Towards Characterizing when
Information-Theoretic Secret Key Agreement is
Possible

Ueli M. Maurer and Stefan Wolf

Department of Computer Science
ETH Ziirich
CH-8092 Ziirich, Switzerland
E-mail addresses: {maurer,wolf}Qinf.ethz.ch

Abstract. This paper is concerned with information-theoretically se-
cure secret key agreement in the general scenario where three parties,
Alice, Bob, and Eve, know random variables X, Y, and Z, respectively,
with joint distribution Pxy z, for instance resulting from receiving a bi-
nary sequence of random bits broadcast by a satellite. We consider the
problem of determining for a given distribution Pxyz whether Alice
and Bob can in principle, by communicating over an insecure channel
accessible to Eve, generate a secret key about which Eve’s information is
arbitrarily small. The emphasis of this paper is on the possibility or im-
possibility of such key agreement for a large class of distributions Pxyz
more than on the efficiency of the protocols. When X, Y, and Z are
arbitrary random variables that result from a binary random variable
being sent through three independent channels, it is shown that secret
key agreement is possible if and only if I(X;Y|Z) > 0, i.e., under the
sole condition that X and Y have some (arbitrarily weak) statistical de-
pendence when given Z.
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1 Introduction

Information-theoretically secure key agreement has recently attracted much at-
tention in research in cryptography [9],[3],[7],[1],[5]- Two of the approaches that
have been considered are based on quantum cryptography (e.g., see [1]) and on
the exploitation of the noise in communication channels. In contrast to quantum
cryptography, which is expensive to realize, noise is a natural (and usually annoy-
ing) property of every physical communication channel. This paper illustrates
that noise in communication channels can be used for unconditionally secure
secret key agreement and, furthermore, that it is advantageous to combine error
control coding and cryptographic coding in a communication system.

We consider the classical cryptographic problem of transmitting a message
M from a sender (referred to as Alice) to a receiver (Bob) over an insecure



communication channel such that an enemy (Eve) with access to this channel
is unable to obtain useful information about M. In the classical model of a
cryptosystem (or cipher) introduced by Shannon [8], Eve has perfect access to
the insecure channel; thus she is assumed to receive an identical copy of the
ciphertext C' received by the legitimate receiver Bob, where C' is obtained by
Alice as a function of the plaintext message M and a secret key K shared by
Alice and Bob. Shannon defined a cipher system to be perfect if I(M;C) = 0, i.e.,
if the ciphertext gives no information about the plaintext or, equivalently, if M
and C are statistically independent!. When a perfect cipher is used to encipher
a message M, an enemy can do no better than guess M without even looking at
the ciphertext C'. Shannon proved the pessimistic result that perfect secrecy can
be achieved only when the secret key is at least as long as the plaintext message
or, more precisely, when H(K) > H(M).

For this reason, perfect secrecy is often believed to be impractical. In [7]
this pessimism has been relativized by pointing out that Shannon’s apparently
innocent assumption that, except for the secret key, the enemy has access to
precisely the same information as the legitimate receiver, is very restrictive and
that indeed in many practical scenarios, especially if one considers the fact that
every transmission of data is ultimately based on the transmission of an analog
signal subject to noise, the enemy has some minimal uncertainty about the signal
received by the legitimate receiver(s).

Wyner [9] and subsequently Csiszar and Korner [3] considered a scenario in
which the enemy Eve is assumed to receive messages transmitted by the sender
Alice over a channel that is noisier than the legitimate receiver Bob’s channel.
The assumption that Eve’s channel is worse than the main channel is unrealistic
in general. It was shown in [7] that this assumption can be unnecessary if Alice
and Bob can also communicate over a completely insecure (but authenticated)
public channel.

For the case where Alice, Bob, and Eve know the random variables X, Y,
and Z, respectively, with joint distribution Pxy z, the rate at which Alice and
Bob can generate a secret key by public discussion over an insecure channel is
defined in [7] as follows.

