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Abstract. Known secure multi-party computation protocols are quite complex, involving non-
trivial mathematical structures and sub-protocols. The purpose of this paper is to present a very
simple approach to secure multi-party computation with straight-forward security proofs. This
approach naturally yields protocols secure for mixed (active and passive) corruption and general
(as opposed to threshold) adversary structures, confirming the previously proved tight bounds in
a simpler framework. Due to their simplicity, the described protocols are well-suited for didactic
purposes, which is a main goal of this paper.

1 Introduction

We propose a new, very simple approach to multi-party computation (MPC) secure against
active cheating and, more generally, mixed corruption scenarios. This work is motivated by
a protocol of Beaver and Wool [BW98] which achieves security only for a passive adversary
setting, without the possibility to enhance it to active adversary settings.

In this section we review the definition of secure MPC, discuss various models for specifying
the adversary’s capabilities, and review different types of security and communication models.
A reader familiar with these topics can skip Section 1 and much of Section 4, where previous
results are reviewed. After discussing secret-sharing and other preliminaries in Section 2, our
model and results are stated in Section 3. The main parts of the paper are Section 5, where the
passively secure protocol and the underlying secret-sharing scheme is presented, and Section 6
which presents the protocol secure in the general corruption model.

1.1 Secure Multi-party Computation

Secure function evaluation, as introduced by Yao [Yao82], allows a set P = {p1,...,pn} of n
players to compute an arbitrary agreed function of their private inputs 1, ..., z,, respectively,
even if an adversary may corrupt and control some of the players in various ways, to be
discussed below. More generally, secure MPC allows the players to perform an arbitrary on-
going computation during which new inputs can be provided and players can interact with
an environment. This corresponds to the simulation of a trusted party [GMW87,HM97].

Security in MPC means that the players’ inputs remain secret (except for what is revealed
by the intended results of the computation) and that the results of the computation are guar-
anteed to be correct. More precisely, security is defined relative to an ideal-world specification
involving a trusted party: anything the adversary can achieve in the real world (where the
protocol is executed) he can also achieve in the ideal world [Can00,PSWO00].

* The results of this paper were first presented at the Cryptography Workshop in Luminy in Sept. 1999, and
later appeared in [Mau02].
** Supported in part by the Swiss National Science Foundation.



Many distributed cryptographic protocols can be seen as special cases of secure MPC.
For specific tasks like collective contract signing, on-line auctions, or voting, there exist very
efficient protocols. Throughout this paper we consider general secure MPC protocols, where
general means that any given specification involving a trusted party can be computed se-
curely without the trusted party. In other words, we consider compilers that take as input a
specification and generate a secure protocol for realizing the specification.

Most protocols for general secure MPC work roughly as follows: The function (or speci-
fication) to be computed is specified by a circuit over some finite field consisting of addition
and multiplication gates. This is no essential restriction. Each input value and each interme-
diate result is shared appropriately among the players so that no cheating player set can learn
anything. The circuit is evaluated gate by gate, performing a sub-protocol for each gate. The
result(s) of the computation are jointly reconstructed.

General MPC protocols tend to be less efficient than special-purpose protocols, for two
reasons. First, the circuit can generally be quite large. Second, the multiplication sub-protocol
is rather inefficient as it requires substantial interaction (but see [HMO1] for efficiency improve-
ments for general MPC protocols).

1.2 Specifying the Adversary’s Capabilities

The potential misbehavior of some of the players is usually modeled by considering a central
adversary with an overall cheating strategy who can corrupt some of the players. Two different
notions of corruption, passive and active corruption, are usually considered. Passive corruption
means that the adversary learns the entire internal information of the corrupted player, but
the player continues to perform the protocol correctly. Such players are sometimes also called
semi-honest. Active corruption means that the adversary can take full control of the corrupted
player and can make him deviate arbitrarily from the protocol. If no active corruptions are
considered, then the only security issue is the secrecy of the players’ inputs.

A non-adaptive or static adversary must decide before the execution of the protocol which
players he corrupts, while an adaptive adversary can corrupt new players during the protocol,
as long as the total set of corrupted players is still admissible. A mobile adversary can release
some of the corrupted players, thereby regaining corruption power. We consider adaptive, but
not mobile adversaries.

