Diffie-Hellman Oracles

Ueli M. Maurer and Stefan Wolf

Institute for Theoretical Computer Science
ETH Ziirich
CH-8092 Ziirich, Switzerland
E-mail addresses: {maurer,wolf}@inf.ethz.ch

Abstract. This paper consists of three parts. First, various types of
Diffie-Hellman oracles for a cyclic group G and subgroups of G are de-
fined and their equivalence is proved. In particular, the security of using a
subgroup of G instead of G in the Diffie-Hellman protocol is investigated.
Second, we derive several new conditions for the polynomial-time equiv-
alence of breaking the Diffie-Hellman protocol and computing discrete
logarithms in G which extend former results by den Boer and Maurer.
Finally, efficient constructions of Diffie-Hellman groups with provable
equivalence are described.

Keywords. Public-key cryptography, Diffie-Hellman protocol, Discrete
logarithms, Elliptic curves.

1 Introduction

Let G be a cyclic group with generator g. The Diffie-Hellman (DH) problem [6]
is, for given g* and g”, to compute g“*. A possible group for the DH protocol [6]
is Z;, where p is a prime number, or an elliptic curve over a finite field [17],[9].

The DH problem is at most as difficult as computing discrete logarithms (DL)
in G with respect to the base g. By analyzing DH-oracles and their application
for computing discrete logarithms we take a number of steps towards proving
that the two problems are computationally equivalent. At CRYPTO ’94, Maurer
showed that a sufficient condition for such an equivalence is that for all large
prime factors p of |G|, a cyclic elliptic curve over GF(p) with smooth order
can be constructed. In this paper the concept of general auxiliary groups is
introduced and it is shown that non-cyclic elliptic curves over GF(p) or over an
extension field of GF(p), certain subgroups of the multiplicative group of such
an extension field, and the Jacobian of a hyperelliptic curve are also suitable
auxiliary groups. We give an extended list of expressions in p, including for
example all the cyclotomic polynomials of low degree in p (which include the
known cases p—1 due to den Boer [5] and p+1 due to Maurer [13]), such that, if
for every large prime factor p of |G| one of the expressions in the list is smooth,
then breaking the Diffie-Hellman protocol and computing discrete logarithms
are equivalent for G.

2 Various Types of Diffie-Hellman Oracles and Their
Equivalence

The natural definition of a DH-oracle is the following.

Definition 1 A DH-oracle for a group G with respect to a given generator g
takes as inputs two elements g% and g¥ and returns (without computational cost)
the element g“?.

In the following we show that certain apparently weaker oracles are almost as
strong as a DH-oracle.

2.1 e-DH-Oracles

Definition 2 For € > 0, an e-DH-oracle is a probabilistic oracle which returns
for an input (g%, g") the correct answer g*¥ with probability at least &, provided
the input is uniformly distributed over G x G. The error of the oracle’s answer
g’ to the input (g%, g?) is defined as t — uv (mod |G|). A translation-invariant
e-DH-oracle is an e-DH-oracle whose distribution of the error is the same for
every input (g%, g").

We assume that the given e-DH-oracle is time-invariant, i.e., the error distri-
bution can only depend on the input but remains the same when the oracle is
called several times. The following lemma states that any e-DH-oracle can be
made translation-invariant. The proof idea is to randomize the input and was
presented in [13].

Lemma 1 An e-DH-oracle for a cyclic group G can be transformed into a
translation-invariant e-DH-oracle. One call of the latter requires one call to the
former and O(log |G|) group operations.

Proof. Given the group elements a = g* and b = g we can randomize the input
by choosing r and s at random from [0, |G|—1], providing the oracle with a’ = ag”
and b’ = bg® and multiplying the oracle’s answer g{v+7)(vts)+t = guvtrotsutrstt
with (a=1)* - (b~1)" - g~ = g~ ("v+su479) {6 obtain g“v*t. Note that a’ and b’
are random group elements and statistically independent of a and b. The e-DH-
oracle with randomized input is thus a translation-invariant e-DH-oracle. O

Remark: If |G| is unknown the input can also be randomized, where r and
s are chosen at random from a larger interval. The resulting e-DH-oracle is then
“almost translation-invariant” and applicable in the proof of Theorem 1 if the
interval is of size at least 2 - |G|/(e? - min{s,0.1}) (this is the reason for the
greater number of group operations for this case in Theorem 1).

The straight-forward approach to transforming a translation-invariant e-DH-
oracle into a perfect DH-oracle appears to be to run it O(1/¢) times until it pro-
duces the correct answer. However, because the Diffie-Hellman decision problem

(that is, for given g%, g%, and g“, to decide whether g*¥ = ¢g%) is difficult, a
more complicated approach must be used. In a first phase, which is independent
of the actual input, the oracle’s error distribution is determined. In the second
phase, the oracle is used for a given input to compute the correct solution with
overwhelming probability. In the case of a symmetric error distribution there can
be several candidates, and the correct one can be determined similarly to the
detection of the correct root in Lemma 2. A full proof of the following theorem
is given in [14].

