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Abstract—Information-theoretic message authentication is tra-
ditionally defined as the task of authenticating a message,
transmitted over an insecure channel, using a secret key shared
between sender and receiver. Previous results have investigated
the trade-offs between key size, message size, and the adversary’s
cheating probability.

In this paper we propose a new approach to information-
theoretic authentication, without a secret key, but assuming that
a short message (much shorter than the actual message) can be
transmitted authentically, for example by speaker identification
over the phone. By using such a scheme recursively one can
authenticate arbitrarily long messages if one can authenticate a
very short message whose length only depends on the desired
cheating probability, and if it is guaranteed as a mild form of
synchronization that every message arrives before the next one
is sent.

This result has also implications for key-based authentication.
If the short message is itself authenticated with a key-based
scheme, this combined scheme yields an optimal key-based
authentication scheme for arbitrarily long messages, provably
beating the best traditional authentication code, i.e., the best
scheme that transmits a single key-dependent message over an
insecure channel. The required key size is independent of the
message length, which is impossible to achieve for traditional
authentication codes.

The proposed schemes are not only of theoretical interest
but may well have practical applications in contexts where
information-theoretic security is required, for example in quan-
tum cryptography.

I. INTRODUCTION

Message authentication is concerned with providing assur-
ance to the receiver of a message that it was sent by a specified
sender, even in the presence of an adversary who can intercept
messages sent by the legitimate sender and send a fraudulent
message to the receiver. Authenticity, like confidentiality, can
be achieved by cryptographic coding based on a secret key &
shared by sender and receiver.

Definition 1. In a plain authentication system (without se-
crecy), also called an authentication code, the sender authen-
ticates a message m by computing an authentication tag

= f(TTL,]f),

where f is an appropriate function, and sending the pair (m, t)
over the insecure channel. The receiver accepts the received
message (m/,t’) if the tag matches, i.e., if

fm' k)=t
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The standard model considered in authentication theory
is that the adversary has full (read and write) access to
the communication channel and can choose between two
different types of attacks. In a so-called impersonation attack,
the adversary generates a fraudulent message (m',t'), before
seeing a correctly authenticated message, and sends it to the
receiver. In a so-called substitution attack, the adversary waits
until an authenticated message (m, t) is sent and replaces it by
some fraudulent message (m/,t') with m # m’. The adversary
is considered successful (in either attack) if the fraudulent
message is accepted by the receiver, and he can choose the
better of the two strategies.

This paper is concerned with information-theoretically se-
cure message authentication, i.e., security against an adversary
with unlimited computing power knowing everything about the
system, except for the secret key. We consider authentication
schemes for message space {0,1}" and key space {0,1}°
(assuming the key is uniform). The tag length v is not a
main concern as it is generally much shorter than the message,
and because minimizing the communication is not of primary
interest. One is interested in achieving high security, i.e., a
low cheating probability. !

Definition 2. For an authentication code
f:{0,1}" x {0,1}* — {0,1}",

let v(f) be the cheating probability for an optimal cheating
strategy, for the worst choice of the message to be sent.

Definition 3. Let 7(n,s) be the cheating probability for the
optimal authentication scheme f for n-bit messages using an
s-bit key:

7(n,s) = miny(f),

where the minimum is over all functions f : {0,1}" x
{0,1}* — {0,1}", for any v.

There exists a huge body of literature on information-
theoretic authentication codes, beginning with [2] (see also [7],
[8], [9], [3]). The papers are mostly concerned with designing
schemes f for which v(f) is small, with proving lower bounds
on 7(n, s) or, more generally, proving results relating the key
space size, the message space size, and the best achievable
cheating probability.

UIn the literature the problem of authenticating a sequence of messages has
also been considered (see for example [4]).
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It is well-known (e.g., see [4]) that
(n,s) > 27°72, e

i.e., that for any n > 1 no scheme can achieve a cheating
probability lower than the inverse of the square root of the key
space size. More generally, the bound is 277 (5)/2 where K
is the random variable corresponding to the key. The intuition
behind this bound is that the correctly authenticated message
must give as much information as possible about the secret key
(to counter an impersonation attack) but at the same time hide
as much as possible about K (to counter a substitution attack),
the best trade-off being that it leaks half the key entropy.
Indeed, consider the authentication of a single bit (i.e., n = 1).
It is not difficult to see that an optimal scheme is to split the
key into two halves of equal length and to send (as the tag t)
the first [or second] half of the key if the bit is m = 0 [or
m = 1]. Inequality (1) can also be stated as?

1
s > 2log —, 2)
q

where ¢ is a given bound on the cheating probability, i.e., if
m(n,s) < ¢ is required. Note that this bound is independent
of the message length and holds even for n = 1.

