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Abstract. The concept of indifferentiability of systems, a generalized
form of indistinguishability, was proposed in 2004 to provide a simpli-
fied and generalized explanation of impossibility results like the non-
instantiability of random oracles by hash functions due to Canetti,
Goldreich, and Halevi (STOC 1998). But indifferentiability is actually
a constructive notion, leading to possibility results. For example, Coron
et al. (Crypto 2005) argued that the soundness of the construction C(f)
of a hash function from a compression function f can be demonstrated
by proving that C(R) is indifferentiable from a random oracle if R is an
ideal random compression function.

The purpose of this short paper is to describe how the indifferentia-
bility notion was a precursor to the theory of constructive cryptography
and thereby to provide a simplified and generalized treatment of indif-
ferentiability as a special type of constructive statement.

1 Introduction

An important abstraction in cryptography, introduced by Bellare et al. [4], is the
so-called random oracle model (ROM). A random oracle is an idealized resource
or system available to all involved parties, with parameters m and n, which
behaves as if it contained a uniformly chosen function table F : {0, 1}m → {0, 1}n

and, for every query x ∈ {0, 1}m from any party, provides the function value
F (x) to that party. Other parties do not see the query x nor the reply F (x).
A random oracle can also be defined for the countably infinite domain {0, 1}∗

of all finite-length input strings, the resource usually meant in cryptography by
the term “random oracle”.

The idea behind the ROM is a natural decomposition idea often arising in
cryptographic reasoning. On one hand one tries to construct, at least approxi-
mately, a random oracle from weaker resources (e.g. a shared random string),
and on the other hand one uses the idealized resource of a random oracle to
design secure protocols. The rationale is that if a well-designed hash function
can be assumed to behave like a random oracle, then a cryptographic protocol
proved secure in the ROM remains secure when the random oracle is replaced
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by a hash function, thus composing two steps of reasoning. Analogous reasoning
is, for example, applied if one proves a scheme secure assuming it has access to
a uniformly random value (e.g., a shared secret key), and then argues that the
random value can be replaced by a pseudo-random value without compromising
security.

Two questions arise.

1. What exactly do we mean by composition of steps in the above reasoning
and how can we make it mathematically sound? It turns out, as discussed
in this paper, that the random oracle example requires a different and more
sophisticated reasoning compared to the pseudo-randomness example.

2. Can a random oracle be constructed from a weaker resource, especially one
that can realistically be assumed to be available in a given application con-
text?

An important paper by Canetti et al. [6] showed that the random oracle
model is not instantiable by any hash function. The approach taken in that paper
was to devise a provably secure signature scheme S, which internally makes use
of a secure signature scheme S′ and has access to a random oracle, such that
S is insecure if the random oracle is replaced by any hash function, even one
devised in the future and in full knowledge of the random oracle. Intuitively, the
reason for this impossibility is that the program code p for a hash function can
not contain more entropy than the length of p and that therefore, if one accesses
the random oracle for a number of arguments yielding more entropy than the
length of p, then one can distinguish a black-box containing the random oracle
from one containing the hash function.

This result raises some natural questions which were the starting point for
the research leading to the paper [18] on indifferentiability.

1. How can this simple entropy argument be made precise, in view of the quite
involved original proof of [6], and how can it be generalized?

2. What is a meaningful definition of the possibility (rather than impossibility)
of such a construction, and which concrete constructions are indeed possible?

3. How can the construction notion be generalized to capture other crypto-
graphic settings like encryption or message authentication?

4. How can one design complex cryptographic protocols such that their security
proof follows simply from composition and the (generally simple) security
proofs of the individual construction steps?

The answer to the second question turned out to be useful for the design of
hash functions from a compression function (e.g. see [1,2,7,11,12]).

The third question asks for an understanding of the application of a cryp-
tographic scheme like a symmetric or public-key encryption scheme, a message
authentication scheme, or a digital signature scheme, as a construction of a
resource from other resources. The question then is which resources one should
consider and how cryptographic schemes can be understood as such construc-
tions. Cryptographic resources provide a guarantee to honest parties in view
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of potentially dishonest parties behaving arbitrarily. Such arbitrary or unspeci-
fied behavior is often called “malicious”. For example, a secure communication
channel guarantees to the honest parties (the sender and the receiver) that an
adversary can learn at most the length of the message. Note that, in the sense
of a specification discussed later, it is not guaranteed that the adversary learns
the message length, only that she does not learn more. For example, symmetric
encryption can be understood as constructing a secure channel from an authen-
ticated channel and a shared secret key, and message authentication can be
understood as constructing an authenticated channel from an insecure channel
and a shared secret key [16,17,19,20]. Similarly, public-key encryption can be
understood as constructing a confidential channel from an insecure channel and
an authenticated channel in the other direction [8].

The above approach to cryptography was proposed in [17], motivated by
earlier approaches to achieving composition in cryptography, most notably
Canetti’s UC framework [5] and the reactive simulatability framework of Backes,
Pfitzmann, and Waidner [3].

The outline of the paper is as follows. In Sect. 2, the general construction
paradigm and composability is discussed. In Sect. 3, we introduce the type of
resources relevant in cryptography. In Sect. 4, the cryptographic construction
notion is introduced and a few simple construction statements are proved. In
Sect. 5, a few impossibility results are proved which imply considerably strength-
ened versions of the impossibility of constructing a random oracle. In Sect. 6, the
positive construction result of Coron et al. [9] is discussed in view of the new
treatment appearing in this paper. In Sect. 7, it is mentioned that the construc-
tion notion of this paper directly leads to construction statements involving
several parties, some of which are honest and some of which are dishonest. In
Sect. 8, the relation of this paper to the original indifferentiability paper [18] is
explained.

