
Single-key AIL-MACs from any FIL-MAC?

Ueli Maurer and Johan Sjödin??

Department of Computer Science
Swiss Federal Institute of Technology (ETH), Zurich

CH-8092 Zurich, Switzerland
{maurer,sjoedin}@inf.ethz.ch

Abstract. We investigate a general paradigm for constructing arbitrary-
input-length (AIL) MACs from fixed-input-length (FIL) MACs, define
the waste as the relevant efficiency parameter of such constructions, and
give a simple and general security proof technique applicable to very
general constructions. We propose concrete, essentially optimal construc-
tions for practical use, Chain-Shift (CS) and Chain-Rotate (CR), and
prove their security. They are superior to the best previously known
construction, the NI-construction proposed by An and Bellare: Only one
rather than two secret keys are required, the efficiency is improved, and
the message space is truly AIL, i.e., there is no upper bound on the
message length. The generality of our proof technique is also illustrated
by giving a simple security proof of the NI-construction and several im-
provements thereof.

Keywords: Message authentication code (MAC), arbitrary-input-length
(AIL), variable-input-length (VIL), fixed-input-length (FIL)

1 Introduction

1.1 Message Authentication Codes (MACs)

Authenticity is a fundamental security requirement for data transmissions. A
well-known technique for authenticating messages is to use a so-called message
authentication code (MAC), an important symmetric-key cryptographic primi-
tive with widespread use in many practical applications. A MAC is a function
family H := {hk : M → T }k∈K, where M is the message space, T the tag
space, and K the key space. Two communicating parties who share a secret key
k can authenticate a message m, sent over an insecure channel, by computing a
tag τ = hk(m), which is sent together with the message. The message need not
be encrypted. The receiver accepts the message if and only if the received pair
(m′, τ ′) satisfies τ ′ = hk(m′). We refer to hk as an instantiation of H .

The message space is an important parameter of a MAC scheme. In most
applications one needs to authenticate messages of potentially arbitrary-input-
length (AIL), i.e., M = {0, 1}∗. Many proposed MACs are not AIL-MACs since

? To appear in Proc. ICALP 2005, LNCS 3580, pp. 472-484. c© Springer-Verlag 2005.
?? This work was partially supported by the Zurich Information Security Center. It

represents the views of the authors.

there is an upper bound on the message length, i.e., the message space is the set
M = {0, 1}≤N of all bit strings of length at most N . We refer to such MACs
as having variable-input-length (VIL). The constant N is typically large enough
to be of little practical concern. A MAC which has M = {0, 1}L for a constant
L is referred to as having fixed-input-length (FIL). In this paper we address the
problem of constructing (VIL- and) AIL-MACs from any FIL-MAC.

1.2 Previous Work

Constructing VIL- or AIL-primitives from FIL-primitives have been addressed
in many papers. A well-known example is the Merkle-Damg̊ard [5, 7] iteration
method for constructing AIL collision-resistant functions from FIL collision-
resistant functions. The question of constructing VIL- or AIL- pseudo random
functions (PRFs) based on any FIL-PRF has received substantial attention, see
for example the CBC-MAC [4, 6, 10] and the XOR-MAC [3] (which are PRFs
and thus trivially also MACs). Other examples of AIL-MAC constructions are
the hash function-based MACs like NMAC and HMAC [2].

A central goal in cryptography is to prove the security of cryptographic
schemes under as weak assumptions as possible. In the context of constructing
VIL- or AIL-MACs, a natural assumption (much weaker than the PRF assump-
tion) is that the underlying FIL-primitive is a secure FIL-MAC. In 1997 Naor
and Reingold [8] constructed a FIL-PRF from any FIL-MAC, but with high cost.
While this FIL-PRF could in principle be used in some well-known construction
of an AIL-MAC from any FIL-PRF (e.g. the CBC-MAC), it would be imprac-
tical. Their question whether a FIL-PRF can be obtained from any FIL-MAC
at low cost is still open to date. In 1999 the problem of constructing VIL-MACs
from FIL-MACs was proposed and investigated by An and Bellare [1]. They
showed that the CBC-MAC is insecure under this weaker assumption for the
FIL-primitive. They also presented the nested iterated (NI) construction, the
first practical construction of a VIL-MAC based on any FIL-MAC (see Fig. 3).
As we will see, the NI-construction leaves room for improvements.