Theorem 1 For every cyclic group G with generator g and known order |G|
and for every B > 0 there exists a DH-oracle algorithm which makes calls to
an e-DH-oracle and whose answer is correct with probability at least 1 — 3. The
number of oracle calls is O(log(1/Be)/e*). If the order of G is unknown but all
the prime factors of |G| are greater than (1 + s)/e for some s > 0, then the
number of required calls to the e-DH-oracle is O(log(1/B¢)/(¢? - min{s, 0.1})?).
The number of required group operations is log |G| or log(|G|/(¢? -min{s,0.1}))
times the number of oracle calls, respectively.

Note that such an oracle is virtually equivalent to a perfect DH-oracle for
our application because the correctness of the output of a probabilistic discrete
logarithm algorithm can be tested, and because only a polynomially bounded
number of oracle calls is required for the computation of a discrete logarithm.

Remark: Examples of e-DH-oracles which can not be transformed into per-
fect oracles with our method when |G| is unknown are those which answer the
input (g%, g") by one of the values g“WtGl/# where 2z < 1/¢ is a factor of |G|,
and where all the values of ¢ between 0 and z—1 are equally likely. If |G| is known,
the correct one of the z candidates can be found by O((log |G|)?/e +1log |G|/e?)
group operations.

2.2 The Squaring Oracle

We call an oracle that answers the input g* by g(“2) (where u and u? are in Zq))
a squaring-DH-oracle. Note that this is not an e-DH-oracle for any constant
€ > 0 because only one out of |G| inputs is answered correctly, and this fraction
vanishes with increasing |G|.

Let g* and g° be given. One can compute g¥t? = g* - g¥ and

G0 (g<u2>)‘1 . (g<v2>)‘1 = gl o= g guey ()

When given |G|, square roots in G can efficiently be computed. If |G| is odd,
the square root is unique, but if |G| is even, there exist two square roots, g*¥
and g“t/¢/2] which can be computed by a method of Massey [12] (see also
Lemma, 2). In this case, the correct square root g*” is determined analogously to
the detection of the correct root in the proof of Lemma 2 by computing » and
v modulo the maximal power of 2 dividing |G|. Hence a squaring-DH-oracle is
equally powerful as a perfect DH-oracle in a group G whose order is known.

A probabilistic squaring-DH-oracle for a group with known order that an-
swers correctly only with probability e (e-squaring-DH-oracle) can be trans-
formed into a translation-invariant e3-DH-oracle by randomizing the inputs in
(1). The required complexity is O((log|G|)?) group operations per call. This
proves the following theorem.

Theorem 2 For every cyclic group G with generator g and known order |G|
and for every B > 0 there exists a DH-oracle algorithm which makes calls to an
e-squaring-DH-oracle and whose answer is correct with probability at least 1 — (3.
The number of oracle calls is O(log(1/Be%)/e'?). The number of required group
operations is (log |G|)? times the number of oracle calls.

2.3 The Security of Subgroups

In this section we assume that the order of G is known. We address the question
whether a subgroup is more or less secure than the entire group with respect to
the DH protocol. Although the statement of Corollary 5 below is very intuitive
(and an analogous result holds trivially for the computation of discrete loga-
rithms), the proofs of Theorems 3 and 4 are not trivial. First we state that a
subgroup of G with smooth index is at most as secure as G.

Theorem 3 Let G be a cyclic group with generator g, and let B be a smoothness
bound, polynomial in log|G|. For every B-smooth divisor v of |G| there exists a
DH-oracle algorithm for the group (g") which makes one call to the DH-oracle
for {g) and uses a polynomial number of group operations per call.

We first prove the following lemma on the computation of roots in cyclic groups.

Lemma 2 Let G be a cyclic group with generator g, and let p be a prime divisor
of |G|. One of the p-th roots of a p-th power in G can be computed in time
O((log |G)* + plog |G).

Proof. The square root algorithm of Massey [12] can be generalized as follows.
Let |G| = p’s (where j > 1 and (p,s) = 1), and let h be a p-th power in G. By
the method of Pohlig and Hellman [18] we can compute the remainder k of the
discrete logarithm of A to the base g with respect to p’. Note that & is a multiple
of p because h is a p-th power. Let d = —s~! (mod p). The element

(93'%"1)71 R

is a p-th root of h. This algorithm requires O((log |G|)? + plog|G|) operations
in G. |

We can now prove the theorem.

Proof of Theorem 3. Let r = [[;_, p{", and let p* be the maximal powers di-
viding |G| for i = 1,...,s. The oracle for G answers the input (g",g™) by

r2ab Il p2Fs g : rab pitoplsab :
g =gh s7" 2 We obtain g"*° = gP1 "Ps"* by computing p;-th roots and
deciding immediately which of the p; different roots is the correct one. For fixed
i and for some k = 2f;—1,2f;,—2,..., fi, assume that we have already computed
910{1“'17{1_11'Ilf+1'11?_{_i1+l"'p§f”ab _ gcpf“ab :

where ¢ = pi* - - pf"_‘ll . pffl“ -+ p?f+ is explicitly known. According to the above
lemma we can compute the p;-th roots

Eabtq-1GL

gcp1a+j vi, g=0,...,pi—1.

