Constructive Cryptography — A New Paradigm
for Security Definitions and Proofs*

Ueli Maurer

Department of Computer Science
ETH Zurich
CH-8092 Zurich, Switzerland
maurer@inf.ethz.ch

Abstract. Constructive cryptography, an application of abstract cryp-
tography proposed by Maurer and Renner, is a new paradigm for defin-
ing the security of cryptographic schemes such as symmetric encryption,
message authentication codes, public-key encryption, key-agreement pro-
tocols, and digital signature schemes, and for proving the security of
protocols making use of such schemes. Such a cryptographic scheme can
be seen (and defined) as constructing a certain resource (e.g. a chan-
nel or key) with certain security properties from another (weaker) such
resource. For example, a secure encryption scheme constructs a secure
channel from an authenticated channel and a secret key.

The term “construct”, which is defined by the use of a simulator, is
composable in the sense that a protocol obtained by the composition of
several secure constructive steps is itself secure. This is in contrast to
both the traditional, game-based security definitions for cryptographic
schemes and the attack-based security definitions used in formal-methods
based security research, which are generally not composable.

Constructive cryptography allows to take a new look at cryptography
and the design of cryptographic protocols. One can give explicit mean-
ing to various types of game-based security notions of confidentiality,
integrity, and malleability, one can design key agreement, secure commu-
nication, certification, and other protocols in a modular and composable
manner, and one can separate the understanding of what cryptography
achieves from the technical security definitions and proofs, which is useful
for didactic purposes and protocol design.

1 Introduction and Motivation

1.1 Modularity in Constructive Disciplines

A central paradigm in any constructive discipline is the decomposition of a com-
plex system into simpler component systems or modules, which each may consist
of yet simpler modules, and so on. This paradigm is useful only if the compo-
sition of modules is well-defined and preserves the relevant properties of the

* This paper is an extended abstract accompanying the author’s invited talk at
TOSCA 2011. The author is supported by the Swiss National Science Foundation.

S. Médersheim and C. Palamidessi (Eds.): TOSCA 2011, LNCS 6993, pp. 33-56] 2011.
© Springer-Verlag Berlin Heidelberg 2011

34 U. Maurer

modules. For example, in software design, the composition operation must pre-
serve correctness of the modules, i.e., correctness should be defined in a way that
a system consisting of correct modules is itself correct.

The goal of constructive cryptography is to see cryptography as a constructive
discipline, in a well-defined sense. The design of a cryptographic protocol involves
several mechanisms (e.g. encryption, message authentication, etc.), each of which
is proven secure in isolation (as a module). The security of the composed protocol
then follows from a general composition theorem.

However, this approach requires the security of cryptographic schemes to be
defined in a suitable manner. Indeed, for the traditional, game-based crypto-
graphic security definitions, as explained below, the composition property is un-
clear. In contrast, security definitions stated in the proposed constructive manner
are intrinsically composable and capture what one really wants to say about a
concrete cryptographic system.

1.2 Traditional Security Definitions in Cryptography

In a traditional definition of security of a cryptographic scheme, one usually
defines a game that characterizes the capabilities of a (hypothetical) adversary.
A cryptographic scheme is defined to be secure if no computationally feasible
strategy allows the adversary to win the game with non-negligible probability
(or advantage), for reasonable notions of feasible and negligible. The notion
of “feasible” is hard-wired into the definition and is defined as some form of
polynomial time. Similarly, negligible is defined in a specific manner such that,
roughly speaking, feasible times negligible is still negligible. Such definitions are
therefore necessarily asymptotic.

For example, the security of a message authentication code (MAC) is defined
as follows. Roughly speaking, without access to the secret key, no adversary re-
stricted to feasible computation can win the following game with non-negligible
probability. The adversary has access to a MAC-oracle (with the secret key em-
bedded) and can ask for the generation and/or verification of MACs for arbitrary
messages. The game is won if the adversary can generate a fresh message (not
asked to the oracle before) as well as a correct MAC for it.

While this definition sounds reasonable and strong and naturally captures
intuition, one may still ask why it should be the right definition. Indeed, for
many cryptographic primitives, several different security definitions have been
proposed. For example, a strengthened version of the security of a MAC requires
that it even be infeasible to generate another valid MAC for the same message
(assuming the MAC scheme is probabilistic). It is generally not clear when such
a stronger definition is required.

For encryption, the definitions include security against chosen-plaintext at-
tacks (CPA) or against chosen-ciphertext attacks (CCA), and for different types
of distinguishing games. In addition, various integrity definitions for encryption
have been defined. Several authors have investigated which combinations of such
notions are strong enough in a given context.

Constructive Cryptography — A New Paradigm for Security Definitions 35

1.3 Constructive Cryptography

The question of which definition is adequate should be answered relative to a
specification of what is supposed to be achieved by the application of the scheme,
under specified assumptions. Hence the constructive approach proposed here.

Constructive cryptography is a new paradigm in which the security definition
of cryptographic schemes is radically different. For example, a MAC is defined
to be secure if it constructs an authenticated communication channel from an
insecure communication channel and a secret key, for a well-defined, simulation-
based notion of “construct” and for well-defined definitions of an insecure and an
authenticated channell. Similarly, a symmetric encryption scheme is defined to
be secure if it constructs a secure communication channel from an authenticated
communication channel and a secret key.

The general composition theorem (Theorem [I]) of this theory implies that the
combination of a secure MAC and a secure encryption scheme constructs a secure
channel from an insecure channel and two secret keys. By another composition
step, the two keys can be constructed from a single secret key using a pseudo-
random generator.

The security of public-key cryptosystems, key agreement protocols, and dig-
ital signature schemes can be seen similarly in the constructive cryptography
paradigm, but this will not be discussed in this paper (but see [2I]). The em-
phasis of this paper is on the general theory, less on the discussion of specific
cryptographic schemes, which are discussed in [22/20] and in future papers.

1.4 Outline of the Paper

In Section 2] we discuss the well-known one-time pad from a new perspective,
leading to the constructive cryptography viewpoint explained in Section Bl In
Section @] we briefly explain the idea of [I8] to introduce abstraction layers
in cryptography. In particular, the theory of abstract systems is introduced.
In Section Bl the theory of constructive cryptography is explained. Related work
is discussed in Section [l and several research directions that can be addressed
in the framework of constructive cryptography are mentioned in the concluding
Section [7}

2 Motivating Example: The One-Time Pad

In this section we discuss the one-time pad (OTP), the best-known prov-
ably secure cryptosystem, as a motivating example. We recall the traditional
(information-theoretic) security proof for OTP-encryption and explain two in-
trinsic problems with this proof. First, despite the proof, the OTP can be argued

! While using ideas of the frameworks of Canetti [4] (universal composability, called
UC) and of Backes, Pfitzmann and Waidner [24]2] (reactive simulatability), which
formalized the so-called “ideal-world real-world” paradigm, constructive cryptogra-
phy is significantly different, as discussed in Section

36 U. Maurer

addition modulo 2

/ ciphertext G,C,, ...

