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hAbstra
t. Known se
ure multi-party 
omputation proto
ols are quite 
omplex, involving non-trivial mathemati
al stru
tures and sub-proto
ols. The purpose of this paper is to present a verysimple approa
h to se
ure multi-party 
omputation with straight-forward se
urity proofs. Thisapproa
h naturally yields proto
ols se
ure for mixed (a
tive and passive) 
orruption and general(as opposed to threshold) adversary stru
tures, 
on�rming the previously proved tight bounds ina simpler framework. Due to their simpli
ity, the des
ribed proto
ols are well-suited for dida
ti
purposes, whi
h is a main goal of this paper.1 Introdu
tionWe propose a new, very simple approa
h to multi-party 
omputation (MPC) se
ure againsta
tive 
heating and, more generally, mixed 
orruption s
enarios. This work is motivated bya proto
ol of Beaver and Wool [BW98℄ whi
h a
hieves se
urity only for a passive adversarysetting, without the possibility to enhan
e it to a
tive adversary settings.In this se
tion we review the de�nition of se
ure MPC, dis
uss various models for spe
ifyingthe adversary's 
apabilities, and review di�erent types of se
urity and 
ommuni
ation models.A reader familiar with these topi
s 
an skip Se
tion 1 and mu
h of Se
tion 4, where previousresults are reviewed. After dis
ussing se
ret-sharing and other preliminaries in Se
tion 2, ourmodel and results are stated in Se
tion 3. The main parts of the paper are Se
tion 5, where thepassively se
ure proto
ol and the underlying se
ret-sharing s
heme is presented, and Se
tion 6whi
h presents the proto
ol se
ure in the general 
orruption model.1.1 Se
ure Multi-party ComputationSe
ure fun
tion evaluation, as introdu
ed by Yao [Yao82℄, allows a set P = fp1; : : : ; png of nplayers to 
ompute an arbitrary agreed fun
tion of their private inputs x1; : : : ; xn, respe
tively,even if an adversary may 
orrupt and 
ontrol some of the players in various ways, to bedis
ussed below. More generally, se
ure MPC allows the players to perform an arbitrary on-going 
omputation during whi
h new inputs 
an be provided and players 
an intera
t withan environment. This 
orresponds to the simulation of a trusted party [GMW87,HM97℄.Se
urity in MPC means that the players' inputs remain se
ret (ex
ept for what is revealedby the intended results of the 
omputation) and that the results of the 
omputation are guar-anteed to be 
orre
t. More pre
isely, se
urity is de�ned relative to an ideal-world spe
i�
ationinvolving a trusted party: anything the adversary 
an a
hieve in the real world (where theproto
ol is exe
uted) he 
an also a
hieve in the ideal world [Can00,PSW00℄.? The results of this paper were �rst presented at the Cryptography Workshop in Luminy in Sept. 1999, andlater appeared in [Mau02℄.?? Supported in part by the Swiss National S
ien
e Foundation.



Many distributed 
ryptographi
 proto
ols 
an be seen as spe
ial 
ases of se
ure MPC.For spe
i�
 tasks like 
olle
tive 
ontra
t signing, on-line au
tions, or voting, there exist veryeÆ
ient proto
ols. Throughout this paper we 
onsider general se
ure MPC proto
ols, wheregeneral means that any given spe
i�
ation involving a trusted party 
an be 
omputed se-
urely without the trusted party. In other words, we 
onsider 
ompilers that take as input aspe
i�
ation and generate a se
ure proto
ol for realizing the spe
i�
ation.Most proto
ols for general se
ure MPC work roughly as follows: The fun
tion (or spe
i-�
ation) to be 
omputed is spe
i�ed by a 
ir
uit over some �nite �eld 
onsisting of additionand multipli
ation gates. This is no essential restri
tion. Ea
h input value and ea
h interme-diate result is shared appropriately among the players so that no 
heating player set 
an learnanything. The 
ir
uit is evaluated gate by gate, performing a sub-proto
ol for ea
h gate. Theresult(s) of the 
omputation are jointly re
onstru
ted.General MPC proto
ols tend to be less eÆ
ient than spe
ial-purpose proto
ols, for tworeasons. First, the 
ir
uit 
an generally be quite large. Se
ond, the multipli
ation sub-proto
olis rather ineÆ
ient as it requires substantial intera
tion (but see [HM01℄ for eÆ
ien
y improve-ments for general MPC proto
ols).1.2 Spe
ifying the Adversary's CapabilitiesThe potential misbehavior of some of the players is usually modeled by 
onsidering a 
entraladversary with an overall 
heating strategy who 
an 
orrupt some of the players. Two di�erentnotions of 
orruption, passive and a
tive 
orruption, are usually 
onsidered. Passive 
orruptionmeans that the adversary learns the entire internal information of the 
orrupted player, butthe player 
ontinues to perform the proto
ol 
orre
tly. Su
h players are sometimes also 
alledsemi-honest. A
tive 
orruption means that the adversary 
an take full 
ontrol of the 
orruptedplayer and 
an make him deviate arbitrarily from the proto
ol. If no a
tive 
orruptions are
onsidered, then the only se
urity issue is the se
re
y of the players' inputs.A non-adaptive or stati
 adversary must de
ide before the exe
ution of the proto
ol whi
hplayers he 
orrupts, while an adaptive adversary 
an 
orrupt new players during the proto
ol,as long as the total set of 
orrupted players is still admissible. A mobile adversary 
an releasesome of the 
orrupted players, thereby regaining 
orruption power. We 
onsider adaptive, butnot mobile adversaries.In many papers, the adversary's 
orruption 
apability is spe
i�ed by a threshold t, i.e.,the adversary is assumed to be able to 
orrupt up to t (but not more) players. More generally,the adversary's 
orruption 
apability 
ould be spe
i�ed by a so-
alled adversary stru
ture,i.e., a set of potentially 
orruptible subsets of players. Even more generally, the 
orruption
apability 
an be spe
i�ed by a set of 
orruption s
enarios, one of whi
h the adversary 
an
hoose (se
retly). For instan
e, ea
h s
enario 
an spe
ify a set of players that 
an be passively
orrupted and a subset of them that 
an even be a
tively 
orrupted. In Se
tion 4 we des
ribethese models and the results known for them.1.3 Types of Se
urity and Communi
ation ModelsOne distinguishes between two types of se
urity. Information-theoreti
 se
urity means thateven an adversary with unrestri
ted 
omputing power 
annot 
heat or violate se
re
y, while
ryptographi
 se
urity relies on an assumed restri
tion on the adversary's 
omputing powerand on 
ertain unproven assumptions about the hardness of some 
omputational problem,2