A Word About Terminology. The title of the original paper [17] proposing
constructive cryptography was “Abstract cryptography”. Two main aspects of
that paper were (1) the proposal to use top-down abstraction in the spirit of
algebra in cryptography (and more generally in computer science), and (2) to use
the construction paradigm (see Sect. 2) in cryptography. Therefore, depending
on which aspect is stressed, both “abstract cryptography” and “constructive
cryptography” have been used in the literature to refer to this theory. The term
constructive cryptography, which was first used in [16], seems more natural and
captures the goal of the theory better, and we propose to use it from now on to
avoid confusion.

2 The Construction Paradigm

2.1 Specifications and Constructions

In almost every engineering discipline one considers, explicitly or implicitly, the
concept of a specification of an object or resource. Examples include the specifi-
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cation of a mechanical part (e.g. by lower and upper bounds on its dimensions,
its weight, and material parameters) and the specification of a software module
M (e.g. by defining the functions that M computes and possibly some accuracy
guarantees and/or some timing guarantees).

A key task in such a discipline is to construct, from an object or resource
satisfying a certain specification R, an object or resource satisfying another
(better or more valuable) specification S. Such a construction is achieved by
means of a constructor or recipe, say γ. One can then write

R γ−→ S.

For example, the designer of a software module N making use of the module M
will provide a specification S which is guaranteed (and proved) to be satisfied
by N , provided the underlying module M satisfies specification R.

As another example, in communication theory and information theory, a
binary symmetric channel (BSC) is a well-known resource specification charac-
terized by a maximal probability p of flipping the transmitted bits (where the
errors for all bits are independent). A good error-correcting code with 2k code-
words of length n can be understood as constructing, from an n-bit BSC with
parameter p, an error-free k-bit communication channel. More precisely, one only
achieves a specification of a channel which is ε-close to an error-free k-bit chan-
nel, for a small ε and a certain measure of closeness, i.e., for a metric on the set
of channels, namely the worst-case (over messages) decoding error probability.

Typically one considers a certain set Γ of constructors, possibly restricted in
terms of efficiency or implementation cost. One is then interested in constructibil-
ity and also in non-constructibility statements, where S is not constructible from
R, denoted R �−→ S, if there exists no constructor γ for which R γ−→ S:

R �−→ S :⇐⇒ ¬∃ γ ∈ Γ : R γ−→ S.

One often wants to use several resources in a construction, i.e., one wants to
consider a tuple of resources, for example a tuple of three resources satisfying
specifications R1, R2, and R3, as a single resource. We denote such a combined
resource specification as [R1,R2,R3].

2.2 Composition

If we assume that constructors can be composed, where the constructor resulting
from applying γ and then γ′ is denoted as γ′◦γ, then a very desirable and natural
property is that the corresponding construction statements can be composed.
Formally, this means that

R γ−→ S ∧ S γ′
−→ T =⇒ R γ′◦γ−→ T .

For example, any construction requiring an error-free channel and resulting in
a yet more useful resource should also be (approximately) correct if, instead of
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the error-free channel, the channel constructed by an error-correcting code from
an error-prone channel is used. Whether or not this is indeed the case requires
a formalization and a proof.

Another useful property of the construction notion is context-insensitivity:
For any U and V,

R γ−→ S =⇒
[
U1, . . . ,Uk,R,V1, . . . ,V�

] γ−→
[
U1, . . . ,Uk,S,V1, . . . ,V�

]

for any R, S, and U1, . . . ,Uk,V1, . . . ,V�. The understanding here is that γ
“knows” which resource it needs to access.1

We point out that these properties may or may not be satisfied by a con-
struction notion under consideration, and when investigating a concrete such
notion one needs to prove that they are satisfied.

2.3 Sets as Specifications

The notion of a specification is abstract, but often a specification is understood
as the subset of a universe Φ of objects, namely those that satisfy the speci-
fication. For example the specification of a BSC corresponds to the set of all
channels where the bit-flipping probability of each bit is upper bounded by p
but otherwise arbitrary (and the flipping events are independent). As another
example, a software specification may require only an approximative computa-
tion of certain results, and a concrete element of the specification is given by a
fixed function that is within the accuracy bounds.

If a pseudo-metric d on Φ is defined, a particular type of specification by sets
are ε-balls around a given object R, denoted

Rε =
{
R′∣∣ R′ ≈ε R

}
,

where we write R′ ≈ε R for d(R,R′) ≤ ε. More generally,

Rε =
{
R′∣∣ ∃R ∈ R : R′ ≈ε R

}
=

⋃

R∈R
Rε,

A construction statement R γ−→ S becomes stronger the larger the speci-
fication R (i.e., the less needs to be assumed about the given resource), and,
analogously, the statement becomes stronger the smaller the specification S,
i.e., the more specific the guarantee about the constructed resource is. In other
words, we have

R γ−→ S =⇒ R′ γ−→ S ′

if R′ ⊆ R and S ⊆ S ′.

1 Formally, the constructor γ on the right side might involve some scheme for address-
ing the resource specified by R among all resources, and in this case it would have
to be an adequately modified version of γ on the left side (i.e., in R γ−→ S).
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The situation is dual for impossibility results, which are a focus of [6,18] and
of this paper. Namely,

R �−→ S =⇒ R′ �−→ S ′

if R ⊆ R′ and S ′ ⊆ S. In other words, the smaller R or the larger S, the stronger
is the impossibility statement. We will pay attention to trying to obtain strong
possibility and impossibility results.