—

plaintext
M, M,, .. g

plaintext
M, M,, ...

key K,K,.. key K,K,..

Fig. 1. The one-time pad (OTP) encryption scheme. The plaintext, the key and the
ciphertext are bit strings of equal length, say n bits. The key is a uniformly random bit-
string that is used only once. Encryption [decryption] consists of XORing (i.e., adding
bit-wise modulo 2) the key to the plaintext [ciphertext]. The adversary is assumed to
have access to the communication channel (i.e., to the ciphertext) but has no (a priori)
information about the key.

to be completely insecure, for two different reasons. Second, the security proof
cannot be carried over to a more practical setting where the (long) secret key is
replaced by a pseudo-random key generated from a short secret key. Intuitively,
an information-theoretic security proof should carry over and become a proof
of computational security. The constructive approach to defining security solves
both problems of standard security definitions.

2.1 The Traditional Security Proof for the One-Time Pad

The OTP encryption scheme (see Figure [I]) can be proved to be information-
theoretically secure, i.e., unbreakable even for a computationally unbounded
adversary. How can one formulate and prove this claim?

The usual way to argue about the security of OTP-encryption is to show
that the plaintext (also called the message) and the ciphertext are statistically
independent. This means that the ciphertext gives no information about the
plaintext, independent of the available computing power. In other words, if one
has to guess the plaintext when given the ciphertext, one can just as well ignore
the ciphertext.

Proposition 1. In one-time pad encryption, the plaintext and the ciphertext
are statistically independent (for any plaintext distribution).

Proof. Let M,C, and K denote random variables corresponding to the plain-
text, the ciphertext, and the key, respectively. Because the key K is uniformly
distributed, so is the ciphertext C' for every choice M = m of the plaintext mes-
sage. In other words, Pc|ar—p, is the uniform distribution for all m, and hence
so is P¢. Thus

Pom(c,m) = Pgjy(c,m)-Py(m) = Po(c)-Par(m),

for all m and ¢, which is the definition of M and C being statistically
independent.]

Constructive Cryptography — A New Paradigm for Security Definitions 37

In the following two subsections we discuss two reasons why this is not really
the statement about the OTP one should want to prove.

2.2 Two “Security Problems” of the One-Time Pad

Despite the above security proof, the OTP appears to be very “insecure”, at
least for two independent reasons.

First, an adversary with access to the communication channel can modify
the message in a controlled manner, even though she gets no information about
the transmitted message. The adversary can XOR an arbitrary offset § to the
transmitted message, simply by XORing ¢ to the ciphertext. If OTP-encryption
were used in a banking application, an attacker could for instance change the
bank account number of a money transfer.

Second, suppose that the OTP is used to encrypt one of the two messages
“Yes” and “No” encoded, say, in 8-bit ASCII. Since the two messages have
different lengths, the ciphertext leaks complete information about the message,
in sharp contradiction to the above claim that the ciphertext is independent of
the plaintext message.

What is a reasonable answer to the above two criticisms, apparently suggesting
that the security proof for the OTP is useless in practice? The right answer is
that we have to declare explicitly what we assume to be available and what
we claim to achieve. First, we need to assume that the channel over which the
ciphertext is transmitted is an authenticated (but not necessarily confidential)
channel, preventing an adversary from modifying the ciphertext. Second, we need
to state explicitly that the resulting secure channel actually leaks the message
length (but not more). Then the constructive security proof can be interpreted as
stating that OTP-encryption securely constructs a secure length-leaking channel
from an authenticated channel and a shared secret key.

2.3 Computational Security: Additive Stream Ciphers

To illustrate the second short-coming of the above security statement (Proposi-
tion [II), we consider a variation of OTP-encryption used in practice, where the
truly random key is replaced by a keystream sequence that is generated deter-
ministically from a short secret key by a so-called pseudo-random generator.
This is called an additive stream cipher (see Figure [2).

How should one define the security of such a stream cipher? Obviously, because
the entire keystream is generated from a short secret key, the system cannot be
information-theoretically secure. One could (theoretically) break the system by
trying all possible keys until the correct one is identified as the only key that
results in meaningful plaintext after decryptiorﬁ. Hence we must find a way to
formulate what it means for this system to be computationally secure.

2 This requires a sufficient amount of ciphertext and assumes that the plaintext
is redundant, i.e., that one can distinguish between meaningful and meaningless
messages.

38 U. Maurer

ciphertext C, C,, ...

plaintext plaintext
M, M, .. ’ ’ M, M,, ..
keystream keystream
) TR e X, X, ..
keystream keystream
generator generator
fk Fk
key key

Fig. 2. Additive stream cipher. It is obtained from OTP-encryption by replacing the
random key by the output of a pseudo-random generator (also called keystream gen-
erator in this context) applied to the secret key K. This system can be used for many
consecutive messages if sender and receiver use consecutive portions of the keystream.

Our goal is that the computational security of the additive stream cipher fol-
lows from the (information-theoretic) security proof of the OTP and the assump-
tion that the keystream generator is a cryptographically secure pseudo-random
generator. What we need are two things: a computational version of “securely
construct” and a composition theorem that allows to combine such statements.
Here the two statements are that a pseudo-random generator (computationally)
securely constructs a long secret key from a short secret key, and the previously
explained constructive statement for the OTP.

3 Explaining the Security of the One-Time Pad in
Constructive Cryptography

3.1 The Basic Approach

In the constructive cryptography approach, a cryptographic mechanism (e.g.
the one-time pad) is interpreted as a method for constructing a certain ideal
resource from a certain real resource. This is in the spirit of [412412]. One argues
that an adversary could, in an ideal world where the ideal resource is available,
achieve anything that he could achieve in the real world where the real resource
is given. This argument involves, as a thought experiment, a simulator system
which transforms the ideal resource into the real-world system consisting of the
real resource and the protocol engines (called converters).

This paradigm will be explained at an abstract level in Section Bl In the
following we discuss the one-time pad example. What will be important to note
is that we consider two types of systems: resources and converters.

3.2 The One-Time Pad Example

We need to define the real resource and the ideal resource for the one-time pad
example. We refer to Figure Bl

Constructive Cryptography — A New Paradigm for Security Definitions 39

Fig. 3. The one-time pad (OTP) as an example of the constructive cryptography ap-
proach. The OTP constructs a secure channel SEC (the ideal resource) from an authen-
ticated channel AUT and a secret key KEY (the real resource). There exists a simulator
system sim which, when attached to interface E of the ideal resource SEC, makes it
equivalent to the real resource with the protocol engines otp-enc and otp-dec attached.
Equation (I)) is an alternative (algebraic) way of describing the systems and stating
their equivalence.