Definition 1. The secret key rate of X and Y with respect to Z, denoted by
S(X;Y|2), is the maximum rate at which Alice and Bob can agree on a secret
key S such that the rate at which Eve obtains information about S is arbitrarily
small. In other words, it is the maximal R such that for every € > 0 and for
all sufficiently large N there exists a protocol, using public discussion over an
insecure but authenticated channel, such that Alice and Bob have the same key
S with probability at least 1 — g, satisfying

1 1
NI(S;UZN)SE and  ZH(S)>R-¢,

! We assume that the reader is familiar with the basic information-theoretic concepts.
For a good introduction we refer to [2].



where U denotes the collection of messages sent over the insecure channel by
Alice and Bob, and ZV =[Zy,...,ZxN].

The following lower and upper bounds for the secret key rate are proved in [7]:
max{I(X;Y) - I(X; 2), I(Y; X) - I(Y; Z)} < S(X;Y|Z) ,
< S(X;Y(|Z2) min{I(X;Y), I(X;Y(Z)} . (1)

As already mentioned, it was shown by an example in [7] that the secret key
rate S(X;Y||Z) can be strictly positive even in the case where both I(X;Z) >
I(X;Y) and I(Y;Z) > I(Y;X) hold. In this example a satellite broadcasts
(symmetrically distributed and independent) random bits to Alice, Bob, and
Eve over independent binary symmetric channels with bit error probabilities
20%, 20%, and 15%, respectively.

In this paper, we consider the general scenario of three arbitrary independent
memoryless discrete binary-input channels and prove that the secret key rate
S(X;Y||Z) is strictly positive unless Eve’s channel is perfect or X and Y are
independent. In other words, Alice and Bob can generate a secret key as long
as they both receive an arbitrarily small but positive amount of information
about the satellite signal and Eve has an arbitrarily small but positive amount
of uncertainty about the satellite signal. For instance, even if Alice’s and Bob’s
error probabilities are close to 50% and Eve’s error probability is close to 0 in
the case of binary symmetric channels, secret key agreement is possible. Similar
to the general channel coding problem, where the existence of very good codes
is known but no specific example has so far been constructed, the protocols for
secret key agreement described here are not efficient in general. More efficient
protocols for special cases are described in [6].

2 The Scenario and the Main Result

Let R be an arbitrary binary random variable, and let X, Y, and Z be arbitrary
discrete random variables, generated from R by independent channels C4, Cp,
and CE, i.e.,

Pxyzir =Px\ir- Pvir  Pzr - (2)
In other words, X, Y, and Z are statistically independent when given R. This
scenario is illustrated in Figure 1. The following is a different but equivalent char-
acterization for our scenario. There exist 0 < A < 1 and probability distributions
Py, PP, PP, PP, PV, and PP such that

Pxyz=A-PY PP . PM 4+ (1-x)-PY - PP . PP,

i.e., Pxyz is the weighted sum of two “independent distributions” of XY Z. The
results of this paper hold for all distributions with this property.

We assume in the following that the distribution Pxy zg is publicly known.
The main result of this paper is the following theorem which characterizes com-
pletely the cases for which S(X;Y||Z) > 0, i.e., for which secret key agreement
is possible in principle.



Fig. 1. The scenario of three independent channels

Theorem 2. Let R be a binary random variable, and let X, Y, and Z be discrete
random variables (with ranges X, Y, and Z, respectively), generated from R by
independent channels, i.e., Pxy z|g(2,y,2,7) = Px|g(z,7)-Py|r(y,7) Pz r(2,7)
forallz e X, ye€ )Y, z€ Z, and r € {0,1}. Then the secret key rate is strictly
positive, i.e., S(X;Y||Z) > 0, if and only if I(X;Y|Z) > 0.

Up to now it has been completely open whether this condition was sufficient.
The necessity of the condition follows immediately from the upper bound in (1).
The proof of Theorem 2 is subdivided into several steps stated below as lemmas.
We begin with the special case where R is a symmetric binary random variable
and all three channels are binary symmetric. This special result is not necessary
for the proof of Theorem 2, but we show it in order to present the considered
protocol and some estimates that will be useful later.