1.3 MAC Constructions and Important Design Criteria

Throughout this paper, let G := {gk : {0, 1}L → {0, 1}`}k∈{0,1}κ denote a FIL-
MAC, with compression b := L− ` > 0. We consider a general type of construc-
tion C·, which uses G to construct a MAC CG := {Cgk : M → {0, 1}`}k∈{0,1}κ ,
where M is either AIL (i.e., {0, 1}∗) or VIL (i.e., {0, 1}≤N). The instantiation
Cgk is constructed by invoking gk several times in a black-box manner. To be
more precise, let us describe the computation of the tag τ = Cgk (m) for an n-bit
message m. In a pre-processing step m is encoded into a bit string m′ of length
(denoted by) λ(n), for instance by padding m and appending information about
its length. The processing step is best described with a buffer initialized with
m′, where each call to gk fetches (and deletes) some L bits and writes back the
`-bit result to the buffer. This reduces the number of bits in the buffer (by b bits)
with each call to gk. As soon as the number of bits is less than L, the content

of the buffer is returned as the tag τ . To obtain an `-bit output, an appropriate
encoding is used such that λ(n) = t(n) · b + ` for some t(n). Note that t(n) is
exactly the number of calls to gk required to compute τ , and that τ is the last
output of gk. The function t(·) is referred to as the application function of C·. A
particular construction can thus be described by the encoding function mapping
m to m′ and by the scheme by which the L-bit blocks are fetched.

In a more general variant of such a construction, several (say 2) instantiations
gk1

and gk2
of G can be used to build an instantiation Cgk1

,gk2 of the MAC
CG,G := {Cgk1

,gk2 : M → {0, 1}`}k1,k2∈{0,1}κ (with key space ({0, 1}κ)2). The
only difference in the computation of the tag, described above, is that for each
L-bit block that is fetched, the instantiation to be invoked needs to be specified.
For such schemes ti(n) (with i ∈ {1, 2}) denotes the number of calls needed to
gki

in order to compute the tag of an n-bit message, and t(n) := t1(n) + t2(n).
Note that the key space of CG,G is twice the size of the key space of CG. We

refer to C· as a single-key construction and to C·,· as a 2-key construction. We
now discuss the main design criteria for the constructions:

Number of Keys: We will propose single-key constructions (like C·) for practical
use and see that there is essentially no reason for considering multiple-key
constructions (like C·,·).

Efficiency: The efficiency can be measured in the number of applications t(n)
of the FIL-MAC, or equivalently in terms of the waste w(n) := λ(n) − n =
t(n) ·b+`−n, i.e., the amount by which pre-processing expands the message.

Type of Processing: It is desirable that a message can be processed on-line, i.e.,
as the message bits arrive, without knowing the message length in advance.
Moreover, it is desirable that the computation of the tag τ can be paral-
lelized, i.e., sped up by a factor of roughly c (over the construction using one
processor) when c processors are available.

Message Space: As we will see, it turns out that no bound on the message
length is necessary, and therefore our focus is on AIL-MAC constructions.

1.4 Contributions of this Paper

The purpose of this paper is to investigate systematically a natural and general
paradigm for constructing (VIL- or) AIL-MACs from FIL-MACs, a problem
introduced by An and Bellare [1]. Our proof technique, applicable to a very
general type of construction, turns out to be insightful for constructing (VIL-
and) AIL-MACs from FIL-MACs. We propose concrete, essentially optimal AIL-
MAC constructions for practical use, Chain-Shift (CS) and Chain-Rotate (CR)
(see Fig. 1 and Fig. 2), and prove their security. They use a single key, have
constant waste, allow for on-line and parallel processing of the messages, and
their security reduction is essentially tight.

The only previously known (practical) VIL-MAC construction, the NI-
construction (see Fig. 3), uses two keys, has an upper bound of 2b on the message
length, and is not optimal in terms of the number of applications to the FIL-MAC
(especially not for short messages). In Sect. 4.2 we give a simple security proof
(using our proof technique) and several improvements of the NI-construction.

2 Preliminaries

2.1 Notation and Definitions

Let {0, 1}L denote the set of all bit strings of length L, {0, 1}≤N the set of all bit
strings of length at most N , {0, 1}∗ the set of all bit strings, and [n] := {1, . . . , n}
(with [0] := ∅). If M is a set, #M denotes its cardinality. For x, y ∈ {0, 1}∗,
let |x| denote the length of x (in bits), x‖y the concatenation of x and y, 〈n〉b
a b-bit encoding of a positive integer n ≤ 2b, x[i] the ith bit of x, and x[i, j] :=
x[i]‖x[i + 1]‖ · · · ‖x[j] for 1 ≤ i < j ≤ |x|. Furthermore, let RR(·) denote the
operator on bit strings that rotates the input by one position to the right, i.e.,
RR(x) := x[L]‖x[1, L− 1]. For a sequence S of elements, |S| denotes its length,
and Si the sequence of the first i ≤ |S| elements of S. An encoding σ : {0, 1}∗ →
{0, 1}∗ is called prefix-free if there are no three strings x, x′, y ∈ {0, 1}∗ such
that x 6= x′, |y| ≥ 1, and σ(x)‖y = σ(x′). A suffix-free encoding is an encoding
which becomes prefix-free if the bit-order of the output is reversed. A non-trivial
collision for a function f is a pair x 6= x′ of inputs for which f(x) = f(x′). If E
denotes an event, Ē denotes the complementary event.