The ideal resource is a secure channel (see FigureBl bottom), denoted as SEC
(or also as A e—eB in the so-called e-calculus; see [21122]). A secure channel
SEC (for sending a single message from A to B) is a system with three interfaces,
for a sender A, a receiver B, and an adversary E. SEC takes an input (from some
message space) at interface A, outputs the message at interface B, and outputs
the length of the message (indicated by | - |) at interface E.

Systems like SEC, AUT, otp-enc, and those discussed below can be made pre-
cise in any suitable language, but this is beyond the scope of this paper. As
mathematical objects, they are random systems (see [14] or [I7]). One also has
to specify aspects like whether the adversary E has the capability of deleting a
message, and whether the channel allows to send only one or several consecutive
messages. For simplicity, the reader can think of our channels as allowing the
transmission of a single message, but the claims also hold for channels allowing
to send several messages.

The real resource (see Figure [top) consists of an authenticated channel,
denoted as AUT (or also as A e— B, see [21l22]), and, in parallel, a shared
secret key, denoted as KEY (or also as A e B). This system can be written as
AUT||KEYﬁ. In contrast to a secure channel SEC, an authenticated channel AUT

3 The parallel composition for resources, denoted || is neither commutative nor (nec-
essarily) associative. It is postulated in an abstract sense in Section Ml and it must

40 U. Maurer

is one in which E can also learn the message sent by A but, like for a secure
channel, E cannot modify the message output to B.

The protocol specifies protocol engines (later called converter systems) for A
and B, namely otp-enc and otp-dec, respectively, which they attach to the system
AUT||KEY, resulting in a system we can write as

otp—decB otp—encA (KEY||AUT).

Here the superscripts (e.g. B in otp—decB) specifies that the converter otp-dec is
attached to interface B of the resource system AUT||KEY (see Section H).

How can we argue that OTP encryption constructs a (length-leaking) secure
channel? After all, in the real world (i.e., when OTP encryption is used) the
adversary receives something, namely the ciphertext, while she receives nothing
in the ideal world. How can we resolve this apparent problem?

3.3 The Simulator

Since the ciphertext is statistically independent of the message, we can argue
that the adversary is not better off when the ideal resource SEC is available
compared to when OTP encryption is used. If the ideal resource were used, he
could simulate the ciphertext (he would receive in the real world, see Figure [3]
top) by himself. More precisely, if a simulator sim generating a random ciphertext
(of appropriate length) is attached to the adversary interface of the ideal system,
then the resulting system (see Figure B bottom) is equivalent (i.e., identical)
to the system in the real world (OTP encryption). Written as an equation of
systems, we have

otp—decB otp—encA (KEY|IAUT) = sim® SEC. (1)

(see the top and bottom systems in Figure B]). Here equivalent means that the
entire input-output behavior is exactly the same. In other words, both systems
(at the top and the bottom of Figure B]) behave identically. Each system takes
an input at interface A, outputs this message at interface B, and outputs a
random string of the same length at interface E. Equivalent behavior means that
the two systems behave identically if plugged into any possible environment or
application. This means that from the adversary’s viewpoint, the ideal world is
just as good as the real world because anything that could happen in the real
world could identically happen in the ideal world. We remark that this simulation
paradigm has a deeper justification in the abstract cryptography framework [I8],
where simulators are not part of a security definition but only part of the proof
of a security statement.

be defined concretely for a specific instantiation of the system concept. Here is is
understood naturally as the asynchronous parallel composition.

4 The length must be given as an input to the simulator, hence it must be “leaked”
by the secure channel.

Constructive Cryptography — A New Paradigm for Security Definitions 41

Fig. 4. Explaining symmetric encryption in constructive cryptography. The only
change compared to the one-time pad example is that the two protocol systems (later
called converters) otp-enc and otp-dec are replaced by enc and dec which implement
the encryption algorithm E and decryption algorithm D, respectively. Equation () is
replaced by (2.

3.4 Computational Security

It is well-known that the one-time pad, and any other information-theoretically
secure encryption scheme, is impractical because, roughly speaking, the key must
be as long as the total message length to be senfl. In practice one therefore
strives for security (only) against computationally bounded adversaries, which
is called computational security. Computational hardness is usually phrased in an
asymptotic sense, and the bound on the adversary’s computing power is usually
assumed to be polynomial in the security parameter.

Figure [shows a setting where the OTP encryption scheme is replaced by a
computationally secure encryption scheme, for example a secure stream cipher as
shown in Figure[2l One can use the same simulator for the ideal system (generat-
ing a random ciphertext of appropriate length). However, the real resource with
encryption/decryption and the ideal resource with simulator are not identical
anymore. All we want to argue is that they are essentially similar (or, alterna-
tively stated, very close) for an adversary with bounded computing power. More
generally, we want to argue that they behave essentially identically in any real-
istic application context, where realistic means that only feasible computations
occur. Written as an equation of systems, the requirement can be stated as

® This is true if no additional source of information (e.g. a satellite with noisy channels
to the parties) is available [13].

5 However, as explained in [18], this is not essential; what is relevant is a composition
property of the feasibility notion.

42 U. Maurer

decB enc® (KEY||AUT) =~ simE SEC, (2)

where the notion of system being approximately equivalent needs to be defined.

3.5 Distinguishers and Computational Indistinguishability

The notion of two systems S and T “being similar” or “behaving essentially
identically” in any context is captured by the concept of a distinguisher. A
distinguisher D for two systems of the same type is a system (or algorithm)
that can access (“play with”) a system of this type and outputs a bit. The
distinguisher’s advantage is the difference of probability of outputting 1 in the
two cases, where D is connected to S and where D is connected to T', respectively.

Two systems S and T are e-similar (or e-close) if no distinguisher (in a certain
class of distinguishers) has a distinguishing advantage of more than . If we
consider the class of all feasible (e.g. polynomial time) distinguishers and ¢ is
very small (negligible), then this means that in any computationally efficient
environment or application (which can be considered as the distinguisher) the
two systems behave essentially the same. The probability that a difference can
be observed is at most €.

This leads to a constructive security definition of an encryption scheme; it is
secure if it constructs, in the sense of computational indistinguishability (eq. @),
a secure channel from an authenticated channel and a secret key.

3.6 One-Time Pad Encryption over an Insecure Channel

While, as explained above, encryption is naturally used over an authenticated
channel, one may ask what happens when it is used over an insecure channel.
Indeed, some protocols (e.g. SSL) can be seen as first transforming an insecure
channel into a confidential channel (without or with limited authenticity) and
then using a MAC to transform the confidential channel into a secure channel
(see Section [(.2]). Such a confidential channel is characterized by some form of
malleability (see [22]).

Specifically, it is quite easy to see that if one uses OTP encryption over an
insecure (rather than authenticated) channel, then the resulting channel is an
XOR-malleable channel allowing the adversary E to XOR an arbitrary offset §
to the transmitted message. However, the message remains confidential (except
for its length), and the adversary cannot modify the message in any other way.
For example, he can not swap the first and the second half of the message
(even though it might seem that swapping the ciphertext halves might result in
swapping the plaintext halves).