3 Cryptographic Resource Systems and Their Use

In this section we discuss the specific type of resource appearing in cryptographic
statements.

3.1 Systems, Interfaces, Parties

Cryptographic resources can be modelled as systems with several interfaces. One
can think of each interface as allowing one party to connect to the system and
access the functionality provided by it, but this view is not strict. It is also
possible that interfaces capture a more fine-grained capability and that several
interfaces are assigned to the same party. Conversely, one could also consider
several parties as accessing (sub-interfaces of) the same interface.

In a cryptographic context, one considers so-called “honest” and “dishonest”
parties, where often all the dishonest parties are modeled as a single party, called
“the adversary” or Eve.

For the purpose of this paper, it suffices to consider resources with two
interfaces, where all honest parties (sometimes summarized as Alice) access the
resource through the left interface and Eve accesses it from the right side.

More technically, in this paper we consider a specific type of system, namely
discrete resource systems that can (possibly) take an input at any interface and
provide an output at the same interface. Then a system can take another input
at some interface and produce an output at that interface, etc. For this paper,
we will not need a formalization of such discrete systems, but we refer to [15,22].
The metric on the set of discrete systems is naturally defined via the optimal
distinguishing advantage of a certain class of distinguishers.

3.2 Example Resource Systems

An example of such a resource is a uniform random function (URF) {0, 1}m →
{0, 1}n, accessible to all involved parties, which can be specified by considering
a uniformly chosen function table F : {0, 1}m → {0, 1}n that can be accessed by
giving as input a value x and receiving as output the value F (x).

When considering the above URF resource in a cryptographic context, even
when restricted to a single honest party and a single adversary, the above spec-
ification is not adequate as it is on one hand too specific (it guarantees that
the adversary can access the resource, while one does not want to give such a
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guarantee), and it is on the other hand not sufficiently specific in that one would
want to additionally specify lower and upper bounds on the number of allowed
queries (see later), as well as what is guaranteed to be hidden from the adversary.
There are a number of such specifications which are natural, and we list a few
of them below.

1. Alice can access the URF and Eve has no access to it.
2. Alice can access the URF and Eve has no access to it, but she potentially

sees whenever Alice makes a query.
3. As before, but Eve can potentially also learn the values queried and obtained

by Alice.
4. Alice and Eve can both access the URF and Eve obtains no other information

(e.g. about Alice’s access).
5. As before, but Eve can potentially also learn the values queried and obtained

by Alice.

The fourth example is what is often called a (fixed input-length) random
oracle which is accessible to all parties, whether honest or not, here restricted to
a single honest party. One can also consider such a random oracle resource with
arbitrary input-length, i.e., which for each input in {0, 1}∗ returns a random
value in {0, 1}n. An important question is from which resources a random oracle
can or cannot be constructed. The impossibility result of [6] can be interpreted as
the statement that a random oracle cannot be constructed from a fixed bit-string
(the hash program) which can be probabilistically chosen.

3.3 Converters

A party can use a resource R ∈ Φ by applying to it a so-called converter2 α
which is, for example, a (state-full) protocol engine. A converter can be thought
of as a system, with an inside and an outside interface, which is attached to the
resource system. Application of a converter at interface i transforms a resource
R into another resource which we denote by αiR, with the same set of interfaces
as R.

More formally, we consider a set Σ of objects, called converters. A converter
α, when applied as an interface i of a resource, induces a function3 Φ → Φ :
R 
→ αiR. Moreover, Σ is equipped with a composition operation ◦ satisfying

(β ◦ α)iR = βi(αiR).

The set Σ also contains a special element, the identity converter id ∈ Σ, which
induces the identity function Φ → Φ (for any interface i) and simply stands for
using the resource “as is”. It satisfies

id ◦ α = α ◦ id = α.
2 The term “converter” is used because its application at an interface converts the

interface into an interface with a different behavior.
3 In general, one could consider partial function where the application of a converter

at an interface need not always be defined. For the purpose of this paper there is no
need to consider partial functions.
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The set Σ is closed under composition, i.e., Σ ◦ Σ = Σ, where equality holds
because id ∈ Σ.

For two-interface resources as used in this paper, if one (i.e., Alice) applies a
converter α at the left interface of a resource R, the resulting resource is denoted
as

αR.

Similarly, if one (i.e., Eve) applies a converter β at the right interface of a resource
R, the resulting resource is denoted as

Rβ.

A key property we require, and which is typically satisfied, is that application
of converters at the left and the right interface commute, i.e.,

(αR)β = α(Rβ),

which justifies to write αRβ for the resulting resource.
A resource specification is simply a subset of R ⊆ Φ containing those resources

satisfying the specification. When no confusion can arise, we will also use the
term resource for a resource specification. An element of R ∈ Φ can be under-
stood as a singleton specification, i.e., as {R}.

Applying a converter α to a resource specification R is naturally defined as

αR =
{
αR

∣
∣R ∈ R

}
,

and analogously for Rβ and αRβ.

3.4 Some Relevant Resource Specification Relaxations

The purpose of this section is to introduce a few generic types of relaxations
of a resource specification R and to state some simple facts. We have already
discussed ε-balls Rε.

The understanding is that a dishonest party can do something arbitrary, i.e.,
apply an arbitrary converter. For a specification R, the specification capturing
that it is unknown what happens at the right interface is

R∗ := RΣ =
{
Rβ

∣
∣ R ∈ R, β ∈ Σ

}
,

where the symbol ∗ stands for an arbitrary converter. One can prove that

R ⊆ R∗ = (R∗)∗. (1)

One can consider a special converter � which blocks the right interface, i.e.,
the resource R � only has a left interface. More technically speaking, for a
resource R �, a distinguisher sees only the left interface and has no access to
the right interface. A resource R is right-outbound if no converter attached to
the right interface can have an effect at the left interface, i.e., if

R∗ � = R� .
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This means that no signalling from the right to the left interface of R is possible.
In this paper we do not need the dual left-outbound property.