like fa
toring large integers. The terms \perfe
t" and \un
onditional" se
urity are often usedfor information-theoreti
 se
urity with zero and negligible error probability, respe
tively. Inthis paper we 
onsider perfe
t information-theoreti
 se
urity, i.e., the probability of su

essful
heating is zero and the information leaked to the adversary is also zero.Several 
ommuni
ation models are 
onsidered in the literature. In the standard syn-
hronous model (for information-theoreti
 se
urity), any pair of players 
an 
ommuni
ateover a bilateral se
ure 
hannel. Some papers [RB89,Bea91,CDD+99℄ assume the availabilityof a broad
ast 
hannel whi
h guarantees the 
onsisten
y of the re
eived values if a sendersends a value to several players, but in pra
ti
e a broad
ast 
hannel must be simulated by a(quite ineÆ
ient) proto
ol among the players (e.g. [LSP82,BGP89,FM97℄). In asyn
hronous
ommuni
ation models, no guarantees about the arrival times of sent messages are assumed.Here we do not 
onsider asyn
hronous 
ommuni
ation models, although our te
hniques mayalso be applied in that 
ontext.2 Preliminaries2.1 Stru
turesDe�nition 1. Consider a �nite set P . We 
all a subset � of the power set 2P of P a (mono-tone) stru
ture for P if � is 
losed under taking subsets, i.e., if S 2 � and S0 � S implyS0 2 �. We de�ne a (
ommutative and asso
iative) operation on stru
tures, denoted t:�1 t�2 is the stru
ture 
onsisting of all unions of one element of �1 and one element of �2,i.e., �1 t�2 := fS1 [ S2 : S1 2 �1; S2 2 �2g:Stru
tures will be des
ribed by listing only the maximal sets, their subsets being understood asbelonging to the stru
ture. The size j�j of a stru
ture � is the number of maximal elements.Example 1. The most 
ommon example of a stru
ture is the threshold stru
ture � = fS :S � P; jSj � tg for some t. Note that the des
ription that lists the maximal sets has size �nt�whi
h is exponential in n if t is a �xed fra
tion of n.2.2 Se
ret-Sharing and Se
re
y Stru
turesA se
ret-sharing s
heme allows a dealer to share a value among a set P = fp1; : : : ; png ofplayers su
h that only 
ertain quali�ed subsets of players 
an re
onstru
t the se
ret, i.e.,are quali�ed, while 
ertain other subsets of players obtain no information about the se
ret,i.e., are ignorant (a term not used in the previous literature). Natural se
ret-sharing s
hemes(and also those of this paper) have the property that every subset of P is either quali�ed orignorant, and this is why ignorant sets are usually 
alled non-quali�ed. However, for reasonsexplained below, we 
hoose the new terminology.The se
re
y 
ondition is a
tually stronger: Even if any ignorant player set holds any kindof partial information about the shared value, they must not obtain any additional informa-tion about the shared value. Stated di�erently, what an ignorant set re
eives is statisti
allyindependent of the information they hold and the shared value. Equivalently, su
h an ignorantset 
an simulate their shares with the same probability distribution as that o

urring in thea
tual proto
ol. 3



A se
ret-sharing s
heme is usually spe
i�ed by the so-
alled a

ess stru
ture1 � , the 
ol-le
tion of quali�ed player subsets. In our 
ontext, it is more natural to 
hara
terize a se
ret-sharing s
heme by the se
re
y stru
ture � 
onsisting of the 
olle
tion of ignorant playersubsets. As mentioned above, the se
re
y stru
ture is typi
ally the 
omplement of the a

essstru
ture, i.e., � = 2P n� .Why is it more natural to 
onsider the se
re
y stru
ture instead of the a