4 An Abstract Theory of Systems

This section is based on abstract cryptography [I8] and we refer to that paper
for more details.

Constructive Cryptography — A New Paradigm for Security Definitions 43

4.1 Abstraction in Cryptography

Before we explain constructive cryptography at a general abstract level, we first
recall the discussion in [I8] (also presented in [I5]) of the role of abstraction in
cryptography.

In every mathematical discipline one tries to identify the key concepts and
to formalize them in an abstract manner. Abstraction means to eliminate irrel-
evant details from consideration, thereby focusing only on the relevant aspects
of a problem or context. The purpose of abstraction is to provide, at the same
time, simpler definitions, higher generality of results, simpler proofs, improved
elegance, better didactic suitability, and, perhaps most importantly, new insights.

In many contexts, the highest achievable level of abstraction, once identified,
appears natural and stable. For example, the natural mathematical concepts of
a relation, a function, a graph, a group, a field, or a vector space capture ex-
actly, in a minimal manner, the relevant notions. In contrast, in cryptography
definitions, theorems, and proofs are generally highly technical and have sub-
stantial complexity due to the technical artifacts of the particular model (e.g.
defining the computational model via Turing machines and communication via
tapes, using asymptotic definitions of systems and protocols, defining efficiency
as polynomial-time, using a particular adversarial model, etc.).

In view of this, it seems desirable to state cryptographic definitions in an ab-
stract manner and to leave the technical aspects to a lower level of abstraction.
This allows for simplicity (e.g. non-asymptotic definitions and proofs) and gener-
ality (e.g. simultaneous treatment of different security notions, like information-
theoretic and computational).

4.2 Levels of Abstraction: Bottom-Up vs. Top-Down

The traditional approach in theoretical computer science, and more specifically
in complexity theory and cryptography, is bottom-up. One first defines (at a
low level) a computational model (e.g. a Turing machine or a circuit), based on
which one defines the concept of an algorithm for the model and a communica-
tion model (e.g. based on tapes). One then defines a complexity notion for an
algorithm (e.g. the number of steps), and then a notion of efficiency (e.g. poly-
nomial in some parameter(s), in an asymptotic sense). Finally, based on all these
notions, one defines the security of a cryptosystem, typically as the infeasibility
for the adversary to win a specific game.

The paradigm shift proposed in [I§] is to use a top-down approach. In order to
state definitions and develop a theory, one starts from the other end, the highest
possible level of abstraction, and proceeds downwards, introducing in each new
lower level only the minimal necessary specializations of that level necessary for
expressing what one wants to capture.

It is important to point out that theorems proved at a certain (high) level of
abstraction are completely precise (as they are mathematical theorems). This
is true without instantiations of the lower levels, which is exactly the point
of abstraction. The definitions and theorems are inherited by the lower levels,

44 U. Maurer

provided (of course) that the lower levels satisfy the postulated properties or
axioms of the higher levels. It is hence strictly more desirable to prove theorems
at higher levels of abstraction; nothing is lost by doing thid1.

This paper deals only with high levels of abstraction. Modeling systems at a
concrete level (with potentially tedious details), except for the examples given,
is left to other papers (e.g. [22120]).

4.3 Resources and Converters

At the highest level of abstraction, a system is an abstract object with interfaces
by which it interacts with its environment and with other systems. Interfaces
are labeled with elements of a label set. Two systems can be composed into a
single system by connecting one interface from each system.

Specific types of systems, for example discrete systems as defined in the ran-
dom system framework [I4], are defined at the next lower level of abstraction
(see [18]).

In this paper we consider only two special types of systems: resource systems
and converter systems. In the statements we make about systems composed of
resources and converters, we also consider distinguishers as a third type of system.

An Z-resource system (or simply Z-resource), usually denoted by capital let-
ters (e.g. R or S) or by a symbol like SEC in the examples discussed earlier,
is a system with interface label set 7 (e.g. Z = {1,...,n} or T = {A, B, E}).
Typically (but not only) one can think of each interface being accessible to one
party. A converter system (or simply converter), usually denoted by a Greek
letter (e.g. a or m) or by a symbol like otp-enc, is a system with two interfaces,
where one interface is designated as the outside interface and the other as the
inside interfacdd. The inside interface of a converter o can be connected to in-
terface ¢ € Z of a resource system R; the outside interface of « serves as the
new interface ¢ of the combined system, which is again a resource system and is
denoted o RY.

4.4 Cryptographic Algebras
We now formalize the notions introduced above.

Definition 1. A cryptographic algebra (@, X)) for an interface set 7 consists of
a set @ of Z-resources with a parallel composition operation ||E a set X of

" For example, in algebra one proves theorems about groups, without having to men-
tion examples of groups, and the point of doing so is that such a theorem applies to
every group, i.e., every structure satisfying the group axioms.

One can think of such a system as a protocol engine converting or transforming an
interface of a resource into an interface with a different behavior.

A system composed of a resource and converters has a star-shaped topology, with a
resource in the center and a (possibly empty) chain of converter systems attached to
each interface. The resulting system is again a resource with the same interface set.
For every i € Z, the i-interface of R|S can be thought of as consisting of the two
i-interfaces of R and S merged into a single interface, by some addressing mechanism
that is not (yet) of interest at this level of abstraction.

10

Constructive Cryptography — A New Paradigm for Security Definitions 45

converters, and a mapping X X @ x Z — & defining the resource obtained when
converter « is attached to interface 7 of resource R, denoted as o’ R, such that

(i) Converter application at different interfaces commutes:
o' R=3Fao'R

foralli# j, Re€ @, and o, € X.
(ii) Attaching no converter is defined as a special neutral converter 1 € X' satis-
fying 1'R=R foralli € Z and R € D.

The commutativity condition of the above definition is a special case of
composition-order independence [I8], the statement that the order in which sys-
tems are composed does not matter}.

One can naturally define serial and parallel composition operations on the
converter set X as follows. Serial composition: «f (or a o () is defined by

(aB)'R:=a'F'R

for all 4 and R. This composition operation is associative because function com-
position is: (aB)y = a(B7). Note that 1o = a1l = «. Parallel composition: «|f3
is defined by

(@|B)'(R|S) :== a'R[5'S

for all i and R, S € #3.

We also consider a pseudo—metri on the space @ of resources to measure the
similarity or dissimilarity of resources. As discussed in Section .5 the metric
is usually defined as the best distinguishing advantage for a certain class of
distinguishers, but it is useful to consider an abstract pseudo-metric. Two special
and natural properties of a pseudo-metric are captured in the following definition.
They state that the pseudo-metric is non-expanding in the sense that d(R,S)
does not increase if one puts a resource T in parallel to R and S or if one
connects a converter to the same interface of R and S.

