n,t) S Z m an exp {—%T’(’f'—l)qin—kl} .

r=1

We now multiply the sum by ¢'” and compensate the effect by replacing ¢"™ in the sum by
q("="_ Using the index transformation s = t — r such that r(r — 1) = (t —s)(t —s — 1) =
t(t—1)—2ts+s(s+ 1) > t(t — 1) — 2ts we obtain

t—1 2 _n\ S
ROGY < ¢35 (S ) ew {3a -1 - 200)
s=0 "

t—1

n _n 1 5 —n —tg-n+1)?
¢ exp {3q "Tt(t-1)} E o (%tzq et )
s=0

Extending the summation from s = 0 to oo cannot reduce the sum (because the terms are
positive) and transforms it into the power series expansion of exp{%t2q_"et‘1_ +1}, which is
hence an upper bound on the sum. This completes the proof of Lemma 2. O

n
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Appendix B: Tables of 59 (n, k)

19 20 21 22 23 24 25 26 27 28
n
5 842 1085 1310 1465 1544 1570 1968 2132 2000 2480
6 6348 10131 15970 24625 37972 57802 86608 128355 188602 272634
7 | 14262 24931 43912 76236 132632 229990 397260 684130 1173028 2006754
8 | 20222 37001 67748 123807 226764 415004 758616 1385771 2531084 4618229
9 | 23782 44341 82880 154876 290268 543880 1020356 1914402 3595934 6751951
10 | 25662 48517 91182 172256 326162 618302 1173910 2230341 4243134 8077453
11 | 26620 50433 95494 181839 345218 658042 1256436 2401716 4597790 8810393
12 | 27102 51385 97652 186169 354918 679278 1298946 2490427
13 | 27348 51879 98748 188357 359808 689052 1320506 2537529
14 | 27468 52127 99366 189451 362258 693946 1331322 2559125
15 | 27530 52267 99608 190001 363488 696398 1336726 2569951
16 | 27560 52335 99730 190275 364102 697752 1339446 2575359
17 | 27576 52355 99794 190415 364412 698310 1340810 2578075
18 | 27594 52368 99836 190483 364564 698616 1341490 2579431
19 J 52377 99846 190519 364642 698742 1341834 2580111
20 J 99858 190547 364680 698812 1342034 2580449
21 J 190557 364700 698848 1342104 2580621 4970662
22 J 364722 698862 1342138 2580705 4970832 9586049
23 J 698870 1342156 2580749 4970920 9586221
24 J 1342178 2580783 4970974 9586329
25 4 2580795 4970990 9586361
26 J 4971008 9586381
27 J 9586395
Table Ib: B(n, k) for 19 < k <28 and 5 <n < 27.
k 29 30 31 32 33 34 35 36
n
4 0 0 0 0 —
5 2176 2816 4096 2048 0 0 0 0
6 390190 552724 768844 1060280 1443260 1930641 2559256 3348409
7 3410476 5777696 9741000 16361136 27357028
8 8414038 15317619 27845580 50567566 91678382

Table Ic: B(n,k) for 29 < k<36 and 4 < n < 8.
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k| B(6,k) k| B(6,k) k| B(6,k)

35 | 2559256 || 45 | 21235540 || 55 59083776

36 | 3348409 || 46 | 24504208 || 56 | 63380992

37 | 4311450 || 47 | 28452128 || 57 | 61390848

38 | 5492251 || 48 | 32129328 || 58 | 60764160

39 | 6896304 || 49 | 35951488 || 59 | 62619648

40 | 8593846 || 50 | 40066592 || 60 70057984

41 | 10507554 || 51 | 44494144 | 61 59768832

42 | 12800269 || 52 | 48144432 || 62 | 88080384

43 | 15264574 || 53 | 51336384 || 63 | 134217728

44 | 18044775 || 54 | 54675776 || 64 | 67108864

Table Id: 3(6, k) for 35 < k < 64.
123 4 5 6 7 8 9 10 11 12 13 14 15

1 332 0 0 0 0 O 0o -
2 J 381218 20 24 36 24 0 0 0 0 0 0
3 J 8 18 36 86 186 372 792 1596 3108 6002 11088 19152 31752
4 J 18 48 110 264 672 1644 4071 10158 25335 63006 155802 383286
b) J 48 116 294 762 1998 5340 14010 37305 100002 268554 723806
6 J 116 312 798 2136 5688 15390 42090 114870 316122 874352
7 J 312 810 2166 5814 15864 43500 120036
8 J 810 2184 5868 16020

Table ITa: @) (n, k) for 1 <k <15and 1< n < 8.
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k 16 17 18 19 20 21 22 23 24
n (25)  (26) (27)

3 51216 77952 113712 160608 212160 259648 317952 369792 376704
435456 559872 373248
4 937272 2274078 5481078 13102062

5 1950894 5265714

Table ITb: 3G (n, k) for 16 < k < 27 and 3 < n < 5.

kl12 3 4 5 6 7 8 9 10 11 12 13 14
(15)  (16)
n
1 146 8 6 0 0 0 0 0 0 0 0 0 0
2 |l 62048 120 280 672 1500 2976 5472 9216 13824 17280 20736
27648 20736
3 1 20 60 180 586 1848 5844 18872 60408 192696 612158 1925088 5996376
4 1 60 204 658 2208 7644 26372 92334 326124 1157560 4124832
5 1 204 670 2304 8028 28424 102006 367236 1335580
6 1 670 2340 8136 28988 104046 377760
Table ITI: 3 (n, k) for 1 <k <16 and 1 < n <6.
k| B®(2,k) k| B(2,k) k| B2,k
1 5| 10 167808 || 19 | 306892800
2 10 | 11 495360 || 20 | 479499264
3 40 || 12 1392240 || 21 | 678481920
4 130 || 13 3692160 || 22 | 846028800
5 444 || 14 9241920 || 23 | 995328000
6 1500 || 15 | 21747456 || 24 | 1244160000
7 5160 || 16 | 47678400 || 25 | 995328000
8 17130 || 17 | 96595200
9 54600 || 18 | 179781120
Table IV: 3()(2,k) for 1 < k < 25.
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