It is also known [1] that for any authentication code achiev-
ing v(f) < g, the key size satisfies

1
s > logn +log —, 3)
q

i.e., the key size must grow logarithmically in n and logarith-

mically in é.

II. POLYNOMIAL-BASED AUTHENTICATION

A well-known scheme for n > 1 is based on arithmetic in
a finite field GF(2"). For n = r and s = 2r we can define
f(m, k) as follows. The key k& € {0,1}?" is interpreted as
a pair k = (k1, ko) of elements of GF'(2"), and (using field
arithmetic)
f(TTL7 k) = klm —+ ko.

It is straight-forward to prove that this scheme is optimal in
the sense that

W) = 20 = o

which shows that the bound (1) holds with equality for n <
s/2, i.e., for messages not longer than half the key length.

For longer messages, equality can not be achieved anymore.
Many papers investigated the problem of extending the mes-
sage space, for given key size, without sacrificing too much on
the cheating probability. One of the best schemes is described
below. We need the following definition.

)

Definition 4. For a given field GF(2"), the message polyno-
mial for message m € {0,1}* is the polynomial
pm(x) = mp_12°7F + - myx 4 my,

2 All logarithms in this paper are to the base 2.

where
m = my_1|[ - |[m1]|mo,

i.e., the message is parsed into b = [n/r] r-bit blocks which
constitute the coefficients of p,,(x).

In this paper we assume, for simplicity and without much
loss of generality, that the message length n is known. For
variable n, certain simple modifications are needed to avoid a
misinterpretation of leading 0’s in the message.

Theorem 1. For the authentication scheme for key k =
(k1,ko) € GF(27)2, defined by
f(m, k) = kipm(k1) + ko,

the cheating probability of any adversary is upper bounded by
() < [n/r]-27"

Proof. Since the tag t = f(m,k) is uniformly random in
GF(2"), no impersonation attack has success probability more
than 27". To analyze substitution attacks, note that f(m, k) is
statistically independent of k; and hence, for the adversary,
k1 is still uniformly random after observing the correctly
authenticated message. For a fraudulent message m’ # m,
the probability that a given tag ¢’ matches is equal to the
probability that

t—t = kipm(k1) — k1pm (k1). 4)

Since the polynomial

q(x) == zpm(x) — xppr () —t — 1

has degree at most b = [n/r| (and is non-zero, as m’ #
m), it can have at most [n/r]| roots. Since k; is random, the
probability that (4) is satisfied is at most [n/r] -27". O

The theorem implies
m(n,s) < [2n/s]-27%/2

for even s.

As mentioned, this scheme is essentially optimal. Neverthe-
less, we want to raise the question whether one can do better.
This question was addressed by Gemmell and Naor [1] who
showed that by an inferactive protocol between sender and
receiver one can reduce and even eliminate the dependence of
the cheating probability on the message length. Here we take
a different approach, without requiring interaction. Instead, we
make use of a weak form of synchronization naturally given
in practical applications.

III. AUTHENTICATION AMPLIFICATION BY
SYNCHRONIZATION

In the following we assume a very mild form of time
synchronization between sender and receiver, namely that
when the sender sends two consecutive messages sufficiently
separated in time, then the adversary can not modify the first
message after seeing the second message. In other words, the
receiver knows that if the first message comes too late, then he
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should not accept it. And, conversely, he knows that when the
message arrived on time, then, while it might come from the
adversary, it can not depend on a subsequent message from
the honest sender.

From now on, assume such synchronization and consider
a setting where the sender can send, once, an authenticated
message of length ¢ to the receiver. For example, the receiver
might be able to recognize the sender’s voice and hence the
sender can read the (short) message to the receiver over an
insecure but authenticated voice channel.

Definition 5. The authentication scheme SyncAut(m) for
message m € {0, 1}" (and field GF(2")) is defined as follows.
First, m is sent over an insecure channel. Then (after the
message is received by the receiver), the pair (z,p,,(2)) is
sent over the authenticated channel to the receiver, where
z € GF(2") is chosen uniformly at random by the sender.

Note that ¢ = 27 in this scheme.

Theorem 2. [f scheme SyncAut is used to transmit an n-bit
message, the cheating probability of any adversary is upper
bounded by ([n/r] —1)-27".

Proof. The adversary must replace m by some m’ # m before
seeing (z, pm (%)), hoping that p,,(2) = pp(z). (Note that he
can not change z.) The polynomial p,, () —p,, (x) has degree
([n/r]—1); hence it has at most ([n/r] —1) roots. Since z is
uniformly random, the probability that p,,(z) = p.(2), i.e.,
that
pm(z) - an’(Z) = 07

is at most ([n/r] —1)-27". O

Note that for very short messages (n < r) the scheme
simply sends the message over the authenticated channel (and
also over the insecure channel), and the cheating probability
is therefore 0. Indeed, the bound in Theorem 2 becomes 0.