In many papers, the adversary’s corruption capability is specified by a threshold ¢, i.e.,
the adversary is assumed to be able to corrupt up to ¢ (but not more) players. More generally,
the adversary’s corruption capability could be specified by a so-called adversary structure,
i.e., a set of potentially corruptible subsets of players. Even more generally, the corruption
capability can be specified by a set of corruption scenarios, one of which the adversary can
choose (secretly). For instance, each scenario can specify a set of players that can be passively
corrupted and a subset of them that can even be actively corrupted. In Section 4 we describe
these models and the results known for them.

1.3 Types of Security and Communication Models

One distinguishes between two types of security. Information-theoretic security means that
even an adversary with unrestricted computing power cannot cheat or violate secrecy, while
cryptographic security relies on an assumed restriction on the adversary’s computing power
and on certain unproven assumptions about the hardness of some computational problem,



like factoring large integers. The terms “perfect” and “unconditional” security are often used
for information-theoretic security with zero and negligible error probability, respectively. In
this paper we consider perfect information-theoretic security, i.e., the probability of successful
cheating is zero and the information leaked to the adversary is also zero.

Several communication models are considered in the literature. In the standard syn-
chronous model (for information-theoretic security), any pair of players can communicate
over a bilateral secure channel. Some papers [RB89,Bea91,CDD199] assume the availability
of a broadcast channel which guarantees the consistency of the received values if a sender
sends a value to several players, but in practice a broadcast channel must be simulated by a
(quite inefficient) protocol among the players (e.g. [LSP82,BGP89,FM97]). In asynchronous
communication models, no guarantees about the arrival times of sent messages are assumed.
Here we do not consider asynchronous communication models, although our techniques may
also be applied in that context.

2 Preliminaries

2.1 Structures

Definition 1. Consider a finite set P. We call a subset IT of the power set 27" of P a (mono-
tone) structure for P if IT is closed under taking subsets, i.e., if S € IT and S’ C S imply
S’ € II. We define a (commutative and associative) operation on structures, denoted LI
I, U 115 is the structure consisting of all unions of one element of 17y and one element of 15,
ie.,

I, Uil .= {S] USy: Sy ell, S € HQ}.

Structures will be described by listing only the maximal sets, their subsets being understood as
belonging to the structure. The size |II| of a structure IT is the number of maximal elements.

Ezample 1. The most common example of a structure is the threshold structure IT = {S :
S C P,|S| < t} for some t. Note that the description that lists the maximal sets has size ()
which is exponential in n if ¢ is a fixed fraction of n.

2.2 Secret-Sharing and Secrecy Structures

A secret-sharing scheme allows a dealer to share a value among a set P = {p1,...,p,} of
players such that only certain qualified subsets of players can reconstruct the secret, i.e.,
are qualified, while certain other subsets of players obtain no information about the secret,
i.e., are ignorant (a term not used in the previous literature). Natural secret-sharing schemes
(and also those of this paper) have the property that every subset of P is either qualified or
ignorant, and this is why ignorant sets are usually called non-qualified. However, for reasons
explained below, we choose the new terminology.

The secrecy condition is actually stronger: Even if any ignorant player set holds any kind
of partial information about the shared value, they must not obtain any additional informa-
tion about the shared value. Stated differently, what an ignorant set receives is statistically
independent of the information they hold and the shared value. Equivalently, such an ignorant
set can simulate their shares with the same probability distribution as that occurring in the
actual protocol.



A secret-sharing scheme is usually specified by the so-called access structure' I', the col-
lection of qualified player subsets. In our context, it is more natural to characterize a secret-
sharing scheme by the secrecy structure X consisting of the collection of ignorant player
subsets. As mentioned above, the secrecy structure is typically the complement of the access
structure, i.e., X = 2°\I".

Why is it more natural to consider the secrecy structure instead of the access structure, and
why is the term ignorant more natural than non-qualified? When the potential misbehavior
of players is considered, one leaves the realm of classical secret-sharing. For instance, players
could misbehave by not sending their share when supposed to, or by even sending a false
share. In such a case, a qualified set can generally not reconstruct the secret, i.e, the notion
of being qualified loses its normal meaning. In contrast, the notion of secrecy is not changed
by misbehaving players. If a secret is shared according to a certain scheme, then the secrecy
structure remains unchanged, even if players misbehave (except, of course, restricting the
secrecy structure to sets containing the corrupted players).