Because a and b can be obtained modulo pf’;f * directly from ¢"® and ¢™° by
the method of Pohlig and Hellman [18] and c¢ is explicitly known, and because
k > f;, we can compute cpfab modulo p$*. We have j - |G|/p; = 0 (mod p{’) only
for 7 = 0, and the correct root can be determined by computing the discrete log-
arithms of the candidates modulo p;*, using the Pohlig-Hellman method. Finally,
we obtain g"®’. The running time is polynomial in log |G| if r is B-smooth. O

Conversely, in many cases a DH-oracle for a subgroup of G or a set of such or-
acles can be transformed into a DH-oracle for the entire group, and the following
theorem gives a criterion for when this is the case. The proof is an application of
our concept of computing with implicit representations introduced in Section 3.

Theorem 4 Let G be a cyclic group with generator g and order |G| = [;_, pi*,
and let B be a smoothness bound which is polynomial in log|G|. If for certain
s;j there exist DH-oracles for the subgroups G; = (¢%) (j = 1,...,t), and if
for all p; > B there exists j such that p; does not divide s;, then there exists
a polynomial-time DH-oracle algorithm for G with respect to g which calls each
subgroup oracle at most log |G|/ log B times.

Proof. Let g* and g* be given. We compute g“* by using the available oracles for
subgroups. Let m; := pf, M; := |G|/m; and N; := M, ' (mod m;). For prime
factors p; < B, u and v, and hence also uv, can be computed in polynomial time
modulo m; by the Pohlig-Hellman method [18]. For a prime factor p; > B let j
be such that p; does not divide s;. We apply the oracle for G; to (g%)* = (g*)%
and (¢g°)? to obtain (g%)", where u, v and u - v are modulo |G|/s;. Because

s; divides M;, we can compute

M;
Ui — gM,(uv) — <gSj(’LL"L})) S5 ,

where u - v is modulo m;. Finally, ¢*¥ is computable by Chinese remaindering
with implicitly represented arguments by applying only group operations in G:

uv . M; N;(u-v i
g = gE M) T U
[

O

Corollary 5 Consider a group G = (g) and a subgroup H = (g*) of G with
smooth index k. The DH problem for H is polynomial-time equivalent to the DH
problem for G.

3 Conditions for Equivalence Between the Diffie-Hellman
Problem and Computing Discrete Logarithms

3.1 Computing with Implicit Representations

Let G be a cyclic group generated by g for which the prime factorization of
the order |G| is known, and for which a DH-oracle is given. Let p be a prime
factor of |G|. Every element y of the field GF(p) corresponds to an equivalence
class of elements of G (consisting of those whose discrete logarithm is congruent
to y modulo p). Any member a of the equivalence class is called an implicit
representation of y and, conversely, y is called implicitly represented by a. We
write y ~ a. The following operations on elements of GF(p) can be performed
on their implicit representations, where the result is also obtained only in an
implicit representation. Let y and z be elements of GF(p), with y ~» a, z ~» b.
Because y = z if and only if a!¢/? = blI/P equality of two implicitly represented
elements of GF(p) can be tested by O(log|G|) group operations. Furthermore
we have y + 2z ~ a - b, yz ~» DH(a,b), and —y ~ a~! = a/®/~!, and these
implicit operations in GF(p) require a single group operation in G, a call to the
DH-oracle, and O(log|G|) group operations, respectively.

In order to simplify the notation, we also introduce the notion of a power-
DH-oracle (PDH,) that computes an implicit representation of the e-th power of
an implicitly represented element. A possible implementation of a PDH.-oracle
is to use a (fixed) algorithm for computing powers in a group (e.g. ‘square and
multiply’) for obtaining an implicit representation of y¢, denoted by PDH,(a), by
O(loge) calls to a normal DH-oracle (remember that y ~» a). In particular we can
compute inverses of implicitly represented elements because y=* ~ PDH,_(a).
Any computation in GF(p) can be performed on implicit representations when-
ever it makes use only of addition, subtraction, multiplication, division and
equality testing. We call these operations algebraic.

3.2 Auxiliary Groups

The next theorem states that for a cyclic group G breaking the DH protocol and
computing discrete logarithms are polynomial-time equivalent if an appropriate
auxiliary group defined over the field GF(p) is given for each large prime factor
p of |G|. First we define two properties of such auxiliary groups.

Definition 3 Let P be a fixed expression, polynomial in logp, and let M be a
fixed constant. A finite (additively written) group H is said to be defined alge-
braically over GF (p) if, for some m < M, the elements of H can be represented
as m-tuples of elements of GF(p) and if the group operation in this representa-
tion can be carried out by at most P algebraic operations in GF(p). We say that
H has the algebraic embedding property if, when given x € GF(p), an element
¢ € H can be constructed by at most P algebraic operations in GF'(p) such that
z can be computed efficiently when given ¢. (Typically, z is a coordinate of ¢.)

Theorem 6 Let G be a cyclic group with generator g, and let B be a smooth-
ness bound, polynomial in log|G|. Assume that |G| and its factorization |G| =
[1;_, " are known, that every prime factor p of |G| greater than B is single and
that for every such p, a finite abelian group H, with rank r = O(1), algebraically
defined over GF(p) and with the algebraic embedding property, is given whose
order |Hp| is B-smooth and known or computable in time polynomial in logp.
Then breaking the Diffie-Hellman protocol for G with respect to g is polynomial-
time equivalent to computing discrete logarithms in G to the base g.