3 The Binary Symmetric Scenario

Let Pr(0) = Pgr(1) = 1/2 and consider three binary symmetric channels Cy4,
CBp, and Cg with bit error probabilities a, 8, and &, respectively, i.e., we have

Pxr(0,0)=1-a, Pyg(0,0)=1-0, and Pgg(0,0)=1-c¢,

where 0 < <1/2,0<3<1/2,and 0 <e <1/2.

Alice can send a randomly chosen bit C' to Bob by the following protocol,
which was already presented in [7]. Let N be fixed. Alice sends [C & X;1,C @
Xa,...,C®Xn] over the public channel. Bob computes [(C®X1)®Y1,...,(C®
Xn)®Yn] and accepts exactly if this is equal to either [0,0,...,0] or [1,1,...,1].
In other words, Alice and Bob make use of a repeat code of length N with the
only codewords [0,0,...,0] and [1,1,...,1]. Eve on the other hand can compute
[(CoX1)® Z1,...,(C®XN)® Zn].



We show first that for all possible choices of «, 3, and ¢, in particular even
if Eve’s channel is superior to both Alice’s and Bob’s channel, Eve’s error prob-
ability vy about the bit sent by Alice when using the optimal strategy for
guessing this bit grows asymptotically faster than Bob’s error probability Gy for
N — o0, given that Bob accepts. (Note that vy is an average error probability,
and that for a particular realization, Eve’s error probability will typically be less
or greater than yy.)

Lemma 3. For the above notation and assumptions, there exist b and ¢, b < ¢,
such that Bx < bN and vy > cV for sufficiently large N.

Proof. We can assume that a = 3, i.e., that Alice’s and Bob’s channels are
identical. If for example a < 3, Alice can cascade her channel with another
binary symmetric channel to obtain error probability 8. This additional channel
must be binary symmetric with error probability (8 — a)/(1 — 2a). (In a final
paper we will show that in this scenario, it is not necessary to assume a = 3.)

As in [7], let a,s (r,s € {0,1}) be the probability that the single bit 0 sent
by Alice is received by Bob as r and by Eve as s. Then

ag = (1 —a)?(1—¢) +a’e,
(1-a)’e+a?(1-¢),

apg=a11 =a(l —a) .

Qo1 =

Let pa, v be the probability that Bob accepts the message sent by Alice. Then

1 1
BN = . (0&10 + Oéu)N = . (2a - 2a2)N ,
pa,N pa,N

1 1 N
W25 pan (N/2> ad gy’ 3)
(we have assumed without loss of generality that IV is even). The last expression
is half of the probability that Bob receives the correct codeword and Eve receives
the same number of 0’s and 1’s, given that Bob accepts. This is one of N/2
positive terms in ~y, and hence clearly a lower bound. Note that (3) gives a
lower bound for Eve’s average error probability when guessing C for all possible
strategies because in this symmetric case, half of the guesses will be incorrect.
Stirling’s formula (see for example [4]) states that n!/((n/e)™ - v/2mn) — 1
for n — oo, and thus we have for sufficiently large even N

(N)_ N! 1 NN -\2rN-eN 1 v
- 5 :

N/2 25 N (N/2)N 7N~ \2rN

(V/2)1)2 @

Hence

c (2 N
2N \/04000401N = : 4( V@000o1)
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2 Da,N 2n N B \/N Da,N




for some constant C, and for sufficiently large N. For 0 < & < 1/2 we have

Vagoaor = /(1 —2a+ a® — € + 2ae)(a® — 20e +¢€) > a — o’ (5)

For € = 0 equality holds in (5), and for € > 0 the larger factor of the product is
decreased by the same value by which the smaller factor is increased. Thus the
product is greater. (For € = 1/2 the factors are equal, and the left side of (5) is
maximal, as expected.) Because

(1-20+20°)" < pon = (1-20+20°)N +(2a-20")" < 2:(1-2a+20)", (6)

we conclude that By < bY and vy > ¢V, for some ¢ > b, and for sufficiently
large N. |

The fact that Eve has a larger error probability than Bob when guessing C'
does not automatically imply that Eve has a greater uncertainty about this bit
in an information theoretic sense, and that S(X;Y||Z) > 0. The next lemma
shows that the result of Lemma 3 is sufficient for a positive secret key rate. It
will also be used in the proof of Theorem 2.