2.2 Security Definition for MACs

A forger F for a MAC H := {hk : M → T }k∈K has oracle access to hk(·) (for
which k is chosen uniformly at random from K) and can thus learn the tag values
for some adaptively chosen messages m1, m2, It then returns a forgery (m, τ),
i.e., a message m together with a tag τ . The forger F is considered successful
if hk(m) = τ . The only constraint on m is that it must be new, i.e., different
from all previous messages m1, m2, We refer to a forger F of this kind as a
(ṫ, q, µ, ε)-forger, where ṫ, q, and µ are upper bounds on the running time, the
number of messages (or oracle queries), respectively the total length (in bits) of
the oracle queries including the forgery message m, and ε is a lower bound on the
success probability. Informally, a MAC is considered secure against existential
forgery under an adaptive chosen-message attack, if there is no (ṫ, q, µ, ε)-forger,
even for very high values of ṫ, q, and µ, and a very small value of ε. A forger for
a FIL-MAC will be denoted simply as a (ṫ, q, ε)-forger, since the parameter µ is
determined by q and the message-input-length L, i.e., µ = (q + 1)L.

To prove the security of a MAC based on a FIL-MAC one shows that the
existence of a (ṫ, q, µ, ε)-forger F for the MAC implies the existence of a (ṫ′, q′, ε′)-
forger F ′ for the FIL-MAC, where ṫ′, q′, and ε′ are functions of ṫ, q, µ, and ε.
In all our security proofs F is called only once by F ′. Therefore, the running
time of F ′ is essentially that of F , i.e., ṫ′ ≈ ṫ, with some small overhead that is
obvious from the construction of F ′. We will therefore not bother to explicitly
compute the running time of forgers, as this complicates the analysis unneces-
sarily without providing more insight. Therefore we drop the time parameter ṫ
in the sequel.

3 Single-key AIL-MACs Based on any FIL-MAC

3.1 FIL-MAC Forgers Based on an AIL-MAC Forger (Single Key)

Let F be a (q, µ, ε)-forger for a MAC CG, i.e., if k is chosen uniformly at random
from {0, 1}κ, and F is allowed at most q oracle queries to Cgk of total length
at most µ (including the length of the forgery message), then F returns a valid
forgery (m, τ) with probability at least ε. We refer to F ◦ Cgk as the process
in which F ’s queries to Cgk are computed and returned to F , and where F ’s
forgery (m, τ) is verified by computing Cgk (m). Let us consider the random
variables occurring at the interface to gk (in the process F ◦Cgk). Let zi denote
the ith input to gk and let yi := gk(zi). The sequences Z := (z1, z2, . . .) and
Y := (y1, y2, . . .) are thus naturally defined. Note that as soon as the key k and
the random coins of F are fixed, all values in Z and Y are determined, and
also whether F is successful or not. Let E denote the event that F is successful.
Without loss of generality we assume that F ’s forgery message m is distinct from
F ’s oracle queries. Thus E occurs if and only if Cgk (m) = τ .

A FIL-MAC forger F ′ for G simulates F ◦Cgk with the help of F and its oracle
access to gk. At some query zi to gk it stops the simulation and returns a forgery
(z′, τ ′) for gk (without making any other oracle queries to gk). Such a forger is
characterized by the moment it stops (i.e., i) and the way it produces its forgery.
We refer to this as the strategy s of F ′ and let F ′

s denote the corresponding forger.
The most simple strategy is the näıve strategy sna. F ′

sna
stops the simulation

of F ◦ Cgk at the very last query z to gk (i.e., z is the last entry in Z). Then it
returns (z, τ) as a forgery, where τ is the forgery tag of F ’s forgery (m, τ) for
Cgk . F ′

sna
is successful if the following two conditions hold. First, E occurs, i.e.,

Cgk (m) = τ (and thus gk(z) = τ by definition of C·), and second z is new, i.e.,
z is only the last entry in Z. Let Enew denote the event that z is new. Thus F ′

sna

is successful whenever E ∧ Enew occurs.
Imagine that there is a set S of strategies, such that whenever Ēnew occurs

there exists at least one strategy s ∈ S for which F ′
s is successful. We refer

to such a set S as complete for the construction. Obviously, the set S ∪ {sna}
has the property that whenever E occurs, there is at least one strategy s ∈
S ∪ {sna} for which F ′

s is successful. Thus an overall strategy of F ′ is to pick its
strategy uniformly at random from S ∪ {sna}. Its success probability is at least
the probability that E occurs divided by #S + 1, since the choice of strategy
is independent of E . As F ′’s number of oracle queries is |Z|, which is a random
variable, it is convenient to introduce the following function.