The complexity of the computation of a discrete logarithm modulo p in G is
O(M?B" logplog |G|/ log B) group operations in G, O(M?(logp)?) operations in
H, with implicitly represented elements, and O(M?(logp)* + M log p- B" / log B)
explicit operations in Hp.

In case of a multiple prime factor p greater than B, that is if p® divides |G|
for some e > 1, the desired equivalence holds with respect to a DH-oracle for
one of the subgroups (gd"’c_l) (instead of the DH-oracle for G) where d - p°~*
divides |G|/p, or if a polynomial-time algorithm for computing p-th roots in G
is available.

The complexities stated in the theorem can be reduced by a time-memory trade-
off. The use of elliptic curves and subgroups of extension fields as auxiliary groups
is discussed in the next sections. In [21] it is shown that Jacobians of hyperelliptic
curves are also suitable auxiliary groups.

Proof. Let a = ¢g° be a given element of G for which the discrete logarithm s
should be computed using a DH-oracle for G. We assume first that all the large
prime factors of |G| are single. Let p be such a prime factor. We consider the
problem of computing the element z of GF(p) such that s = z (mod p) using
the auxiliary group H = Hjp. The basic idea is to embed z into an implicitly
represented element of H and to compute its explicit representation.

Using the algebraic embedding property, the implicit representation of a
group element ¢ in H can be computed such that x can efficiently be obtained
from the ezplicit coordinates of c. We address the problem of finding ¢ explicitly.
In the special case where H is cyclic, the following method corresponds to the
Pohlig-Hellman algorithm [18] with implicitly represented arguments. Let H be
isomorphic to Z,, x --- x Zj,, such that n;;; divides n; for y =1,...,r -1,
and let hy,...,h, be such that H is the internal product of the cyclic sub-
groups (h1),...,{hy), i.e., H = (h1) x -+ x {h;). (If no generator set for H
is known it can efficiently be computed by a method based on trial and error
which is described in [14].) The element ¢ € H has a unique representation
¢ =31 kjh; (0 < kj <ny).

We describe the first and second iteration step of an algorithm that computes
k; modulo the highest power of a fixed prime factor ¢ of |H| dividing n; for all
j =1,...,r. The algorithm uses v; (j = 1,...,r) as local variables (initialized
by (i 0).

For the first step, let a; be the number of generators h; whose order contains
the same number of factors ¢ as ni. In other words, (n1/q)h; is different from

the unity e of H exactly for j = 1,...,a;. Because H is algebraically defined
over GF(p), an implicit representation of (n1/¢)c can be computed from the
implicit representation of ¢ by O(log|H|) operations in H with implicitly repre-
sented elements. For all (t1,...,tq,) € {0,...,q — 1}**, we compute (explicitly)
(n1/@)t1hy + - -+ + (n1/q)ta, ha,, transform the coordinates into implicit repre-
sentations and compare the points with (n4/q)c. Equality indicates that the ¢;
are congruent to the coeflicients k; modulo g. We set v; +—t; for 1 < j < .

For the second step, let as be the number of points h; whose order contains
at most one factor g less than nq, i.e., (n1/¢*)h; # e for j = 1,...,as. The
(implicit representations of the) points

ny

n n n
q—;(vlq +t)h +-o q—i(valq +tay)hay + q—;ta1+1ha1+1 + oo+ tasha;

are computed for all (t1,...,ts,) € {0,...,q — 1}** until equality with the
implicitly represented point (ni/g?)c holds. Then assign v; <— v;q + t; for

J=1,...,a1 and v; «— t; for j = oy +1,...,02. When this is done up
to the maximal g-power dividing n;, k; is congruent to v; modulo the high-
est power of ¢ dividing n; for j = 1,...,r. After running the algorithm for

all primes ¢ dividing |H|, one can compute the coefficients k; modulo n; by
Chinese remaindering, and x can then be obtained by computing ¢ explicitly.
The complexity of the computation of z is O(m?(logp)?) operations in H with
implicitly represented elements, O(m?B" logplog|G|/(r log B)) operations in G
and O(m?r(logp)? +mlogp- B"/log B) explicit operations in H. (Note that p™
is an upper bound for |H| because H is defined algebraically over GF(p).) Again
because H is defined algebraically over GF(p), the running time is polynomial
if B is polynomial in log |G|, and if r = O(1). The algorithm can be sped up
by a time-memory tradeoff similar to the baby-step giant-step tradeoff for the
computation of discrete logarithms.

We finally consider the case of multiple large prime factors of |G|. If p¢ divides
|G| (with e > 1), the discrete logarithm s must be computed explicitly modulo
p¢ instead of modulo p. We write z = 28_1 z;p' (mod p°) with z; € GF(p) for
1=0,...,e—1. Let k <e—1, assume that zg,...,Tr_; are already computed
(note that 2o can be computed as above), and consider the problem of computing
zi,. Let @' := a- g=®0=~2t-17""" Then a' = (gP")***+P for some I. From a’, z
can be obtained in either of two ways: If a DH-oracle for one of the subgroups
(gd'”c_1), where d-p°~! divides |G|/p, is available, then z; can be computed from
(a")P" " = (g@P ")e+Pl by use of this oracle as described. Alternatively,
assume that p-th roots can be computed in G. If @’ := g%+?¥ (for some I) is
computed first, z; can be obtained as usual. In order to get a”, it suffices to
compute any p*-th root (k times the p-th root) of a’ because p divides |G|/p".