2.3 Adversary Structures and Security Against Active Cheating

As mentioned earlier, as a generalization of specifying the adversary’s capabilities by a cor-
ruption type and a threshold ¢, one can describe it by a corruption type and an adversary
structure A meaning that the adversary can choose one of the sets in A and corrupt these
players [HM97]. For passive corruption we can also call this structure the secrecy structure
rather than the adversary structure.

When players can cheat actively, then even the consistency of the value sent by a player
to several other players is not guaranteed. In other words, one must use a so-called broadcast
protocol (e.g. [LSP82,BGP89,FM97]) to assure that all honest players receive the same value,
and that if the sender is honest, then the received value is that actually sent by the sender.
A classical result [LSP82] in the theory of distributed systems is that such a protocol exists
if and only if less than a third of the players cheat.

More generally, a cheating dealer in a secret-sharing scheme could distribute inconsistent
shares, resulting in a situation where no value can be reconstructed. The consistency of the
shared values must again be guaranteed by a special protocol, called verifiable secret-sharing

(VSS).

3 Models and Results of this Paper

We present a very simple approach to secure multi-party computation. Unlike previous ap-
proaches, it is based on essentially no mathematical structure (like bivariate polynomials or
zero-knowledge proofs), and it naturally yields protocols secure against general mixed adver-
sary structures.

The main focus of the paper is on simplicity of the protocols, which makes them suitable
for didactic purposes. However, it is quite possible that the protocol ideas have applications
in other contexts and that for certain applications, especially when involving only a small
number of players, the protocols are the most efficient known.

! But note that, according to our terminology, it is actually an anti-structure, where we call IT a (monotone)
anti-structure if it is closed under taking supersets, i.e., if the complement IT¢ := {S € 27 : S ¢ I} is a
structure.



The adversary is specified by a secrecy structure X' and an adversary structure A C X,
with the following meaning.

Definition 2. Consider a player set P and two structures X C 2P and A C X. A (X, A)-
adversary is an adversary who can (adaptively) corrupt some players passively and some
players actively, as long as the set A of actively corrupted players and the set B of passively
corrupted players satisfy both

AeA and (AUB)eX.

In other words, a cheating player set A cannot violate the correctness, and all corrupted
players together (the set A U B) obtain no information not specified by the protocol. This
model is the same as that of [FM02] where only verifiable secret-sharing is considered.

The following theorems give increasingly strong conditions for broadcast, for verifiable
secret-sharing, and for secure MPC to be possible. The efficiency of the protocols is polynomial
in n, | X, and |AJ, but this fact is not stated explicitly.

Theorem 1. The simulation of a broadcast channel secure against a (X, A)-adversary is

possible if and only if P ¢ A1l AL A.

Theorem 2. Perfect verifiable secret-sharing secure against a (X, A)-adversary is possible if
and only if P ¢ X 11 AU A.

Theorem 3. General perfect information-theoretically secure MPC secure against a (X, A)-
adversary is possible if and only if P ¢ X 1 X 1 A.

Theorem 1 follows from a more general result in [HM97] and the efficient broadcast proto-
col given in [FM98]. This theorem is used, but not considered further in this paper. Theorem 3
is equivalent to Theorem 1 of [FHM99], as will be explained in Section 4.4.

As stated in these theorems, all these results are known to be tight in the sense that
larger adversary structures cannot be tolerated. We do not discuss such impossibility proofs
here. They work by proving the impossibility for a small player set (n = 2 or n = 3) and
showing that any protocol violating the stated bounds could be transformed into an impossible
protocol for a small player set. For example, broadcast among three players with one cheaters
can be proved to be impossible. This implies the necessity of the P ¢ ALl A1J A condition.
Similarly, the secure computation of the OR function of two input bits held by two players
(n = 2) is impossible, even if both players are only passive cheaters. This implies the necessity
of the condition P ¢ X' LI .

4 Review of Results on General Secure Multi-Party Computation

In this section we review the previous results on necessary and sufficient conditions for general
secure MPC to be possible, for various models and degrees of generality.