Definition 2. A pseudo-metric d on @ is compatible with the cryptographic
algebra (@, X)) if
d(R|R',S|S") < d(R,S) + d(R',S) (3)

for all R, R, S, S’ € &, and
d(a'R,a'S) < d(R,S) (4)
foralli:eZ, R,S € ® and o € 2.

1 This is what one has in mind when drawing a figure of a system composed of sub-
systems connected by lines, as the drawing does not preserve information about the
order in which the various parts were drawn.

12 Note that (a]B)'T need not be explicitly defined if T is not of a the form 7' = R|S.

13 A pseudo-metric on a set S is a function d : S x S — R such that d(a,a) = 0,
d(a,b) = d(b,a), and d(a,c) < d(a,b) + d(b,c).

1 Note that (@) is equivalent to d(R|T, S|T) < d(R, S) and d(T|R,T|S) < d(R, S).

46 U. Maurer

4.5 Distinguisher-Based Pseudo-Metrics

A distinguisher D (for n-interface resources) can be defined as a system with
n+ 1 interfaces, where n interfaces connect to the interfaces of a resource R and
the other (outside) interface outputs a bit.

The typical pseudo-metrics in cryptography are distinguisher-based metrics,
i.e., the distance between two resource systems is the best advantage a distin-
guisher in a certain class D of distinguishers can achieve:

d(R,S) = AP(R, S) := sup AP(R, S),
DeD

where AP (R, S) is the advantage of D in distinguishing R and S.

The class D is, for example, either the set of all distinguishers (information-
theoretic security) or the set of all feasible distinguishers (computational secu-
rity). In the first case, one can distinguish between perfect security (the distance
is 0) or statistical security (the distance is very small).

A distinguisher D emulating (internally) a converter « € X at interface ¢
induces a new distinguisher, denoted Da?, defined by

AP (R, S) = AP (a'R, a'S).

Similarly, a distinguisher D emulating a resource 7' € @ in parallel induces a
new distinguisher, denoted D[-|T], defined by

APUITI(R, §) = AP (R|T, S|T).

DIT|] is defined analogously.

An important property of a distinguisher class D is that it is closed under the
emulation of a converter, in the sense that DX¢ C D, where DX = {Da!|D €
D,a € X}. In other words, a converter can be absorbed into a distinguisher
without extending the distinguisher class: For D € D and a € X, we also have
Do’ € D.

Similarly, D should also be closed under emulation of a resource, in the sense
that D[-|@] C D and D[®|] C D, where for example D[®|] = {D[T|] : D €
D,T € d}.

Lemma 1. For a distinguisher class D for resources in @, the pseudo-metric
AP is compatible with the cryptographic algebra (®,X) if

DY'CD, ©D[|®CD, and D[®|]CD.
Proof. Since Do’ C DX C D we have
AP(0iR,a'S) = AP (R, S) < AP(R, S),
which is ({@l). Similarly, since D[-|T] C D[-|®] C D we have
AP(R|T, S|T)=APUITH (R, S) < AP(R, S).

As mentioned, this inequality together with the dual inequality AP (T|R, T|S)

<
AP (R, S) implies (3)). O

Constructive Cryptography — A New Paradigm for Security Definitions 47

If one considers the class of feasible distinguishers and converters, then one
needs a feasibility notion for which the conditions of Lemma [are satisfied.
Since one can repeatedly absorb converters into the class, the class needs to be
defined asymptotically. For example, polynomial-time notions of feasibility, if
properly defined, have this composition property. In fact, this can, in retrospect,
be seen as a reason for working with polynomial-time notions in cryptography
and complexity theory. However, as we have illustrated (see also [I8]), an abstract
treatment is possible, is simpler, and implies the corresponding statements for
any composable feasibility notion, not just (a specific form of) polynomial-time.

In such an asymptotic definition of feasibility, the systems are actually asymp-
totic families of systems (indexed by some parameter) and the distance is a func-
tion of the parameter rather then a number. This view is compatible with the
abstract view presented above. One can define a negligibility notion, which is a
subset of the functions N — R, containing the constant 0-function, and closed
under multiplication with a feasible function. We do not expand further on these
lower-level issues and refer to [18].

5 Constructive Cryptography for the Alice-Bob-Eve
Setting

A standard cryptographic setup consists of two honest parties, Alice and Bob,
connected by a certain communication resource (e.g., an insecure channel) that
may be partially controlled by an adversary, Eve. This setup corresponds to
a special case of abstract cryptography [I8], where the interface set is Z =
{A, B, E}, where A and B are assumed to be honest and F is assumed to be
the adversary, and where one considers single resources rather than resource sets
(called specification in [I8]). The term constructive cryptography [16] here refers
to the application of abstract cryptography to defining classical cryptographic
primitives in a constructive way. We refer also to [22/19].

5.1 Defining “Secure Construction”

In the following, we consider resources with interface set Z = {A, B, E'}, where E
is the adversary interface. We will define what it means to “securely construct”
a resource S from a resource R using converters m; for A and ms for B. Recall
the discussion in Section [3

Since the party E is only introduced as a thought experiment to define secu-
rity, it can not be assumed to be present. A resource can be modeled as having
two modes, one mode when FE is not present and one mode when E is present
and makes potential use of its assumed power. There are several ways to model
such a two-mode resource. A natural one is to assume a special converter L
which, when attached to the F-interface, puts the resource into the “no adver-
sary” mode. In other words, the two modes of a resource R are 15 R and R
(where, in the latter, F has direct access to R).

48 U. Maurer

Concretely, the converter 1 can for example be thought of as shielding the
interface to the outside (i.e., to a distinguisher) and setting some kind of flag
at its inside interface which tells the resource to behave in a certain restricted
mode (corresponding to F not being present). A resource could for example be
(but does not have to be) modeled as taking as an initial input a “cheating bit”
c at interface E. If the bit is set to ¢ = 1, then the interface provides additional
functionality (like allowing F to read and/or modify a message) compared to the
case ¢ = 0, which corresponds to E not being present. This can be interpreted
as follows: An adversary E sets the bit to 1 in order to acquire additional power.
In this view, L is a converter which sets ¢ = 0 (at the inside interface) and
shields the outside interface. For example, an insecure channel can be modeled
by specifying that if ¢ = 0, then the message(s) input by A are delivered to B,
whereas if ¢ = 1, then E receives a message sent by A and can replace it by
an arbitrary message, which is delivered to B. Similarly, a secure channel with
deletion feature can be modeled by specifying that if ¢ = 0, then the message(s)
input by A are delivered to B, whereas if ¢ = 1, then F learns the message
length and can input a bit indicating whether the message should be delivered
to B or deleted.

The two modes must be considered separately, resulting in two conditions
which can be called availability (E not present) and security (E present).

Definition 3. Consider a cryptographic algebra (@, Y) for interface set Z =
{A,B,E} and a pseudo-metric d on @. For resources R and S we say that
protocol (71, ma) for w1, e € X' (securely) constructs S from R, within e, denoted

RO g
if the following two conditions (availability and security) are satisfied:
1. d(r{rB1PR, 1ES) <e
2. JoeX: d(r{rPR, oFS)<e.