From s modulo p° for all the maximal powers of the large prime factors of
|G|, s can be obtained by Chinese remaindering. This concludes the proof. O

3.3 Elliptic Curves as Auxiliary Groups

Elliptic curves over GF(p) or an extension field are suitable auxiliary groups
when they have smooth order. (Note that elliptic curves are abelian groups of
rank at most 2.) In [13] this was shown for cyclic elliptic curves over prime fields.
It is proved there that, under an unproven number-theoretic conjecture about
smooth numbers in small intervals, for every cyclic group G there exists a short
side information string S (containing the parameters of a smooth elliptic curve
for each large prime factor of |G|) such that given S, the DH and DL problems
are equivalent for G.

The group order of Jacobians of hyperelliptic curves of genus 2 varies in a
larger interval of size [n — O(n*/*),n + O(n*/*)], but the more detailed results
about the distribution of the orders which are proved in [1] are not sufficient to
prove the existence of the side information string without unproven conjecture.
The reason is that in [1] the existence of Jacobians with prime order is proved,
whereas Jacobians with smooth order are required here.

For certain expressions A(p), elliptic curves over F, with order A(p) can
explicitly be constructed. The curve over F,, defined by the equation y? = 2°—Dx
has order p+1 if p = 3 (mod 4), and the curve y? = 2® + D has also order p+1 if
p =2 (mod 3). Thus if p #Z 1 (mod 12), elliptic curves of order p+1 are explicitly
constructable. We will show later that the subgroup of order p + 1 of Fzg is a
useful auxiliary group for all p. The following statements about the orders of
curves defined by the equations above in the case they are not p + 1 are proved
in [8].

If p =1 (mod 4), then p can uniquely be represented as a product in the
ring Z[i] of Gaussian integers: p = 77 = (a + bi)(a — bi) = a®> + b%, and 7 =
1 (mod 2+ 2i). The curves y?> = 2° — Dz have the orders p+1=+2a or p+1+2b,
and the four orders occur equally often.

Let w:= (—1++/=3)/2.If p = 1 (mod 3), then p can uniquely be represented
as a product in the ring Z[w]: p = 77 = (a + bw)(a — bw) = a® — ab + b?, and
7 = 2 (mod 3). The curves y?> = 2 + D have the orders p+1+2a, p+1+aF 2b,
or p+ 1=+ (a+b), and the six orders occur equally often.

If p=1(mod 4) or p =1 (mod 3), curves with the above orders are explicitly
constructable by varying D. The orders are computable in polynomial time [19].

3.4 Subgroups of Finite Fields as Auxiliary Groups

We refer to [16] for an introduction to finite fields. The group F;. and hence
every subgroup is cyclic. The field Fp» is an n-dimensional vector space over F,,
and its elements can be represented as n-tuples of Fp-elements with respect to
some basis. Let o be an element of Fp». Let o; := a? fori=0,...,n—1. Then
{ag,...,an_1} is called a normal basis if it is linearly independent in which case
« is called a normal element. Let o := (ap, . .., ap—1). The matrix T in (Fp)"*"
satisfying apax = T'ex is called the multiplication table of the basis.

A normal basis can be found efficiently by trial and error, and its multipli-
cation table can be determined by solving a system of linear equations over F,.

Let H be a subgroup of F}.. The group operation in H is a multiplication in
F7. and requires O(n®) multiplications in F,,.

Membership in H can be characterized by an equation over Fp». Let 3 be an
element of F». Because F. is cyclic, 3 belongs to H if and only if B = 1. The
element § can be represented by its coordinates (yo,y1,- - .,Yn—1) (with y; € F,)
in the normal basis, i.e., 8 = E?:_Ol y;a;. In this representation the characteristic
equation of H is equivalent to a system of n polynomial equations in the y;. The
polynomials depend on the multiplication table.

For some orders |H|, the polynomials can easily be computed and have small
degree, in particular if |H| is a sum of p-powers, multiplied with only small
factors. The p¥“-th power of the sum Y y;a; is equal to the sum of the p“-th
powers of the summands because F,» has characteristic p. In addition we have
y? = y; and @ = a;41 (where the index is reduced modulo n). Hence 87" is
represented by the coordinates (Yn—u, Yn—utis«-«rYnsY0s-«->Yn—u—1)-

We prove the algebraic embedding property by showing directly that, given
an implicit representation of z, an implicit representation of a point 8 of H can
be computed such that z (or z + d for some d) is one of the coordinates of j3.
To do this, fix some of the other coordinates (for example by assigning the value
0) and solve the implicitly represented equations to get implicitly represented
values for the remaining coordinates such that 8 belongs to H. The number of
unknowns over F), in this system depends on the cardinality of H. If we solve
for k different F-coordinates simultaneously, then the expected number of trials
until an element of H is found is p"~%/|H|.