For a given resource specification R one can consider the set, denoted R[[, of
right-outbound resources S compatible with (a resource in) R (only) at the left
interface:

R[[ :=
{
S

∣
∣ S is right-outbound and S � ∈ R�

}
=

{
S

∣
∣ S∗ �= S � ∈ R�

}
.

For example, if R denotes the specification of a random oracle (which hides
Alice’s queries from Eve), then R[[ includes all resources that leak partial or all
information about Alice’s queries to Eve. An impossibility result stating that
R[[ is not constructible is therefore a significantly stronger statement than that
a standard random oracle is not constructible. One can prove that

R ⊆ R[[ = (R[[)[[. (2)

3.5 Modeling Aspects: Resources vs. Converters

The implementation of a converter requires computational resources such as
computing power, memory, and randomness. On one hand, how many resources
an implementation requires seems relevant, and it appears generally better if a
converter can be more efficiently implemented. On the other hand, one often
makes statements that involve a quantification over all converters (e.g. all sim-
ulators), and such a quantification only makes sense if, by definition, the actual
choice is irrelevant.4

In almost every scientific consideration, one intentionally ignores certain
aspects as irrelevant and focuses on the particular ones considered relevant in the
given context. What is relevant or irrelevant is generally a conscious choice. For
example, in a computer science (or more specifically a cryptographic) context,
one may or may not care to model the exact computational power available to a
party. In particular, one may use an asymptotic model and only require that the
number of computational steps is polynomially bounded in a security parameter.

The general guiding principle in constructive cryptography is that everything
that is considered relevant for the analysis one wants to perform is modeled as
part of the resource. In contrast, the choice of a converter is, by definition, irrel-
evant with regard to the entailed cost or complexity. If, for instance, computing
power, memory, or randomness needed for a cryptographic construction is con-
sidered to matter, then it has to be explicitly modeled as part of the resource.
To illustrate this point, we explain a few possible such explicit choices. Each can
be thought of as a particular security model (e.g. computational or information-
theoretic).

1. The term information-theoretic security is usually used when computation
(at least by the adversary) is irrelevant. In such a case the converter set
includes all systems, regardless of the computational complexity of imple-
menting them.

4 For a logical predicate P , the purpose of a statement of the form ∃x P (x) is precisely
to ignore which x makes P (x) true.
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2. Even for information-theoretic security one may be interested in making nev-
ertheless the memory requirements explicit (see [10]). In this case, memory is
modeled as part of the resource and the converters are all systems that can
compute arbitrary functions (regardless of the complexity) but cannot keep
state between invocations.5 Ristenpart et al. [23] pointed out an apparent
problem with the indifferentiability notion of [18], but it was shown in [10]
that this problem was only an artefact of the fact that Turing machines come,
by definition, with an arbitrary amount of memory (the tape) and that there-
fore this model is not adequate in a setting, as that considered in [23], where
memory is indeed a relevant resource.

3. If computing power is considered relevant, then one can consider convert-
ers that perform no computation by themselves but only connect systems
and possibly input constants (for example a program). Any computational
resource can be modeled as a (parallel) resource. Such a resource can either
be a specific system with a certain behavior (e.g. a system encrypting mes-
sages), without reference to an implementation on a certain computational
model. Alternatively, it could be a computer resource C in some computa-
tional model, with an upper bound on the available computing power (for
example called complexity), and which can run an arbitrary program up to
that complexity bound. In this case, the converter inputs a program to C, and
we consider it irrelevant (from a resource viewpoint) which program is used.
Possibly, the specification of C could involve an upper bound on the length
of the program. In such a view, converters only route information, without
performing computation.

4. If, for some notion of efficiency, efficient computing power is considered irrel-
evant, then one can consider Σ to be the set of efficiently implementable con-
verter systems. Typically in cryptography, efficient is defined as some form of
polynomial-time notion, which of course, and unfortunately, requires now the
objects to be defined asymptotically in some way. A main reason for using
polynomial-time is that this notion, if properly defined, is closed.6 We point
out that polynomial-time is a specific choice that has its merits but for many
statements need not be fixed.

Clearly, one could consider different converter sets for honest parties and for
dishonest parties. For example, it would be natural to consider a notion of effi-
ciency and a different, larger notion of feasibility, where the converters of honest
parties must be efficiently implementable and the converters of dishonest parties
must only be feasibly implementable. It does not really seem well-justified to use
the same polynomial-time notion for both, except by tradition and possibly by
the set of results one can prove for this choice.

5 In this model, the memory required for a function computation is assumed to be
free. Of course, one could also model this memory as a resource.

6 More formally, converters α and β from this particular set Σ can be composed to a
new converter, say α◦β, and this composition is closed in the sense that the function
Φ → Φ induced by α ◦ β is contained in the class of functions induced by converters
in Σ.
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4 Cryptographic Constructions for a Fixed Adversary
Interface

4.1 Definition of Constructions and Some Lemmas

If a resource satisfying specification R is available, Alice can apply a converter
π to it, resulting in specification πR. Often one wants to think about πR in
a simpler way, namely in terms of a specification S such that πR ⊆ S. The
guarantee given to Alice by the specification S is generally weaker than the
specification πR, but, in the usual sense of abstraction, this loss of information
is accepted because S is a simpler (to use and work with) specification.