What this scheme achieves is that the problem of sending
a long authenticated message is reduced to the problem of
sending only a much shorter authenticated message (plus, of
course, sending a long message insecurely, which is consid-
ered cheap). The scheme is actually practically relevant, for
example in quantum cryptography, where the parties agreeing
on a secret key must communicate large amounts of data
authentically. Instead of using a secret key one could use
a physical authentication mechanism for short messages, as
described.

We observe that the assumption that the second channel
be authenticated can be dropped if we use a secret key for
the authentication of that message (see Section V). We also
observe that the above approach can be used recursively, as
discussed below.

IV. RECURSIVE APPLICATION OF THE SCHEME SyncAut

As mentioned, the scheme SyncAut allows to authenticate
a long message by sending it over an insecure channel and
sending only a much shorter message authentically. In the ter-
minology of constructive cryptography [6], [5], one constructs

an n-bit authenticated channel from an n-bit insecure channel
and an /-bit authenticated channel, for ¢ < n.

We note that ¢ depends on n and on the desired bound ¢
on the cheating probability p. For the field GF(2") we have

(=2r and p=([n/r]—-1)-27".

For fixed ¢ and n we have
1
¢ = O(logn) + O(log 6)

To improve on this, we now consider a model, called the
synchronous communication model, in which one can use,
consecutively, a few synchronized insecure communication
channels and an /-bit authenticated channel at the end. Our
goal is to minimize ¢ for given message length n and bound ¢
on the cheating probability.

Theorem 3. In the synchronous communication model, for
q < 1/4 there exists a scheme with
¢ = 2[10g%1 +4.

Proof. We only sketch the proof. By recursive use of scheme
SyncAut, with adequate field sizes at each level, the message
lengths transmitted over the insecure channels drop expo-
nentially. The overall cheating probability is bounded by the
sum of the cheating probabilities at each level. (This is quite
obvious and also follows from the composition theorem of
constructive cryptography [6], [5].)

Let us investigate the performance of the scheme where
at the i-th level the message length is ¢; and the message
consists of two elements of GF(2"), where r; = |l;/2], used
to authenticate a message of length ¢; 1 = b;17; at the next
higher level. The parameters b; can be chosen arbitrarily, but
b; > 3 is required to boost the message size in increasing
levels. When the recursion ends (at the lowest level, i.e.,
level 0), the length of the message that actually needs to be
transmitted authentically is £ = {y. Let k£ be the number of
levels. Then the cheating probability of the overall scheme is

bounded by
k
Z b; 27",
i=1

It is easy to verify that for the choice » = o > 4. and b; = 3
for all 7, the above sum is smaller than 4-2~" for any k.3 This
means that one can authenticate a message of any length n
by sending only ¢ = 2r bits authentically, and with cheating
probability

p<4-277.
Hence, if one chooses
1
r = [log=]+2,
q
then p < g (if r >4, ie., if ¢ < 1/4). O
3In an actual implementation, one would choose bz, b3, . . . much larger to

have only two or three recursion levels.
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V. KEY-BASED AUTHENTICATION WITH OPTIMAL KEY
SIZE

As mentioned before, if no authenticated ¢-bit channel is
available, but instead a secret key is available, then one can use
the key to authenticate the /-bit message. Since ¢ is small, we
can achieve key-based message authentication for arbitrarily
long messages where the cheating probability is minimal, i.e.,
where the bound (2) is met essentially with equality. This beats
the best schemes where a single insecure message (consisting
of the message and the tag) is sent.

The proof of the following theorem is omitted. It should be
contrasted with (3) which states that the key size must depend
on the message length if no synchronization assumption is
made, i.e., if the entire message can be replaced as a whole
by the adversary.

Theorem 4. In the synchronous communication model there
exists a scheme with
1
s = 2log - +c.
q
for a given bound q on the cheating probability, where c is a
(small) constant.

VI. CONCLUSIONS

We have demonstrated that a very weak assumption, namely
a mild form of synchronization, which in practice is easily
satisfied, can lead to a significant improvement in information-
theoretically secure authentication schemes.

This leads on one hand to an authentication amplification
scheme by which the capability of sending a short message au-
thentically can be boosted to send an arbitrarily long message
authentically. The scheme is practical and is a viable choice
for being used in quantum cryptography instead of a key-based
authentication scheme, at least for the establishment of a first
key.

On the other hand, the described idea also leads to the
optimal key-based authentication scheme which is superior
to all previously proposed schemes. This scheme might be
the preferred choice in practice for information-theoretically
secure authentication, for example in quantum cryptography
(if key-based schemes are used).
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