4.1 Classical Threshold Results

In the original papers solving the general secure MPC problem, the adversary is specified
by a single corruption type (active or passive) and a threshold ¢ on the tolerated num-
ber of corrupted players. Goldreich, Micali, and Wigderson [GMW87] proved that, based



setting adversary type | condition | reference
cryptographic passive t<n [GMW8T7]
cryptographic active t<n/2 [GMW8T]
information-theoretic passive t<mn/2 [BGW88],[CCD88]
information-theoretic active t<mn/3 [BGW88],[CCD88]
i.t., with broadcast active t<mn/2 [RB89,Beadl]

Table 1. Necessary and sufficient threshold conditions for general secure MPC to be possible.

on cryptographic intractability assumptions, general secure MPC is possible if and only if
t < n/2 players are actively corrupted. The threshold for passive corruption is ¢ < n. In the
information-theoretic model, where bilateral secure channels between every pair of players
are assumed, Ben-Or, Goldwasser, and Wigderson [BGW88] proved that perfect security is
possible if and only if ¢ < n/3 for active corruption, and if and only if ¢ < n/2 for passive
corruption.? In a model with a physical broadcast channel, which helps only in case of active
corruption, unconditional security is achievable if and only if ¢ < n/2 [RB89,Bea91,CDD*99].
These classical results are summarized in Table 1.

4.2 Mixed Adversary Models

The exact threshold conditions for mixed models under which secure MPC is possible were
proved in [FHM98], including fail-corruption as a third corruption type. Here we state the
results without considering fail-corruption. Let ¢, and ¢, be the number of players that can
be actively and passively corrupted, respectively. Perfect security is achievable if and only
if 3t, + 2t, < n, whether or not a broadcast channel is available. This is a special case of
Theorem 3.3

4.3 General Adversary Structures

The threshold adversary models were extended to a non-threshold setting in [HM97] (see
also [HMO0O]), for either passive or active, but not for mixed corruption. The adversary’s
capability is characterized by a structure, called secrecy structure X for passive corruption
and adversary structure A for active corruption. Again, generalizing the model leads to strictly
stronger results compared to those achievable in the threshold model. For instance, in the case
of 6 players and active corruption, with P = {A, B,C, D, E, F'}, one can obtain a protocol
secure against the structure with A = {{A}, {B, D}, {B,E,F}, {C,E}, {C,F}, {D,E,F}},
whereas in the threshold model one can tolerate only a single active cheater, i.e., the adversary
structure A = {{A}, {B}, {C}, {D}, {E}, {F'}}.

Let Q?(IT) be the condition on a structure IT that no two sets in IT cover the full player
set P, i.e.,

QX (IT) <= P ¢ I UII

? The same result was obtained independently by Chaum, Crépeau, and Damgard [CCD88], but with an
exponentially small error probability.

# Exponentially small error probability with a broadcast channel is achievable if and only if 2t, + 2t, < n.
Without broadcast, the additional condition 3t, < n is necessary and sufficient. This strictly improves on
non-mixed threshold results: In addition to tolerating t, < m/3 actively corrupted players, secrecy can be
guaranteed against every minority, thus tolerating additional ¢, < n/6 passively corrupted players.



Similarly, let Q3(IT) be the condition that no three sets in IT cover the full player set P, i.e.,
QI <= P¢ MOUITUII

The main results of [HM97] state that for passive corruption, Q?(X) is the necessary and
sufficient condition for general secure MPC to be possible. For active corruption, the condition
is Q3(A), and if a broadcast channel is available, then the condition is Q?(A). The first two
results are again special cases of Theorem 3. These results were achieved by a recursive player
substitution technique, yielding quite complex (but polynomial in the size of A) protocols.
The protocols of this paper are much simpler, more intuitive, and considerably more efficient.

4.4 Mixed General Adversary Structures

Finally, general mixed adversary specifications were considered in [FHM99] and the exact
conditions for general secure MPC to be possible were given for a general mixed passive/active
model. For each admissible choice, the adversary can actively corrupt a subset D C P of the
players, and, additionally, can passively corrupt another subset £ C P of the players. The
adversary specification ¥ is hence a set of pairs (D, E), i.e.,

U = {(Dl,El), Ce (Dk,Ek)},

for some k, and the adversary may select one arbitrary pair (D;, F;) from ¥ and corrupt the
players in D; actively and, additionally, corrupt the players in F; passively. The adversary’s
choice is not known before and typically also not after execution of the protocol. It was proved
in [FHM99] that, with or without broadcast channels, perfect general MPC is achievable if
and only if the adversary specification ¥ satisfies the following condition Q(3'2)(Ll7):

QB (W) & V(Dy, Ey), (D, B»), (D3, B3) €W :Di UE, UDy UE,UD;3 # P .