Definition 1. The expansion function e of a construction C· is defined as

e(q̃, µ̃) := max

{
q̃

∑

i=1

t(ni) : n1, . . . , nq̃ ∈ N0, n1 + · · · + nq̃ ≤ µ̃

}

,

where t(·) is the application function of C·.

It follows that |Z| ≤ e(q + 1, µ), since there are at most q + 1 queries of total
length at most µ to Cgk in F ◦ Cgk . In general #S is a function of e(q + 1, µ).

Proposition 1. The existence of a complete set S for a construction C· and a
(q, µ, ε)-forger F for CG implies the existence of a (q′, ε′)-forger F ′ for G, where
q′ = e(q + 1, µ) and ε′ = ε

#S+1 .

Proof. F ′ picks its strategy s uniformly at random from S∪{sna}. Let E ′ denote
the event that F ′ is successful, and let E and Enew be defined as above.

Pr [E ′]
︸ ︷︷ ︸

=: ε′

≥ Pr [E ′ | E ∧ Enew]
︸ ︷︷ ︸

≥ 1/(#S+1)

·Pr [E ∧ Enew]+Pr
[
E ′ | Ēnew

]

︸ ︷︷ ︸

≥ 1/(#S+1)

· Pr
[
Ēnew

]

︸ ︷︷ ︸

≥Pr[E∧Ēnew]

≥
Pr [E]

#S + 1
︸ ︷︷ ︸

= ε/(#S+1)

ut

3.2 Deterministic Strategies

An important class of strategies for F ′ are the deterministic strategies. A deter-
ministic strategy s is characterized by a pair (i, f), where i ∈ [e(q + 1, µ)] is an
index and f a function mapping (Zi,Yi−1) to some value ŷi ∈ {0, 1}` (which
can be seen as a prediction of yi). To be more precise, the corresponding forger
F ′

s stops (the simulation of F ◦Cgk) at query zi and returns (zi, ŷi) as a forgery.1

The forger is successful if ŷi = yi and if zi is new, i.e., not contained in the
sequence Zi−1. Next follow three particular sets of strategies, which will be used
in the sequel:

– Let si,y (with y ∈ {0, 1}`) denote the strategy of stopping at query zi and
returning (zi, y) as a forgery. Note that whenever the event occurs that gk

outputs y, i.e., when y is an entry in Y, then there is at least one strategy
s ∈ Sy := {si,y|i ∈ [e(q + 1, µ)]} for which F ′

s is successful. We have

#Sy = e(q + 1, µ). (1)

– Let scoll,i,j (with i > j) denote the strategy of stopping at query zi and
returning (zi, yj) as a forgery. Note that whenever a non-trivial collision for
gk occurs, i.e., α, β ∈ [|Z|] satisfying zα 6= zβ and yα = yβ, then there is at
least one strategy s ∈ Scoll := {scoll,i,j |i, j ∈ [e(q + 1, µ)], i > j)} for which
F ′

s is successful. The cardinality of Scoll is

#Scoll = e(q + 1, µ)2/2− e(q + 1, µ)/2. (2)

– Let scoll2,i,j,a,left (with a ∈ {0, 1} and i > j) denote the strategy of stopping
at input zi and returning (zi, a‖yj [1, `−1]) as a forgery, and let scoll2,i,j,a,right

denote the strategy of stopping at input zi and returning (zi, yj [2, `]‖a) as
a forgery. Note that whenever the event occurs that there are α, β ∈ [|Z|]
satisfying zα 6= zβ and gk(zα)[2, `] = gk(zβ)[1, `− 1], then there is a strategy
s ∈ Scoll2 := {scoll2,i,j,a,d|i, j ∈ [e(q+1, µ)], i > j, a ∈ {0, 1}, d ∈ {left, right}}
for which F ′

s is successful. The cardinality of Scoll2 is

#Scoll2 = 2 · e(q + 1, µ)2 − 2 · e(q + 1, µ). (3)

1 If i > |Z| the forger aborts.

PSfrag replacements

m1

m1
mt−1 mt

gkgk gk τ0`

1`

· · ·

1`

Fig. 1. The Chain-Shift (CS) construction

3.3 The Chain-Shift (CS) Construction

The CS-construction uses any FIL-MAC G := {gk : {0, 1}b+` → {0, 1}`}k∈{0,1}κ

with compression b ≥ `, to construct an AIL-MAC CSG := {CSgk : {0, 1}∗ →
{0, 1}`}k∈{0,1}κ . For a message m ∈ {0, 1}∗ of length n := |m|, the tag τ =
CSgk (m) is computed according to the following recursion (as depicted in Fig. 1).
Parse m into a sequence of b-bit blocks m1, . . . , mt−1 and a (b− `)-bit block mt,
such that m1‖ · · · ‖mt = m‖10ν for some ν ∈ {0, . . . , b − 1}:

y0 := 0`, yi := gk (yi−1‖mi) for i ∈ [t − 1], and τ := gk(1`‖yt−1‖mt).