In the one-time pad example (Section[3]), only the second condition (security) was
discussed. The first condition (availability) was not mentioned, but of course it
is necessary, and indeed satisfied for encryption (in particular the one-time pad)
as explained in Section Bl Otherwise a secure channel (with deletion feature for
E) could be constructed from a communication channel that never delivers a
message to B, which obviously would not make sense. Here we do not discuss
the first condition further.

5.2 Composability

A notion of “construction” must be composable to be useful. For example, if
a certain scheme constructs a secret key from an authenticated communication
channel (e.g. a key agreement protocol like a variant of the Diffie-Hellman pro-
tocol [9]), then composing such key generation with encryption (and another

Constructive Cryptography — A New Paradigm for Security Definitions 49

authenticated channel) should construct a secure channel. Similarly, since a se-
cure MAC constructs an authenticated channel from a secret key and an insecure
channel, and encryption constructs a secure channel from an authenticated chan-
nel and (another) secret key, the combination of MAC and encryption should con-
struct a secure channel from an insecure channel and two secret keys (see [22]).
This corresponds to the well-known encrypt-then-MAC paradigm. Note that the
order (encrypt-then-MAC) in which converters are applied to the message is re-
versed compared to the order in which transformations are applied. We refer
to [22] for a discussion of this and of the dual MAC-then-encrypt paradigm.
The above are two examples of serial composability. We also need parallel
composability, as described in the following theorem. Composability was defined
abstractly in [I8], and here we consider a special case.
Theorem 1. The construction notion R (r1,m30€) S as defined in Definition[3 is
generally composable if the pseudo-metric d is compatible with the cryptographic
algebra, 1.e., we have:

(w) w1, mhma,e+e’)

T = R - T

772»5 ")

7"2>5 ")

() R™™9g A g
(”) R (771,772»5) S A R/ (7"17
(isi) R (1’1’0) R.

1 Hﬂlvﬂé ‘|77275+5/)
——

s — RIR"™ S|s';

Conditions 2 and 3 together imply

(7T1,7T2»€) (m1]1,72]1,¢)
—_—

R S = R|T S|T,

which can be interpreted as contert-insensitivity in the sense that resources
(e.g. T) available in parallel (a context) does not invalidate a construction state-
ment. (The analogous statement with 7" on the left side also holds.) Note that,
for example, if @ and X are the sets of feasibly implementable resources and con-
verters, respectively, then the context-insensitivity does not hold with respect
to, say, a factoring oracle T (if factoring is computationally hard). But such a T
would not be in @.

Proof. The theorem makes six statements that can be proved independently:
For each of (i) to (iii) we have to prove conditions 1 and 2 of Definition Bl Here
we only prove one of these statements.

To prove condition 2 claimed by (4), assume that R (rim29) Sand S (mmae) T
are satisfied. By definition, this implies that

d(r*mB R, oF8) < ¢
for some o € X, as well as
d(miA TP S, o'PT) <
for some ¢’ € Y. We need to prove that there exists a simulator & such that

d((Tfllﬂ'l)A(TFéﬂ'Q)BR, &ET) < e+4¢. (5)

50 U. Maurer

We prove that this holds for & = oo¢’. Commutativity of converter application
at different interfaces implies

(mim)A(mhme) PR = nAndnlBrPR = nArnBriinBR.

Using (@), namely the compatibility of d, we obtain

d((mym)* (myma) PR, 7y 0P 8) = d(ni ny i niny R, miimy ot S)
< d(r78R, oFS)
<e.

Using () we also obtain
dcPrnA7iB S, oPo'BT) < d(xA7iPS, o'PT) < €.
Using o ZnAmBS = mAnBoP S (commutativity) and & = oo’ [we thus have
d(riAriBofs, 68T) < ¢,
The triangle inequality now yields (&)):

d((mym) (myma) P R, 6°T)
< d((x}m) M mhyme)BR, #A7BoP8) + d(niAniP S, 65T)
< e+¢. O

We note that this proof of composition holds in complete generality, indepen-
dently of how one defines technical aspects at lower layers. It would, for example,
even hold for systems connected via an analog communication mechanism, and
it holds for any composable notion of feasibility and any model of computation.

6 History and Related Work

The idea that cryptographic schemes can be described as transformations of
channel security properties, in a constructive sense, was first proposed in the
author’s lecture notes in the early 90’s and was published in [21]. This approach
to explaining cryptography, and protocols combining the use of several cryp-
tographic schemes, as channel transformations, also making trust assumptions
explicit, has been called the e-calculus (see for example [21122]23]). Constructive
cryptography as discussed here can be seen as defining the semantics of trans-
formations in the e-calculus, which was originally used with only an intuitive
semantics, mainly for didactic purposes. We do not elaborate further on the
e-calculus.

The so-called “ideal-world real-world” paradigm in cryptography emerged in
the context of secure multi-party computation which was (and is) understood

15 Note that the order of composing protocols and simulators is different. The reason
can be seen by drawing a figure.

Constructive Cryptography — A New Paradigm for Security Definitions 51

as the emulation of an (ideal) trusted party that computes a certain function or
specification, in a real world where only communication channels are available to
the parties. It was introduced formally in the frameworks of Canetti [4] (universal
composability, called UC) and of Backes, Pfitzmann and Waidner [24/2] (reactive
simulatability), based on the simulation paradigm.

In these frameworks, the basic idea is to consider an ideal system (often called
a functionality) capturing the goal one wants to securely realize, when given a
complete asynchronous network and possibly a set-up, using a protocol specifying
what the honest parties have to do. The definition of what it means to “securely
realize” involves an adversary who can corrupt certain parties, and captures
the idea that whatever the adversary can achieve in the real world he could also
achieve in the ideal world. This is made precise by means of a so-called simulator,
an ingenious concept introduced by Goldwasser, Micali, and Rackoff [10] to define
zero-knowledge protocols.

The frameworks [424[2] are technically quite specific and have several draw-
backs and limitations explained in the abstract cryptography framework [I§].
This framework gives a new, direct semantics to the “ideal-world real-world”
paradigm based on the concept of a resource isomorphism. In this theory, simu-
lators are only a proof technique, not part of the (security) definition. Actually,
in this framework there is not necessarily a central adversary, and simulators are
local (as opposed to monolithic).

Constructive cryptography was developed in parallel with abstract cryptog-
raphy [I8], which is joint work with Renato Renner, from which we borrow
substantially, including the use of the abstract theory of systems. Construc-
tive cryptography can be seen both as a fragment and as an application of
abstract cryptography. Basic ideas of constructive cryptography were also de-
scribed in [19].