At first sight, these results look more general than Theorem 3 since the adversary specifica-
tion consists of a general set of pairs rather than two structures. However, they are equivalent,
which can be seen as follows. For an adversary specification ¥ = {(D1, F1),...,(Dg, Ex)} we
can define naturally an associated secrecy structure

YW)={DUE: (D,E) eV}
and an associated adversary structure
AW)={D:(D,FE) € ¥ for some E}.
Now we can define the closure ¥ of ¥ as
V:={(D,E):DeAW)A(DUE) € X(V)}.

It is not difficult to show that Q32 (W) < QB2 (¥). Therefore secure MPC is possible for
a given adversary specification ¥ if and only if it is possible for ¥. In other words, one can
enlarge any specification ¥ to its closure ¥ for free.* This justifies the consideration of (X, A)-
adversaries as discussed above. To see this, take any (D;, E;) and (D;, E}), add the new pair
(D;, (D; U E;)\D;) to ¥, and check that the condition Q(32)(%) is still satisfied.

* However, there may exist protocols secure for & but not for ¥. But in such a case there would exist a different
protocol secure for ¥, with possibly (much) higher complexity.



5 Secure MPC: The Passive Case

5.1 The Format of the Protocol

The computation to be performed is specified by a circuit over some finite field consisting of
addition and multiplication gates, whose inputs are the players inputs into the computation.’
Each input value and each intermediate result is shared among the players, according to the
secrecy structure, using a linear secret-sharing scheme.

Due to the linearity, secure addition and more generally computing any linear function
of shared values is trivial: every player locally computes the linear function of his shares and
keeps the result as a share of the new value. Secrecy is trivially guaranteed because this step
involves no communication. Correctness is also trivially guaranteed because due to the lack of
communication there is no chance for a corrupted player to cheat. Hence the only remaining
problem is the secure multiplication of shared values.

5.2 The Secret-Sharing Scheme

As a building block, we need a k-out-of-k secret-sharing scheme, i.e., one for k players such
that only the complete set of players (but no proper subset) can reconstruct the secret. Such
a scheme (actually linear) for any k£ and any domain D of the secret s is obtained by splitting
s into a random sum.®

k-out-of-k secret-sharing:

Select k — 1 shares s1,...,s,_1 at random from D and let s := s — Zf;l] S;.

The ith share is s;.

Lemma 1. The above scheme is a k-out-of-k secret-sharing scheme.

Proof. All shares together obviously determine the secret, hence the set of all k players is
qualified. Any set of k — 1 players (with, say, p; missing) is ignorant because these k — 1
shares (S1,...,8i—1,8i+1,...,8k) are independent and uniformly random, independently of s.
This follows from the fact that for any fixed s and any fixed (missing) share s;, the mapping
from (s1,...,8t-1) to (S1,.-+,8i-1,8i+1s---,Sk) is one-to-one. The shares can be simulated
by generating a set of uniform and independent shares. o

The most natural approach to designing a secret-sharing scheme for a given access struc-
ture I' (or the secrecy structure X = 2\ I') is due to Itoh et al. [[SN87] who introduced
general access structures in secret-sharing. In this scheme, the secret is shared, independently,
to each minimal qualified player set S € I', with an |S|-out-of-|S| secret-sharing scheme. This
trivially guarantees that any qualified set can reconstruct the secret and that no ignorant set
S & I' gets any information about the secret.

In this paper we use a different, in a sense dual approach. Let k£ be the number of maximal
sets in X, i.e. ¥ = {T1,...,T}},” and let T; := P\T; be the complement of the set T;.

5 More generally, the circuit could contain any gates for linear functions, plus (non-linear) multiplication gates.

6 Tt is trivial to impose an addition operation on D which makes it into an additive group, for instance the
group isomorphic to the cyclic group Zp,.

" Recall that a structure is specified by the maximal sets.