The waste w(n) = t(n) · b + ` − n = d(n + 1 + `)/be · b + ` − n ≤ L + ` is upper
bounded by a constant, and on-line processing is possible.

Theorem 1.2 A (q, µ, ε)-forger F for CSG implies a (q′, ε′)-forger F ′ for G,
where q′ =

⌊
µ
b

⌋
+ 2(q + 1) and ε′ = ε

q′2/2+3q′/2+1 .

Proof. We apply Proposition 1 and show that S := Scoll ∪ S0` ∪ S1` is complete
for CS· by proving that whenever the last entry z in Z is not new, then there is
a non-trivial collision in gk, or an output from gk that equals 0` or 1`.

Assume that z is not new. Let z̃1, . . . , z̃t denote the sequence of queries to gk

resulting from the last query mβ to CSgk . Note that mβ is the forgery message
of F and thus new. Since z̃t = z is not new, z̃t must have been an earlier query
to gk, resulting from some query mα (with α ≤ β) to CSgk . Let z̃′1, . . . , z̃

′
t′ denote

the sequence of queries to gk in the computation of CSgk (mα). There are three
cases to distinguish, depending on the index i ∈ [t′] for which z̃t = z̃′i.

At the end of the chain (z̃t = z̃′t′): First, we note that this can not be the case
if α = β, since in that case z̃′

t′ is not an earlier occurring query. Thus we
have (the non-trivial collision) mα 6= mβ satisfying CSgk (mα) = CSgk (mβ).
Without loss of generality assume that t′ ≥ t. Now, either there exist an index
j ∈ [t − 1] such that z̃t−j 6= z̃′t′−j and z̃t−j+1 = z̃′t′−j+1, i.e., a non-trivial
collision in gk occurs (since z̃t−j+1 = z̃′t′−j+1 implies gk(z̃t−j) = gk(z̃′t′−j))

or z̃′t′−t+1 = z̃1 = 0`‖v for some v ∈ {0, 1}b, which implies gk(z̃′t′−t) = 0`

(with t′ − t ≥ 1 since mα 6= mβ).

2 An and Bellare point out in [1] that the security loss of roughly (µ/b)2 is unavoid-
able for iterative constructions of this nature. It is shown using birthday attacks
illustrated by Preneel and Van Oorschot [11].

In the middle of the chain (z̃t = z̃′i with 1 < i < t′): We have 1`‖v = z̃t = z̃′i =
gk(z̃′i−1)‖v, for some v ∈ {0, 1}b. Thus gk outputs 1`.

At the beginning of the chain (z̃t = z̃′1 and t′ > 1): This case is obviously
impossible, since z̃t = 1`‖v 6= 0`‖v′ = z̃′1 for any v, v′ ∈ {0, 1}b.

By definition of e(q + 1, µ), there is a sequence n1, . . . , nq+1 ∈ N0 such that:

e(q + 1, µ) =

q+1
∑

i=1

t(ni) ≤

⌊
µ + (q + 1)L

b

⌋

≤
⌊µ

b
+ 2(q + 1)

⌋

=: q′.

Thus #S +1 ≤ (q′2/2− q′/2)+ q′ + q′ +1 ≤ q′2/2+3q′/2+1 by (1) and (2). ut

Improving the Waste for Short Messages. We improve the efficiency of
the CS-construction for n := |m| < rb, where r ∈ N0 is a design parameter. This
is relevant (see for example [9]). The computation of the tag τ is redefined for
messages m of length shorter than rb as follows. Parse m into a sequence of b-bit
blocks m1, . . . , mt such that m1‖ . . . ‖mt = m‖10ν where ν ∈ {0, . . . , b − 1}:

y0 := 〈t〉`, yi := gk(yi−1‖mi) for i ∈ [t], and τ := yt.

Now, t(n) = d(n + 1)/be if n < rb (and t(n) = d(n + 1 + `)/be if n ≥ rb). The
proof that Scoll∪S0`∪S1`∪(∪r

i=1S〈i〉`
) is complete for the construction is omitted.

The only modification of Theorem 1 is thus that ε′ = ε
q′2/2+(3/2+r)q′+1 , i.e., the

reduction is essentially as tight (as for r = 0) for reasonable r’s.

Parallelizing the CS-Construction. We modify the CS-construction to allow
c ≥ 1 processors to compute the tag in parallel, achieving a speed up by a factor
of roughly c for long messages. The tag τ of an n-bit message m is computed
according to the following recursion:

1. If c ≤ d(n + 1)/be then set c′ := c, and else set c′ := d(n + 1)/be.
2. Parse m into m1‖ · · · ‖mc′t = m‖10ν , where m1, . . . , mc′t are b-bit blocks

and ν ∈ {0, . . . , c′b − 1}. Set mi,j := mi+(j−1)c′ for i ∈ [c′] and j ∈ [t].
3. Set yi,0 := 0`, and compute yi,j := gk(yi,j−1‖mi,j) for i ∈ [c′] and j ∈ [t].