ess stru
ture, andwhy is the term ignorant more natural than non-quali�ed? When the potential misbehaviorof players is 
onsidered, one leaves the realm of 
lassi
al se
ret-sharing. For instan
e, players
ould misbehave by not sending their share when supposed to, or by even sending a falseshare. In su
h a 
ase, a quali�ed set 
an generally not re
onstru
t the se
ret, i.e, the notionof being quali�ed loses its normal meaning. In 
ontrast, the notion of se
re
y is not 
hangedby misbehaving players. If a se
ret is shared a

ording to a 
ertain s
heme, then the se
re
ystru
ture remains un
hanged, even if players misbehave (ex
ept, of 
ourse, restri
ting these
re
y stru
ture to sets 
ontaining the 
orrupted players).2.3 Adversary Stru
tures and Se
urity Against A
tive CheatingAs mentioned earlier, as a generalization of spe
ifying the adversary's 
apabilities by a 
or-ruption type and a threshold t, one 
an des
ribe it by a 
orruption type and an adversarystru
ture � meaning that the adversary 
an 
hoose one of the sets in � and 
orrupt theseplayers [HM97℄. For passive 
orruption we 
an also 
all this stru
ture the se
re
y stru
turerather than the adversary stru
ture.When players 
an 
heat a
tively, then even the 
onsisten
y of the value sent by a playerto several other players is not guaranteed. In other words, one must use a so-
alled broad
astproto
ol (e.g. [LSP82,BGP89,FM97℄) to assure that all honest players re
eive the same value,and that if the sender is honest, then the re
eived value is that a
tually sent by the sender.A 
lassi
al result [LSP82℄ in the theory of distributed systems is that su
h a proto
ol existsif and only if less than a third of the players 
heat.More generally, a 
heating dealer in a se
ret-sharing s
heme 
ould distribute in
onsistentshares, resulting in a situation where no value 
an be re
onstru
ted. The 
onsisten
y of theshared values must again be guaranteed by a spe
ial proto
ol, 
alled veri�able se
ret-sharing(VSS).3 Models and Results of this PaperWe present a very simple approa
h to se
ure multi-party 
omputation. Unlike previous ap-proa
hes, it is based on essentially no mathemati
al stru
ture (like bivariate polynomials orzero-knowledge proofs), and it naturally yields proto
ols se
ure against general mixed adver-sary stru
tures.The main fo
us of the paper is on simpli
ity of the proto
ols, whi
h makes them suitablefor dida
ti
 purposes. However, it is quite possible that the proto
ol ideas have appli
ationsin other 
ontexts and that for 
ertain appli
ations, espe
ially when involving only a smallnumber of players, the proto
ols are the most eÆ
ient known.1 But note that, a

ording to our terminology, it is a
tually an anti-stru
ture, where we 
all � a (monotone)anti-stru
ture if it is 
losed under taking supersets, i.e., if the 
omplement �
 := fS 2 2P : S 62 �g is astru
ture. 4



The adversary is spe
i�ed by a se
re
y stru
ture � and an adversary stru
ture � � �,with the following meaning.De�nition 2. Consider a player set P and two stru
tures � � 2P and � � �. A (�;�)-adversary is an adversary who 
an (adaptively) 
orrupt some players passively and someplayers a
tively, as long as the set A of a
tively 
orrupted players and the set B of passively
orrupted players satisfy both A 2 � and (A [B) 2 �:In other words, a 
heating player set A 
annot violate the 
orre
tness, and all 
orruptedplayers together (the set A [ B) obtain no information not spe
i�ed by the proto
ol. Thismodel is the same as that of [FM02℄ where only veri�able se
ret-sharing is 
onsidered.The following theorems give in
reasingly strong 
onditions for broad
ast, for veri�ablese
ret-sharing, and for se
ure MPC to be possible. The eÆ
ien
y of the proto
ols is polynomialin n, j�j, and j�j, but this fa
t is not stated expli
itly.Theorem 1. The simulation of a broad
ast 
hannel se
ure against a (�;�)-adversary ispossible if and only if P 62 � t� t�.Theorem 2. Perfe
t veri�able se
ret-sharing se
ure against a (�;�)-adversary is possible ifand only if P 62 � t� t�.Theorem 3. General perfe
t information-theoreti
ally se
ure MPC se
ure against a (�;�)-adversary is possible if and only if P 62 � t� t�.Theorem 1 follows from a more general result in [HM97℄ and the eÆ
ient broad
ast proto-
ol given in [FM98℄. This theorem is used, but not 
onsidered further in this paper. Theorem 3is equivalent to Theorem 1 of [FHM99℄, as will be explained in Se
tion 4.4.As stated in these theorems, all these results are known to be tight in the sense thatlarger adversary stru
tures 
annot be tolerated. We do not dis
uss su
h impossibility proofshere. They work by proving the impossibility for a small player set (n = 2 or n = 3) andshowing that any proto
ol violating the stated bounds 
ould be transformed into an impossibleproto
ol for a small player set. For example, broad
ast among three players with one 
heaters
an be proved to be impossible. This implies the ne
essity of the P 62 � t� t� 
ondition.Similarly, the se
ure 
omputation of the OR fun
tion of two input bits held by two players(n = 2) is impossible, even if both players are only passive 
heaters. This implies the ne
essityof the 
ondition P 62 � t�.4 Review of Results on General Se
ure Multi-Party ComputationIn this se
tion we review the previous results on ne
essary and suÆ
ient 
onditions for generalse
ure MPC to be possible, for various models and degrees of generality.4.1 Classi
al Threshold ResultsIn the original papers solving the general se
ure MPC problem, the adversary is spe
i�edby a single 
orruption type (a
tive or passive) and a threshold t on the tolerated num-ber of 
orrupted players. Goldrei
h, Mi
ali, and Wigderson [GMW87℄ proved that, based5