In view of the “ideal-world real-world” paradigm, constructive cryptography
appears natural. Nevertheless, previous works on the security of cryptographic
schemes work with game-based definitions. We refer to [20] for a discussion of
the game-based approach in view of constructive cryptography. Some papers
have defined ideal functionalities for certain secure communication primitives.
Shoup [25] investigated functionalities for secure key exchange. Bellare et al. [3]
propose a modular approach to designing authentication and key exchange proto-
cols, but their approach mixes the game-based and the “ideal-world real-world”
approach. This is also true for [6]. Canetti and Krawczyk [7] propose ideal func-
tionalities in the UC-framework for key exchange and secure channels, but their
approach is quite technical and involves apparently unnecessary artifacts (e.g.
a so-called non-information oracle). These works, and many more, can now be
reexamined in the spirit of constructive cryptography.

Many works that define ideal functionalities to explain traditional cryptog-
raphy actually define functionalities for the cryptographic schemes rather than
the channels or keys. For example, Canetti [5] defines an ideal functionality for a
digital signature scheme. In constructive cryptography, this appears surprising,
as a digital signature scheme corresponds to a pair of converters, not a resource.

52 U. Maurer

This illustrates that constructive cryptography, while using ideas of previous
frameworks, is intrinsically different, in addition to being phrased at a more
abstract and general level.

There exists a vast literature on applying formal methods to the design and
the analysis of security protocols, and some of them deal with the composition
of protocols (e.g., see [RIITIT2I23I26] and the references therein). It is beyond
the scope of this extended abstract to give a detailed comparison between these
approaches and our approach, but we mention a few intrinsic differences.

The most important difference between works in the formal-methods commu-
nity and the cryptography community is in the kind of (mathematical) statement
one makes, not in the manner how these statements and the proofs are formal-
ized. We explain three major aspects in which the statements made in the two
approaches differ.

First, security is often defined as the absence of a certain class of attacks,
i.e., the inexistence of a trace in the class of considered attack traces. A ma-
jor question is whether the class of attack traces captures all relevant attacks.
More precisely, the question is what the absence of attack traces of a certain
type really means. For example, it should allow one to conclude the security
of a protocol that makes use of the given protocol as a subprotocol. We refer
to [II] for a discussion of work on protocol composition. In contrast, security in
constructive cryptography is defined by the specification of the ideal resource,
which characterizes completely what a certain entity (e.g. the adversary F) can
do. The notion of attack does not exist in this view, as everything relevant is said
by the resource specification. As a consequence, in constructive cryptography,
composition follows by a general composition theorem, that is, by design of the
kind of statement one makes.

Second, most works applying formal methods make use of a specific idealized
model of cryptography, typically the Dolev-Yao model, which abstracts away
many relevant aspects. For example, it does not capture that the message length
could leak. We refer to [I] for a more detailed discussion of what statements
derived for the Dolev-Yao model can actually mean.

Third, realistic statements in cryptography are generally of a probability-
theoretic nature, for example stating a bound on the probability that the ad-
versary can break a system or on the advantage in distinguishing two systems.
Most works on formal methods do not consider probabilities.

Work based on formal methods comes with the promise of being completely
rigorous. Of course, the precision of security statements is important, no matter
what kind of statement one makes, and formal methods of various types can
provide tools to achieve precision and proof automation. But rigor and precision
does not require a statement to be made in a particular formal language. We
point out that in this paper, only the statements of Sectionsd and [l are rigorous,
while Sections[2land B are intentionally stated in a less formal language. However,
discrete systems and their composition can be formalized in the language of
random systems [14] (see also [I7]). An interesting open question is how formal
methods can be applied to derive statements in constructive cryptography.

Constructive Cryptography — A New Paradigm for Security Definitions 53

On the other hand, since in our approach protocols can be decomposed into
elementary steps that are quite easy to prove, the security proof of a complex
protocol can actually be simple enough that it may not be necessary to apply
formal methods to capture a statement and its proof. We believe that preci-
sion and simplicity are not contradictory and that one should always strive for
simplicity, without sacrificing rigor.

7 Conclusions and Future Work

Based on [I8], we have considered the common cryptographic setting with two
honest parties Alice and Bob and an adversary Eve. We have proposed to model
cryptography in this setting as a constructive discipline in which resources (e.g.
channels) are constructed from resources (e.g. channels and keys), by a crypto-
graphic scheme that corresponds to a pair of converters (constituting the protocol
engines) for Alice and Bob.

While the constructive approach could in principle also be phrased in an ex-
isting framework such as the UC-framework [4]@ we present our theory at an
abstract level where only the relevant aspects need to be considered, result-
ing in simplicity and minimality of the arguments. For example, a feasibility
notion must, abstractly speaking, only be such that the feasible distinguisher
class is closed under emulation of feasible resources and converters. It is pos-
sible, but not necessary, to define feasibility as some form of polynomial-time.
Asymptotics, Turing machines, and other artifacts that are an integral part of
any conventional security definition in cryptography, are not necessary at this
abstract level, without loss of precision.

Our approach illustrates the importance of distinguishing between two system
types, converters and resources. Cryptographic schemes correspond to convert-
ers, not resources. For example, in our view, secrecy is an attribute of a channel,
not necessarily a property of an encryption scheme. The (often considered) se-
curity goal of achieving secrecy and authenticity means to construct a resource
(channel) with these two attributes, not to design an encryption scheme that
has two properties which can be called secrecy and integrity. This construction
can be divided into two composable steps (see [22]), in two alternative ways:
authenticate-then-encrypt and encrypt-the-authenticate.

Constructive cryptography makes precise the intuitive high-level understand-
ing of what cryptography and cryptographic protocols achieve (e.g. construct-
ing a secure channel), separating it from rather involved mathematical security
definitions and proofs. One can understand cryptography without understanding
security definitions. This separation of concerns suggests a new approach in teach-
ing where the high-level understanding of cryptography can be treated precisely,
without need for understanding cryptographic definitions (e.g. simulators), in a

16 Note that abstract cryptography [18] is more general and can not be phrased in the
UC-framework, as it not only considers a single (central) adversary but models more
generally parties with conflicting goals.

54 U. Maurer

general self-contained course on information security, while security definitions
and proofs can be treated in a specialized course on cryptography.

Many relevant topics could not be discussed in this paper and are deferred to
subsequent papers. Three of them are addressed below.

First, symmetric encryption is the only cryptographic primitive that was
actually explained in this paper as a constructive step. Other cryptographic
primitives such as message authentication codes, public-key encryption, key-
agreement protocols, and digital signature schemes, can also be described as
constructive steps, in the spirit described in [21I], leading to constructive secu-
rity definitions for these schemes.

Second, the previous game-based security definitions can be explained in the
context of constructive cryptography, giving them a (constructive) semantics.
Usually one of the known game-based definitions, if lifted to a more abstract level
where one does not necessarily have to talk about asymptotics, polynomial-time,
etc., is equivalent to a given constructive security definition. For the case of sym-
metric encryption, the relation between constructive and game-based definitions
is investigated in [20].