Secret-sharing for secrecy structure X = {T,..., T }:

1. Split the secret using the k-out-of-k secret-sharing scheme, resulting in shares
S1ye+ey Sk .

2. Send s; (secretly) to each player in Tj.
(The share of player p,, is hence the set {s; : m € T;}.)

Lemma 2. The above scheme is a secret-sharing scheme for secrecy structure ¥ = {Ty,..., Ty }.

Proof. The scheme is trivially Y-secure because for any set T' € X, at least one share (namely
that given to the complement of a maximal set of X containing T') is missing. Hence, according
to Lemma 1, the set T has no information about the secret. Moreover, for any ignorant set
S, the obtained information consists of some (but not all) shares s; and k-out-of-k sharings
thereof. This information is independent of anything else and could actually be simulated by
S.

Reconstruction by any qualified set in I" = 2P\ ¥ is simple. Any set S € I" contains, for
every maximal set T; € X, a player not in 7T;. This player knows s;, and hence the players in
S know all the shares s; and are thus qualified. o

5.3 The Multiplication Protocol

As mentioned earlier, the condition Q?(2), which is equivalent to
Pg XU, (1)

is necessary and sufficient for information-theoretically secure MPC for passive corruption.
Condition (1) means that for any two maximal sets 11,75 € X we have Ty U Ty # P, which
is equivalent to the condition that for any 77,75 € X/, their complements intersect, i.e.,
(P\Ty) N (P\Ty) # {}. A set of sets, no two of which are disjoint, is also called a quorum
system. Condition (1) is thus equivalent to the statement that the sets P\T; for i =1,....k
form a quorum system.

The product of two shared values s and ¢ can be computed as

k k k k
ot = (z) ST S 5) o 2)
Jj=1

i=1 i=1 j=1

i.e., as the sum of k? share products. Therefore we can use the following observation by Beaver
and Wool [BW98], used originally for a different secret-sharing scheme (see Section 5.4). For
every term s;t; in the above sum, there exists at least one player who knows both s; and ¢;.
This player (or one of them) can compute the product s;t; and share it among the players
(using the basic secret-sharing scheme). Since st is a linear combination of these shared
values s;t;, the sharing of st can be computed non-interactively. An efficiency improvement
is obtained if each player first adds all terms assigned to him and then shares the sum. Note
that terms of the form s;t; (i.e., i = j) can be assigned to any player knowing the ith share.
In summary, we have:



Multiplication protocol (passive):

Preparation (once and for all): Partition the set {(i,7) : 1 < 4,5 <n}intonsetsU,...,U,

such that for all (,5) € Uy, we have m € T; N T8
Precondition: Two values s = Zf:1 s; and t = Zf:] t; are shared.

Postcondition: st is shared independently.

1. Each player p,, (for 1 < m < n) computes v,, := Z(i,j)eUm s;t; and shares v, among
all players (using independent randomness).
2. Each player (locally) adds all n shares received in step 1.

Lemma 3. In any given context where s and t are shared, the above protocol results in the
product st being shared, and nothing else. More precisely, the new information obtained by
any ignorant set is independent of any information held (by this set) prior to the execution
of the protocol.

Proof. The correctness of the new sharing of st follows from (2). According to Lemma 2, for
any ignorant set, every sharing (by some player) of a value results in independent information.
Hence this is true for the entire protocol. o

5.4 Comparison with the Beaver-Wool Scheme

The secret-sharing scheme of [BW98] works as follows: The secret is split by a sum sharing
into | shares, where [ = |I'| is the number of minimal qualified sets. Then each share is given
to the players in one of the minimal qualified sets. While this sharing looks similar to ours (in
our scheme we consider the maximal non-qualified sets rather than the minimal qualified sets)
it differs in a crucial way: Condition (1) is required not only for the multiplication protocol,
but even for the mere reconstruction of shared secrets. A qualified set can reconstruct the
secret because it overlaps with any other minimal qualified set and hence knows all the
shares, i.e., one must start with an access structure (and corresponding secrecy structure)
which satisfies (1) in the first place. This is the reason why the scheme of [BW98] cannot be
enhanced to tolerate active corruption.

6 Secure MPC for a General (X, A)-Adversary

The basic structure of the protocol is as described in Section 5.1. Two changes are required
to tolerate also active corruption: The secret-sharing scheme and the multiplication protocol
must be made robust against cheating by a set of players in A (including possibly the dealer
in case of the secret-sharing scheme). These two protocols are described in the following two
subsections.