We can then say that a desired resource (specification) S is constructed from
an assumed resource (specification) R by application of the converter π ∈ Σ

(which is the constructor). This is written as R π−→ S.

Definition 1. R π−→ S :⇐⇒ πR ⊆ S.

Lemma 1. This construction notion is composable:

R π−→ S ∧ S π′
−→ T =⇒ R π′◦π−→ T .

Proof. From the first condition πR ⊆ S it follows that π′πR ⊆ π′S. Combining
this with the second condition, π′S ⊆ T , we obtain π′πR ⊆ T , which was to
be proved. ��

The following lemmas assert that the three specification relaxations discussed
in Sect. 3.4 are compatible with the construction notion.

Definition 2. A metric d on Φ is called non-expanding if d(αR,αS) ≤ d(R,S)
for all α and d(Rβ, Sβ) ≤ d(R,S) for all β.

Lemma 2. If the metric on Φ is non-expanding, then, for any ε > 0,

R π−→ S =⇒ Rε π−→ Sε.

Proof. We need to show that if R′ ∈ Rε, i.e., R′ ≈ε R for some R ∈ R, then
πR′ ∈ Sε, i.e., πR′ ≈ε S for some S ∈ S. The condition R π−→ S guarantees that
πR = S for some S ∈ S. For the same S we have πR′ ≈ε S since πR′ ≈ε πR = S
(due to the non-expanding property). This completes the proof. ��

The following lemmas are stated without proofs.

Lemma 3. R π−→ S =⇒ R∗ π−→ S∗.

Lemma 4. R π−→ S =⇒ R[[ π−→ S[[.
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4.2 Proving Constructions by Simulators

A line of reasoning often arising in cryptography, including [18], can be captured
by the following system equation (see also [17]):

πR ≈ε Sσ, (3)

where the converter σ is usually called a simulator (see discussion in Sect. 4.2).
The usefulness of finding a simulator σ satisfying the equation is that it implies
a construction statement:

Lemma 5. If the metric is non-expanding, then

∃σ ∈ Σ : πR ≈ε Sσ =⇒ R
π−→ (S∗)ε.

Proof. Since σ ∈ Σ we have Sσ ∈ SΣ = S∗. Hence πR ≈ε Sσ implies that
πR ⊆ (Sσ)ε ⊆ (S∗)ε, which is the definition of R

π−→ (S∗)ε. ��

In the literature, the converter σ in Eq. (3) is usually called a simulator. It is
sometimes described as translating what an adversary could do in the real world
(the left side of the equation), say β, into what she needs to do in the ideal world
(the right side of the equation) to achieve the same (or something close to) what
she would achieve in the real world, namely β ◦ σ. Note that πRβ ≈ε Sσβ due
to the non-expanding property of the pseudo-metric.

We point out, however, that in contrast to most of the existing literature,
the actual statement of interest (see Lemma 5) to us is not Eq. (3) itself, but the
construction statement it implies. In particular, the simulator does not appear
in the definition of a construction, and there can be interesting construction
statements proved in different ways than by use of Lemma 5.

In view of Lemma 5, the notion of indifferentiability [18] can be understood
as follows: T is indifferentiable from S, within ε, if T ⊆ (S∗)ε, where this is
proved by demonstrating a simulator σ such that T ≈ε Sσ. If T = πR, this
corresponds to the construction statement R

π−→ (S∗)ε.

4.3 Computational Considerations

Often in cryptography, Σ is the set of polynomial-time implementable converter
systems. If the metric on Φ is chosen as the two-valued computational indistin-
guishability metric, then a polynomial-time converter can be absorbed into a
poly-time distinguisher without leaving the distinguisher class, i.e., the metric
is non-expanding.

In a concrete-security consideration, the efficiency loss of a reduction and
therefore the concrete implementation complexity of σ matters. In other words,
a statement of the form (3) becomes more useful for a more efficient σ. This,
however, does at first not seem to be compatible with the idea that converters
in Σ are considered free (of cost). Either a converter is free, or it is not. Let us
explain how this contradiction is resolved in our approach.
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More specifically, suppose we use model 3 described in Sect. 3.5, where Σ
are the converters that perform no computation. Suppose furthermore that one
has shown that equality πR = Sβ holds for some system β that requires some
computation, i.e., β �∈ Σ. Then we can give the equation the following meaning.
Let β̄ be a system corresponding to the resource that behaves like β, with inside
and outside interface both available to Eve (only at the right interface). Then
one can rephrase the equation πR = Sβ as

πR = [S, β̄] σ,

where σ is the trivial converter that simply connects β̄ to S, i.e., such that

[S, β̄] σ = Sβ.

In other words, any equation of the type πR = Sβ can be turned into a con-
struction statement of the form

R
π−→

(
[S, β̄]

)∗

which makes the computational resource required for the “simulation” explicit.

5 Impossibility of Constructing a Random Oracle

As an example for an impossibility result, we show that a random oracle cannot
be constructed, even if a source of public randomness is available. To state this
more precisely, we use the following specifications.

– PRk is public randomness of size k. The resource chooses Z uniformly at
random from the set {0, 1}k of k-bit strings.7 Any party can read Z.8

– ROm→n
[q,q′] is a random oracle with input size m and output size n. The resource

chooses F uniformly at random from the set of all functions from {0, 1}m to
{0, 1}n. Any party can submit queries x ∈ {0, 1}m which are answered by
F (x). At least q and at most q′ queries by any party are allowed.

As before, we assume that the set of resources is equipped with a (non-
expanding) distance measure, d, defined as the maximum advantage of any dis-
tinguisher from a class D.9 The results derived below will be valid for any reason-
able distinguisher class D. The only requirement is that the execution of basic
algorithms giving inputs and receiving outputs and performing equality checks,
such as D1 and D2 below, are within the class D.