setting adversary type 
ondition referen
e
ryptographi
 passive t < n [GMW87℄
ryptographi
 a
tive t < n=2 [GMW87℄information-theoreti
 passive t < n=2 [BGW88℄,[CCD88℄information-theoreti
 a
tive t < n=3 [BGW88℄,[CCD88℄i.t., with broad
ast a
tive t < n=2 [RB89,Bea91℄Table 1. Ne
essary and suÆ
ient threshold 
onditions for general se
ure MPC to be possible.on 
ryptographi
 intra
tability assumptions, general se
ure MPC is possible if and only ift < n=2 players are a
tively 
orrupted. The threshold for passive 
orruption is t < n. In theinformation-theoreti
 model, where bilateral se
ure 
hannels between every pair of playersare assumed, Ben-Or, Goldwasser, and Wigderson [BGW88℄ proved that perfe
t se
urity ispossible if and only if t < n=3 for a
tive 
orruption, and if and only if t < n=2 for passive
orruption.2 In a model with a physi
al broad
ast 
hannel, whi
h helps only in 
ase of a
tive
orruption, un
onditional se
urity is a
hievable if and only if t < n=2 [RB89,Bea91,CDD+99℄.These 
lassi
al results are summarized in Table 1.4.2 Mixed Adversary ModelsThe exa
t threshold 
onditions for mixed models under whi
h se
ure MPC is possible wereproved in [FHM98℄, in
luding fail-
orruption as a third 
orruption type. Here we state theresults without 
onsidering fail-
orruption. Let ta and tp be the number of players that 
anbe a
tively and passively 
orrupted, respe
tively. Perfe
t se
urity is a
hievable if and onlyif 3ta + 2tp < n, whether or not a broad
ast 
hannel is available. This is a spe
ial 
ase ofTheorem 3.34.3 General Adversary Stru
turesThe threshold adversary models were extended to a non-threshold setting in [HM97℄ (seealso [HM00℄), for either passive or a
tive, but not for mixed 
orruption. The adversary's
apability is 
hara
terized by a stru
ture, 
alled se
re
y stru
ture � for passive 
orruptionand adversary stru
ture� for a
tive 
orruption. Again, generalizing the model leads to stri
tlystronger results 
ompared to those a
hievable in the threshold model. For instan
e, in the 
aseof 6 players and a
tive 
orruption, with P = fA;B;C;D;E; Fg, one 
an obtain a proto
olse
ure against the stru
ture with � = ffAg, fB;Dg, fB;E; Fg, fC;Eg, fC;Fg, fD;E; Fgg,whereas in the threshold model one 
an tolerate only a single a
tive 
heater, i.e., the adversarystru
ture � = ffAg, fBg, fCg, fDg, fEg, fFgg.Let Q2(�) be the 
ondition on a stru
ture � that no two sets in � 
over the full playerset P , i.e., Q2(�)() P 62 � t�:2 The same result was obtained independently by Chaum, Cr�epeau, and Damg�ard [CCD88℄, but with anexponentially small error probability.3 Exponentially small error probability with a broad
ast 
hannel is a
hievable if and only if 2ta + 2tp < n.Without broad
ast, the additional 
ondition 3ta < n is ne
essary and suÆ
ient. This stri
tly improves onnon-mixed threshold results: In addition to tolerating ta < n=3 a
tively 
orrupted players, se
re
y 
an beguaranteed against every minority, thus tolerating additional tp � n=6 passively 
orrupted players.6