4. Return τ := CSgk (y1,t‖ · · · ‖yc′,t).
3

The waste remains constant and the on-line property is preserved. We omit
the proof that S = Scoll ∪ S0` ∪ S1` is complete for the construction, as it is
similar to the proof that S is complete for the CS-construction.

3 The construction can be further parallelized by replacing step 4 as follows. For
simplicity assume b = ` (the generalization to b ≥ ` is straight forward). Apply gk to
every pair of adjacent blocks in (y1,t, · · · , yc′,t), resulting in a new sequence of dc′/2e
blocks, and repeat this until a single block y is obtained. Then set τ := gk(1`‖y).

By setting c := ∞ this construction is fully parallelized (FP) (here meaning that
the computation time is in Θ(log(n)) when arbitrary many processors are available)
with w(n) ∈ Θ(n). From a theoretical viewpoint it would be interesting to see
whether FP single-key AIL-MAC constructions with w(n) ∈ Θ(1) exists. There are
FP single-key AIL-MAC constructions with w(n) ∈ Θ(log(n)) and FP 2-key AIL-
MAC constructions with w(n) ∈ Θ(1).

PSfrag replacements

m1

m1
mt−1 mt[1, b − 1] m1[1, b − 1]

gkgk gk gkτ τ0` 1`· · ·

mt[b] m1[b]`

|m| ≥ b |m| < b

Fig. 2. The Chain-Rotate (CR) construction

3.4 The Chain-Rotate (CR) Construction

The purpose of presenting this single-key AIL-MAC construction is twofold.
First, it shows that constant waste and on-line processing is possible (even) with
compression b < `. Second, it demonstrates the generality of our proof technique.

The CR-construction transforms any FIL-MAC G := {gk : {0, 1}b+` →
{0, 1}`}k∈{0,1}κ into an AIL-MAC CSG := {CSgk : {0, 1}∗ → {0, 1}`}k∈{0,1}κ .
The tag τ = CRgk (m) of an n-bit message m is computed as follows (see Fig. 2).
Parse m into a sequence of b-bit blocks m1, . . . , mt such that m1‖ · · · ‖mt =
m‖10ν with ν ∈ {0, . . . , b − 1}. If t > 1, set y0 := 0` and else set y0 := 1`:

yi := gk(yi−1‖mi) for i ∈ [t − 1] and τ := gk(RR(yt−1‖mt)).

The waste is w(n) = d(n+1)/be·b+`−n ≤ L, and on-line processing is possible.

Theorem 2. A (q, µ, ε)-forger F for CRG implies a (q′, ε′)-forger F ′ for G,
where q′ =

⌊
µ
b

⌋
+ q + 1 and ε′ = ε

5q′2/2+3q′/2+1 .

Proof (Sketch). We apply Proposition 1. With a case study similar to that for the
CS· (here omitted), one shows that S := Scoll∪Scoll2∪S0` ∪S1` ∪S0`−11 ∪S01`−1

is complete for CR·. There exist n1, . . . , nq+1 ∈ N0 such that:

e(q + 1, µ) =

q+1
∑

i=1

t(ni) ≤

q+1
∑

i

⌈
ni + 1

b

⌉

≤

⌊
q+1
∑

i=1

ni + b

b

⌋

≤
⌊µ

b

⌋

+ q + 1 =: q′.

As a consequence, #S + 1 ≤ 5q′2/2 + 3q′/2 + 1 by (1), (2), and (3). ut

Parallelizing the CR-Construction. The CR-construction can be paral-
lelized in a similar way as the CS-construction. Just replace CS by CR in step 4
of the corresponding paragraph of Sect. 3.3. As for the CR-construction the set
S := Scoll ∪ Scoll2 ∪ S0` ∪ S1` ∪ S0`−11 ∪ S01`−1 is complete for the construction.

4 Comparison with the NI-Construction and Variations

The security analysis described in Sect. 3.1 can be generalized to multiple-key
constructions. Motivated by the NI-construction (see Fig. 3), we consider con-
structions C·,· (using two instantiations gk1

and gk2
of G to construct an in-

stantiation Cgk1
,gk2 of the MAC CG,G), where one of the instantiations (say gk2

without loss of generality) is invoked at the end of the computation. We prove
the security of the NI-construction and give several improvements thereof.

4.1 FIL-MAC Forgers Based on an AIL-MAC Forger (2 Keys)

Let F denote a (q, µ, ε)-forger for the MAC CG,G. As before let F ◦ Cgk1
,gk2

denote the process in which for each query m̃ issued by F , the corresponding
tag Cgk1

,gk2 (m̃) is computed and returned to F , and once F returns a forgery
(m, τ), the forgery is verified by computing Cgk1

,gk2 (m). Let Zi := (zi
1, z

i
2, . . .)

and Yi := (yi
1, y

i
2, . . .) be the sequence of inputs respectively outputs occurring

at the interface to instantiation gki
(for i ∈ {1, 2}).