It is much easier to solve a univariate polynomial equation than to solve a
system of multivariate polynomial equations. We show that it is sufficient to solve
one equation for one unknown when the group H has order |H| = p"~F 4 pn—2k ¢
--- + 1 for some divisor k¥ < n of n. Let | := n/k, and let {og,...,a; ;} be a
normal basis of F» over F,.. An element 3 of F ., represented by (35, ...,06,_;)

with §; € F ., belongs to H if and only if (Zl_l o)l = 1, or equivalently

=01

-1 -1 -1
(Z ﬂ;a;—i-l—l) : (Z /3204;4-1—2) (Z ﬂ;a;) =
=0 1=0 =0

(where the indices are reduced modulo [). Because (3HNP'~1 = gr"—1 = 1
for all 8, 8'H! is an element of F,:, and because ap + a1 + - + a1 (the
trace of ag, denoted by Tr(ap)) is an element of F, all the coefficients are
automatically equal, and it suffices to solve one instead of I equations. Thus the
characteristic equation of the subgroup H with this order leads to an I-degree
polynomial in 3, ...,B;_; over F, . We assign the (implicitly represented) = to
one of the k coordinates of fj, and 0 to f3i,...,3_, (for example) to get an
I-degree polynomial for §;_, with implicitly represented coefficients. The order
of H is such that this polynomial has one expected solution. (If no solution is
found one can vary the coefficients 31, ..., 3/_,.)

The roots of a polynomial f(y) over a finite field F,x can be computed by
the following randomized algorithm due to Berlekamp. The key idea is to factor

the polynomial f(+y) into

k1 PP

ged(f(7), (Y +8) T —1) and ged(f(7), (v +6)"F +1)

for some § € F .. This is repeated with different § and leads to the linear factors
of f(7).

The computation of polynomial ged’s, and thus the entire root-finding algo-
rithm, require only algebraic operations in F,+, and the latter can be reduced to
algebraic operations (and equality tests) in F, (with respect to a normal basis
representation). The implicit representations of the roots of an implicitly repre-
sented polynomial are thus efficiently computable. The complexity of computing
one root is O(nllogllogp- (k* +1og|G|)) group operations and O(n’klogl) calls
to the DH-oracle. We conclude that H with order p"~* +p"~2%k 4 ...+ 1 (where
n is polynomial in logp) fulfills the requirements of Theorem 6 if its order is
smooth.

If |H| is not of this form, but a sum of p-powers (with small coefficients),
a system of multivariate polynomial equations with several unknowns must be
solved. Let F(z) be a polynomial of positive degree which divides z™ — 1. By
&,, we denote the n-th cyclotomic polynomial. Because cyclotomic polynomials
are irreducible and 2™ — 1 =][, @a(z), at least one cyclotomic polynomial
¢ divides F, and smoothness of F(p) implies smoothness of &(p). Therefore,
we can assume without loss of generality that F' is a cyclotomic polynomial
and, again without loss of generality, that F(z) = &, (z) = Zfi%) cjzl. Let H
be the (unique) subgroup of Fj. with order |H| = &,(p). In a normal basis

representation any = Z?:_OI yioy (with y; € Fp) is an element of H if and only
if (Y0 yiai)z ¢i?’ =1, which is equivalent to

1 pe; _— P’ (—cj)
II <Z yiai> - 11 (Z ?Ji%) =0,

cj >0 \i=0 c;<0 \7i=0

and leads to a system of n polynomials in the y; over F, of degree at most
¢(n)-max{|c;| : 5 =0,...,¢p(n)}. Because |H| ~ p*("™ we have to solve the (im-
plicitly represented) polynomial equations for n —p(n) unknowns. Grébner bases
are a tool for solving systems of polynomial equations. They lead to equivalent
systems of equations which have triangular form, such that a method for solv-
ing univariate equations (as Berlekamp’s algorithm) suffices to solve the whole
system. For an introduction to Grobner bases see [7], and for a detailed descrip-
tion of the computations see [21]. The idea is to compute the polynomials (with
implicitly represented coefficients) of a Grobner basis of the polynomial ideal
generated by the polynomials of the equations. The algorithm for the Grobner
basis computation, due to Buchberger, requires only algebraic polynomial arith-
metic and can therefore be executed on implicitly represented arguments. The
second step is to solve the separated system of implicitly represented polynomi-
als by Berlekamp’s method for univariate polynomials. The complexity of the
computations is polynomial if n = O(1).

We conclude that the subgroup H of F3. of order &,(p), n = O(1), is
applicable in Theorem 6 if it has smooth order. For example, smoothness of
Ps(p) = p> —p+1, $3(p) = p* + 1, or S9(p) = p® + p* + 1 implies that an
appropriate group H, over GF(p) is constructable. As mentioned, this is now
proved for F(p) for any non-trivial polynomial F(z) dividing 2™ —1 if n = O(1).
Other examples are the alternating sums p?! —p?~14+—...—p4+1 when I = O(1).