Similarly, let Q3(�) be the 
ondition that no three sets in � 
over the full player set P , i.e.,Q3(�)() P 62 � t� t�:The main results of [HM97℄ state that for passive 
orruption, Q2(�) is the ne
essary andsuÆ
ient 
ondition for general se
ure MPC to be possible. For a
tive 
orruption, the 
onditionis Q3(�), and if a broad
ast 
hannel is available, then the 
ondition is Q2(�). The �rst tworesults are again spe
ial 
ases of Theorem 3. These results were a
hieved by a re
ursive playersubstitution te
hnique, yielding quite 
omplex (but polynomial in the size of �) proto
ols.The proto
ols of this paper are mu
h simpler, more intuitive, and 
onsiderably more eÆ
ient.4.4 Mixed General Adversary Stru
turesFinally, general mixed adversary spe
i�
ations were 
onsidered in [FHM99℄ and the exa
t
onditions for general se
ure MPC to be possible were given for a general mixed passive/a
tivemodel. For ea
h admissible 
hoi
e, the adversary 
an a
tively 
orrupt a subset D � P of theplayers, and, additionally, 
an passively 
orrupt another subset E � P of the players. Theadversary spe
i�
ation 	 is hen
e a set of pairs (D;E), i.e.,	 = f(D1; E1); : : : ; (Dk; Ek)g;for some k, and the adversary may sele
t one arbitrary pair (Di; Ei) from 	 and 
orrupt theplayers in Di a
tively and, additionally, 
orrupt the players in Ei passively. The adversary's
hoi
e is not known before and typi
ally also not after exe
ution of the proto
ol. It was provedin [FHM99℄ that, with or without broad
ast 
hannels, perfe
t general MPC is a
hievable ifand only if the adversary spe
i�
ation 	 satis�es the following 
ondition Q(3,2)(	):Q(3,2)(	) , 8(D1; E1); (D2; E2); (D3; E3) 2 	 : D1 [E1 [D2 [E2 [D3 6= P :At �rst sight, these results look more general than Theorem 3 sin
e the adversary spe
i�
a-tion 
onsists of a general set of pairs rather than two stru
tures. However, they are equivalent,whi
h 
an be seen as follows. For an adversary spe
i�
ation 	 = f(D1; E1); : : : ; (Dk; Ek)g we
an de�ne naturally an asso
iated se
re
y stru
ture�(	) = fD [E : (D;E) 2 	gand an asso
iated adversary stru
ture�(	) = fD : (D;E) 2 	 for some Eg:Now we 
an de�ne the 
losure 	 of 	 as	 := f(D;E) : D 2 �(	) ^ (D [E) 2 �(	)g:It is not diÆ
ult to show that Q(3,2)(	) , Q(3,2)(	). Therefore se
ure MPC is possible fora given adversary spe
i�
ation 	 if and only if it is possible for 	 . In other words, one 
anenlarge any spe
i�
ation 	 to its 
losure 	 for free.4 This justi�es the 
onsideration of (�;�)-adversaries as dis
ussed above. To see this, take any (Di; Ei) and (Dj ; Ej), add the new pair(Di; (Dj [Ej)nDi) to 	 , and 
he
k that the 
ondition Q(3,2)(	) is still satis�ed.4 However, there may exist proto
ols se
ure for 	 but not for 	 . But in su
h a 
ase there would exist a di�erentproto
ol se
ure for 	 , with possibly (mu
h) higher 
omplexity.7



5 Se
ure MPC: The Passive Case5.1 The Format of the Proto
olThe 
omputation to be performed is spe
i�ed by a 
ir
uit over some �nite �eld 
onsisting ofaddition and multipli
ation gates, whose inputs are the players inputs into the 
omputation.5Ea
h input value and ea
h intermediate result is shared among the players, a

ording to these
re
y stru
ture, using a linear se
ret-sharing s
heme.Due to the linearity, se
ure addition and more generally 
omputing any linear fun
tionof shared values is trivial: every player lo
ally 
omputes the linear fun
tion of his shares andkeeps the result as a share of the new value. Se
re
y is trivially guaranteed be
ause this stepinvolves no 
ommuni
ation. Corre
tness is also trivially guaranteed be
ause due to the la
k of
ommuni
ation there is no 
han
e for a 
orrupted player to 
heat. Hen
e the only remainingproblem is the se
ure multipli
ation of shared values.5.2 The Se
ret-Sharing S
hemeAs a building blo
k, we need a k-out-of-k se
ret-sharing s
heme, i.e., one for k players su
hthat only the 
omplete set of players (but no proper subset) 
an re
onstru
t the se
ret. Su
ha s
heme (a
tually linear) for any k and any domain D of the se
ret s is obtained by splittings into a random sum.6k-out-of-k se
ret-sharing:Sele
t k � 1 shares s1; : : : ; sk�1 at random from D and let sk := s�Pk�1i=1 si.The ith share is si.Lemma 1. The above s
heme is a k-out-of-k se
ret-sharing s
heme.Proof. All shares together obviously determine the se
ret, hen
e the set of all k players isquali�ed. Any set of k � 1 players (with, say, pi missing) is ignorant be
ause these k � 1shares (s1; : : : ; si�1; si+1; : : : ; sk) are independent and uniformly random, independently of s.This follows from the fa
t that for any �xed s and any �xed (missing) share si, the mappingfrom (s1; : : : ; sk�1) to (s1; : : : ; si�1; si+1; : : : ; sk) is one-to-one. The shares 
an be simulatedby generating a set of uniform and independent shares. �The most natural approa
h to designing a se
ret-sharing s
heme for a given a

ess stru
-ture � (or the se
re
y stru
ture � = 2P n� ) is due to Itoh et al. [ISN87℄ who introdu
edgeneral a

ess stru
tures in se
ret-sharing. In this s
heme, the se
ret is shared, independently,to ea
h minimal quali�ed player set S 2 � , with an jSj-out-of-jSj se
ret-sharing s
heme. Thistrivially guarantees that any quali�ed set 
an re
onstru
t the se
ret and that no ignorant setS 62 � gets any information about the se
ret.In this paper we use a di�erent, in a sense dual approa
h. Let k be the number of maximalsets in �, i.e. � = fT1; : : : ; Tkg,7 and let Ti := P nTi be the 
omplement of the set Ti.5 More generally, the 
ir
uit 
ould 
ontain any gates for linear fun
tions, plus (non-linear) multipli
ation gates.6 It is trivial to impose an addition operation on D whi
h makes it into an additive group, for instan
e thegroup isomorphi
 to the 
y
li
 group ZjDj.7 Re
all that a stru
ture is spe
i�ed by the maximal sets.8