We start with a basic impossibility result, which asserts that public random-
ness cannot be expanded.
7 To keep the presentation simple we assume that the probability distribution of Z

is uniform; a generalization to arbitrary probability distributions is straightforward.
This includes the case where PRk is a fixed hash function program of length k.

8 One may impose the additional restriction that the string Z can only be read bit-
wise, but this is not relevant for the considerations here.

9 That is, d(R, S) = supD∈D ΔD(R, S), where ΔD(R, S) is the absolute value of the
difference between the probability that D returns 0 when connected to R and the
probability that it returns 0 when connected to S.
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Lemma 6. Let k ∈ N and ε < 1
4 . Then

PRk �−→ PRk+1
[[ ε

.

Proof. As explained, we regard PRk as a specification of a system with two
interfaces (left and right), which model the access to the resource by the honest
and the dishonest parties, respectively. It suffices to consider two honest parties,
which we label by A and A′, as well as one dishonest party, labelled by E. We
recall that in this two-interface case, any constructor corresponds to a converter
π for the left interface, which can be understood as a pair of converters πA and
πA′ for the two honest parties.

We need to prove that

d(πPRk,R) ≥ 1
4

for any converter π and for any right-outbound resource R with the property
R�⊆ PRk+1�. Because d is non-expanding, it suffices to show that

d(πPRkπ′,Rπ′) ≥ 1
4

(4)

for some converter π′. We take π′ to be πA′ . More precisely, π′ answers a query
by E in the same way as π would answer a query by A′. We then consider a
distinguisher D1 that executes the following simple algorithm and show that it
can tell apart πPRkπ′ and Rπ′ with advantage at least 1

4 .

Distinguisher D1

read the (k + 1)-bit strings ZA and ZA′ from the left interface;
read the (k + 1)-bit string ZE from the right interface;
if ZA �= ZA′ then

return 0; halt ;
else if ZA �= ZE then

return 1; halt ;
return 0

Suppose first that D1 is connected to πPRkπ′. It only returns 1 if ZA =
ZA′ �= ZE . By the definition of π′, the strings ZA′ and ZE are generated by
identical (possibly probabilistic, but independent) procedures. It follows that
the probability of the event ZA = ZA′ �= ZE is upper bounded by

Pr[ZA = ZA′ ] Pr[ZE �= ZA′ ] = Pr[ZA = ZA′ ](1 − Pr[ZA = ZA′ ]) ≤ 1
4

(since 1
4 is the maximum of the function x 
→ x(1 − x) for 0 ≤ x ≤ 1). Hence D1

returns 0 with probability at least 3
4 .

Conversely, in the case where D1 is connected to Rπ′, ZA = ZA′ holds
by definition of R, and ZA is a uniformly random (k + 1)-bit string, whereas
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ZE is a (k + 1)-bit string computed by π′. Since π′ behaves by definition like
πA′ and thus takes as input only a k-bit string, ZE depends on a string W of
length at most k. D1 only returns 0 if ZA = ZE . The probability of this event is
upper bounded by the min-entropy of ZA conditioned on W , i.e., Pr[ZA = ZE ] ≤
2−Hmin(ZA|W ) (cf. Appendix). By (11), the chain rule for the min-entropy, we have
Hmin(ZA|W ) ≥ Hmin(ZA) − k = 1, where we used that W consists of at most
k bits. We conclude that Pr[ZA = ZE ] ≤ 1

2 . Hence, when connected to Rπ′, D1

returns 0 with probability at most 1
2 . Combining this with the above shows that

the distinguishing advantage is at least 1
4 , which implies (4). ��

Lemma 6 states that public randomness cannot be expanded by a single bit,
even if one would tolerate that Eve may learn something about what happens at
the honest parties’ interface (which is captured by “[[”). This also suggests that
one cannot construct a more powerful public randomness resource that allows
to extract more than k bits:

Corollary 1. Let k ∈ N and ε < 1
4 . Then

PRk �−→ ROm→1
[q,∞]

[[ ε

unless m < log2(k + 1) or q ≤ k.

Proof. Suppose that
PRk π−→ ROm→1

[q,∞]

[[ ε (5)

holds for some constructor π. Let furthermore π′ be a constructor that simply
outputs the first min(q, 2m) entries of the function table of the random oracle,
and thus achieves

ROm→1
[q,∞]

π′
−→ PRmin(q,2m)

[[
.

Using Lemma 4 as well as (2), this yields

ROm→1
[q,∞]

[[ π′
−→ PRmin(q,2m)

[[

and hence, using Lemma 2, also

ROm→1
[q,∞]

[[ ε π′
−→ PRmin(q,2m)

[[ ε
. (6)

By Lemma 1, the composition of constructions (5) and (6) gives

PRk π′◦π−→ PRmin(q,2m)
[[

ε.

Lemma 6 now implies that min(q, 2m) < k + 1. ��

We now proceed to a substantially stronger impossibility claim. Note that
Corollary 1 only applies to cases where the total entropy that the honest parties
can draw from the random oracle is strictly larger than the number k of public
random bits that are available. Theorem1 below shows that this is not necessary
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for the impossibility result to hold. It asserts that even a weak random oracle
that answers only a small number of queries (say, q = 1024), and thus only pro-
vides a small amount of entropy to the honest parties, cannot be constructed.
In addition, the impossibility claim remains valid if one tolerates that the con-
structed random oracle leaks arbitrary information, e.g., about what happens at
the honest parties’ interface, to the adversary.