3.5 The Main Equivalence Result

Corollary 7 Let G be a cyclic group with generator g, and let B be a smooth-
ness bound, polynomial in log|G|. Then there exists a list of expressions A(p) in
p with the following property: if for every prime factor p of |G| greater than B, at
least one of the expressions A(p) is B-smooth, then breaking the Diffie-Hellman
protocol in G with respect to g is polynomial-time equivalent to computing dis-
crete logarithms in G to the base g. (In the case of a multiple large prime factor
p of |G|, the equivalence holds with respect to breaking the DH protocol in one of
a certain subset of subgroups of G, or if an algorithm for computing p-th roots
in G is given.) The list contains the following expressions:

p=1p+1,
p+1+2a, p+1+2b,
if p=1 (mod 4), where p=a® + b and a + bi =1 (mod 2 + 2),
p+1+2a, p+1Fa+t2b, p+1+t(a+bd),
if p=1 (mod 3), where p=a® —ab+b? and a + bw = 2 (mod 3),

@) -1 _

pk_l (pk)l71+___+pk+1,

where k,l = O((logp)©) and ¢ = O(1), and &, (p), where n. = O(1) and P, is the
n-th cyclotomic polynomial. O

4 Construction of Secure Diffie-Hellman Groups

It appears desirable to use a group G in the DH protocol for which the equiva-
lence to computing discrete logarithms can be proved. However, such reasoning
should be used with care because it is conceivable that knowledge of the auxil-
iary groups makes computing discrete logarithms easier. There are three possible
scenarios for such an equivalence:

1. When given G it is easy (also for an opponent) to find suitable auxiliary
groups.

2. The designer of the group G knows suitable auxiliary groups but they are
difficult to find for an opponent.

3. The designer of the group G knows that suitable auxiliary groups exist,
without knowing them.

In the first case the equivalence holds, whereas in the other two cases breaking
the DH protocol is at least as difficult as computing discrete logarithms when the
auxiliary groups are known. Note that the second case can always be transformed
into the first by publishing the suitable auxiliary groups. Of course, because this
information can only help an opponent in breaking the Diffie-Hellman protocol,
there is no reason for the designer of the group to make it public.

Constructing a group G of the third type is trivial: choose a (secret) arbitrary
large smooth number m and search for a prime p in the interval [m — 2v/m +
1,m + 2y/m + 1]. A group G whose order contains only such large prime factors
satisfies the third property. Note that it is easy to construct, for a given n, a
DH-group G whose order is a multiple of n. One possibility is to find a multiple
I of n (where I/n is small) such that [+ 1 is prime and to use G = GF(l + 1)*.
An alternative, which may be more secure, is to use the construction of Lay and
Zimmer [10] for finding an elliptic curve of order n.

The second case is somewhat more involved. Such a group G can be obtained
by choosing a large smooth number m and using the method of Lay and Zimmer
[10] for constructing a prime p together with an elliptic curve of order m.

We now consider efficient constructions for the first case. We generalize a
method, presented in [20] by Vanstone and Zuccherato, for constructing a large
prime p such that either a quarter of the curves y2 = 23 — Dz or every sixth
curve of the form y? = z® + D have smooth order. We show how to construct
primes p = a? + (k &+ 1)? (for a fixed k with [digits) such that a? + k2, which is
then one of the possible orders of the curves y? = 2° — Dz over F,, (see Section
3.3), is smooth. First, I'-digit numbers z1, x2, y1, and y2 are chosen at random.
Define u + vi := (1 + y17)(z2 + y21), that is u = 122 — Y1y2, v = T1Y2 + T2Y1-
uw and v have approximately 20’ digits. If gcd(u,v) divides k (otherwise choose
again), one can compute numbers ¢ and d (of at most 2!’ + [digits) such that
cv + du = k. Define a := cu — dv, and restart the process if a is even. Then
a+ ki = (c+di)(u+vi) = (c+ di)(z1 + y19) (z2 + y21). The process is repeated
until a® + k2 = (® + d?)(2? +y?) (22 + y2) is s-digit-smooth, which happens with
probability approximately ((41' + 21)/s)~(*4'+2D/s . (21’ [s)=2'/s . (21" [s) =2 /5.
This follows from the fact that for every fixed u, 9 (n,n'/%)/n = u~0+o@)u,
where 1(n,y) denotes the number of integers < n with no prime divisor > y
(see [4]). Smoothness can be tested with the elliptic curve factoring algorithm
[11]. Because a and k are odd, exactly one of the expressions a + (k £ 1) is
congruent to 1 modulo 2 + 2i. Let a := a + (k £ 1)i, respectively. Repeat the
computations until p := a@ = a® + (k£ 1)? is prime. According to Section 3.3, a
quarter of the curves y? = 2% — Dz over F), have smooth order a® + k?. Hence p
is an (81’ + 21)-digit prime such that an elliptic curve with s-digit-smooth order
is constructable over F),. The expected number of trials is

()) o

4’ 421

Al 421\
o (*57)
S

In a similar way, primes can be constructed such that curves of type y2 =
z® + D have smooth order (see [21] for a detailed description). More precisely,
we generate primes p = a2 —a(k+1)+ (k+1)? (where a+ (k+1)w = 2 (mod 3))
such that a? — ak + k2, which is one of the orders of the curves y? = x> + D over
F,, is s-digit-smooth. The expected number of repetitions is again given by (2).

In case of a small k, an L-digit prime p such that an s-digit-smooth curve is
constructable over F,, can be found by O((L/(v/8 - s))*/% - L) trials instead of
O((L/s)*™/s-L) trials when varying p among L-digit numbers until p is prime and
one of the considered curves is s-digit-smooth. For example, a 100-digit prime
p such that a 10-digit-smooth curve over F), is efficiently constructable can be
found by approximately 3 - 10 trials (instead of about 10! trials when using
the straightforward strategy).