Se
ret-sharing for se
re
y stru
ture � = fT1; : : : ; Tkg:1. Split the se
ret using the k-out-of-k se
ret-sharing s
heme, resulting in sharess1; : : : ; sk.2. Send si (se
retly) to ea
h player in Ti.(The share of player pm is hen
e the set fsi : m 2 Tig.)Lemma 2. The above s
heme is a se
ret-sharing s
heme for se
re
y stru
ture � = fT1; : : : ; Tkg.Proof. The s
heme is trivially �-se
ure be
ause for any set T 2 �, at least one share (namelythat given to the 
omplement of a maximal set of � 
ontaining T ) is missing. Hen
e, a

ordingto Lemma 1, the set T has no information about the se
ret. Moreover, for any ignorant setS, the obtained information 
onsists of some (but not all) shares si and k-out-of-k sharingsthereof. This information is independent of anything else and 
ould a
tually be simulated byS. Re
onstru
tion by any quali�ed set in � = 2P n� is simple. Any set S 2 � 
ontains, forevery maximal set Ti 2 �, a player not in Ti. This player knows si, and hen
e the players inS know all the shares si and are thus quali�ed. �5.3 The Multipli
ation Proto
olAs mentioned earlier, the 
ondition Q2(�), whi
h is equivalent toP 62 � t�; (1)is ne
essary and suÆ
ient for information-theoreti
ally se
ure MPC for passive 
orruption.Condition (1) means that for any two maximal sets T1; T2 2 � we have T1 [ T2 6= P , whi
his equivalent to the 
ondition that for any T1; T2 2 �, their 
omplements interse
t, i.e.,(P nT1) \ (P nT2) 6= fg. A set of sets, no two of whi
h are disjoint, is also 
alled a quorumsystem. Condition (1) is thus equivalent to the statement that the sets P nTi for i = 1; : : : ; kform a quorum system.The produ
t of two shared values s and t 
an be 
omputed asst =  kXi=1 si! �0� kXj=1 tj1A = kXi=1 kXj=1 sitj; (2)i.e., as the sum of k2 share produ
ts. Therefore we 
an use the following observation by Beaverand Wool [BW98℄, used originally for a di�erent se
ret-sharing s
heme (see Se
tion 5.4). Forevery term sitj in the above sum, there exists at least one player who knows both si and tj .This player (or one of them) 
an 
ompute the produ
t sitj and share it among the players(using the basi
 se
ret-sharing s
heme). Sin
e st is a linear 
ombination of these sharedvalues sitj, the sharing of st 
an be 
omputed non-intera
tively. An eÆ
ien
y improvementis obtained if ea
h player �rst adds all terms assigned to him and then shares the sum. Notethat terms of the form siti (i.e., i = j) 
an be assigned to any player knowing the ith share.In summary, we have: 9



Multipli
ation proto
ol (passive):Preparation (on
e and for all): Partition the set f(i; j) : 1 � i; j � ng into n sets U1; : : : ; Unsu
h that for all (i; j) 2 Um we have m 2 Ti \ Tj .8Pre
ondition: Two values s =Pki=1 si and t =Pki=1 ti are shared.Post
ondition: st is shared independently.1. Ea
h player pm (for 1 � m � n) 
omputes vm :=P(i;j)2Um sitj and shares vm amongall players (using independent randomness).2. Ea
h player (lo
ally) adds all n shares re
eived in step 1.
Lemma 3. In any given 
ontext where s and t are shared, the above proto
ol results in theprodu
t st being shared, and nothing else. More pre
isely, the new information obtained byany ignorant set is independent of any information held (by this set) prior to the exe
utionof the proto
ol.Proof. The 
orre
tness of the new sharing of st follows from (2). A

ording to Lemma 2, forany ignorant set, every sharing (by some player) of a value results in independent information.Hen
e this is true for the entire proto
ol. �5.4 Comparison with the Beaver-Wool S
hemeThe se
ret-sharing s
heme of [BW98℄ works as follows: The se
ret is split by a sum sharinginto l shares, where l = j� j is the number of minimal quali�ed sets. Then ea
h share is givento the players in one of the minimal quali�ed sets. While this sharing looks similar to ours (inour s
heme we 
onsider the maximal non-quali�ed sets rather than the minimal quali�ed sets)it di�ers in a 
ru
ial way: Condition (1) is required not only for the multipli
ation proto
ol,but even for the mere re
onstru
tion of shared se
rets. A quali�ed set 
an re
onstru
t these
ret be
ause it overlaps with any other minimal quali�ed set and hen
e knows all theshares, i.e., one must start with an a

ess stru
ture (and 
orresponding se
re
y stru
ture)whi
h satis�es (1) in the �rst pla
e. This is the reason why the s
heme of [BW98℄ 
annot beenhan
ed to tolerate a
tive 
orruption.6 Se
ure MPC for a General (�;�)-AdversaryThe basi
 stru
ture of the proto
ol is as des
ribed in Se
tion 5.1. Two 
hanges are requiredto tolerate also a
tive 
orruption: The se
ret-sharing s
heme and the multipli
ation proto
olmust be made robust against 
heating by a set of players in � (in
luding possibly the dealerin 
ase of the se
ret-sharing s
heme). These two proto
ols are des
ribed in the following twosubse
tions.8 Su
h a partition exists be
ause of 
ondition (1). Some of the Um may be empty.10