¥ Such a partition exists because of condition (1). Some of the U, may be empty.

10



6.1 Verifiable Secret Sharing

As mentioned above, a secret-sharing scheme is useless if not all players can be assumed to
behave correctly. A first problem is that some players may contribute false shares during
reconstruction. This can be solved by distributing the secret in a redundant manner, allowing
for error correction. Since this requires the set of shares to satisfy a certain consistency
condition, a second problem arises, namely that a cheating dealer can distribute inconsistent
shares. Verifiable secret-sharing solves both these problems.

Definition 3. A wverifiable secret-sharing (VSS) scheme for a set P of players with secrecy
structure X and secure for adversary structure A consists of two protocols, Share and Re-
construct, such that even if the adversary corrupts players according to A, the following
conditions hold:

1. If Share terminates successfully, then the Reconstruct protocol yields the same fixed
value for all possible adversary strategies, i.e., the dealer (even if corrupted) is committed
to a single value.

2. If the dealer is honest during Share, then Reconstruct always yields his input value.

3. If the dealer is honest, then the information obtained by any ignorant set in Y/ after the
sharing phase is independent of any information held (by this set) prior to the execution
of the protocol. The information obtained in the reconstruction phase is nothing beyond
the reconstructed value. More precisely, given the reconstructed value, the information
obtained by any ignorant set in the reconstruction phase is independent of any information
held (by this set) prior to the execution of the protocol.

We show how the secret-sharing scheme of Section 5.2 for the secrecy structure X' can be
extended to a VSS scheme secure in presence of a (X, A)-adversary, provided that X and A
satisfy the following condition:

P¢gXUAUA. (3)

We first describe the VSS sharing protocol, which only depends on X' but not on A, and then
discuss condition (3) together with the reconstruction protocol.

To assure that the dealer correctly shares a value, we only need to guarantee, independently
for each of the k shares, that all honest players receiving this share obtain the same value.’
This is easily achieved as follows. For each share, say s;, all players receiving that share
(those in T;) check pairwise whether the value received from the dealer is the same. If any
inconsistency is detected, the players detecting it complain using broadcast, and the dealer
must broadcast s; to all the players. Secrecy cannot be violated because a complaint is sent
only if either the dealer is corrupted or a corrupted player received s;, hence the adversary
knew s; already. After these checks it is guaranteed that all honest players knowing s; hold
the same value for s;.

9 Guaranteeing this condition independently for each of the k shares suffices because the k shares are com-
pletely general and need not satisfy a consistency condition like in schemes based on polynomials. Every set
of k shares uniquely determines a secret.

11



VSS Share (X):

1. Share the secret s using the scheme of Section 5.2.10

2. For each share s;: Each pair of players in P\T; check (over a secure channel) whether
their received values for s; agree.
If any inconsistency is detected, the players complain, using (possibly simulated) broad-
cast.

3. The dealer broadcasts all shares for which complaints were raised, and the players
accept these shares.
If the dealer refuses any of these broadcasts, the protocol is aborted.

Condition (3) implies that for a given collection of values received during reconstruction
of a share, say s;, there is only one consistent explanation for which is the correct value of
s;, namely that value v for which the set of differing values corresponds to a set in A. For
a given list of (partially false) values for s;, if there were two possible values v' and v” with
corresponding sets A" and A” in A, then the set P\ (A’ U A”) alone could not be qualified in
the secret-sharing scheme, since otherwise the secret would be uniquely determined by those
values, contradicting the assumption. But if P\ (A’ U A”) is not qualified, it is in X, and this
contradicts condition (3). Hence the following protocol works.

VSS Reconstruct (X, A):

1. All players send all their shares (bilaterally) to all other players.!!

2. Each player reconstructs (locally) each of the k shares sq,...,s; and adds them up to
obtain the secret s = s1 + --- + 5.
Reconstruction of share s; (same for each player): Let v; for j € T; be the value (for
s;) sent by player p;. Take the (unique) value v such that there exists A € A with
vj=vforall j €T, — A

Note that the reconstruction is performed independently for each share s;. This fact is used
in the robust multiplication protocol discussed below.
The proof of the following lemma follows from the above discussion.