Lemmad4. Let X, Y, and Z be arbitrary random variables, and let C' be a bit,
randomly chosen by Alice. Assume that for all N, Alice can generate a message
M from XN (where XV = [X1,...,Xn]) and C (and possibly some random bits)
such that with some probability py > 0, Bob (who knows M and Y) publicly
accepts and can compute a bit C' such that Prob[C # C'] < bV for some b > 0.
If in addition, given that Bob accepts, for every strategy for guessing C when
given M and ZN the average error probability vy is at least ¢ for some ¢ > b
and for sufficiently large N, then S(X;Y||Z) > 0.

Proof. According to the first inequality of (1) is suffices to show that Alice and
Bob can, for some N, construct random variables X and Y from XV and YV
by exchanging messages over an insecure, but authenticated channel, such that

IX;V)-I(X;2) >0 (7)

with Z = [ZN, U], where U is the collection of all messages sent over the public
channel.
Let X and Y be defined as follows. If Bob accepts, let X = C and Y = ',

and if Bob (publicly) rejects, let X = ¥ =“reject”. We show that (7) holds for
sufficiently large N. If Bob accepts then

H(C|C") < h(®N) <26 -log, (1/6V) = 207 - N -log, (1/b) <

for sufficiently large N (where h(p) = —plog, p— (1 —p) log,(1 —p) is the binary
entropy function, the first inequality follows from Jensen’s inequality, and the



reason for the second inequality is that —plog,p > —(1 — p)log,(1 — p) for
p<1/2), and

H(C|IZ)= ). Py(2)-H(C|Z=2) = Eylhlpy )] > Eylpy 7] = >,
2€ZN xM

where pg ; is the probability of guessing C' incorrectly with the optimal strat-

egy (i-e., pg: < 1/2), given that Z = 4. Given that Bob publicly rejects, we

have fI(X'DA’)A = H(X|Z) = H(X'|U) = 0. From py > 0 we conclude that

I(X;Y)-I(X;Z) >0. O

4 From the Special to the General Scenario

First we show that the above results hold even when Eve knows R precisely with
a certain probability smaller than 1. This is the case if Z is generated from R
by a binary erasure channel instead of a binary symmetric channel, i.e., if Z is
either equal to a special erasure symbol A, or else Z = R.

Lemma5. Let in the scenario of Lemma 8 (with respect to R, X, andY ) a = f8
hold, and let Z be generated from R by a (possibly asymmetric) binary erasure
channel (with erasure symbol A) C3%,, independent of the pair (C4,Cg), and with
transition probabilities Py p(A,0) = g > 0, Pz g(0,0) = 1 -6, Pz r(4,1) =
01 >0, and Py g(1,1) = 1 —6,. Then the statement of Lemma 3 also holds.

Proof. We show first that we can assume without loss of generality that C7; is
symmetric. Let §p < &1, and let an oracle be given that tells Eve the correct bit
R with probability (61 —dg)/d1 if R = 1 and Z = A. The additional information
provided by this oracle cannot increase Eve’s error probability. The random
variable Z, together with the oracle, is equivalent to a random variable generated
from R by a symmetric binary erasure channel with erasure probability dg =: 9,
and which is independent of the pair (C4,CB).

Let 0 < p < {0,1 — 4}. For sufficiently large N, the probability that Eve
knows an even number of bits which lies between (1 —§ —p)N and (1—48 + p)N
out of N bits is at least 1/3. Assume without loss of generality that N and
(1 =48 — p)N are even integers. We give a lower bound for Eve’s average error
probability vy about the bit sent by Alice, given that Bob accepts. As in the
proof of Lemma 3, we obtain a lower bound for vy by taking a (small) part of
all positive terms in -y, and again, this is a lower bound for any strategy for
guessing the bit sent by Alice. We have