For simplicity, we restrict the statement to oracles with output size 1 (but it
obviously implies a corresponding impossibility result for random oracles with
larger output size).

Theorem 1. For any k,m, q ∈ N and ε ≤ 1
2

PRk �−→ ROm→1
[q,∞]

[[ ε

unless m < min(1 + log2 k, 10) or q < 210.

Proof. Set without loss of generality q = 210 and assume that m ≥ 1 + log2 k
and m ≥ 10. The proof proceeds analogously to that of Lemma 6, i.e., we show
that

d(πPRkπ′,Rπ′) >
1
2
, (7)

where R is a right-outbound resource such that R�= ROm→1
[q,∞] �, and where π′

is again a converter that reproduces the behavior of π for one party. To establish
this inequality we consider a distinguisher D2 defined by the following simple
algorithm and show that it can tell apart πPRkπ′ and Rπ′ with advantage
strictly larger than 1

2 .

Distinguisher D2

choose q different values X1, . . . , Xq at random from the set {0, 1}m ;
for j ∈ {1, . . . , q} do

A and A′ submit query Xj and record the answers ZA,j and ZA′,j ;
if ZA,j �= ZA′,j then return 0; halt ;

end
for j ∈ {1, . . . , q} do

E submits query Xj and records the answer ZE,j ;
if ZA,j �= ZE,j then return 1; halt ;

end
return 0

We first treat the case where D2 is connected to πPRkπ′. D2 only returns 1
if, for some j ∈ {1, . . . , q}, ZA,j = ZA′,j �= ZE,j . Following the same reasoning as
in the proof of Lemma 6, we can infer that the probability of this event is upper
bounded by 1

4 . Hence, when connected to πPRkπ′, D2 returns 0 with probability
at least 3

4 .
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Conversely, if D2 is connected to Rπ′, the answers ZA,j and ZA′,j received
by the honest parties upon any query Xj will agree by definition of R. The
distinguisher thus returns 0 only if they also coincide with the answers ZE,j

received by a dishonest party E. This latter event only occurs if the tuple of
answers Z = (ZA,1, . . . , ZA,q) to all queries X1, . . . , Xq is reproduced by the
output of the converter π′. Since π′ carries out the same computation as π for
one party, this output depends on a string W of length at most k. Because Z can
be regarded as a subset of q bits chosen at random from 2m ≥ 2k uniform bits,
Corollary 2 (see Appendix) asserts that Hmin(Z|X1 · · · XqW ) > 2. This implies
that the success probability of any strategy for guessing Z from W is strictly
smaller than 1

4 . Hence, if connected to Rπ′, D2 returns 0 with probability strictly
smaller than 1

4 . Combining this with the above shows that D2 has distinguishing
advantage strictly larger than 1

2 , which establishes (7). ��

6 Construction Results

Coron et al. [9] showed that a random oracle with arbitrary input length and
fixed output length n can be constructed from a compression function with fixed
input length and output length n. The latter is itself modelled as a random
oracle. The following theorem is a variation of this result.10

Theorem 2. For any n, κ, �, q, q′ ∈ N and ε = 2−n+1q′2 there is π such that

ROn+κ+	log2 �
→n
[�q,q′]

π−→
(
(ROn+�κ→n

[q,q′] )∗)�ε
. (8)

We are going to provide a proof of Theorem2 based on the following result.

Lemma 7. For any n, a, q, q′ ∈ N and ε = 2−n+1q′2

[
ROa→n

[q,∞], ROn+κ→n
[q,q′]

] π−→
(
(ROa+κ→n

[q,q′] )∗)ε
,

where π is the constructor which answers queries (x, y) ∈ {0, 1}a × {0, 1}κ with
Fn+κ→n(F a→n(x), y), where F a→n and Fn+κ→n are the functions defined by
the two random oracles.

Proof. As shown in [9]

d
(
π
[
ROa→n

[q,∞], ROn+κ→n
[q,q′]

]
, ROa+κ→n

[q,q′] σ
)

≤ ε

holds for a simulator σ defined by the following algorithm.

10 The result in [9] corresponding to Theorem 2 is weaker in that the error ε is multiplied
with 	2 rather than 	.
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Simulator σ

if query x ∈ {0, 1}a to F a→n then
return random v ∈ {0, 1}n;

else if query (v′, y) ∈ {0, 1}n × {0, 1}κ to Fn+κ→n then
if v′ equals output of F a→n for some previously queried x′ then

return answer of the resource to query (x′, y)
else

return random z ∈ {0, 1}n

The claim of the lemma then follows from Lemma 5. ��

Proof. (of Theorem 2). The construction that gives rise to (8) can be regarded
as the concatenation of several more basic constructions. The first, π0, a simple
domain splitting step, constructs � independent random oracles with identical
domain from a single random oracle, whose input domain consists of �log2 ��
additional bits, i.e.,

ROn+κ+	log2 �
→n
[�q,q′]

π0−→
[
ROn+κ→n

[q,q′] , · · · , ROn+κ→n
[q,q′]︸ ︷︷ ︸

� times

]∗
. (9)

This is achieved by converters which simply answer any query x to the jth
constructed random oracle by submitting the concatenation of x and a binary
encoding of j to the given random oracle and then forwarding its answer.

For the next step, we invoke Lemma 7 with a = n+ jκ, for j ∈ {1, . . . , �−1}.
This lemma, together with Lemmas 2 and 3, the fact that (Rε)∗ ⊆ (R∗)ε, and (1),
implies that there exists a constructor πj such that

[(
(ROn+jκ→n

[q,∞] )∗)(j−1)ε
, ROn+κ→n

[q,q′]

] πj−→
(
(ROn+(j+1)κ→n

[q,q′] )∗)jε
.