The FIL-MAC forger F ′ simulates F ◦ Cgk1
,gk2 by letting its own oracle

simulate one of the instantiations gki
(say the instantiation under attack) and

by choosing a random key for the other, but stops the simulation at some query
zi

j to its oracle and returns a forgery (without making any further query to any
FIL-MAC instantiation). This is equivalent to first instantiating gk1

and gk2
(by

choosing the keys k1, k2 uniformly at random) and then letting F ′ specify which
instantiation to attack, i.e., consider as its own oracle, after which the key to
the other instantiation is revealed to F ′. We adopt this view. Any such forger
is characterized by its strategy, i.e., which instantiation it attacks (i.e., i), the
moment it stops (i.e., j), and the way it produces its forgery.

Let sna denote the näıve strategy described in Sect. 3.1, with the only mod-
ification that the second instantiation, gk2

is put under attack (recall that the
tag τ is an output of gk2

). F ′
sna

stops at the very last query z to gk2
and returns

(z, τ) as a forgery. Of course F ′ is successful if the following two conditions hold.
First, E occurs, i.e., Cgk1

,gk2 (m) = τ (and thus gk2
(z) = τ),4 and second Enew

holds, i.e., z is new for gk2
or equivalently z is only the last entry in Z2.

Imagine as before, that a complete set of strategies S exists, i.e., a set for
which whenever Ēnew occurs, there exists a strategy s ∈ S for which F ′

s is suc-
cessful. Then an overall strategy of F ′ is to pick its strategy uniformly at random
from S ∪ {sna}. Its success probability is at least the probability that E occurs
(i.e., ε) divided by the number #S + 1 of strategies, since the choice of strat-
egy is independent of the event E . Since F ′’s number of queries to its oracle is
upper bounded by max{|Z1|, |Z2|}, which is a random variable, it is convenient
to introduce the expansion function for each instantiation, i.e., for i ∈ {1, 2},

let ei(q̃, µ̃) := max{
∑q̃

j=1 ti(nj) : n1, . . . , nq̃ ∈ N0, n1 + · · · + nq̃ ≤ µ̃}. Thus

|Zi| ≤ ei(q + 1, µ). Proposition 1 generalizes as follows.

Proposition 2. The existence of a complete set S for a construction C·,· and
a (q, µ, ε)-forger F for CG,G implies a (q′, ε′)-forger F ′ for G, where q′ =
max(e1(q + 1, µ), e2(q + 1, µ)) and ε′ = ε

#S+1 .

A deterministic strategy s is now characterized by a triple of values (i, j, f),
where i denotes the instantiation to attack, zi

j the moment to stop, and f a

function mapping (Zi
j ,Y

i
j−1) to some value ŷi

j ∈ {0, 1}`. The pair (zi
j , ŷ

i
j) is

the forgery of F ′
s. The sets of deterministic strategies introduced in Sect. 3.2

is naturally defined for each instantiation. Let S i
y, Si

coll, and Si
coll2 denote the

corresponding sets for the ith instantiation.

4 We assume w.l.o.g. that F ’s forgery message m is distinct from its oracle queries.

PSfrag replacements

m1

m1

mt−1 〈|m|〉b

gk1
gk1

gk2

gk2 τ0` · · ·

Fig. 3. The nested iterated (NI) construction

4.2 The NI-Construction

The NI-construction [1] transforms any FIL-MAC G into a VIL-MAC NIG,G :=

{NIgk1
,gk2 : {0, 1}≤2b

→ {0, 1}`}k1,k2∈{0,1}κ . For a message m ∈ {0, 1}≤2b

of
length n := |m|, the tag τ = NIgk1

,gk2 (m) is computed according to the following
recursion (as illustrated in Fig. 3). Break m into t − 1 = dn/be blocks {mi}

t−1
i=1

of length b, where mt−1 is padded with zeroes if necessary, and set mt := 〈n〉b:

y0 := 0`, yi := gk1
(yi−1‖mi) for i ∈ [t − 1], and τ := gk2

(yt−1‖mt). (4)

The waste is w(n) = t(n) · b + ` − n = dn
b + 1e · b + ` − n ≤ L + b, and on-line

processing is possible. Note that the message space is VIL, due to mt := 〈n〉b.

Theorem 3. A (q, µ, ε)-forger F for NIG,G implies a (q′, ε′)-forger F ′ for G,
where q′ =

⌊
µ
b

⌋
+ q + 1 and ε′ = ε

q′2/2−q′/2+1 .