1 1-2a+24)N 1 ((1-6-pN
YN Z — . . — . .
2 Pan 3 \(1-0-p)N/2
o (1- 04)2 ](176+p)N/2[ o’ ](176+p)N/2
(1-a)?+a? 1-a)?+a?
Z l . 1 . 1 . 1 . [(1 — 20+ 2a2)5—p21—5—p(a _ a2)1—6+p]N
2 pan 3 2r(1-6-—p)N



for sufficiently large N. Here, we made use of (4). The first expression is 1/2
times a lower bound for the probability that Bob receives the correct codeword,
that Eve knows an even number of bits which lies between (1 — § — p)N and
(1—8+4+p)N, and that she receives the same number of 0’s and 1’s in her reliable
bits, given that Bob accepts. The expressions (1 — a)?/((1 — @)% + @?) and
a?/((1 — @)? + a?) are the probabilities that R = X and R # X, respectively,
given that X =Y. Bob’s error probability, given that he accepts, is, like before,
Bn = (2a — 2a2)N /p, . For sufficiently small (positive) p we have

(1 —2a+2a2)°7P21 797 (a — )1 7%FF > 2a — 207

because § > 0 and 1 — 2a + 2a® > 2a — 2a?. Considering (6), the lemma is
proved. m|

The next generalization step shows that the condition Pr(0) = Pgr(1) = 1/2
is unnecessary. It is shown that an “appropriate” situation with an asymmetric
binary random variable R can be transformed into a different “appropriate” sit-
uation with a symmetric binary random variable R. The situation discussed in
Lemma 6 is illustrated in Figure 2.

Lemma6. Let R, X, Y, and Z be as in Lemma 5, with the only exception that
Pr(0) is not necessarily 1/2, but 0 < Pg(0) < 1. Then there exist binary random
variables X, Y, Z, and R such that X and Y can be obtained from X and Y,
respectively, and such that X, Y, Z, and R satisfy similar properties as X, Y,
Z, and R with the exception that R is symmetric. More precisely, the following
statements hold:

1. X and Y can be seen as generated from R by identical binary symmetric
channels C ‘A and CB with error probability & < 1/2.

2. The random variable Z can be seen as generated from R by an erasure chan-
nel CE, independent of the pair (C’A,C'B), with erasure probabilities dy,0; > 0
such that Z = A only if Z = A, i.e., we have Z = R unless Z provides no in-
formation about R and R. (Equivalently we could say that Z gives ezactly the
same information about R as Z together with some additional information
that can be thought as provided by an oracle.)

3. The binary random variable R is (in contrast to R) symmetric, i.e., P5(0) =
Pz(1) =1/2.

Proof. Let without loss of generality s := Pg(0) > 1/2. Let the binary random
variable R be generated from R by the following channel:

1 1
PR|R(0;0):2_S; PR|R(1’0)=1_2_3’ PR|R(1’1)=1

It is obvious that P (0) = Pg(1) = 1/2. We have
PX\R(()’O) =2- PXR(()’O) =2- (PXRR(()’O’O) + PXRR(()’ 1,0)) =1—-«

PXIR(L 1) =2 PXR(la 1) =2 (PXRR(laoa 1) + PXRR(L 1, 1))
=2-3a—2s+4as
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Fig. 2. The scenario described in Lemma 6

and hence
PX‘R(O,O)—FPX‘R(I,I)=1—|—(1—S)(2—4a) >1. (8)

Alice can now cascade the (virtual) channel that generates X from R with the
following additional channel such that the cascade of the two channels is binary
symmetric with crossover probability less than 1/2 :

Pya(0,0) — Py (1, 1)
PXlﬁ(O’ 0) + PX|R(O’ 1) ’

PX|X(131):1 .

PX|X(170) =

Pgx(0,0) =1— Pg 1 (1,0),

The cascaded channel that generates X from R is binary symmetric with error
probability

1—PX‘1-2(1,1) - 1
1= Py g(1,1) + Py (0,0) ~ 2

a =

because of 1—Py 5(1,1) < Py 3(0,0), which is equivalent to (8). Bob can make
an analogous cascade. ~ B

It is obvious that the independence and equivalence of C4 and Cg follow from
the same properties of C4 and Cp. Finally, let Z be equal to R unless Z = A,



in which case Z = A. It is obvious that Z has all the required properties. O

5 The General Scenario

We now consider the general scenario of random variables R, X, Y, and Z as
described in Theorem 2. The following lemma states equivalent characterizations
of the condition I(X;Y|Z) > 0.