Recursive application of this construction gives
[
(ROn+κ→n

[q,∞] )∗, ROn+κ→n
[q,q′] , · · · , ROn+κ→n

[q,q′]︸ ︷︷ ︸
�−1 times

] π�−1◦···◦π1−→
(
(ROn+�κ→n

[q,q′] )∗)(�−1)ε
.

Using ROn+κ→n
[q,q′] ⊆ ROn+κ→n

[q,∞] ⊆ (ROn+κ→n
[q,∞] )∗ we can substitute the first term

in the above construction statement to obtain
[
ROn+κ→n

[q,q′] , · · · , ROn+κ→n
[q,q′]︸ ︷︷ ︸

� times

] π�−1◦···◦π1−→
(
(ROn+�κ→n

[q,q′] )∗)(�−1)ε
.

Similarly to the above, this implies that
[
ROn+κ→n

[q,q′] , · · · , ROn+κ→n
[q,q′]︸ ︷︷ ︸

� times

]∗ π�−1◦···◦π1−→
(
(ROn+�κ→n

[q,q′] )∗)(�−1)ε
. (10)

Theorem 2 now follows by composing the constructions (9) and (10). ��
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7 Generalization to Many Parties

We briefly sketch how the construction notion described in Sect. 4 directly leads
to a construction notion for resources with several honest parties and an adver-
sary, simply by considering the left interface as consisting of a sub-interface
for each honest party and by considering the special type of converter (for
the combined interface) as corresponding to a list of converters, one for each
sub-interface. A typical case is the so-called Alice-Bob-Eve setting as discussed
in [16,17] with two honest parties Alice and Bob. This model allows to capture
many core cryptographic constructions, including the construction of a shared
secret key, of an authenticated channel, and of a secure channel.

One can also capture a setting where various parties could be dishonest. Usu-
ally the terminology used is that a central adversary corrupts some of the parties.
In other words, any party can possibly be honest or dishonest. A protocol is a
tuple of converters, one for each potentially honest party, where the idea is that
an honest party is guaranteed to apply the designated converter (i.e., to “follow
the protocol”). One can then make a collection of construction statements, for
each set of dishonest parties that needs to be considered, where for each such
statements the honest parties’ interfaces can be thought of as being grouped at
the left side and the dishonest parties’ interfaces are grouped at the right side.

8 Conclusions

The goal of this paper was to cover the essential aspects of the original indif-
ferentiability paper [18], but in a more general and more adequate manner,
leading to a general construction notion. The paper [18] contained basic ideas
of constructive cryptography [17], but this is perhaps not apparent since [18]
was mostly written in the tradition of the cryptography literature at the time:
The objects considered were usually asymptotic in a security parameter, and the
usual polynomial-time efficiency notion and the usual negligibility notion were
used. It should be clear from [17] and this paper that fixing such a particular
model is unnecessary. Moreover, indifferentiability was presented in [18] as a gen-
eralized form of indistinguishability, appearing as an intermediate step needed
to define constructions (actually called reductions in [18]).

In view of the general construction notion presented in this paper, the indif-
ferentiability notion corresponds to a specific construction type, for the special
type S∗ of resource specifications, where, moreover, S is right-outbound. Then
T is indifferentiable from S, within ε, if T ⊆ (S∗)ε, where this is proved by
demonstrating a simulator σ (not called simulator in [18]) such that T ≈ε Sσ. If
T = πR, this corresponds to the construction statement R

π−→ (S∗)ε. Demon-
strating a simulator and applying Lemma5 is only one of possibly several ways
of proving construction statements, and simulators should therefore probably
only appear in proofs, not in definitions.
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Appendix: Min-entropy sampling

The min-entropy of a random variable X conditioned on another random vari-
able Y , Hmin(X|Y ), is defined as (see, e.g., [14])

Hmin(X|Y ) = − log2 max
f

Pr[X = f(Y )],

where the maximum ranges over all functions f from the alphabet Y of Y to
the alphabet X of X. Note that the expression in the logarithm on the right
hand side can be interpreted as the maximum probability of correctly guessing
X from Y . The min-entropy has several natural properties analogous to the
Shannon entropy. Among them is a chain rule, which implies

Hmin(X|Y ) ≥ Hmin(X) − log2 |Y|. (11)

The min-entropy of a sample chosen at random from a min-entropy source
has been studied in [13,21,24]. Roughly speaking, one can show that the min-
entropy of the sample is proportional to the sample size and the min-entropy
of the source. We use a version of this statement due to Wullschleger, which
provides explicit bounds [25].11

Proposition 1. Let X ∈ {0, 1}n and Z be random variables and let T be a
uniformly chosen subset of {1, . . . , n} of size |T |. Then

Hmin(XT |TZ)
|T | ≥ f

(
Hmin(X|Z)

n

)
− 5

|T | ,

where f : [0, 1] → [0, 1] is a monotonically strictly increasing function such that
f(1/2) > 1/144.

Corollary 2. Let X ∈ {0, 1}n be uniformly distributed, let Z ∈ {0, 1}k be an
arbitrary random variable on k ≤ n/2 bits, and let T be a uniformly chosen
subset of {1, . . . , n} of size |T |. Then

Hmin(XT |TZ) >
|T |
144

− 5.

Proof. It follows from the chain rule (11) that conditioning on k bits cannot
decrease the min-entropy by more than k bits, i.e.,

Hmin(X|Z) ≥ Hmin(X) − k = n − k ≥ n/2.

The claim then follows from Proposition 1. ��
11 Proposition 1 is a corollary of Theorem 1 of [25].
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