6.1 Veri�able Se
ret SharingAs mentioned above, a se
ret-sharing s
heme is useless if not all players 
an be assumed tobehave 
orre
tly. A �rst problem is that some players may 
ontribute false shares duringre
onstru
tion. This 
an be solved by distributing the se
ret in a redundant manner, allowingfor error 
orre
tion. Sin
e this requires the set of shares to satisfy a 
ertain 
onsisten
y
ondition, a se
ond problem arises, namely that a 
heating dealer 
an distribute in
onsistentshares. Veri�able se
ret-sharing solves both these problems.De�nition 3. A veri�able se
ret-sharing (VSS) s
heme for a set P of players with se
re
ystru
ture � and se
ure for adversary stru
ture � 
onsists of two proto
ols, Share and Re-
onstru
t, su
h that even if the adversary 
orrupts players a

ording to �, the following
onditions hold:1. If Share terminates su

essfully, then the Re
onstru
t proto
ol yields the same �xedvalue for all possible adversary strategies, i.e., the dealer (even if 
orrupted) is 
ommittedto a single value.2. If the dealer is honest during Share, then Re
onstru
t always yields his input value.3. If the dealer is honest, then the information obtained by any ignorant set in � after thesharing phase is independent of any information held (by this set) prior to the exe
utionof the proto
ol. The information obtained in the re
onstru
tion phase is nothing beyondthe re
onstru
ted value. More pre
isely, given the re
onstru
ted value, the informationobtained by any ignorant set in the re
onstru
tion phase is independent of any informationheld (by this set) prior to the exe
ution of the proto
ol.We show how the se
ret-sharing s
heme of Se
tion 5.2 for the se
re
y stru
ture � 
an beextended to a VSS s
heme se
ure in presen
e of a (�;�)-adversary, provided that � and �satisfy the following 
ondition: P 62 � t� t�: (3)We �rst des
ribe the VSS sharing proto
ol, whi
h only depends on � but not on �, and thendis
uss 
ondition (3) together with the re
onstru
tion proto
ol.To assure that the dealer 
orre
tly shares a value, we only need to guarantee, independentlyfor ea
h of the k shares, that all honest players re
eiving this share obtain the same value.9This is easily a
hieved as follows. For ea
h share, say si, all players re
eiving that share(those in Ti) 
he
k pairwise whether the value re
eived from the dealer is the same. If anyin
onsisten
y is dete
ted, the players dete
ting it 
omplain using broad
ast, and the dealermust broad
ast si to all the players. Se
re
y 
annot be violated be
ause a 
omplaint is sentonly if either the dealer is 
orrupted or a 
orrupted player re
eived si, hen
e the adversaryknew si already. After these 
he
ks it is guaranteed that all honest players knowing si holdthe same value for si.9 Guaranteeing this 
ondition independently for ea
h of the k shares suÆ
es be
ause the k shares are 
om-pletely general and need not satisfy a 
onsisten
y 
ondition like in s
hemes based on polynomials. Every setof k shares uniquely determines a se
ret. 11



VSS Share (�):1. Share the se
ret s using the s
heme of Se
tion 5.2.102. For ea
h share si: Ea
h pair of players in PnTi 
he
k (over a se
ure 
hannel) whethertheir re
eived values for si agree.If any in
onsisten
y is dete
ted, the players 
omplain, using (possibly simulated) broad-
ast.3. The dealer broad
asts all shares for whi
h 
omplaints were raised, and the playersa

ept these shares.If the dealer refuses any of these broad
asts, the proto
ol is aborted.Condition (3) implies that for a given 
olle
tion of values re
eived during re
onstru
tionof a share, say si, there is only one 
onsistent explanation for whi
h is the 
orre
t value ofsi, namely that value v for whi
h the set of di�ering values 
orresponds to a set in �. Fora given list of (partially false) values for si, if there were two possible values v0 and v00 with
orresponding sets A0 and A00 in �, then the set P n(A0 [A00) alone 
ould not be quali�ed inthe se
ret-sharing s
heme, sin
e otherwise the se
ret would be uniquely determined by thosevalues, 
ontradi
ting the assumption. But if P n(A0 [A00) is not quali�ed, it is in �, and this
ontradi
ts 
ondition (3). Hen
e the following proto
ol works.VSS Re
onstru
t (�;�):1. All players send all their shares (bilaterally) to all other players.112. Ea
h player re
onstru
ts (lo
ally) ea
h of the k shares s1; : : : ; sk and adds them up toobtain the se
ret s = s1 + � � �+ sk.Re
onstru
tion of share si (same for ea
h player): Let vj for j 2 Ti be the value (forsi) sent by player pj. Take the (unique) value v su
h that there exists A 2 � withvj = v for all j 2 Ti �A.Note that the re
onstru
tion is performed independently for ea
h share si. This fa
t is usedin the robust multipli
ation proto
ol dis
ussed below.The proof of the following lemma follows from the above dis
ussion.Lemma 4. The above sharing and re
onstru
tion proto
ols form a VSS proto
ol for se
re
ystru
ture � and adversary stru
ture �, if P 62 � t� t�.Two shared values 
an be added by ea
h player adding the 
orresponding shares. Moregenerally we have:Lemma 5. Linear fun
tions of values shared a