Lemma 4. The above sharing and reconstruction protocols form a VSS protocol for secrecy
structure X and adversary structure A, if P ¢ X1 AU A.

Two shared values can be added by each player adding the corresponding shares. More
generally we have:

Lemma 5. Linear functions of values shared according to the VSS scheme can be computed
by each player computing the linear function on the corresponding shares.

Proof. Since the secret sharing scheme is linear, the resulting sharing is a correct sharing of
the linear function of the shared values. Since the same consistency guarantees hold as after
the VSS sharing phase, the reconstruction protocol also works. Secrecy cannot be violated in
this protocol since it involves no communication. o

0 If a player does not receive a share because the dealer is corrupted, then he can take a default share, say 0.
' No broadcast is required.
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6.2 Robust Multiplication Protocol

The approach of Section 5.3 fails if active cheating occurs because a single false term s;t; can
change the result arbitrarily. Hence we need a method for guaranteeing that a player correctly
computes and shares such a term. This is achieved by assigning each term s;t; to all players
knowing both s; and #;, and having each of these players share the value by VSS. After each
of these (say r) players has shared s;tj, the players open r — 1 differences of these values
to verify that they are all equal to 0. This does not violate secrecy because if no cheater is
involved, no information will be leaked. On the other hand, if at least one cheater is involved,
secrecy need not be guaranteed since the adversary knew s; and ¢; beforehand. If any of the
differences is not 0, then s; and ¢; are reconstructed and s;¢; is computed openly and shared
with a default sharing. Correctness is guaranteed as long as one of the involved players is
honest since successful cheating requires to pass the checking phase without any complaints.
This is guaranteed if the condition

PgXuUXUA (4)

is satisfied because each term s;t; is known to the players in the complement of a set in X'LI .
This condition is also necessary. In summary, we have:

Multiplication protocol:
Precondition: Two values s = Zf:1 sjand t = Zf:] t; are shared by VSS.
Postcondition: st is shared by VSS.

1. Each player p,, computes all terms s;t; he can (i.e. those for which m € T,HT]) and
shares them using VSS.

2. For each (7,7), let (pm,,--.,Pm,) be the ordered list of the players who computed s;t;
in step 1 (where r depends on 7 and j).

The players (collectively) compute'? and open the 7 — 1 differences of the value shared
by pm, and the value shared by py,,, for i =2,...,r.

3. If all these opened values are 0, then the sharing by p;,,, is used as the sharing of s;t;.
Otherwise, s; and %; are reconstructed and the k-out-of-k sharing for the term s;t; is
defined (arbitrarily) as the list (s;t;,0,...,0) of shares.

4. The players (locally) compute the sum of their shares of all terms s;t;, resulting in a
sharing of st.

The proof of the following lemma follows from the above discussion.

Lemma 6. The above protocol is a secure multiplication protocol for secrecy structure X and
adversary structure A, if P ¢ X U X U A.

7 Conclusions

Because of the simplicity of the presented protocols, it is easy to verify that their complexity
is polynomial in n, |¥|, and |A|. Although for a threshold adversary the complexity is expo-
nential in n, for a very small number of players the protocol is very efficient and can possibly
lead to the preferred protocol from a practical viewpoint.

12 Computing the difference is achieved by each player computing the difference locally.
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One advantage of the described protocol is that it works over any field or ring, in particular
also over the binary field GF'(2). This is significant in view of the fact that a digital circuit can
easily, and without essential loss of efficiency, be transformed into a circuit using only XOR
and AND gates, hence into an arithmetic circuit over GF(2). In contrast, other protocols
require a field GF(q) of size ¢ > n, resulting possibly in a complexity overhead for translating
the digital circuit into an arithmetic circuit over GF(q).

A theme of general interest in secure MPC is to design protocols that are efficient in the
size of the descriptions of the secrecy and the adversary structures (or, more generally, the
adversary specification). Obviously, this task depends on which type of description one uses,
i.e., on the adversary specification language. The specification language of this paper is the
list of all maximal sets of a structure. Assuming Y’ = A, a protocol that is efficient for a
substantially more powerful specification language was given in [CDMO00]: X' can be described
by any linear secret-sharing scheme with secrecy structure . It is an open problem to find
other specification languages for which efficient protocols exist.
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