Proof. We show that S1
coll is complete for NI·,· by proving that whenever the last

entry z in Z2 is not new, then a non-trivial collision in gk1
occurs. Let mβ denote

the forgery message of F . Since z is not new, there is a query mα (issued by F
and different from mβ) with same input to gk2

. Thus we have |mα| = |mβ|, and
(the non-trivial collision) mα 6= mβ satisfying NIgk1

,gk2 (mα) = NIgk1
,gk2 (mβ).

Since mα 6= mβ , all corresponding intermediate values in the computation chains
can not be the same. As a consequence a non-trivial collision in gk1

occurs.
By definition of e1(q +1, µ), there is a sequence n1, . . . , nq+1 ∈ N0 such that:

e2(q + 1, µ) ≤ e1(q + 1, µ) =

q+1
∑

i=1

t1(ni) ≤

⌊
q+1
∑

i=1

ni + b − 1

b

⌋

≤
⌊µ

b
+ q + 1

⌋

=: q′.

Thus #S1
coll +1 ≤ q′2/2− q′/2+1 by (2). Proposition 2 concludes the proof. ut

Improvements on the NI-Construction

1. By replacing y0 := 0` with a message block, the waste decreases by ` bits,
the security reduction is slightly tighter, and the on-line property is of course
preserved. The security proof is identical to that of the NI-construction.

2. The block mt := 〈n〉b, encoding the message length, is superfluous. It can be
replaced by a message block with appropriate padding. This decreases the
waste of the construction, improves the tightness of the reduction, lifts the
message space to AIL, and preserves the on-line property. To be more precise
the message m is parsed into a sequence of b-bit blocks m1, . . . , mt such that
m1‖ . . . ‖mt = m‖10ν with ν ∈ {0, . . . , b−1} and processed according to (4).
It is straight forward to see that S1

coll ∪ S1
0` is complete for the construction.

3. If the block encoding the message length is used as the first block instead
of the last or if any other prefix-free encoding of the message into blocks is
used, the two keys can actually be replaced by a single key. By choosing an
appropriate prefix-free encoding (for example the one on page 126 in [6]) the
message space can be lifted to AIL, at the cost of having w(n) ∈ Θ(log(n)).
We conjecture that linear waste, i.e., w(n) ∈ Θ(n) is needed for the on-line
property. It is easy to verify that Scoll ∪S0` is complete for the construction.

5 Conclusions

A general paradigm for constructing VIL- and AIL-MACs from any FIL-MAC
was presented. The design goals were minimal key-length, optimal waste, as well
as suitability for on-line and parallel processing of the messages. Our single-key
AIL-MAC constructions, CS and CR, have constant waste, allow for on-line and
parallel processing of the message, and have essentially tight security reductions.

References

1. J. H. An and M. Bellare. Constructing VIL-MACs from FIL-MACs: Message au-
thentication under weakened assumptions. In Advances of Cryptology — CRYPTO

’99, volume 1666 of LNCS, pages 252–269. Springer-Verlag, 1999.
2. M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message

authentication. In Advances of Cryptology — CRYPTO ’96, volume 1109 of LNCS,
pages 1–15. Springer-Verlag, 1996.

3. M. Bellare, J. Guérin, and P. Rogaway. XOR MACs: New methods for message
authentication using finite pseudorandom functions. In Advances of Cryptology —

CRYPTO ’95, volume 963 of LNCS, pages 15–28. Springer-Verlag, 1995.
4. M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block chain-

ing message authentication code. In Journal of Computer and System Sciences,
61(3):362–399, 2000.

5. I. Damg̊ard. A design principle for hash functions. In Advances in Cryptology —

CRYPTO ’89, volume 435 of Lecture Notes in Computer Science, pages 416–427.
Springer-Verlag, 1990.

6. U. Maurer. Indistinguishability of random systems. In Advances of Cryptology —

EUROCRYPT ’02, volume 2332 of LNCS, pages 110–132. Springer-Verlag, 2002.
7. R. Merkle. A certified digital signature. In Advances in Cryptology — CRYPTO

’89, volume 435 of LNCS, pages 218–232. Springer-Verlag, 1990.
8. M. Naor and O. Reingold. From unpredictability to indistinguishability: A sim-

ple construction of pseudo-random functions from MACs (extended abstract). In
Advances in Cryptology — CRYPTO ’98, volume 1462 of LNCS, pages 267–282.
Springer-Verlag, 1998.

9. S. Patel. An efficient MAC for short messages. In Selected Areas in Cryptography,
volume 2595 of LNCS, pages 352–368. Springer-Verlag, 2003.

10. E. Petrank and C. Rackoff. CBC MAC for real-time data sources. In Journal of

Cryptology, 13(3):315–338, 2000.
11. B. Preneel and P. C. van Oorschot, MDx-MAC and building fast MACs from hash

functions. In Advances in Cryptology — CRYPTO ’95, volume 953 of LNCS, pages
1–14. Springer-Verlag, 1995.