ording to the VSS s
heme 
an be 
omputedby ea
h player 
omputing the linear fun
tion on the 
orresponding shares.Proof. Sin
e the se
ret sharing s
heme is linear, the resulting sharing is a 
orre
t sharing ofthe linear fun
tion of the shared values. Sin
e the same 
onsisten
y guarantees hold as afterthe VSS sharing phase, the re
onstru
tion proto
ol also works. Se
re
y 
annot be violated inthis proto
ol sin
e it involves no 
ommuni
ation. �10 If a player does not re
eive a share be
ause the dealer is 
orrupted, then he 
an take a default share, say 0.11 No broad
ast is required. 12



6.2 Robust Multipli
ation Proto
olThe approa
h of Se
tion 5.3 fails if a
tive 
heating o

urs be
ause a single false term sitj 
an
hange the result arbitrarily. Hen
e we need a method for guaranteeing that a player 
orre
tly
omputes and shares su
h a term. This is a
hieved by assigning ea
h term sitj to all playersknowing both si and tj, and having ea
h of these players share the value by VSS. After ea
hof these (say r) players has shared sitj, the players open r � 1 di�eren
es of these valuesto verify that they are all equal to 0. This does not violate se
re
y be
ause if no 
heater isinvolved, no information will be leaked. On the other hand, if at least one 
heater is involved,se
re
y need not be guaranteed sin
e the adversary knew si and ti beforehand. If any of thedi�eren
es is not 0, then si and tj are re
onstru
ted and sitj is 
omputed openly and sharedwith a default sharing. Corre
tness is guaranteed as long as one of the involved players ishonest sin
e su

essful 
heating requires to pass the 
he
king phase without any 
omplaints.This is guaranteed if the 
ondition P 62 � t� t� (4)is satis�ed be
ause ea
h term sitj is known to the players in the 
omplement of a set in �t�.This 
ondition is also ne
essary. In summary, we have:Multipli
ation proto
ol:Pre
ondition: Two values s =Pki=1 si and t =Pki=1 ti are shared by VSS.Post
ondition: st is shared by VSS.1. Ea
h player pm 
omputes all terms sitj he 
an (i.e. those for whi
h m 2 Ti \ Tj) andshares them using VSS.2. For ea
h (i; j), let (pm1 ; : : : ; pmr) be the ordered list of the players who 
omputed sitjin step 1 (where r depends on i and j).The players (
olle
tively) 
ompute12 and open the r�1 di�eren
es of the value sharedby pm1 and the value shared by pmi , for i = 2; : : : ; r.3. If all these opened values are 0, then the sharing by pm1 is used as the sharing of sitj.Otherwise, si and tj are re
onstru
ted and the k-out-of-k sharing for the term sitj isde�ned (arbitrarily) as the list (sitj; 0; : : : ; 0) of shares.4. The players (lo
ally) 
ompute the sum of their shares of all terms sitj, resulting in asharing of st.The proof of the following lemma follows from the above dis
ussion.Lemma 6. The above proto
ol is a se
ure multipli
ation proto
ol for se
re
y stru
ture � andadversary stru
ture �, if P 62 � t� t�.7 Con
lusionsBe
ause of the simpli
ity of the presented proto
ols, it is easy to verify that their 
omplexityis polynomial in n, j�j, and j�j. Although for a threshold adversary the 
omplexity is expo-nential in n, for a very small number of players the proto
ol is very eÆ
ient and 
an possiblylead to the preferred proto
ol from a pra
ti
al viewpoint.12 Computing the di�eren
e is a
hieved by ea
h player 
omputing the di�eren
e lo
ally.13



One advantage of the des
ribed proto
ol is that it works over any �eld or ring, in parti
ularalso over the binary �eld GF (2). This is signi�
ant in view of the fa
t that a digital 
ir
uit 
aneasily, and without essential loss of eÆ
ien
y, be transformed into a 
ir
uit using only XORand AND gates, hen
e into an arithmeti
 
ir
uit over GF (2). In 
ontrast, other proto
olsrequire a �eld GF (q) of size q > n, resulting possibly in a 
omplexity overhead for translatingthe digital 
ir
uit into an arithmeti
 
ir
uit over GF (q).A theme of general interest in se
ure MPC is to design proto
ols that are eÆ
ient in thesize of the des
riptions of the se
re
y and the adversary stru
tures (or, more generally, theadversary spe
i�
ation). Obviously, this task depends on whi
h type of des
ription one uses,i.e., on the adversary spe
i�
ation language. The spe
i�
ation language of this paper is thelist of all maximal sets of a stru
ture. Assuming � = �, a proto
ol that is eÆ
ient for asubstantially more powerful spe
i�
ation language was given in [CDM00℄: � 
an be des
ribedby any linear se
ret-sharing s
heme with se
re
y stru
ture �. It is an open problem to �ndother spe
i�
ation languages for whi
h eÆ
ient proto
ols exist.A
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