Lemma 7. Under the assumptions of Theorem 2, the following three conditions
are equivalent:

(1) I(X;Y]|Z) > 0.
(2) I(X;R) >0, I(Y;R) >0, and H(R|Z) > 0.
(8) 0 < Pg(0) < 1, there exist x,x' € X such that
Px gr(z,0) > Px|r(x,1) and Pxg(z',0) < Pxg(a',1), 9)
there exist y,y' € YV such that

Py r(y,0) > Py|g(y,1) and Py g(y',0) < Pyr(y',1) , (10)
and there exists z € Z such that
Pz(z) >0 and 0< Pgz(0,2)<1. (11)

Proof. First we give an alternative characterization of the independence of the
three channels, i.e., of Pxyz/r = Px|r- Py|r" Pz r- (We sometimes omit all the
arguments of the probability distribution functions. In this case the statements
hold for all possible choices of arguments. For example, Px|y = Px stands for
Px|y(z,y) = Px(x) for all z € X and y € ).) From

Pyzr = ZPXYZ|R= ZPX\R'PY|R'PZ|R =Pyr- Pzr
reX TzEX

and
Pr-Pyzr-Pxyyzr = Pxvzr = Pr-Px gr- Py|r- Pzr
we conclude that Px|yzgr = Px|r and, analogously, that Py xzr = Py|r and

Pz xyr = Pz|r-

(1) implies (2). Let I(X;Y|Z) > 0. Assume I(X;R) = 0. Then Px|yzr =
Px|r = Px, and X is also independent of Y'Z (and hence of Z). Thus

I(X;Y|Z)= H(X|Z)- H(X|YZ) = H(X) - H(X) =0,

which is a contradiction. We conclude that I(X; R) > 0 and by a symmetric ar-
gument that I(Y; R) > 0. The fact that H(R|Z) > 0 follows from I(X;Y|Z) >0



and I(X;Y|R) = H(X|R)—H(X|YR) = 0, which holds because Px|yr = Px|g-

(2) implies (8). Let I(X;R) > 0, that is X and R are not statistically inde-
pendent, which implies that there exist z,z' € X such that (9) holds. Similarly
we conclude the existence of appropriate y and y' from I(Y; R) > 0. Finally,
Ppz(0,2) € {0,1} for all z € Z with Pz(z) > 0 would imply that H(R|Z) = 0.
Hence (11) holds for some z € Z.

(8) implies (1). It suffices to prove that I(X;Y|Z = z) > 0 because Pz(z) > 0.
This is equivalent to the fact that X and Y are not statistically independent,
given Z = z. We show that

Px|yz(z,y,2) > Pxyz(2,y',2) - (12)
For both ¥ = y and § = ¢', we have
Px|yz(2,7,2) = Px\r=0(%) - Priyz(0,¥,2) + Px|r=1(2) - Priy2z(1,7,2) -
Because Px|p—o(z) > Px|gr=1(z), (12) holds if
Privz(0,y,2) > Priyz(0,y',2) - (13)
Using Pgjyz = Py|r - Prz/(Py|z - Pz), (13) follows from
Py p—o(y) - [Py|r=0(¥') - Priz—:(0) + Py|p—1(y') - Prjz—-(1)] > ...

... > Py|p=o(y) - Py|r=o(y') > ...
... > Pyip—o(y) - [Py\r=0(¥) - Priz—:(0) + Py|p—1(y) - Priz—-(1)] .  (14)

Both inequalities in (14) follow from the fact that 0 < Pgjz—.(0) < 1, and be-
cause of (10). O

We are now ready to prove Theorem 2.

Proof of Theorem 2: We will show that even if Alice’s and Bob’s channels are
completely general memoryless discrete binary input channels with more than
two output symbols, the output random variables X and Y can be transformed
into binary random variables X and Y which can be considered as resulting
from R by transmission over two independent binary symmetric channels with
crossover probabilities < 1/2. More precisely, Alice and Bob both receive such
random variables with positive probability.