5 Concluding Remarks

Our results imply that the DH problem is at least as difficult as the DL problem
with knowledge of suitable auxiliary groups. Although it appears unlikely, it is
possible that this knowledge helps computing discrete logarithms.

Throughout this paper, we have assumed that the group order and its factor-
ization are known. This is the case in most known applications. It is conceivable
that knowledge of |G| could be of some help in computing discrete logarithms.
For example, the algorithm of Pollard (see [15]) requires knowledge of the group
order. For the case of unknown factorization of the group order, note that in
some cases the parameters of a smooth auxiliary group H, allow to compute p.
If an appropriate multiplicative subgroup of an extension field of F, has smooth
order, then p can be found efficiently as a factor of |G| (see [2]). The parameters
A and B of a smooth elliptic curve over F, defined by y*> = 2® + Az + B do
generally not allow to find p efficiently by the method of [11], because no point
can be generated on the curve modulo |G|.

In [14] a method is described, presented initially in [21] and independently
considered in [3], for obtaining stronger results under the assumption of efficient
DH-oracle algorithms using algebraic operations for certain groups. For example,
a cyclic auxiliary group H), whose order contains a large prime factor ¢ and a
smooth auxiliary group H, over F, are sufficient under the assumption of a
polynomial-time DH-oracle algorithm for H), using algebraic operations in F,.
The idea is to execute the oracle algorithm on implicitly represented arguments.

Acknowledgments

We would like to thank Dan Boneh for interesting discussions related to the
subject of this paper, and an anonymous program committee member for helpful
comments.

References

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21

. L.M. Adleman and M.A. Huang, Primality testing and abelian varieties over finite

fields, Lecture Notes in Mathematics, vol. 1512, Springer-Verlag, 1992.
E. Bach and J. Shallit, Factoring with cyclotomic polynomials, Math. Comp.,
vol. 52, pp. 201-219, 1989.

. D. Boneh and R.J. Lipton, Algorithms for black-box fields and their application

to cryptography, preprint, 1995.

. E.R. Canfield, P. Erdés and C. Pomerance, On a problem of Oppenheim concerning

“Factorisatio Numerorum”, J. Number Theory, vol. 17, pp. 1-28, 1983.

B. den Boer, Diffie-Hellman is as strong as discrete log for certain primes, Advances
in Cryptology — CRYPTO ’88, Lecture Notes in Computer Science, vol. 403, pp.
530-539, Berlin: Springer-Verlag, 1989.

W. Diffie and M.E. Hellman, New directions in cryptography, IEEE Transactions
on Information Theory, vol. 22, no. 6, pp. 644-654, 1976.

K.O. Geddes, S.R. Czapor and G. Labhan, Algorithms for computer algebra,
Kluwer Academic Publisher, 1992.

K. Ireland and M. Rosen, A classical introduction to modern number theory,
Springer-Verlag, 1982.

N. Koblitz, Elliptic curve cryptosystems, Math. Comp., vol. 48, pp. 203-209, 1987.

. G.-J. Lay and H.G. Zimmer, Constructing elliptic curves with given group order

over large finite fields, preprint, 1994.

H.W. Lenstra, Jr., Factoring integers with elliptic curves, Annals of Mathematics,
vol. 126, pp. 649-673, 1987.

J.L. Massey, Advanced Technology Seminars Short Course Notes, pp. 6.66-6.68,
Ziirich, 1993.

U.M. Maurer, Towards the equivalence of breaking the Diffie-Hellman protocol
and computing discrete logarithms, Advances in Cryptology - CRYPTO ’94,
Y. Desmedt (ed.), Lecture Notes in Computer Science, Berlin: Springer-Verlag,
vol. 839, pp. 271-281, 1994.

U.M. Maurer and S. Wolf, On the complexity of breaking the Diffie-Hellman pro-
tocol, Tech. Rep. 244, Computer Science Department, ETH Zirich, April 1996.
(Accessible at http://www.inf.ethz.ch/publications/isc.html)

K.S. McCurley, The discrete logarithm problem, in Cryptology and computational
number theory, C. Pomerance (ed.), Proc. of Symp. in Applied Math., vol. 42, pp.
49-74, American Mathematical Society, 1990.

A.J. Menezes (ed.), Applications of finite fields, Kluwer Academic Publishers, 1992.
V. Miller, Uses of elliptic curves in cryptography, Advances in Cryptology -
CRYPTO ’85, Lecture Notes in Computer Science, Springer-Verlag, vol. 218,
pp- 417-426, 1986.

S.C. Pohlig and M.E. Hellman, An improved algorithm for computing logarithms
over GF(p) and its cryptographic significance, IEEE Transactions on Information
Theory, vol. 24, no. 1, pp. 106-110, 1978.

R. Schoof, Elliptic curves over finite fields and the computation of square roots
mod p, Math. Comp., vol. 44, No. 170, pp. 483-494, 1985.

S.A. Vanstone and R.J. Zuccherato, Elliptic curve cryptosystems using curves of
smooth order over the ring Z,,, Preliminary version, 1994.

S. Wolf, Diffie-Hellman and discrete logarithms, Thesis, March 1995.