Third, we can now design a complete protocol constructing a secure com-
munication channel between two entities A and B from a secret key shared by
them and an insecure network (which is a resource involving many entities, in-
cluding A and B). In addition to the two constructive steps of applying message
authentication and encryption (see [22]), the roles of addresses (sender and re-
ceiver) and of sequence numbers and/or nonces must also be made explicit as
constructive steps. For a protocol designed in this manner, attacks (e.g. replay
attacks, reflection attacks, etc.) sometimes successful against conventionally de-
signed protocols, can be excluded by design and need therefore not even be
considered. In a certain sense, the constructive paradigm is type-safe, avoiding
unexpected effects when different protocol components are combined. Future
protocol suites for key management, secure communication, certification, etc.,
can be designed (and hence be proven secure) in the constructive cryptography
paradigm.

Acknowledgements. Constructive cryptography was developed in parallel
with abstract cryptography [I8]. The collaboration with Renato Renner was
essential. I have had numerous very helpful discussions and an on-going collab-
oration with Bjorn Tackmann who also provided continuous motivation. Many
current and former group members have provided useful feedback in the context
of the courses I taught at ETH, and with several colleagues I have had many
useful discussions. These people include Divesh Aggarwal, Kfir Barhum, David
Basin, Sandro Coretti, Grégory Demay, Martin Hirt, Dennis Hofheinz, Thomas
Holenstein, Christoph Lucas, Sebastian Mddersheim, Krzysztof Pietrzak, Bar-
tosz Przydatek, Dominik Raub, Pavel Raykov, Christoph Sprenger, Stefano Tes-
saro, Zuzana Trubini(-Beerliova), Luca Vigano, Stefan Wolf, and Vassilis Zikas.

Constructive Cryptography — A New Paradigm for Security Definitions 55

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Backes, M., Hofheinz, D., Unruh, D.: CoSP: A general framework for computa-
tional soundness proofs. In: ACM Conference on Computer and Communications
Security, pp. 66—78 (2009)

Backes, M., Pfitzmann, B., Waidner, M.: A general composition theorem for secure
reactive systems. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 336-354.
Springer, Heidelberg (2004)

Bellare, M., Canetti, R., Krawczyk, H.: A modular approach to the design and
analysis of authentication and key exchange protocols. In: Proc. 30th Annual Sym-
posium on the Theory of Computing (STOC), pp. 419-428. ACM, New York (1998)
Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS, pp. 136-145 (2001)

Canetti, R.: Universally composable signature, certification, and authentication. In:
17th IEEE Computer Security Foundations Workshop (CSF 2004), p. 219 (2004)
Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453-474. Springer, Heidelberg (2001)

Canetti, R., Krawczyk, H.: Universally composable notions of key exchange and
secure channels. In: Knudsen, L. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp.
337-351. Springer, Heidelberg (2002)

Cortier, V., Delaune, S.: Safely composing security protocols. Formal Methods in
System Design 34(1), 1-36 (2009)

Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory 22, 644-654 (1976)

Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. STAM J. Comput. 18(1), 186-208 (1989)

Gross, T., Modersheim, S.: Vertical protocol composition. In: 24th IEEE Computer
Security Foundations Workshop (CSF 2011) (to appear, 2011)

Guttman, J.D., Thayer, F.J.: Protocol Independence through Disjoint Encryption.
In: Computer Security Foundations Workshop, pp. 24-34 (2000)

Maurer, U.: Secret key agreement by public discussion from common information.
IEEE Transactions on Information Theory 39(3), 733-742 (1993)

Maurer, U.: Indistinguishability of random systems. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 110-132. Springer, Heidelberg (2002)
Maurer, U.: Abstraction in cryptography. In: Halevi, S. (ed.) CRYPTO 2009.
LNCS, vol. 5677, p. 465. Springer, Heidelberg (2009)

Maurer, U.: Constructive cryptography - a primer. In: Sion, R. (ed.) FC 2010.
LNCS, vol. 6052, p. 1. Springer, Heidelberg (2010)

Maurer, U., Pietrzak, K., Renner, R.: Indistinguishability amplification. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 130-149. Springer, Heidel-
berg (2007)

Maurer, U., Renner, R.: Abstract cryptography. In: The Second Symposium in
Innovations in Computer Science, ICS 2011, pp. 1-21. Tsinghua University Press,
Beijing (January 2011)

Maurer, U., Renner, R., Wolf, S.: Unbreakable keys from random noise. In: Tuyls,
P., et al. (eds.) Security with Noisy Data, pp. 21-44. Springer, Heidelberg (2007)
Maurer, U., Riiedlinger, A., Tackmann, B.: Confidentiality and integrity revisited
(manuscript in preparation)

56

21.

22.

23.

24.

25.

26.

U. Maurer

Maurer, U., Schmid, P.E.: A calculus for security bootstrapping in distributed
systems. Journal of Computer Security 4(1), 55-80 (1996); appeared also In: Goll-
mann, D. (ed.) ESORICS 1994. LNCS, vol. 875, pp. 175-192. Springer, Heidelberg
(1994)

Maurer, U., Tackmann, B.: On the soundness of authenticate-then-encrypt. In:
ACM Conference on Computer and Communications Security, pp. 505-515 (2010)
Modersheim, S., Vigano, L.: Secure pseudonymous channels. In: Backes, M., Ning,
P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 337-354. Springer, Heidelberg
(2009)

Pfitzmann, B., Waidner, M.: Composition and integrity preservation of secure re-
active systems. In: ACM Conference on Computer and Communications Security,
pp. 245-254 (2000)

Shoup, V.: On formal models for secure key exchange. IBM Research report, no.
RZ 3120 (April 1999)

Sprenger, C., Basin, D.A.: Developing security protocols by refinement. In: ACM
Conference on Computer and Communications Security, pp. 361-374 (2010)

	Constructive Cryptography – A New Paradigm for Security Definitions and Proofs
	Introduction and Motivation
	Modularity in Constructive Disciplines
	Traditional Security Definitions in Cryptography
	Constructive Cryptography
	Outline of the Paper

	Motivating Example: The One-Time Pad
	The Traditional Security Proof for the One-Time Pad
	Two ``Security Problems'' of the One-Time Pad
	Computational Security: Additive Stream Ciphers

	Explaining the Security of the One-Time Pad in Constructive Cryptography
	The Basic Approach
	The One-Time Pad Example
	The Simulator
	Computational Security
	Distinguishers and Computational Indistinguishability
	One-Time Pad Encryption over an Insecure Channel

	An Abstract Theory of Systems
	Abstraction in Cryptography
	Levels of Abstraction: Bottom-Up vs. Top-Down
	Resources and Converters
	Cryptographic Algebras
	Distinguisher-Based Pseudo-Metrics

	Constructive Cryptography for the Alice-Bob-Eve Setting
	Defining ``Secure Construction''
	Composability

	History and Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