According to Lemma 7, we can assume that X and Y are binary random
variables with X = {z,2'} and YV = {y,y'}: Alice and Bob publicly reject a
realization if X ¢ {z,2'} or if Y & {y,9'}. Let a; := Px g(2,0) > Pxg(z,1) =:
as, and we assume without loss of generality that a1 +as < 1 (otherwise exchange
z and z'). We now define a new binary random variable X, generated from X
by the following channel:

1 1
Pz x(0,2) = Ps (1 =1- P
x(0:2) ar +ay’ (1,2) ar +as’ XX

X 1x (1,z)=1.



We then have

a2 1
1-— a1 +1-(1—a1) = <=z,
( a1+a2) ! ( 1) ap + as 2

and

as 1
< =.
a1 + ao 2

Pz p(0,1) = Pgx(0,2) - Px|r(z,1) + Pylx(o,m') - Px|g(z',1) =
Hence the channel PX| g is binary symmetric, with error probability

as 1
< =.
a1 + as 2

(Note that this is the optimal result that can be obtained by such a cascade.)
The analogous cascade can be made for Y. As in the proof of Lemma 3, we can
assume that Alice’s and Bob’s channels are identical. Otherwise Alice (or Bob)
can cascade her (his) channel with a further channel to obtain a channel with
the (desired) greater error probability.

According to Lemma 7 again, there exists z € Z such that (11) holds. Sup-
pose that Eve knows the bit R unless Z = z (an oracle that tells Eve the bit R
if Z # z cannot increase her error probability). The resulting situation is equiv-
alent to the one where Eve’s channel is an erasure channel with some (positive)
erasure probabilities dg and 1, and such that the channels of Alice, Bob, and
Eve are independent, and is illustrated in Figure 3. The probability that Alice
and Bob accept N consecutive realizations of X and Y is strictly positive for
every N. Lemmas 6, 5, and 4 now imply that S(X;Y||Z) > 0. Note that in this
application of Lemma 4 the event that Bob accepts means that Alice and Bob
both accept a sufficiently large number N of consecutive realizations of X and
Y (if Alice does not accept, she sends M =*“reject” over the public channel), and
that Bob accepts the received message sent by Alice. |

Remark: Instead of our stepwise approach, the proofs of Lemma 6 and Theo-
rem 2 can be combined to a slightly shorter and more direct argument.

The condition that R is a binary random variable is crucial in Theorem 2.
To see this, consider the following scenario: R is uniformly distributed in R :=
{700,701, 710,711}, and X, Y, and Z are binary random variables, generated from
R by the following independent channels (let § be the Kronecker symbol, i.e.,
d;; = 1if i = j, and otherwise d;; = 0):

Px\r(®,7i5) = 02i , Py|r(Y;7ij) = 0yj , Pzir(2,7ij) = 0z,i0;5 -

Note that for all r € R, Z = X @Y, that is I(X;Y|Z) = 1. On the other hand
I(X;Y) =0, and hence S(X;Y||Z) = 0.



|
y
>
y
Q
=
Q
%
A
e
Y
=

additional information —>

Eve

Fig. 3. The situation in the proof of Theorem 2

6 Concluding Remarks

We have derived a simple characterization of whether information-theoretic se-
cret key agreement is possible in the case of discrete random variables X, Y,
and Z that are generated from a binary random variable sent over three in-
dependent noisy channels. The general scenario of arbitrary random variables
is more complicated. One can state conditions for both S(X;Y||Z) > 0 and
S(X;Y]|Z) = 0, but an exact characterization appears to be difficult. We only
mention here that in general the conditions I(X;Y) > 0 and I(X;Y|Z) > 0
together are not sufficient for achieving a positive secret key rate.

The presented protocols are computationally efficient, but they are not effi-
cient in terms of the size of the generated secret key. For special cases, e.g., for
the scenario of three binary symmetric channels, there exist protocols that are
much more efficient with respect to the effective key generation rate (see [6]).
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